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 Abstract 1 

This work relates native lactic acid bacteria (LAB) (Lactobacillus pentosus LPG1, L. 2 

pentosus Lp13, and Lactobacillus plantarum Lpl15) and yeast (Wickerhamomyces 3 

anomalus Y12) starters to the volatile components (VOCs) produced in green Spanish-style 4 

table olives. For this aim, the VOC profile was considered as compositional data (CoDa). 5 

The CoDa analysis generated new information on the relationship among inocula and 6 

VOCs through the tetrahedral plot, CoDa-biplot, variation array matrix, and CoDa 7 

dendrogram. The ilr (which includes pivot) coordinates (Euclidean space) from VOCs 8 

produced more reliable starters’ clustering than the original data. The potential VOC 9 

markers, identified by a test based on the  pairwise comparison of the logratio variation 10 

arrays from the whole data set and the individual groups, were (starters in the parenthesis): 11 

2-phenylethyl acetate (LPG1, Y12, Y12+LAB), methanol (Lpl15), cis-2-penten-1-ol 12 

(LPG1, Y12, Y12+LAB), 2-methyl-3-hexanol (LPG1, Y12), U (non-identified) C (m/z 83-13 

112-97) (Y12) and UF (m/z 95-154-110) (LPG1, Y12+LAB). Besides, some VOCs were 14 

partial/totally inhibited by specific starters: 2-methyl-1-propanol (Lp13, Y12+LAB), 2-15 

phenyl ethanol (Lp13), furfuryl methyl ether (Y12+LAB), purpurocatechol (Y12, 16 

Y12+LAB), 4-ethyl guaiacol (Lp13, Lpl15), 4-ethyl phenol (Lpl15), 5-tert-butylpyrogallol 17 

(Lp13, Lpl15), and UE (m/z 111-198) (Lp13). A better understanding of the relationship 18 

between starters and their VOC may facilitate modelling the flavour and quality of Spanish-19 

style green table olive fermentations.  20 

Keywords: fermentation; inoculation; segregation; clustering; classification; compositional 21 

data analysis. 22 
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1. Introduction 23 

Green Spanish-style represents 50-60% of the world table olives, estimated as 24 

3.26·106 tonnes/year by the International Olive Council (IOC, 2019). Its processing 25 

consists of debittering of fruits with lye (NaOH solution), washing with tap water, and 26 

brining. Then, a spontaneous lactic fermentation produces numerous metabolites (Garrido-27 

Fernández et al., 1997). Apart from the lactic, acetic and other minor acids, the volatile 28 

compounds (VOC) play an essential role in the sensory characteristics of the product. The 29 

introduction of the of GC/MS stimulated studies on the VOC profile, particularly on the 30 

effect of cultivar, growing area, packaging conditions or influence of inoculation (Cortés-31 

Delgado et al., 2016; Sánchez et al., 2017; López-López et al., 2018; Sánchez et al., 2018; 32 

Benítez-Cabello et al., 2019). Several of these compounds were related to the “zapatería” 33 

spoilage (de Castro et al., 2018). These studies have systematically involved the application 34 

of standard statistics and multivariate methods. Moreover, the influence of starter cultures 35 

on the sensory characteristics of fermented olives was always obviated. However, those 36 

strains associated with the most favourable components could be used for improving the 37 

flavour and quality of the final products.    38 

Compositional Data (CoDa) Analysis is a recent statistical methodology proposed 39 

initially by Aitchison (1986) to treat data expressed in proportions (e.g. mg/kg, or 40 

percentage) of the whole sample. Pawlowsky-Glahn et al. (2015) have also defined them as 41 

vectors with strictly positive components that carry relative information. Such structure has 42 

specific geometrical connotations because the same absolute difference may not reflect the 43 

real (relative) changes. Therefore, its study by multivariate tools, developed for data 44 

expressed in absolute values, may lead to useless conclusions (van den Boogaart and 45 
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Tolosana-Delgado, 2013; Pawlowsky-Glahn et al., 2015; Filzmoser et al., 2018). For 46 

treating these data, Aitchison (1986) proposed the use of logratios, although other 47 

alternatives like additive (alr), centred (clr), or isometric logratio (ilr) transformations 48 

(Egozcue et al., 2003) are also suggested. Recently, pivot coordinates, a particular case of 49 

ilr transformation has also been introduced (Filzmoser et al., 2018). Simultaneously, tools 50 

for their treatment in-the-simplex (the sample space for compositions) was also developed. 51 

Nowadays, the proper application of CoDa analysis to these data includes stay-in-the-52 

simplex techniques and their transformation into clr or ilr coordinates, followed by the 53 

study of these coordinates by the standard multivariate tools (Pawlowsky-Glahn et al., 54 

2015; Filzmoser et al., 2018).  55 

The CoDa analysis is common in geology (Tolosana-Delgado et al., 2011), genetic 56 

(Pierotti and Martín-Fernández, 2011), spatial exploration (Lammer et al., 2011), or lipid 57 

dynamics in pelagic amphipods (Kraft et al. 2015). Nevertheless, its use in foods is still 58 

scarce and related to wine (Hron et al., 2012), pig fat (Ros-Freixedes and Estany, 2014; 59 

Garrido Fernández and León Camacho, 2019) or table olives (Garrido Fernández et al., 60 

2018). Recently, the standard multivariate techniques did not adequately segregate among 61 

Manzanilla treatments (Benítez-Cabello et al., 2019). In the study of the VOCs of coffee, 62 

compounds like acetic acid, 2-methyl pyrazine, furfural, 2-furfuryl alcohol, 2-6-dimethyl 63 

hydrazine, and 5-methyl furfural were chosen as relevant markers (Korhoňová et al., 2009). 64 

Therefore, the use of the new CoDa statistic to characterise the VOCs produced in green 65 

Spanish-style processing is challenging. 66 

 The work aims to relate the starter cultures used for the fermentation of green 67 

Spanish-style Manzanilla table olives to the formed VOCs, the selection of the most 68 
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characteristic components, and the tentative identification of potential markers, using CoDa 69 

analysis.  70 

The use of selected microorganisms may represent a good strategy for controlling 71 

the flavour of table olives and standardise their quality. 72 

2. Material and Methods 73 

2.1. Olive processing 74 

The olives were from the Manzanilla cultivar, harvested at the green maturation 75 

stage. Processing was carried out in cylindrical fermentation vessels (9.5 kg olives/5 L 76 

liquid) where the fruits were debittered using a lye solution containing: 32.4 g/L NaOH lye, 77 

21.9 g/L NaCl and 8.9 g/L CaCl2 (97% purity). When the alkali reached 2/3 of the flesh (7 78 

h), the olives were washed with fresh water for 5 h and, finally, brined in a solution having, 79 

per litre, 100 g NaCl, 14.2 g CaCl2 and 0.012 L of 35% HCl.  80 

2.2 Treatments 81 

 The strains used as starters were: L. pentosus LPG1 (onwards LPG1), L. pentosus 82 

Lp13 (Lp13), L. plantarum Lpl15 (Lpl15), and yeast Wickerhamomyces anomalus Y12 83 

(Y12), all of them belonging to the Table Olive Microbial Collection (TOMC) of Instituto 84 

de la Grasa (CSIC). They were isolated from the surface of fermented table olives and 85 

selected because of their technological and probiotic properties (Benítez-Cabello et al. 86 

2019). The experiment consisted of six duplicate fermentation processes (treatments) 87 

inoculated with LPG1 (T1), Lp13 (T2), Lpl15 (T3), Y12 (T4), a sequential use of Y12 and 88 

a combination of every LAB (T5), and the usual spontaneous process (T6) (Fig. 1). Despite 89 
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the initial HCl acid added to the brine, the optimum pH for the LAB inoculation (approx. 90 

6.0-7.0 units) was not reached until the 9th day after brining.   91 

2.3 Inoculation 92 

The LAB were grown on Man, Rogosa and Sharpe (MRS) broth (Oxoid, 93 

Basingstoke, Hampshire, England) at 37 ºC for 24h, while yeast was grown on YM broth 94 

(Difco) at 28 ºC for 48 h. Cultures were then washed and re-suspended in 0.9% saline 95 

buffer. The inoculum sizes were prepared to reach in the cover brine approximately 6 log10 96 

CFU/mL and 5 log10 CFU/mL for LAB and yeasts, respectively. LAB strains were 97 

inoculated on the 9th day of fermentation (once the optimum pH was reached), while the 98 

yeast was inoculated on the first day after brining. In T5 treatment, the inoculation was 99 

sequential, and the mix with all LAB strains was incorporated eight days after inoculating 100 

the yeast. The vessels were kept for fermentation (65 days) in the pilot plant facilities of the 101 

Instituto de la Grasa (CSIC, Seville, Spain), at room temperature (22±3 ºC). At the end of 102 

the process, the samples for analysing the VOCs were withdrawn.  103 

2.4. Analysis of the volatile compounds  104 

The VOCs were obtained by sequential sorptive extraction of brines with Twisters® 105 

(TW), using two polydimethylsiloxane TW in each sample. The operation was carried out 106 

first in immersion (SBSE), for semi volatile, and then in the head space (HSSE), for highly 107 

VOCs (Ubeda et al., 2016). The procedure improves the sensitivity of the just HSSE 108 

extraction (Úbeda et al., 2016). Six mL of brine, 1.8 gr of NaCl (30% w/v), and 8 µL of the 109 

internal standard 4-methyl-2-pentanol (1,044 mg/L final concentration) were placed in a 20 110 

mL vial. SBSE was performed for 1 h and continue stirring with a conventional (non-111 
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coated) magnetic stir bar at 200 rpm and room temperature, using a Twicester® to keep the 112 

TW immersed. TW was removed, rinsed with Milli-Q water and dried with tissue paper. 113 

After this, a new TW was placed in an open glass inserted in the same vial for HSSE 114 

extraction. The vial was again tightly capped and heated in a thermostatic bath at 62 ºC for 115 

1 h. Then, the TW was cleaned and dried with tissue paper. Both TWs were simultaneously 116 

desorbed in the GC/MS by introducing them into the same desorption tube.  117 

The analyses were performed in an Agilent 6890 GC system coupled up to an 118 

Agilent 5975 inert quadrupole mass spectrometer equipped with a Gerstel Thermo 119 

Desorption System (TDS2), a Cooling Injector System CIS-4 PTV inlet (Gerstel, Müllheim 120 

an der Ruhr, Germany), aJ&W CPWax-57CB column (50 m x 0.25 mm and 0.20 µm film 121 

thickness) (Agilent, Santa Clara, CA, US). The detector was never saturated. Table S1 122 

(supplementary material) shows identification details. The concentrations were expressed 123 

as relative peak area to an internal standard of the target ion of each compound.   124 

2.5 CoDa analysis 125 

   VOCs are usually studied by standard multivariate methods developed for data in 126 

the Euclidean space but, due to the estimation method, such as profiles contain only relative 127 

information (Aitchison, 1986) that directly affects the covariance structure. On the contrary, 128 

the CoDa methodology preserves their relative scale property (Filzmoser et al., 2018). The 129 

Appendix in supplementary material contains succinct information on the most relevant 130 

techniques used in this work. For detailed explanations, readers should consult specialized 131 

texts (Pawlowsky-Glahn et al., 2015; Filzmoser et al., 2018).  132 

Jo
urn

al 
Pre-

pro
of



8 

 

The CoDa analysis was performed using the packages CoDaPack (Comas-Cufí and 133 

Thió-Henestrosa, 2011), robCompositions R (Templ et al., 2011), and the plug in XLSTAT 134 

v.2017 for Excel (Addinsoft, Paris, France).                                                                                                                         135 

3. Results and discussion 136 

3.1 Data set 137 

The data set consisted of 12 rows (duplicate treatments) and a sub-composition of 138 

VOCs with significant differences between at least two treatments (Benítez-Cabello et al. 139 

(2019). Compounds not conclusively identified yet (21) are reported just as m/z values (see 140 

Table S1 in supplementary material). The profiles included acetates (3), acids (1), alcohols 141 

(19), aldehydes (2), sulfoxide (1), C13-norisoprenoid (1), ethyl ester (3), furan (1), ketones 142 

(3), methyl esters (3), phenols (8), terpenes (3), and other (1) as well as several unknown 143 

(U) compounds. Therefore, apart from the lactic and acetic acid production (data not 144 

shown), the formation of alcohols and their esters characterised the fermentations. Several 145 

compounds were not detected (n.d.) in some treatments (cells with zeros). CoDa analysis 146 

considers them as rounded zeros (presence below the detection limit, common in analytical 147 

chemistry) and recommends their replacement by a reasonable low value (65% of the 148 

detection limit) (Pawlowsky-Glahn et al., 2015; Filzmoser et al., 2018). The treatments 149 

with the largest number of n.d. compounds (in parenthesis) were T2 (9), inoculated with 150 

Lp13, and T3 (5), inoculated with Lpl15. The presence of non-identified VOCs in table 151 

olive studies is frequent (Sánchez et al., 2018; de Castro et al., 2018) because of high 152 

microbial diversity during the current fermentation conditions. 153 

3.2 Central tendency and dispersion 154 
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In CoDa, the central tendency and dispersion of components are represented by 155 

their geometric means (Pawlowsky-Glahn et al., 2015; Filzmoser et al., 2018) and 156 

percentiles, respectively (Table S1), although noticing that the latter rely on the concrete 157 

scale used. Values (0-100%) ranged between 0.1185 (ethanol) and 0.0006 (cis-3-hexenyl 158 

acetate). The parts with the highest dispersion, supposedly due to the effect of treatments, 159 

could be the most appropriate to segregate among starters. However, variability associated 160 

with determination errors of components in low concentrations should not be 161 

underestimated (Korhoňová et al., 2009). 162 

3.3 Variation array  163 

In CoDa analysis, the so-called variation array presents the variances of the 164 

logratios of each part over the others (Pawlowsky-Glahn et al., 2015; Filzmoser et al., 165 

2018) in the upper diagonal (Table S2 supplementary material). As the matrix is symmetric, 166 

the lower diagonal shows the averages of their matching logratios. The highest logratio 167 

variances (upper diagonal) were found for ln(UF/purpurochatechol) (23.3285), followed by 168 

ln(cis-penten-1-ol/purpurochatechol) (22.1243). Nevertheless, in practice, the dispersion 169 

within each component is evaluated by its clr variance, i.e. the variance of its clr 170 

transformed coefficients across fermentation processes (Table S2, last column) as the clr 171 

coefficients aggregate all logratios with a given component. The most relevant were: UF 172 

(with 6.5329) (n.d. in T2, T3, T6); cis-2-penten-ol (6.4804); 4-ethylguaiacol (6.3033) (n.d. 173 

in T2, T3); 2-methyl-1-propanol (6.1982); 2-ethynyl-2-butenal (6.0914); purpurocatechol 174 

(6.0677) (n.d. in T4, and T5); 2-phenylethyl acetate (5.6235); 5-tert-butylpyrogallol 175 

(5.0818) (n.d. in T2, T3, and one replicate of T5); 2-methyl-3-hexanol (4.4568) (n.d in T2, 176 

T3, T6); 1-butanol (3.5247) (T6); furfuryl methyl ether (3.4963) (n.d in T5); UC (3.3188) 177 
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(n.d. in one replicate of T1, T2, T3, T5, and T6), and UE (3.1994) (n.d. in T2). Together, 178 

they represent about 83.84% of the total clr variance. Several of the cases of high variance 179 

corresponded to components below the detection limit/low central values in some 180 

fermentation processes; however, their variances could also respond to relevant differences 181 

between bacterial performances) and makes pertinent to their considering.  182 

3.4 Tetrahedral plot  183 

The association of inocula with VOCs can be visualised in the simplex as a function 184 

of, at maximum, four components, usually chosen among those with the highest variance 185 

(i.e., the greatest segregation power) (Fig. 2). T3 (inoculated with Lp13) and T6 186 

(spontaneous) treatments are different due to their high and moderate contents of 2-methyl-187 

1-propanol (I), respectively, but both are poor in cis-2-penten-1-ol (O) and UF (BE). T1 188 

(LPG1) was also different due to its low level of 2-methyl-1-propanol (I) and modest 189 

concentrations of the remaining VOCs. Besides, T2 (Lp13) is very low (or below detection 190 

limits) in 2-methyl-1-propanol (I) and 4-ethylen guaiacol (AP). T4 (Y12) and T5 191 

(Y12+LAB) are relatively close and have a moderate presence of the four components. 192 

Furthermore, the plot also includes the three Principal Components (PCs), which are used 193 

to detect possible linear relationships between treatments. However, in this case, 194 

fermentation processes did not follow any trend. Then, the plot highlighted the peculiar 195 

VOC profiles of the spontaneous fermentation (T6), T3 (Lpl15), and T1 (LPG1) and 196 

prevents against any linear evolution of  processes (at least as a function of these four 197 

compounds).  198 

3.5 CoDa-biplot 199 
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The CoDa biplot (Aitchison and Greenacre, 2002), based on clr coefficients and 200 

PCA, explained 72.1% of the total variance and required particular interpretation. The 201 

covariance option (Fig. 3 A) allows studying the relationships among VOCs. The distances 202 

between the ends of the rays (links) are proportional to their logratio variances. The largest 203 

values were observed between clrBE (UF) or clrD (2-phenylethyl acetate) and either clrAI 204 

(purpurocatechol), clrY (2-ethenyl-2-butenal), clrAF (furfuryl methyl ether), or clrI (2-205 

methyl-1-propanol), with progressive lower values. On the contrary, clr components 206 

following similar trends and adjacent rays lead to almost constant logratios, indicating a 207 

strong correlation, and redundant information: e.g. clrBE (UF), clrO (cis-2-penten-1-ol), 208 

and clrD (2-phenylethyl acetate); clrAT (5-tert-butylpyrogallol) and clrBD (UE); or clrAI 209 

(purpurocatechol), and clrY (2-ethenyl-2-butenal). Such relationships may be interpreted as 210 

parallel productions. VOCs situated close to the centre can indicate low relevance or poor 211 

representation on the PC1/PC2 plane. Nonetheless, the additional contribution of PC3 was 212 

reduced (9.27% total variance), and only clrJ (1-butanol), associated to PC3, was well 213 

represented on the PC2/PC3 plane.  214 

In form biplot (Fig. 3 B), the distances between symbols are an approximation of 215 

the distances between processes. In the plot, the replicates were close, indicating that they 216 

followed similar trends, particularly those fermented with individual strains (T1, LPG1; T2, 217 

Lp13; T3, Lpl15; and T4, Y12); however, those inoculated with Y12+LAB (T5) and the 218 

spontaneous (T6) were moderately distant, situation compatible with their less rigid 219 

processing conditions. The projections of processes onto PC2/PC3 plane did not improve 220 

the interpretation. 221 
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Regardless of the type of biplot, there are some vertices lying in a straight line. For 222 

example, clrI (2-methyl-1-propanol), clrBD (UE), clrS (2-methyl-3-hexanol) and any of 223 

clrD (2-phenylethyl acetate), clrO (cis-2-penten-1-ol), or clrBE(UF)) reveal logratios of 224 

high correlation (e.g. VOCs produced in parallel) which could deserve further studies. 225 

Finally, parts forming a rectangle (a,b,c,d) reveal a simple logratio contrast of the form: 226 

ln(a)-ln(b)+ln(c)-ln(d)=constant. An example could be clrBB (UC), clrI (2-methyl-1-227 

propanol), clrAF (furfuryl methyl ether), and any of the clr components close to the origin ( 228 

e.g. clrAD (ethyl 5,6-dimethylnicotinate)). Therefore, the CoDa biplot had the striking 229 

ability to display the relationships among the most relevant components, and their logratios, 230 

which condense the data structure. Also, it made evident the clear differences between the 231 

VOCs from the diverse starters and, even, some particularities between replicates in case of 232 

lax microbial control (T5, a combination of Y12+LAB, and T6, spontaneous,). 233 

3.6 Sequential binary partition, ilr transformation (coordinates) and dendrogram of 234 

balances 235 

For transforming the original CoDa data set into the Euclidean space, one 236 

possibility to obtain ilr coordinates is to construct them using the sequential binary 237 

partition (SBP). Apart from the standardization factor, it consists of dividing the parts 238 

successively into two non-overlapping subgroups and estimating their balances (Egozcue, 239 

and Pawlowsky-Glahn, 2005). In this work, the SBP compares successively (in order of 240 

descending variances) each of the following compounds (numerator) over de geometric 241 

means of the remaining components (denominator): UF, cis-2-penten-1-ol, 4-ethylguaiacol, 242 

2-methyl-1-propanol, 2-ethenyl-2-butenal, purpurocatechol, 2-phenylethyl acetate, 5-tert-243 

butylpyrogallol, 2-methyl-3-hexanol, 1-butanol, furfuryl methyl ether, UC, UE, 3-244 
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methylbutanoic acid, and methyl acetate. After the 14th, the balances were successively 245 

formed as the logratio between the first still not used component over the remaining ones. 246 

The process ended after estimating the logratio between the last two parts. The SBP matrix 247 

(Table S3, supplementary material) summarizes the successive steps. There, 1, -1, and 0 248 

denote the components used in the numerator, denominator, or not participating in the 249 

partition, respectively. For improving understanding, the means of balances and their 250 

variances are also included in this matrix (Table S3, last two columns). To highlight the 251 

presence of both positive and negative logratio balances (ilr coordinates), as in the 252 

Euclidean sampling space. 253 

 The CoDa dendrogram is the graphical presentation of balances. There, the mean 254 

values are represented in the horizontal axis (Fig. 4) while the vertical lines stand for the 255 

variances of the overall balances. The first 14 balances account for 91.33% of the total 256 

variance (Table S3), which could be a good approximation for representing the data 257 

structure. The information from the remaining balances looks like mere noise (Fig. 4).     258 

The coordinates obtained by this SBP are somewhat similar to the pivot coordinates 259 

(Filzmoser et al., 2018), which is a particular form of balance. Both are essential for the 260 

transformation of data into coordinates in the Euclidean space, where can be analyzed by 261 

standard multivariate tools.   262 

3.7 Effect of the clr and ilr transformations on the fermentation processes’ segregation 263 

power             264 

In CoDa analysis, the input for clustering is not the original dataset but 265 

dissimilarities; that is, the matrix of distances (for observations) or the variation matrix (for 266 
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variables). The Euclidean distances of the original data are not reliable (they do not follow 267 

geometrical properties of CoDa) and are quite different from those estimated according to 268 

CoDa analysis principles using the Aitchison distance (Table S4, supplementary material). 269 

Furthermore, this Aitchison distance is preserved even when transforming the original data 270 

into the Euclidean space as clr coefficients or ilr coordinates (Table S4). Therefore, 271 

clustering using the original data set can mislead grouping, as occurred in this case (Fig. 5 272 

A) where replicates of the same fermentation process were assigned to different groups. 273 

However, clustering using the ilr coordinates grouped, on the left, the three rich in VOCs 274 

inoculated treatments LPG1 (T1), Y12 (T4) and Y12+LAB (T5), and on the right those 275 

with moderate volatile contents Lp13 (T2), Lpl15 (T3), and spontaneous (T6). Besides, 276 

there was no incorrect assignation of replicates of their corresponding treatments (Fig. 5 B). 277 

Pivot coordinates led to the same result (Fig. 5 C) than another choice of ilr coordinates 278 

because, as demonstrated previously, the distances between cases (processes) in CoDa do 279 

not depend on the transformation used. Furthermore, the 14th first ilr coordinates also led to 280 

similar association (Fig. 5 D), indicating that the remaining balances might mainly 281 

contribute with noise, in agreement with Fig. 4. In Spanish-style Gordal fermentations, the 282 

fatty acid data in their original units also led to the worst grouping of processing steps than 283 

using ilr coordinates (Garrido Fernández et al., 2018). 284 

The improving of the segregation power also was observed when PCA was applied. 285 

Using the original data led to a poorer representation and segregation (Fig. 6 A) than in 286 

case of clr coefficients (Fig. 6 B) and ilr coordinates (Fig. 6 C), which show a more 287 

realistic separation of processes according to starters. Furthermore, the first fourteen 288 

balances of the whole set of ilr coordinates was also as efficient as pivot or ilr coordiantes 289 
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since the results (Fig. 6 D) were comparable, corroborating the noise from non-influential 290 

VOCs (Fig. 4). 291 

Definitively, using pivot coordinates or relevant general ilr coordinates led to clear 292 

segregation among treatments (starters) than with the original VOCs, in agreement with the 293 

CoDa hypothesis. In contrast, the standard multivariate tools directly applied to 294 

compositional data may lead to misleading results. 295 

Clustering can also be achieved according to variables (or Q-mode) (van den 296 

Boogaart and Tolosana-Delgado, 2013; Filzmoser et al., 2018). In the Euclidean geometry, 297 

the association between the components is measured by the Pearson correlation coefficient, 298 

while in CoDa, the relationship can be deduced from the variation array matrix. CoDa Q- 299 

clustering, based on the variation array matrix and using both classic and robust (preferable 300 

because allow suppressing the influence of possible outliers) methods segregated two main 301 

groups (Fig. 7). The first, on the left, consisted of: 2-methyl-3-hexanol (S); UF (BE); 2-302 

phenylethyl acetate (D); cis-2-penten-1-ol (O); UE (BD); 4-ethyl guaiacol (AP); and 5-tert-303 

butylpyrogallol (AT). It also included UC (BB) in case of the robust option. Besides, there 304 

was a second common group (classic and robust options) on the right, which included 2-305 

ethenyl-2-butenal (Y), purpurocatechol (AI), 2-methyl-1-propanol (I), and furfuryl methyl 306 

ether (AF). Interestingly, these components also showed the highest variances in the 307 

variation matrix; i.e. could have the greatest segregation power. However, the largest group 308 

(in the centre) was somewhat different in the two methods, with the robust option showing 309 

a very close relationship among components (Fig. 7, bottom panel), in agreement to 310 

previous observations.  311 
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These clustering results regarding treatments were also in agreement with those 312 

observed in other works on green Spanish-style table olives according to cultivars and 313 

growing area, which were always more accurate when following CoDa techniques (Garrido 314 

Fernández et al., 2018). Despite these eviences, standard multivariate methods, using the 315 

original VOCs dataset, was applied in stoned Spanish-style table olives for segregating 316 

compounds by chemical classes (Malheiro et al., 2011), studying the evolution of VOCs 317 

during olive processing (Dabbou et al., 2011), differentiating normal from spoiled products 318 

(De Castro et al., 2018), or relating sensory analysis to volatile composition (López-López, 319 

et al., 2018).   320 

3.8 Identification of potential markers vs the spontaneous fermentation process   321 

 For this purpose, the Walach et al. (2017) method was used. Briefly, it consisted of 322 

comparing the pairwise logratio variation array matrix corresponding to the two groups 323 

(full data set) with those estimated from each one separately. The result is expressed in 324 

terms of ��
∗ (Appendix; Walach et al., 2017). Compounds which ��

∗ exceeded the 1.96 cut-325 

off limit (p<0.05) were considered significant and potential markers. The methodology was 326 

applied for obtaining the ��
∗ values for the whole set of VOC comparisons between the 327 

inoculated (starters) and the spontaneous process (Fig. 8, for the case of T4 (Y12) vs T6 328 

(spontaneous). The significant compounds were identified by their respective indexes 329 

(Table 1). Several significant compounds (high/low contents) were not exclusive for a 330 

specific inoculum but common to various (Table 1).  331 

According to Table 1, the formation of the following VOCs was promoted by the 332 

respective strains (in parenthesis) and could then be considered as potential markers for 333 
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them: 2-phenylethyl acetate (LPG1, Y12, Y12+LAB), methanol (Lpl15), cis-2-Penten-1-ol 334 

(LPG1, Y12, Y12+LAB), 2-methyl-3-hexanol (LPG1, Y12), UC (Y12), and UF (LPG1, 335 

Y12+LAB). 1-butanol (LPG1, Lp13, Lpl15, Y12, Y12+LAB) would also be included in 336 

this group, but its wide distribution in previous studies (Cortés-Delgado et al., 2016; 337 

Sánchez et al., 2017; de Castro et al., 2018; López-López et al., 2018; Sánchez et al., 2018) 338 

and its formation by all LAB and yeast strain fermentations prevents its consideration as a 339 

marker; however, it seems to be characteristic of the inoculated processes.  340 

Besides, some starters (in parenthesis) can reduce/inhibit the formation of others 341 

VOCs:  2-methyl-1-propanol (Lp13, Y12+LAB), 2-phenyl ethanol (Lp13), furfuryl methyl 342 

ether (Y12+LAB), purpurocatechol (Y12, Y12+LAB), 4-ethyl guaiacol (Lp13, Lpl15), 4-343 

ethyl phenol (Lpl15), 5-tert-butylpyrogallol (Lp13, Lpl15), and UE (Lp13). In this case, 4-344 

ethyl guaiacol (Lp13, Lpl15) and 4-ethyl phenol (Lpl15) have been mentioned in other 345 

works (Cortés-Delgado et al., 2016; Sánchez et al., 2017; de Castro et al., 2018; López-346 

López et al., 2018; Sánchez et al., 2018), but their inhibition in some fermentations can be 347 

regarded as characteristic of their respective inoculated strains. 348 

Some of these possible markers provide specific aromatic notes. Related to LPG1 349 

and Y12 were 2-phenylethyl acetate, which gives sweet roses (Suárez-Lepe and Morata 350 

2012) or flowery with honey notes (Lilly, Lambrechts, Pretorius, 2000), and cis-2-penten-351 

1-ol, associated with green aroma notes (Acree and Arn, 2019). On the contrary, the 352 

fermentation by Lpl15 was characterized by the presence of 4-ethyl phenol, which is 353 

considered as an off-flavour for its horse stable–like, faecal, and medicinal odour (Czerny 354 

et al., 2011); therefore, its formation in high proportion could represent a serious obstacle 355 

for the use of this strain as inoculum.  356 
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4. Conclusions  357 

This study has demonstrated that applying CoDa analysis introduces new 358 

exploratory techniques like tetrahedral plot, biplot, CoDa-dendrogram, or variation array, 359 

which were useful for segregating processes according to inocula or studying relationships 360 

among VOCs and potential markers. Thus, the study opens the possibility of using specific 361 

starter cultures for the production of particular VOCs or the prevention of undesirable 362 

compounds in real fermentation conditions, i.e. for modelling the flavour and quality of 363 

green Spanish-style table olives. Furthermore, the association of compounds with distinct 364 

strains may facilitate the study of the biological pathways of their formation. 365 
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Figure legends 487 

Figure 1. Scheme of the experimental design for the different fermentation processes 488 

performed in the work.   489 

Figure 2. Tetrahedral plot and Principal Components’ axes (PCs), according to inocula. 490 

The plot is based on the VOCs with the highest clr variances. 2-methyl-1-propanol (I); cis-491 

2-penten-1-ol (O); 4-ethyl guaiacol (AP); and UF (BE). The symbol c stands for closure. 492 

T1, process inoculated with LPG1; T2, Lp13; T3, Lpl15; T4, Y12; T5, Y12 + LAB; T6, 493 

spontaneous.  494 

Figure 3. CoDa-biplot of VOCs according to treatments. Projection onto the plane PC1 vs 495 

PC2. A) covariance biplot, and B) form biplot. Identification of the most relevant VOCs for 496 

the graph: D, 2-phenylethyl acetate; I, 2-methyl-1-propanol; J, 1-butanol; O, cis-2-penten-497 

1-ol; Y, 2-ethenyl-2-butenal; AF, furfuryl methyl ether; AI, purpurocatechol; AP, 4-ethyl 498 

guaiacol; AT, 5-tert-butylpyrogallol; BB, UC(m/z 83-112-97; BD, UE (m/z 111-198; BE, 499 

UF (m/z 95-154-110; clr stands for clr transformation. For other relationships between 500 

CoDa symbols and VOCs, see Table S1.  501 

Figure 4. CoDa dendrogram of VOCs, regardless of treatments. Balance sequences were 502 

built (until the 14th balance) based on the progressive decreasing order of the clr variance. 503 

The complete set of sequential binary partitions is reported in Table S3. 504 

Figure 5. Hierarchical clustering analysis based on A) the original data set, B) the proposed 505 

in this work ilr coordinates, C) pivot (a special case of ilr) coordinates, and D) the first 14th 506 

ilr coordinates which accounted for 91.33% of the total variance. T1, inoculated with 507 
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LPG1; T2, Lp13; T3, Lpl15; T4, Y12; T5, sequential combination Y12+LAB; T6, 508 

spontaneous. 509 

Figure 6. Projection of treatment scores onto the plane of the first two Factors. PCA 510 

analysis based on A) the VCOs expressed in their original units, B) the clr coefficients 511 

(central logratio transformation), C) the irl coefficients (isometric logratio transformation, 512 

and D) only the first 14th ilr coordinates (accounting for the 91.33% of the total variance). 513 

Figure 7. CoDa Q-clustering of the VOCs, based on the original data, using classical 514 

method (upper panel) and robust mode (bottom panel). Correspondence between symbols 515 

and compounds’ names can be found in Table S1. 516 

Figure 8. Relating starters with characteristics VOCs. Potential biomarkers revealed by  517 

��
∗, using 1.96 as the cut-off limit (Walach et al., 2017). Case of T4 (Y12) vs T6 518 

(spontaneous).  519 

 520 
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Table 1. Potential (significant) VOC markers for LPG1, Lp13, Lpl15, Y12, and Y12+LAB, using the 	��
∗ 

robust statistics (Walach et al., 2017).  

 

Index 
Symbol 

in 
CoDa 

Volatile compound LPG1 Lp13 Lpl15 Y12 Y12+LAB 

  Acetates      
4 D 2-Phenylethyl acetate ***   *** *** 
  Alcohols      
6 F Methanol   ***   
9 I 2-Methyl-1-propanol  ***L   ***L 
10 J 1-Butanol *** *** *** *** *** 
15 O cis-2-Penten-1-ol ***   *** *** 
19 S 2-Methyl-3-hexanol ***   ***  
24 X 2-Phenyl ethanol  ***    
  Furans      

32 AF Furfuryl methyl ether     ***L 
  Ketones      

35 AI Purpurocatechol    ***L ***L 
  Phenols      

42 AP 4-Ethyl guaiacol  ***L ***L   
43 AQ 4-Ethyl phenol   ***L   
46 AT 5-tert-Butylpyrogallol  ***L ***L   
  Non-identified      

54 BB U C (m/z 83-112-97)    ***  
56 BD U E (m/z 111-198)  ***L    
57 BE U F (m/z 95-154-110) ***    *** 

 

Notes: *** significant at p≤0.0; L, low/n.d. presence of a compound; U, unknown (that is, low probability of 
right identification according to NIST Mass Spectral Search Program). 
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Highlights 

-Microbial starters lead to different volatile profiles in concluded fermentations. 

-Starters were better related to volatiles by CoDa analysis than by standard techniques.  

-Strains were linked to characteristic volatiles and potential markers by CoDa tools.  

-Relating starters and volatiles promotes sensory controlled table olive production.  
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