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To the Editor:

Chimeric antigen receptors (CARs) have undoubtedly
revolutionized immunotherapy, especially in the B-cell
acute lymphoblastic leukemia (ALL) arena where over 80%
of complete remissions are observed in refractory/relapsed
(R/R) B-cell ALL patients treated with CD19-directed CAR
T-cells (CARTSs) [1]. However, despite holding an unpre-
cedented promise, several issues still have to be resolved
before CARTs can be expanded to novel targets and/or
malignancies or even provided as first-line treatment in B-
cell ALL [2]. For instance, toxicities such as cytokine
release syndrome and immune escape mechanisms includ-
ing loss of the antigen under CART-mediated pressure
remain major concerns, urging further research on the
mechanisms underlying CARTS cytotoxicity.

In this sense, loss of CD19 antigen is frequently observed
after CD19-directed CARTS therapy in B-cell ALL [3, 4],
but is particularly common in MLL-rearranged (MLLr) B-
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cell ALL, an aggressive subtype of B-cell ALL (dismal in
MLL-AF4+ infants) associated with lymphoid-to-myeloid
lineage switch [3, 5, 6]. We read with interest the work
recently published in Leukemia by Li et al. reporting a
novel CAR targeting both CD19 and CD133 [7]. This study
proposes to use a bi-specific CAR targeting both CD19 and
CD133 antigens in a Boolean OR-gate approach for MLLr
B-cell ALL as a strategy to avoid and treat CD19- relapses.
The authors reasoned that CD133, encoded by PROM]I
gene, is a specific marker for MLLr leukemia because
PROM]1 is an MLL target, especially in MLL-AF4 B-cell
ALL [8-10]. They went on and performed in vitro assays
showing than CD19/CD133 bi-specific CAR triggers robust
cytotoxicity against CD19 + CD133 + and CD19-CD133+
B-cell lines [7], thus suggesting it may help in reducing
subsequent lineage switch in MLLr B-cell ALL.

A major drawback for CD133 as target in immu-
notherapy is its expression in hematopoietic stem and
progenitor cells (HSPCs), which would likely exert “on-
target off-tumor” myeloablative, life-threatening toxicity
[11, 12]. Because B-cell ALL is molecularly hetero-
geneous and can be diagnosed during infancy, childhood
and adulthood, we have characterized PROMI/CD133
expression in a large cohort of cytogenetically distinct B-
cell ALL subgroups (n =212 patients) as well as in dif-
ferent subpopulations of normal CD34+ HSPCs obtained
across hematopoietic ontogeny from 22-weeks old human
fetal liver (FL, prenatal), cord blood (CB, perinatal), and
adult G-CSF-mobilized peripheral blood/bone marrow
(PB/BM, postnatal). An initial analysis of publicly
available RNA-seq data [13] from 170 diagnostic B-cell
ALL patients confirmed that PROM1 is overexpressed in
patients with MLLr B-cell ALL, although its expression is
not significantly higher than in other cytogenetic sub-
groups (Fig. la). We then analyzed PROM1 during HSPC
development and observed that PROMI1 is highly
expressed in early normal hematopoietic stem cells (HSC)
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Fig. 1 Characterization of CD133/PROM1 expression in B-cell ALL
and normal HSPCs. a Expression level of PROM! in the indicated
cytogenetic subgroups of B-cell ALL (n =170 patients at diagnosis)
determined by RNA-seq represented in log2(CPM) scale, with CPM
=counts per million [13]. b RNA-seq analysis comparing the
expression of PROM1 in 11q23/MLLr B-cell ALL (n =29 patients)
with that in distinct fractions of Lin-CD34 + CD38-CD19- non-
lymphoid normal HSPCs (HSC hematopoietic stem cells, MPP mul-
tipotent progenitors, LMPP lymphoid-primed multipotent progenitors,
CMP common myeloid progenitors, GMP granulocyte-monocyte
progenitor, MEP megakaryocyte-erythroid progenitors) and in

and multipotent progenitors (MPP) with its expression
decreasing from the lymphoid-primed multipotent pro-
genitors (LMPP) onwards with its expression being mar-
ginal at later stages of myeloid differentiation
(megakaryocyte-erythroid progenitors, MEP) and com-
mon lymphoid progenitors (CLP) [14] (Fig. 1b). Impor-
tantly, 70% (22/32) of 11q23/MLLr B-cell patients (both
MLL-AF4 and MLL-AF9) express equal (9/32) or lower

0 250 o0 g 100 100
FSC (X1000) cD19 CcD19

common lymphoid progenitors (CLP) [14]. Data shown as normalized
counts. The boxes define the first and third quartiles. The horizontal
line within the box represents the median. ¢ Frequency (left) and mean
fluorescence intensity (MFI, middle) of CD133+ BM blasts/cells in
MLLr (n =7) and non-MLL B-cell ALLs (n =5) primary diagnostic/
relapse samples or primografts (PDXs), and normal CD34+ HSPCs
derived from FL (n=8), CB (n=7) and adult PB/BM (n=7).
Representative FACS dot plots for CD133 in normal CD34+ HSPCs
(upper right) and BM samples from two independent MLLr B-cell
ALL patients (bottom right)

(13/32) PROM1 levels that HSCs and MPPs, which raises
doubts about the suitability of PROMI as a target for B-
cell ALL immunotherapy [15].

FACS clinical immunophenotyping provides a priori a
more rapid and feasible clinically relevant diagnostic
information than RNA-seq during the decision-making
process. Thus, we next FACS-analyzed the expression of
CD133 (PROM1 gene product) in the cell surface of BM-
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derived primary blasts and primografts (PDXs) obtained
from 11q23/MLLr (n=7) and non-MLL (n=15) B-cell
ALL patients, and in comparison with healthy prenatal
(22 weeks old FL), perinatal (CB) and adult (PB/BM) CD34
+ HSPCs (Fig. 1c). Consistent with the RNA-seq data, the
expression of CD133 in 11q23/MLLr blasts is intermingled
with that observed in CD34+ HSPCs across hematopoietic
ontogeny (Fig. 1c).

Our data demonstrates that PROM1/CD133 is similarly
expressed between MLLr B-cell ALL primary blasts and
normal non-lymphoid HSPCs across ontogeny, thus indi-
cating that “on-target, off-tumor” toxic/myeloablative
effects are likely to occur if used in a bi-specific CAR
approach where CD133 antigen will be constantly targeted
regardless of the co-expression of CDI19 in the same cell.
Our data therefore raises concerns about using CD133 as a
target for MLLr B-cell ALL immunotherapy. An alternative
to circumvent HSPC toxicity would be to engineer dual
CAR T-cells with one CAR engaging an antigen (i.e.,
CD19) mediating T-cell activation and another CAR
engaging a second antigen (i.e., CD133) mediating T-cell
co-stimulation [16]. Unfortunately, although such a CD19/
CD133 dual CAR might be likely safe due to its cytotoxi-
city being restrained only to cells co-expressing CD19 and
CD133, its specific cytotoxic performance will be poor
since not the entire MLLr B-cell ALL blast population is
CD19 + CD133+ (Fig. 1c). Another alternative approach to
prevent HSPC toxicity would be to have in place a potent
molecular switch (i.e., iCas9) to eliminate CAR133-
expressing T-cells as necessary [17]. Further long-term
in vivo studies using both primary B-cell ALL cells and
normal HSCPs remain to be conducted to elucidate the
efficacy versus the myeloablative toxicity of a CAR CD133
[18, 19].

Data availability

All genomic data is already publicly available. A full data
availability will be provided.
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To the Editor:

Short-dysfunctional telomeres are detected prior to clinical
progression in chronic lymphocytic leukaemia (CLL) and
result in chromosomal fusions that propagate genome
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instability, driving disease progression. To investigate the
impact of telomere dysfunction on the CLL genome, we
performed a large-scale molecular characterisation of telo-
mere fusion events in CLL B-cells. A cohort of 276 CLL
patient samples was selected for analysis based on short
telomere length (TL) profiles, with the majority (97%, n =
269) having mean TL within the previously-defined fuso-
genic range in CLL [1]. Patient samples were screened for
the presence of telomere fusions using a single-molecule
telomere fusion assay [2] modified to include the 5p telo-
mere (Supplementary Figure 1). Telomere fusions were
detected in 72% (198/276) of the samples, which were
subsequently arbitrarily stratified by fusion frequency
(Supplementary Table 1). Fusions were detected for all
telomeres assayed, including the S5p telomere, for which
fusions were present in 23% (40/177) of patient samples
(Supplementary Figure 2, Supplementary Table 2).
High-resolution characterisation of single-molecule
amplified telomere fusions from nine CLL patients with
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