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Morphological and phylogenetic data do not support the split of Alexandrium into four genera
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Abstract

A recently published study analyzed the phylogenetic relationship between the genera 

Centrodinium and Alexandrium, confirming an earlier publication showing the genus Alexandrium as 

paraphyletic. This most recent manuscript retained the genus Alexandrium, introduced a new genus 

Episemicolon, resurrected two genera, Gessnerium and Protogonyaulax, and stated that: “The 

polyphyly [sic] of Alexandrium is solved with the split into four genera”. However, these reintroduced 

taxa were not based on monophyletic groups. Therefore this work, if accepted, would result in 

replacing a single paraphyletic taxon with several non-monophyletic ones. The morphological data 

presented for genus characterization also do not convincingly support taxa delimitations. The 

combination of weak molecular phylogenetics and the lack of diagnostic traits (i.e., autapomorphies) 

render the applicability of the concept of limited use. The proposal to split the genus Alexandrium on 

the basis of our current knowledge is rejected herein. The aim here is not to present an alternative 

analysis and revision, but to maintain Alexandrium. A better constructed and more phylogenetically 

accurate revision can and should wait until more complete evidence becomes available and there is a 

strong reason to revise the genus Alexandrium. The reasons are explained in detail by a review of the 

available molecular and morphological data for species of the genera Alexandrium and Centrodinium. 

In addition, cyst morphology and chemotaxonomy are discussed, and the need for integrative 

taxonomy is highlighted. 

Keywords: taxonomy, phylogenetics, paraphyletic, saxitoxin, spirolides, harmful algal blooms

Highlights

 Morpho-molecular data do not support the split of Alexandrium into four genera.

 The genera Episemicolon, Gessnerium, and Protogonyaulax should not be used. 

 A proposal to conserve Alexandrium against Centrodinium will be submitted.
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Introduction and aims

The genus Alexandrium includes many species that have caused extensive economic and human 

health impacts worldwide (e.g., Anderson et al., 2012). Alexandrium currently encompasses 34 

accepted species, with A. camurascutulum considered invalid (Guiry in Guiry and Guiry, 2020). Of 

these species, 14 are known to produce paralytic shellfish toxins (PSTs) (Moestrup et al., 2009), which

have caused extensive damage to aquaculture industries. The wide range of toxins produced by 

Alexandrium species, belong to four families – PSTs (saxitoxin (STX) and its derivatives), spiroimines

(spirolides and gymnodimines), goniodomins (e.g., Lassus et al., 2016), and lytic compounds (e.g., 

Tillmann and John, 2002; Blossom et al., 2019). The toxins with the most recognized potential for 

economic impact are the PSTs, which are responsible for outbreaks of paralytic shellfish poisoning 

(PSP), one of the most widespread harmful algal bloom (HAB)-related shellfish poisoning syndromes.

PSP outbreaks can cause human illness and death from contaminated shellfish or fish, loss of wild and 

cultured seafood resources, impairment of tourism and recreational activities, alterations of marine 

trophic structure, and death of marine mammals, fish, and seabirds (Anderson et al., 2012). Symptoms 

of PSP in humans range from spreading numbness and tingling sensations, headache and nausea to 

more extreme fatal cases due to respiratory paralysis (Hallegraeff, 2003). Blooms of species such as 

Alexandrium catenella, A. minutum, and A. pacificum regularly cause losses of tens of millions of 

dollars to aquaculture industries in North and South America, Europe, Asia (e.g., Trainer and Yoshido,

2014; Sanseverino et al., 2016), and Australia and New Zealand (e.g., Jin et al., 2008; MacKenzie, 

2014). For example, in late 2012, a single bloom of A. catenella along the east coast of Tasmania 

(Australia) resulted in ~AUD$ 23 million loss to the wild harvest and aquaculture industries (Condie 

et al., 2019). Monitoring of Alexandrium cells in the water column and of toxins in shellfish is 

therefore critical for avoidance of adverse effects on human health (e.g., Nagai et al., 2019; EFSA, 

2009) and nationally and internationally standardized methods have been established to guide PSP 

testing (e.g., FAO Marine Biotoxins, 2004; [U.S.] National Shellfish Sanitation Program, 2017; 

Australian Shellfish Quality Assurance Program, 2019; Turner et al., 2019). The European Union 
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requires all its member states to monitor coastal waters for toxin-producing plankton and toxins in 

mussels (Directive 91/492d/EC and Commission Decision 2002/225/EC). In parallel, research on 

Alexandrium species is vigorous: since 1975, there have been 2,768 published studies that include the 

word Alexandrium, which have been cited 70,322 times, for an average of about 150 publications per 

year over the last 10 years (Clarivate Analytics search on Web of Science Core Collection on 20 

August 2020). 

The taxonomic history of the genus Alexandrium is complex, and nomenclatural stability was not 

attained for some time, as detailed by Balech (1995, pp. 1–3) and Taylor and Fukuyo (1998). The 

genus Alexandrium was erected by Halim (1960) with the PST-producing Alexandrium minutum as its 

type. A few years later, Halim (1967) erected Gessnerium with Gessnerium mochimaense Halim as its 

type; this species had a pentagonal first apical (1′) plate not in contact with the pore plate (Po). 

Loeblich III and Loeblich (1979) considered Alexandrium minutum to be inadequately described, left 

it in the genus Alexandrium and transferred seven Gonyaulax species and two Goniodoma species into

the genus Gessnerium. At the same time, Taylor (1979) erected Protogonyaulax, with P. tamarensis as

the type species and defined it as having a 1′ plate directly contacting the Po of the apical pore 

complex, and transferred eight species of the genus Gonyaulax and one Pyrodinium species into 

Protogonyaulax. Taylor’s proposal was followed by Fukuyo et al. (1985), who described two new 

Protogonyaulax species (P. affinis and P. compressa). After a detailed examination of samples from 

the type locality of A. minutum (the type species of Alexandrium), Balech (1989) noted that plate 1′ 

does not necessarily directly contact the Po in this species (the same applies to A. fraterculus and A. 

kutnerae). He therefore re-established the genus Alexandrium, considering Protogonyaulax a junior 

synonym of Alexandrium. All Protogonyaulax and Gessnerium species were thus transferred to 

Alexandrium (Balech 1985, 1995) and Gessnerium was retained as a subgenus of Alexandrium for 

species in which plate 1′ is not rhomboidal and does not contact the Po (Balech, 1995). Since Balech 

(1989), the consensus has been to only use the genus name Alexandrium. The currently accepted plate 

formula for Alexandrium is Po, 4′, 6′′, 6c, 9–10s, 5′′′, 2′′′′ (Balech, 1980, 1995; Balech and Tangen, 

1985).
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The advent of molecular approaches provided significant contributions to the circumscription 

of species within this important genus. Morpho-molecular studies suggested that species placed in the 

subgenus Gessnerium do not form a monophyletic group (John et al., 2003; MacKenzie et al., 2004; 

Kim et al., 2005; Rogers et al., 2006; Penna et al., 2008; Gu et al., 2013). More recently, a detailed 

study encompassing the morphology of vegetative cells, phylogenies based on multiple molecular 

markers, mating compatibility and presence/absence of genes coding for STX and analogues has 

shown that morphological characters used to identify species within the Alexandrium tamarense 

complex (A. tamarense and related species) were not consistent, but that molecular markers were able 

to delineate unambiguous species boundaries (John et al., 2014; but see Fraga et al., 2015 and Litaker 

et al., 2018). 

Recently, Li et al. (2019) showed that the fusiform dinoflagellate Centrodinium punctatum 

forms a clade nesting within Alexandrium. Through a morpho-molecular study of two other 

Centrodinium species (C. eminens and C. intermedium), but without a re-investigation of the type, C. 

elongatum, Gómez and Artigas (2019) proposed to retain Centrodinium and subdivide the species 

formerly included in the genus Alexandrium, sharing a common thecal plate pattern, into four distinct 

genera, namely Alexandrium sensu stricto (s.s.) (emended diagnosis), the re-introduced genera 

Gessnerium and Protogonyaulax, and the new genus Episemicolon. Here, the data presented in Gómez

and Artigas (2019) are critically discussed, and it is shown that they do not support such a drastic 

taxonomic rearrangement. The aim of this study is not to present an alternative analysis and revision, 

but to maintain the genus Alexandrium. Furthermore, it is emphasized to use integrative taxonomy 

which delimits taxa using multiple and complementary perspectives (Dayrat, 2005), including the 

consideration of cyst morphology in recognizing taxa (as previously suggested by Taylor and Fukuyo, 

1998, p. 6) and chemotaxonomy, amongst other criteria.

The presented phylogenetic trees do not support the proposed subdivision of Alexandrium.

The finding that species of Centrodinium nest phylogenetically in Alexandrium (Li et al., 

2019; Gómez and Artigas, 2019) makes the latter paraphyletic. Gómez and Artigas (2019) proposed to

taxonomically split Alexandrium into four separate genera (not including Centrodinium, which never 
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belonged to Alexandrium). This proposal establishes a new genus Episemicolon, while the diagnosis of

three other genera (Alexandrium, Gessnerium, and Protogonyaulax) was emended to group subsets of 

former Alexandrium species. The authors stated that “The polyphyly [sic] of Alexandrium is solved 

with the split into four genera”. Notably, Alexandrium was not polyphyletic, but paraphyletic. The 

suggestion that their proposal ‘solved’ this problem is the basis for our critique, and thus it is therefore

worth evaluating the phylogenetic information presented by Gómez and Artigas (2019) in detail. Our 

question was: Does the data justify splitting a phylogenetically well-defined group (e.g., John et al., 

2003; Rogers et al., 2006; Orr et al., 2011; Anderson et al., 2012; Baggesen et al., 2012; Gu et al., 

2013; Murray et al 2015; Menezes et al., 2018; Kretzschmar et al., 2019), sharing the same Kofoidian 

plate tabulation, into segregate genera? 

Gómez and Artigas (2019) presented two phylogenetic trees, Fig. 4 a phylogenetic analysis of 

alignments of the SSU (18S) region of the rRNA operon and Fig. 5 the D1–D2 region of the LSU 

(28S) region of the rRNA operon. Each alignment was analyzed using a maximum likelihood (ML) 

approach and clades were given with bootstrap support. There was no information on the number of 

base pairs analyzed, the number of informative sites, and the alignments were not made available for 

evaluation. These phylogenetic analyses are problematic for several reasons: 

1. In their Fig. 5, the phylogeny using the D1–D2 regions of rRNA, which are generally ~600 bp in 

length, the proposed Alexandrium s.s. and Protogonyaulax are polyphyletic. In their Fig. 4, the 

phylogeny using (presumably) partial SSU regions of rRNA, of an unknown length, Protogonyaulax, 

Episemicolon and Alexandrium s.s. are all para- or polyphyletic. In other words, based on their own 

analysis, the authors propose the replacement of a single paraphyletic taxon (Alexandrium) with 

several non-monophyletic ones. The generic concepts are not substantiated by the molecular data. 

Thus, rather than solving the taxonomic problems, they exacerbate them. 

2. There is very little genetic difference between species of Centrodinium and Episemicolon. In a 

comparison of sequences of C. punctatum in the NCBI database, a difference of < 1% and < 5% was 

found between it and A. affine in aligned sequences of SSU and LSU rRNA, which was less than the 
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genetic differences among species of Centrodinium. Species that are highly similar in molecular 

genetic sequences of rRNA genes, with identical tabulation when considering plate homologies, need 

exceptionally different other autapomorphies in order to be placed in separate genera, and little 

evidence of this is found (see below). 

3. The Gómez and Artigas (2019) phylogenies have used short alignments with too few characters and

taxon information to accurately infer deeper, clade level branchings within the genus Alexandrium 

which will be stable into the future. Of the major factors that impact the accuracy of phylogenetic 

inference, two are particularly important: the length of aligned sequence/number of genes used, and 

the taxon sampling. Past studies of Alexandrium phylogenetics were reviewed (Table 1, John et al., 

2003; Leaw et al., 2005; Rogers et al., 2006; Orr et al., 2011; Anderson et al., 2012; Baggesen et al., 

2012; Gu et al 2013; Murray et al., 2014; Murray et al., 2015; Menezes et al., 2018; Gottschling et al., 

2020), and this showed that clades within Alexandrium  differed depending on gene and taxon 

sampling (exemplified by basal clades shown in Table 1). All else being equal, more sequence data 

and greater taxon sampling generally leads to more accurate and well-supported phylogenies. Murray 

et al. (2015) conducted an analysis of Alexandrium using a concatenated alignment of eight genes, 

with a total length of 7308 bp. The position of several of the major clades of Alexandrium differed in 

that analysis, compared to the analysis presented by Gómez and Artigas (2019). Similarly, new 

ribotypes are still being reported, such as Alexandrium fragae (Branco et al., 2020) and three new 

phylotypes nested within the genus (Nishimura et al., in review). It is likely that these new discoveries 

and longer alignments/greater gene sampling will lead to more strongly supported phylogenies than 

those of Gómez and Artigas (2019), whose phylogenies appear to be too weak to support taxonomic 

rearrangements. 

As any taxonomic rearrangement of Alexandrium will potentially impact hundreds or 

thousands of scientists, government regulators, and the seafood industry, it is crucial that the 

phylogenetic basis for such a change be exceptionally clear, highly stable, and reproducible by other 

scientists. However, this has not occurred in this case. Gómez and Artigas (2019) have not provided 

access to their alignment or details of their analytical output. Dinoflagellate lineages display major 
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differences in evolutionary rates in ribosomal RNA genes, particularly in the gonyaulacoid lineage. 

Examples of this can be seen in Orr et al. (2012), Gu et al. (2013) and Gottschling et al. (2020), in 

which the species of the Gonyaulacales are generally present on much longer branches than most other

clades of dinoflagellates, a difference not seen in analyses using nuclear genes (e.g., Kretzschmar et 

al., 2019). While Gómez and Artigas (2019) selected a potentially suitable model for their ML 

analyses, inclusion of divergent taxa can still lead to misplacement of taxa/clusters, with high support 

values, due to various long-branch effects (Kück et al., 2012). No phylogeny-testing (such as leave-

one-out testing and jackknifing by species/clusters) apart from the bootstrap support was used to 

determine whether the branch order of taxa/clusters was stable or unaffected by long-branch artifacts. 

The morphological concepts of the reinstated and emended genera proposed by Gómez and Artigas 

(2019) have little taxonomic value

As mentioned in the introduction, Protogonyaulax was described by Taylor (1979) as having a

plate 1′ in contact with the Po. As remarked by Balech (1989, p. 210) for the type species of 

Alexandrium, A. minutum, as well as for A. fraterculus and A. kutnerae, this feature is variable, and the

plate 1′ can have an indirect contact with the Po through a filiform prolongation of plate 1′ 

(Alexandrium acatenella, A. andersonii, A. ostenfeldii, A. tropicale are additional examples; Balech, 

1995). Gómez and Artigas (2019) considered species exhibiting only a direct contact of plate 1′ to the 

Po as belonging to their emended concept of Protogonyaulax, and species with direct or indirect 

contact (presumably meaning displaying both types) as belonging to their emended genus 

Alexandrium. However, when reviewing the literature, it is clear that there is no consistency with the 

application of both genus concepts (Table 2); furthermore, the high variability of the contact between 

plate 1′ and Po within Alexandrium species speaks against considering this as a reliable taxonomic 

character. In addition, Gómez and Artigas (2019) describe the 6′′ plate as being “usually narrow” in 

Alexandrium s.s., however, this is not so in A. insuetum, A. ostenfeldii, and A. tamutum, species which 

are retained in Alexandrium s.s. in their proposed phylogeny. Finally, the posterior sulcal plate (Sp) of 

the emended genus Protogonyaulax is longer than wide, and in Alexandrium s.s. wider than long, but 

the Sp of A. leei, included in Protogonyaulax, is wider than long and in A. margalefii, included in 
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Alexandrium s.s., longer than wide with an extremely oblique anterior margin (Balech, 1995). In 

summary, the considerations of Balech (1995) which support synonymization of Protogonyaulax with 

Alexandrium, still stand.

The reinstated genus Gessnerium also presents problems. Gómez and Artigas (2019) included 

within this genus species with a pentagonal plate 1′ not in contact with the Po. They excluded three 

species with a plate 1′ not in contact with the Po from their concept of Gessnerium: A. insuetum, which

they included in Alexandrium s.s. despite the fact that this species has a pentagonal 1′ plate that does 

not touch the Po (Balech, 1995, Plate XVII, Figs. 1–23), and A. pohangense and A. margalefii, which 

were not formally attributed to any genus, although were assigned to the Alexandrium s.s. clade in 

their Fig. 4. The authors considered the quadrangular plate 1′ of A. pohangense and A. margalefii as a 

unique character distinguishing them from the other Gessnerium. However, the plate 1′ in A. 

pohangense has a short suture with plate 2′ and can therefore be considered pentagonal (Lim et al., 

2015, their Fig. 4B), and such a short suture can also be observed in A. balechii and A. foedum 

according to Balech (1995, p. 103), which were classified as Gessnerium by Gómez and Artigas 

(2019). Within A. taylorii, the plate 1′ is known to vary between a quadrangular and pentagonal shape 

(Delgado et al., 1997). The infraspecific variability of the shape of this plate indicates that it cannot be 

used as a diagnostic character at the genus level (Table 2). Finally, the Sp of the emended genus 

Gessnerium is longer than wide and extending obliquely, but in A. monilatum, which is included in 

this genus, the Sp is rhomboid (Balech, 1995). 

The main diagnostic character of the new genus Episemicolon is the presence of an anterior 

attachment pore placed on the dorsal side of the apical pore plate. However, in A. gaarderae the 

anterior attachment pore is defined as semi-dorsal (Larsen and Nguyen-Ngoc, 2004) and in A. 

monilatum, included in Gessnerium, the anterior attachment pore is slightly to the right of the dorsal 

side (Balech, 1995). Moreover, A. concavum, which also has a semi-dorsal attachment pore (Larsen 

and Nguyen-Ngoc, 2004) was placed in Gessnerium by Gómez and Artigas (2019). There is presently 

insufficient evidence to accept the location of the anterior attachment pore in the apical pore plate as a 

diagnostic character to separate these taxa at the generic level from other Alexandrium species. In 

addition, Gómez and Artigas (2019) claim that the shape of the apical pore of Episemicolon is unique 
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because it is “oval or bullet” (their Table 1, as “Shape of apical pore plate”) which is incorrect because

it is comma-shaped (Larsen and Nguyen-Ngoc, 2004), just like other Alexandrium species. 

The tabulation of the genus Centrodinium, as displayed in Centrodinium punctatum, is 

identical to that of Alexandrium when taking into account plate homologies (Li et al., 2019). It can not 

be excluded that some of the differences listed by Gómez and Artigas (2019) such as the shape of the 

apical pore, the presence of a pore in the anterior sulcal plate, etc., could be sufficient to separate this 

taxon on a subgeneric level. More detailed morphological information on the type species of 

Centrodinium, C. elongatum, is however required. The large variation in tabulation reported in species

of Centrodinium by Hernández-Becerril et al. (2010, see their Table 1 for a summary) indicates that 

further investigation into this genus is needed to properly report on its phylogenetic placement.

In summary, the morphological concepts used to separate the reinstated genera from 

Alexandrium s.s. are highly variable and insufficient to justify a split of the genus Alexandrium. There 

is also insufficient morphological evidence to decide whether Episemicolon and Centrodinium warrant

separate generic names. 

The cyst morphology does not support the new genera

Cysts of Alexandrium are morphologically diverse (Table 2) and different from cysts of 

closely related genera, such as Pyrodinium, which has process-bearing cysts (e.g., Wall and Dale, 

1968, pp. 102–103) or Fragilidium, which has a very thick layer of mucus (12–18 μm; Owen and 

Norris, 1985). Cyst morphology can serve to subdivide genera, as has been proposed for the genus 

Protoperidinium (Harland, 1982). Because cysts are well-known within the genus Alexandrium (e.g., 

Bolch et al., 1991; Matsuoka and Fukuyo, 2000; Bravo et al., 2006), they should be taken into account 

for the best possible integrative taxonomy. Since there is no consistent cyst morphology that can be 

associated with any of the genera proposed by Gómez and Artigas (2019), cyst morphology also does 

not unambiguously support the subdivision of Alexandrium into these genera. 

There is no evident relationship of the proposed genera to toxin production (chemotaxonomy).
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Toxin production has long been considered to be a character independent of chemical taxonomy 

because the same toxins have been described in very distantly related dinoflagellate genera, e.g., 

okadaic acid in Prorocentrum spp. and Dinophysis spp., STX or analogs in Alexandrium spp., 

Gymnodinium catenatum, Pyrodinium bahamense as well as in several cyanobacterial species (e.g., 

Aphanizomenon flosaquae and Lyngbya wollei), or domoic acid which is produced in several diatom 

genera of Pseudo-nitzschia and Nitzschia, as well as in the macroalga Chondria armata.

For the genera in question here, three toxin groups are worth considering for chemotaxonomy:

saxitoxins (STXs), spiroimines (spirolides and gymnodimines) and goniodomins. Based on John et al. 

(2014), Murray et al. (2015), Lassus et al. (2016), Lugliè et al. (2017), and Branco et al. (2020), STX 

or analogs are produced by 14 Alexandrium species (A. acatenella, A. affine, A. andersonii, A. 

australiense, A. catenella, A. cohorticula, A. fragae, A. leei, A. minutum, A. ostenfeldii, A. pacificum, 

A. tamarense1, A. tamiyavanichii, A. taylorii), which do not form a clear monophyletic cluster (Murray

et al., 2015, Fig. 1). Due to the spread of STX-production across a range of phylogenetically different 

Alexandrium species, STX-production in this genus appears to be very common but it is not clear 

whether it should be considered a coherent taxonomic feature for this genus. The increasing number of

STX analogues should be systematically re-verified in a large number of geographically diverse 

strains, with the limits of detection (LOD) and quantification (LOQ) provided. 

Spiroimines are solely known to be produced by Alexandrium ostenfeldii (= Alexandrium 

peruvianum; Kremp et al., 2014; Zurhelle et al., 2018). 

Goniodomins have been reported to be produced by Alexandrium monilatum, Alexandrium 

hiranoi and Alexandrium pseudogonyaulax (Harris et al., 2020). 

Overall, it should be noted that many papers only report positive presence of toxins in a strain 

but not the LOD or LOQ for those analogues that were not discovered. There are few studies 

systematically reporting comparative presence of analogues in a wide range of species, e.g. Wiese et 

al. (2010), for STX group toxins. However, spirolides have not been systematically searched in most 

1Following the taxonomic concept of A. tamarense of John et al. (2014), only one strain of A. tamarense is 

currently considered to produce low amounts of gonyautoxins (Lugliè et al., 2017). 
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Alexandrium species and goniodomins have been largely overlooked other than in the three species 

mentioned above. 

Conclusions

The data presented by Gómez and Artigas (2019) are insufficiently robust to form the basis on

which to subdivide species of the genus Alexandrium into four different genera, and maintain 

Centrodinium. Resolving consistent generic-level clusters within the genus Alexandrium and across 

the gonyaulacoids more generally, would require additional detailed morphological re-investigations 

and more extensive multigene phylogenies, with careful attention to rigorous testing of taxon sampling

effects, branching order stability, long-branch effects, and careful selection of appropriate multiple 

outgroups for rooting local versus global dinoflagellate phylogenies. A secondary structure analysis of 

a more expanded dataset could also be beneficial. Inclusion of cyst morphology and chemotaxonomic 

information should also be strived for. There is an extensive literature on Alexandrium species and this

is a very active area of research. If the proposal of Gómez and Artigas (2019) is adopted there will be 

considerable disruption and confusion to this field of study. 

Therefore, here it is recommended to continue using the generic name Alexandrium for 

species of this complex, and to refrain from using Protogonyaulax, Gessnerium, and Episemicolon. 

The proposals by Gómez and Artigas (2019), if adopted, would introduce taxonomical instability into 

this group of species. A proposal to conserve Alexandrium against Centrodinium will be submitted to 

the International Nomenclature Committee for Algae (INA) in parallel to this note. The nomenclatural 

stability has particular importance as many species of Alexandrium cause harmful algal blooms and 

produce potent biotoxins. In addition to the biological scientific community the generic name 

Alexandrium is used also by chemists, medical scientists such as toxicologists, veterinarians, seafood 

safety regulators, fisheries and aquaculture industry personnel, administrators, and environmental and 

fisheries policy makers as outlined by Litaker et al. (2018). Furthermore, Alexandrium species are an 

important component of planktonic assemblages and taxonomic changes can create confusion for 

climate change studies and interpretations of long-term data sets. Finally, it is recommended that 

morphological criteria used to separate taxa are unambiguous and leave no room for doubt in the 
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attribution of taxa (cf. paragraph 1 of the preamble of the ICN, Turland et al., 2018), that authors make

their alignments freely available to allow for coherent progress in the field, and that authors strive for 

integrative taxonomy (Dayrat, 2005). Conservation of taxon names has been promoted across all 

organisms, to avoid taxonomic anarchy (Garnett and Christidis, 2017). As such, taxonomists should 

aim to conserve original names as much as possible and new taxa and combinations should only be 

created when robust morpho-molecular data obliges it (cf. paragraph 12 of the preamble of the ICN, 

Turland et al., 2018). 
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