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Proximity to road traffic involves higher health risks because of atmospheric pollutants. In addition to outdoor air,
indoor air quality contributes to overall exposure. In the framework of theBREATHE study, indoor and outdoor air
pollution was assessed in 39 schools in Barcelona. The study quantifies indoor and outdoor air quality during
school hours of the BREATHE schools. High levels of fine particles (PM2.5), nitrogen dioxide (NO2), equivalent
black carbon (EBC), ultrafine particle (UFP) number concentration and road traffic related trace metals were
detected in school playgrounds and indoor environments. PM2.5 almost doubled (factor of 1.7) the usual urban
background (UB) levels reported for Barcelona owing to high school-sourced PM2.5 contributions: [1] an
indoor-generated source characterised mainly by organic carbon (OC) from organic textile fibres, cooking and
other organic emissions, and by calcium and strontium (chalk dust) and; [2] mineral elements from sand-filled
playgrounds, detected both indoors and outdoors. The levels of mineral elements are unusually high in PM2.5

because of the breakdown of mineral particles during playground activities. Moreover, anthropogenic PM
components (such as OC and arsenic) are dry/wet deposited in this mineral matter. Therefore, PM2.5 cannot be
considered a good tracer of traffic emissions in schools despite being influenced by them. On the other hand,
outdoor NO2, EBC, UFP, and antimony appear to be good indicators of traffic emissions. The concentrations of
NO2 are 1.2 timeshigher at schools thanUB, suggesting the proximity of some schools to road traffic. Indoor levels
of these traffic-sourced pollutants are very similar to those detected outdoors, indicating easy penetration of
atmospheric pollutants. Spatial variation shows higher levels of EBC, NO2, UFP and, partially, PM2.5 in schools
in the centre than in the outskirts of Barcelona, highlighting the influence of traffic emissions. Mean child expo-
sure to pollutants in schools in Barcelona attains intermediate levels between UB and traffic stations.

© 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Some of the health effects of exposure to air pollution, such as the
impact on the respiratory and cardiovascular systems, have been exten-
sively studied. Although it is well-known that exposure to air pollutants
leads to an increase in mortality and morbidity rates of the population
(e.g. Baccarelli et al., 2008; Künzli et al., 2000, 2004; Pope et al., 2002;
ackground reference station of
ltrafine particles; LDSA, lung-
rbon; EBC, equivalent black car-
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WHO, 2005), few studies have focused on the role of air pollution on
brain development. Evidence obtained from experimental studies in
animals suggests that outdoor air pollution may play a major role in
the inflammation of the central nervous systemduring sensitive periods
(such as childhood) and consequently in behaviour and school perfor-
mance (Block et al., 2012). A growing body of research, albeit limited,
from epidemiological studies indicates that exposure to air pollution
may be associated with an increased risk of neurodevelopmental disor-
ders and cognitive impairments (Guxens and Sunyer, 2012).

Many epidemiological studies relate PM2.5 (particles with and aero-
dynamic diameter b2.5 μm) to negative health outcomes (Dockery
et al., 1993; Jerrett et al., 2005; Krewski et al., 2009; Laden et al., 2006;
Lepeule et al., 2012; Pope et al., 2002). However, owing to the small
size of ultrafine particles (UFP, particles b100 nm) that can translocate
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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from the lung to the blood circulatory system or be taken up directly
into the brain through the olfactory epithelium (Chen et al., 2006;
Nemmar, 2002; Oberdörster et al., 2004), UFP arise as a potential
PM2.5 constituent to have large health effects (Knol et al., 2009) even
though the evidence is still limited (Rückerl et al., 2011). The negative
health effects of the proximity to road traffic might be more related to
the exposure to UFP, black carbon (BC) and total PM counts since Zhu
et al. (2002) found that they decreased rapidly in the first 150 m away
from the traffic line and then levelled off, whereas PM2.5 was found to
be elevated only moderately.

Mediterranean cities are characterised by high densities of popula-
tion and motor vehicles: there are about 5800 cars·km−2 in Barcelona
and about 4500 cars·km−2 in Turin and Naples whereas these densities
fall to 1000–1500 cars·km−2 in northern and central European cities
such as Budapest, Amsterdam or Berlin (Ajuntament de Barcelona,
2013). Hence, people living in more densely populated cities are closer
to traffic and are more exposed to vehicle exhaust and non-exhaust
emissions. In fact, recent studies have shown that cities in southern
Europe have higher levels of PM2.5–10 than those in northern and central
Europe owing to the high vehicle density and drier weather (Eeftens
et al., 2012; Querol et al., 2004a). The contribution from road dust
(non-exhaust emissions from pavement, tyre and brake wear and re-
suspension of the material deposited on the road) to PM levels is also
higher in Mediterranean cities (Pant and Harrison, 2013). Some vehicle
wear abrasion particles have a mode below PM2.5 and another mode
above this diameter that would only be present in PM2.5–10; e.g. the
mass modes of Fe, Cu, Ba and Sb are between 1.2 and 7.2 μm aerody-
namic diameter (Gietl et al., 2010); a bimodal structure for Sb has
been determined with a mode at 3.6–5.2 μm from brake wear and tear
(Ijima et al., 2009).

There is increasing evidence that indoor air quality exposure is also
responsible for a rise in mortality and morbidity (Sundell, 2004).
However, little is known about air quality in indoor environments,
where children spend most of the day (approximately 90%; Buonanno
et al., 2012; US-EPA, 2008). Moreover, children constitute a particularly
vulnerable population because of their physiological and behavioural
characteristics. They have higher ventilation rates and higher levels of
physical activity (Trasande and Thurston, 2005) with the result that
they are more exposed to air pollutants than adults. Children spend a
large part of their time at school both indoors and outdoors. In Spain,
the school year lasts about 180 days and an average of 25 h per week
at primary level (INCA, 2013). Although the association between air
pollution exposure at schools and the impact on health has been the
subject of more than 70 epidemiological publications (see Mejía et al.,
2011), neurodevelopment has, by contrast, been poorly documented.
Newman et al. (2013) found an association between elemental carbon
(EC) from traffic and higher hyperactivity scores in children. In a study
of one school in a highly polluted area and in another school in an
area of low pollution in Quanzhou, China, Wang et al. (2009) found
that neuropsychological functions, such as attention, were impaired in
the former school with respect to the latter. The mechanisms responsi-
ble for the initiation of neuroinflammation in response to air pollution
are poorly understood andmay be exposure-specific (Block et al., 2012).

At schools, indoor concentrations of particulate matter have been
shown to be highly correlated with outdoor levels, suggesting that
indoor particles are largely of outdoor origin (Raysoni et al., 2011).
However, this indoor penetration of outdoor particles depends not
only on the physical barriers of the building and ventilation (natural
or mechanical), but also on particle physico-chemical properties
(Viana et al., 2011) and size (Tippayawong et al., 2009; Zhu et al., 2002).

It may well be that epidemiological studies are considerably influ-
enced by the methods employed for the collection of air quality data,
such as the instrumentation used, the sampling location, the pollutants
and parameters monitored and the sampling period (Mejía et al., 2011)
since the methodology selected could result in over/under-estimation
of exposure. Mejía et al. (2011) have also highlighted the importance
of the spatial unit of analysis. In epidemiological studies the nearest
air qualitymonitoring station is generally used to represent the air qual-
ity in schools (sometimes using raw data from the station and other
times estimating levels at schools). However, measuring in-situ at
schools yields more accurate information about the exposure although
Buonanno et al. (2013), Janssen et al. (2001) and Salimi et al. (2013)
have reported some spatial variation in the concentration of some air
pollutants within the school. Therefore, personal exposure monitoring
is the most accurate methodology to assess the exposure to air pollut-
ants (Buonanno et al., 2012).

The BREATHE (BRain dEvelopment and Air polluTion ultrafine parti-
cles in scHool childrEn) ERC Advanced Grant project seeks to determine
whether traffic-related air pollutants have an adverse effect on neuro-
psychological development, exacerbating cognitive and neurobehavior-
al disorders. The aim of the present study is to characterise indoor and
outdoor air quality and its variability, especially the parameters that
are most influenced by traffic emissions at the schools participating in
the BREATHE study.

2. Materials and methods

2.1. Study area

The study was carried out in the city of Barcelona (Spain;
15,993 inhabitants·km−2) and in the adjacent municipality of Sant
Cugat del Vallès (1761 inhabitants·km−2; IDESCAT, 2012; Fig. 1). Both
cities are located in the NE of the Iberian Peninsula and have a Mediter-
ranean climate. Barcelona has one of the highest vehicle densities in
Europe (Ajuntament de Barcelona, 2012). The urban traffic fleet is
characterised by a large number of cars (60.6%, of which, since 2003,
more than 60% of the new car registrations are diesel; DGT, 2011);
motorcycles (30.2%), heavy duty vehicles (2.9%). Furthermore, Barcelona
is oneof themost importantports in theMediterranean, and receives the
highest number of cruise ships in Spain. This constitutes an additional
source of atmospheric pollutants that are very often transported across
the city by the sea breeze during the day. Owing to the topography of
the area, the transport and dispersion of atmospheric pollutants within
Barcelona are largely controlled by fluctuating coastal winds which
blow in from the sea during the day (diurnal breeze), and, to a lesser
extent, by winds from the land at night (night breeze, Jorba et al.,
2013). In the city centre, the predominance of narrow streets (street
canyons) and a dearth of green areas hinder the dispersion of pollutants.
Moreover, the city is not infrequently affected by North African air mass
transport (NAF), which contributes significantly to mineral PM2.5.

On the other hand, Sant Cugat lies in the Vallès Depression away
from the coast and is bounded by the Littoral mountain range to the
southeast and by the Pre-Littoral mountain range to the northwest.
Although these ranges shield the city from coastal pollutant intrusions
(Fig. 1), the Llobregat Valley offers an atmospheric corridor into the
Vallès Depression for air pollutants carried from the urban and industri-
al zones that surround the river. Once in this Depression, the pollutants
accumulate due to the poor dispersion conditions.

2.2. Monitoring sites: schools and reference urban background station

Two sampling campaignswere carried out in 36 schools in Barcelona
and 3 in Sant Cugat, from 27 January until 22 June 2012 (SC1; sampling
campaign 1) and from 14 September 2012 until 22 February 2013 (SC2;
sampling campaign 2). Traffic intensity and typology of the fleet around
the schools is shown in Table S1. The sampling was performed simulta-
neously indoors (in a classroomwith pupils) and outdoors (in the play-
ground) at two schools perweek; of this pair of schools, onewas located
in an urban background (UB) area, whereas the other one was situated
near traffic. Indoor devices were placed where possible next to the wall
opposite the blackboard (to avoid direct exposure to chalk or board
marker emissions) and away from the windows (to avoid direct



Fig. 1. Location and topographical profile of the study area. The black lines in the topographical profile indicate the location of the cities of Barcelona and Sant Cugat.
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influence from outdoor levels and disturbances resulting from air cur-
rents). These conditions could not be met in all cases because of con-
cerns for child safety. Air samples were collected at a height between
0.7 and 1.5 m above floor level, which is the height at which the pupils
aged 7–9 would usually inhale.

Given that not all the schools were monitored simultaneously, data
should be deseasonalised to remove temporal fluctuations when com-
paring the levels of pollutants between the schools. The data obtained
at schools were deseasonalised with reference to the “Palau Reial” UB
station (termed UB-PR), where the same pollutants were monitored
throughout the sampling period. This station is located in the garden
of the IDAEA-CSIC building (41°23′14″ N, 02°06′56″E, 78 m.a.s.l) and
even though it represents UB conditions, it is exposed to road traffic
emissions from the Diagonal Avenue (200 m away), one of the largest
thoroughfares in Barcelona (100,000 cars·day−1).

2.3. Sampling and analysis

Air quality in the schools was monitored for four days (from
Monday morning to Friday morning), with a minimum of three
days. No data are available for Fridays since this was the day
when the monitoring instruments were moved from one school
to the other. PM2.5 samples were obtained by means of a high vol-
ume sampler MCV CAV-A/mb (30m3·h−1) with an inlet with a spe-
cific nozzle plate for PM2.5 (MCV). PM2.5 was collected on Pallflex
quartz fibre filters (PALL 2500 QAT-UP 150 mm) to obtain mass
concentration and a complete chemical characterisation, resulting
in a total of 553 8 h-daily samples (SC1: 140 indoors, 136 outdoors;
SC2: 143 indoors, 134 outdoors). At schools, sampling duration was
8 h per day/filter during school hours (from 9 to 17 h, typical school
hours in Barcelona). However, in UB-PR the sampling schedule was
a 24 h sample every third day since this sampling is part of a long
temporal series programme.

Once the gravimetric determination of the PM2.5mass concentration
was performed, a complete chemical characterisation of the PM collect-
ed on the filters was carried out following the methodology of Querol
et al. (2001) with a relative analytical error between 3 and 10% for the
elements under study (Viana et al., 2006). A 1/4 fraction of each filter
was bulk acid digested (HNO3:HF:HClO4) for the determination of the
major elements by Inductively Coupled Plasma-Atomic Emission Spec-
trometry (ICP-AES; IRIS Advantage TJA Solutions, Thermo) and trace el-
ements by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS; X
Series II, Thermo). Another 1/4 fraction of each filter was employed to
determine water-soluble ions, SO4

2−, NO3
− and Cl− by means of ion

chromatography (ICHPLC) and NH4
+ by means of a selective electrode.

A 1.5 cm2
filter punch was used for organic (OC) and elemental carbon

(EC) determination by a thermal–optical transmission technique with a
Sunset Laboratory OCEC Analyser with the NIOSH temperature pro-
gramme (Birch and Cary, 1996). OC was converted into organic matter
(OM) by a factor of 1.6, which according to Turpin and Lim (2001) ac-
counts for the heteroatoms (O, H, N) present in theOM. Finally, contents
of SiO2 and CO3

2− were indirectly calculated using well-known experi-
mental equations (SiO2 = 3 · Al2O3 and CO3

2− = 1.5 · Ca; Dulac et al.,
1992; Molinaroli et al., 1993; Querol et al., 2001).
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In addition, real-time concentrations of UFP (DiSCmini), mean UFP
size (DiSCmini), lung deposited surface area in the alveolar region
(LDSA; DiSCmini) and, BC (MicroAeth AE51) were recorded on a 5 or
10 minute basis. Weekly-averaged NO2 concentrations with Gradko
Environmental passive dosimeters were also obtained. All the DiSCmini
devices employed were compared and corrected by correlation to a
DiSCmini of reference to minimise any measuring differences (prior
and post each sampling campaign). DiSCmini measures the number of
UFP in the range 10–700 nm (accuracy: ±500 #·cm−3). By contrast, at
the UB-PR, the number of UFP was measured with a 3785 TSI CPC, mea-
suring all the particles from 5 to 1000 nm. Therefore we are not compar-
ing exactly the same parameter when measuring UFP at schools and at
UB-PR. In fact, the slope and the R2 of the equations obtained with a
pre and post campaign intercomparison between the reference
DiSCmini and the CPC were UFP[DiSCmini] = 1.62 · UFP[CPC] for
the SC1 (R2 = 0.57) and UFP[DiSCmini] = 1.40 · UFP[CPC] for the SC2
(R2 = 0.69). This measurement difference has to be taken into account
when comparing UFP at schools and UB-PR. LDSA in the alveolar region
at UB-PRwas recorded by aNanoparticle Surface AreaMonitor (3550 TSI
NSAM).

The MicroAeth AE51 provides data of BC (in μg·m−3) derived
from absorption values. Eight hour-averages were cross
correlated with EC concentrations from filter samples simulta-
neously collected in situ (at schools; including both campaigns),
obtaining the equation BCAE51 = 0.5436 · EC (R2 = 0.88).
The results were converted to equivalent black carbon (EBC; in
μg·m−3). In the case of UB-PR, absorption values obtained with a
Multi Angle Absorption Photometer (MAAP Thermo ESM Andersen
Instruments) were converted into EBC in μg·m−3 by an experimen-
tal Absorption/EC factor of 9.2 previously determined by Reche et al.
(2011).

For this study, only mean values for school hours from Monday to
Thursday were used (for both PM2.5 filter samples and real-time mea-
surements of BC and UFP) in order to take into account child exposure
to air pollution during the time spent at school. In fact, this time restric-
tion is a major advantage of our research given that PM concentrations
(and the other pollutants) would be underestimated if considering 24 h
means (Yip et al., 2004). The only exception is NO2 concentration,
which is 4 days averaged and includes the periods when children were
not at schools.
2.4. Data deseasonalisation

To compare schools, seasonal adjustment of the daily values was
conducted. This procedure, usually called (back-)extrapolation in time,
is sometimes used in epidemiological studies when past values of pol-
lutant levels are required to calculate the exposure of a givenpopulation
using Land-Use Regression (Chen et al., 2010; Gehring et al., 2011;
Mölter et al., 2010). Deseasonalised data were only employed for the
spatial variation analysis. The remaining results were obtained from
the data that were not deseasonalised.

To this end, an adjustment of all pollutant concentrations (both
indoor and outdoor) was carried out using data from the UB-PR.
Table 1
PM2.5, NO2, UFP, and EBC concentrations, UFP size, and LDSA for school hours (except for NO2)

INDOOR OUTDOOR

Mean Min Median Max SD Mean Min

PM2.5 (μg·m−3) 37 13 33 84 13 29 10
NO2 (μg·m−3) 30 5.1 30 69 12 47 14
UFP (#·cm−3) 15,577 3584 15,376 30,932 6586 23,396 9868
Size mode (nm) 42 30 41 57 5.5 39 27
LDSA (μm2·cm−3) 34 8.6 31 71 14 42 15
EBC (μg·m−3) 1.3 0.39 1.2 2.7 0.56 1.4 0.3
The adjusted concentration (Cij)k⁎ of the ith pollutant for the kth day
at the school jth was calculated as shown in Eq. (1):
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where (Cij)k is the concentration measured at the school, CiPR and
CPR
l
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are the 8 h average corresponding to day kth and campaign

averages at UB-PR, respectively.
To apply this method, the reference stationmust cover all the period

and have at least 75% of valid data for each pollutant. These two condi-
tionsweremet formost of the parameters analysed. Nevertheless,miss-
ing data of some pollutants were estimated by correlation with existing
data of other pollutants at UB-PR.

3. Results

3.1. Levels of air pollutants

Table 1 shows themean indoor and outdoor concentrations of PM2.5,
NO2, UFP, UFP size, LDSA and EBC for BREATHE schools and for the UB-
PR site. Averages were calculated for school hours except for NO2 for
which the daily means over 4 days were obtained.

Average outdoor levels are higher than indoors for NO2, UFP, LDSA
and EBC by a factor of 1.6, 1.5, 1.2 and 1.1 respectively (Table 1). Only
average PM2.5 levels and mean UFP size are higher indoors, with an in-
door/outdoor ratio of 1.3 and 1.1 respectively. Mean outdoor concentra-
tions are higher at schools than at UB-PR with school/UB-PR ratios of
1.7, 1.6 and 1.2 for PM2.5, UFP and NO2, respectively. However, levels
are similar for EBC and LDSA. Concerning UFP levels it has to be taken
into account the different measuring instruments (with different size
range) at schools and the UB-PR site. Intercomparison exercises (see
Section 2.3) showed that DiSCmini (at schools) measured between 40
and 60% more UFP than CPC (at UB-PR). Therefore, levels of UFP in
UB-PR are probably lower than at schools but to a lesser extent than
the factor 1.6.

The results obtained in this study are compared in Table 2with those
by Fromme et al. (2007), Molnár et al. (2007), Stranger et al. (2008),
Wichmann et al. (2010) and Zwoździak et al. (2013). Other studies
(e.g. Crilley et al., 2013; Pegas et al., 2012) are available, but not directly
comparable since they focus on other pollutants.

Fig. 2a shows the spatial distribution of average outdoor PM2.5, NO2,
EBC and UFP concentrations at the different schools. These maps were
made with seasonally adjusted data (see Section 2.4). Two perimeters
based on the highest (red) and lowest tercile (green) of EBC outdoor
concentrations were drawn in all the maps to facilitate comparison
with respect to the other pollutants.

EBC concentrations are markedly lower in the outskirts of Barcelona
and Sant Cugat, especially in the area of the Coastal Range (NW of the
city, Fig. 2a). These levels display an ascending gradient when ap-
proaching the city centre, which is severely affected by high vehicle
density and characterised by a street architecture that hinders the
dispersion of pollutants. NO2 concentrations follow a similar spatial
pattern: almost all the NO2 green and red dots fall within the
of the 39 schools (indoor and outdoor), and of UB-PR. Highest mean values in bold.

UB-PR

Median Max SD Mean Min Median Max SD

23 111 20 17 10 15 38 7
46 98 17 41 23 38 97 15

20,955 55,804 9986 14,665 6335 13,286 32,654 5452
36 65 7.0
40 83 15 42 21 37 86 14

8 1.2 2.6 0.57 1.3 0.55 1.2 2.7 0.6



Table 2
Indoor and outdoor average concentrations of PM2.5 (μg·m−3), UFP (#·cm-3) and EBC (μg·m−3) for various schools in Europe (w = winter samples; s = summer samples).

Source Location N schools Sampling time Season Indoor concentration
(BREATHE/other ratio)a

Outdoor concentration
(BREATHE/other ratio)a

PM2.5 NO2 UFP EBC PM2.5 NO2 UFP EBC

Wichmann et al.
(2010)

Stockholm, Sweden 6 8–16 h 8 (4.5) 17 (1.7) 0.67b (1.9) 10 (3.0) 21 (2.3) 1.1b (1.2)

Fromme et al. (2007) Münich, Germany 64 Teaching hours
(5 h)

S 22 (1.5) 6509c (2.9)
W 39 (1.0)

Zwoździak et al. (2013) Wroclaw, Poland 1 24 h S 14 (2.5) 16 (1.8)
W 60 (0.6) 49 (0.6)

Stranger et al. (2008) Antwerp, Belgium 15 (urban) 8–20 h S 61 (0.6) 113d (0.3) 2.0e (0.8) 72 (0.4) 97d (0.5) 2.0 (0.8)e

W 57 (0.7) 33d (0.9) 1.5e (0.8) 53 (0.6) 53d (0.9) 2.0 (0.6)e

This study Barcelona, Spain 39 9–17 h 37 30d 15,577 1.3 29 47d 23,396 1.4
S 34 32d 18,848 1.5 29 48d 23,144 1.5
W 38 29d 13,656 1.2 30 47d 23,547 1.3

a Ratio between the concentration of the considered element in our study (BREATHE) and the concentration found in the study to which it is compared.
b Soot.
c Different particle size range than BREATHE.
d 24 h average.
e BS has been converted to EBC.
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corresponding EBC perimeter. Only some schools adjacent to the perim-
eter undergo a change in their category. Spatial patterns for UFP are also
similar with one important exception: one school close to the harbour
on the coastal side of the Montjuïc headland (S of the city) has high
UFP levels albeit with low EBC levels, probably because of the influence
from nearby shipping emissions and/or the ring road (Ronda Litoral).
The spatial gradient for PM2.5 also shows a similar pattern although
with several exceptions, with high PM2.5 levels in many low EBC
schools. However, it should be noted that most of the PM2.5 red spots
are located close to the city centre. Fig. 2b shows the spatial distribution
of indoor concentrations of pollutants under study. Indoor spatial pat-
terns are very similar to those explained for outdoors, which suggests
a significant infiltration of outdoor pollutants into indoor environments.

The same maps were created with data that were not seasonally
adjusted. Fig. S1a shows how the increasing gradient of EBC and NO2

outdoor concentrations towards the centre of Barcelona becomeblurred
with respect to the adjusted data. This is why there are green dots in the
centre of Barcelona. On the other hand, UFP gradient is more marked
than when using deseasonalised data. PM2.5 gradient is similar regard-
less of deseasonalisation. As regards indoor concentrations (Fig. S1b),
thedistribution of the school terciles is very similar to the scenariowith-
out deseasonalisation.

3.2. PM2.5 components

The mean indoor and outdoor concentrations for different PM2.5

components found at BREATHE schools and at UB-PR station are
shown in Table 3. It should be noted that UB-PR concentrations are
mean values for 24 h of PM2.5 collection, whereas in schools they
account for only 8 h. Fig. 3 summarizes the chemical profile of PM2.5 at
schools in indoor and outdoor environments. Mineral matter was
estimated by the sum of the typical mineral compounds (CO3

2−, SiO2,
Al2O3, Ca, Mg, Fe, K), and sea salt by Na and Cl.

Data show higher mean concentrations of most of the PM2.5 compo-
nents in outdoor than in indoor environments (Table 3). Exceptions are
OC, Ca, CO3

2− and Sr, which attain higher indoor than outdoor concen-
trations. OC is, moreover, the PM componentwith the highest contribu-
tion to indoor PM2.5 mass concentration, 33% of the total indoor PM2.5

mass (reaching 44% when considering OM). It accounts for 22%
(31% OM) of outdoor PM2.5, being the second most important group
after mineral compounds (Fig. 3).

A high variability between schools was observed for all the pollut-
ants (high values of standard deviation). In most cases, the range
of concentrations and standard deviation is higher in outdoor
environments. This is especially true for NO3
− and mineral components

(SiO2, Al2O3, Fe, Ti, Mn, among others) because the levels of crustal ele-
ments are very dependent on the presence/absence of sand-filled play-
grounds. In fact, the mineral components in schools with sand-filled
playgrounds account for 16 μg·m−3 outdoors and 13 μg·m−3 indoors
whereas in those with paved playgrounds it descends to 4 μg·m−3 out-
doors and 8 μg·m−3 indoors.

Fig. 4a and b show the relative abundance of EBC, mineral matter
and OC (after normalisation of their levels) at each school outdoors
and indoors, respectively. This enables us to divide the schools into
two groups:

• Group 1: schools are defined by high relative normalised ternary pro-
portions of mineral matter (N45%) and low influence of EBC (b25%).
These schools are characterised by having sand-filled playgrounds
and by being located in the outskirts of Barcelona or in Sant Cugat.

• Group 2: schools show low relative normalised abundance of mineral
matter (b30%) andhigh levels of EBC (N35%). These schools aremainly
located in the centre of Barcelona and have paved playgrounds.

Note that the indoor range of relative normalised levels of OC is
narrower (25–45%) than the outdoor range (15–50%).

Eight hour concentrations (except the 4-day averaged NO2) of all
pollutants measured were plotted versus 8 h means of Al2O3 and EBC
concentrations as tracers ofmineralmatter and trafficmatter emissions,
respectively (Fig. 5a and b, for outdoor and indoor, respectively). Based
on this cross correlation analysis of the correlation coefficients (r) and
on the PM source apportionment studies performed in the outdoor
UB of Barcelona by Amato et al. (2009), specific pollutants of outdoor
environments were selected as tracers of the following sources:

• Mineral components (SiO2, Ca, Fe, K, Mg, Ti, Mn, Sr and rare Earth
elements): include elements highly correlated with Al2O3 but not
with EBC. This group consists of elements of mineral origin and is
the most significant in the outdoor environment, and second in
importance indoors (Fig. 3). Although PM2.5 is outside this group, it
is also highly correlated with Al2O3, whereas the correlation with
EBC is low, especially for the indoor environment (r = −0.03
indoors; r = 0.29 outdoors, Table S2). Mineral elements have higher
levels outdoors with the exception of Ca and Sr (Table 3).

• Traffic-related components (NO2, Sb, UFP and LDSA): include the
elements that correlate highly with EBC (traffic tracer) and do not
correlate with Al2O3 in either environment. Sb and Cu levels (brake
pad abrasion tracers, Sternbeck et al., 2002) are higher in outdoor
environments than indoors by a factor of 1.3 and 1.1, respectively.



Fig. 2. a. Spatial distribution of seasonally adjusted outdoor levels of NO2, PM2.5, EBC and UFP in the BREATHE school. Perimeters are based on the outdoor EBC highest tercile (red) and the
lowest tercile (green). b. Spatial distribution of seasonally adjusted indoor levels of NO2, PM2.5, EBC and UFP in the BREATHE schools. Perimeters are based the on outdoor EBC highest
tercile (red) and the lowest tercile (green). UB-PR category refers to outdoor levels.
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Table 3
PM2.5 components concentrations for the 39 schools (indoor and outdoor) for school hours (8 h) and for the UB-PR (24 h) in Barcelona. Highest mean values in bold. N = number of
schools in the first campaign plus schools in the second campaign, (mean of 3.5 samples per school and campaign); n = total number of samples; MM = mineral matter.

Indoor (N = 77) Outdoor (N = 75) UB-PR (n = 26)

Mean Min Median Max SD Mean Min Median Max SD Mean Min Median Max SD

(μg·m−3)
OC 10 3.5 9.6 19 3.2 5.5 2.1 4.7 15 2.5 2.1 0.78 1.7 5.4 0.94
EC 1.3 0.25 1.2 2.9 0.64 1.3 0.23 1.3 3.3 0.60 0.94 0.15 0.68 2.2 0.47
CO3

2− 2.3 0.31 2.1 7.6 1.5 1.2 b0.1 0.81 6.3 1.3 0.13 b0.1 b0.1 0.3 0.07
SiO2 3.7 0.34 2.6 17 3.3 4.4 0.24 1.8 34 6.7 0.32 b0.1 0.21 1.1 0.26
Al2O3 1.2 0.11 0.86 5.6 1.1 1.5 b0.1 0.60 11 2.2 0.11 b0.1 b0.1 0.37 0.09
Ca 1.6 0.21 1.4 5.1 0.97 0.82 b0.1 0.54 4.2 0.86 b0.1 b0.1 b0.1 0.19 0.04
Fe 0.42 b0.1 0.29 1.6 0.32 0.58 b0.1 0.28 3.8 0.76 0.14 b0.1 0.10 0.30 0.06
K 0.37 b0.1 0.31 1.2 0.24 0.40 b0.1 0.23 2.2 0.43 0.11 b0.1 b0.1 0.26 0.07
Na 0.34 b0.1 0.28 1.3 0.22 0.34 b0.1 0.25 1.4 0.29 0.18 b0.1 0.20 0.56 0.13
Mg 0.16 b0.1 0.13 0.68 0.12 0.19 b0.1 0.09 1.2 0.26 b0.1 b0.1 b0.1 0.09 0.02
SO4

2− 1.4 b0.1 1.2 4.3 1.1 1.6 0.21 1.2 4.8 1.1 1.9 0.41 1.2 7.3 1.8
NO3

− 0.72 b0.1 0.61 4.4 0.69 1.8 0.21 1.0 11 2.1 1.0 b0.1 0.41 13 2.1
NH4

+ 0.48 b0.1 0.34 1.8 0.46 0.86 b0.1 0.56 3.7 0.73 0.79 b0.1 0.30 5.7 1.1
MM 10 1.4 7.7 37 7.1 9.1 0.86 4.0 64 12 0.91 0.15 0.65 2.2 0.51

(ng·m−3)
Li 0.55 b0.1 0.32 2.2 0.51 0.86 b0.1 0.25 13 1.8 b0.1 b0.1 b0.1 0.34 0.06
Ti 55 5.5 45 233 44 59 2.0 22 502 92 3.8 b0.1 2.7 10 2.9
V 4.8 0.67 3.8 17 3.4 5.9 1.1 4.6 22 4.3 4.2 0.70 2.5 19 5.0
Cr 3.8 b0.1 3.0 14 2.9 3.4 b0.1 2.8 8.6a 3.3 1.5 b0.1 0.92 7.0 1.5
Mn 12 2.4 9.4 41 8.2 16 2.1 9.2 85 17 4.3 0.74 3.3 8.8 2.0
Co 0.21 b0.1 0.16 0.81 0.17 0.22 b0.1 0.16 1.3 0.25 b0.1 b0.1 b0.1 0.26 0.06
Ni 2.6 b0.1 2.3 10 1.8 3.3 b0.1 2.8 7.5b 3.1 1.8 b0.1 1.0 6.5 1.7
Cu 8.2 3.4 7.6 15 2.7 8.8 3.0 7.9 21 3.9 6.7 1.7 5.3 14 2.7
Zn 52 19 47 147 24 55 14.4 48 181 28 41 5.2 31 92 25
As 0.46 b0.1 0.43 1.4 0.21 0.50 0.19 0.41 2.0 0.27 0.30 b0.1 0.27 0.88 0.17
Se 0.33 b0.1 0.31 1.0 0.22 0.37 b0.1 0.33 0.98 0.22 0.25 b0.1 0.23 0.60 0.16
Sr 4.6 0.59 4.1 15 2.6 2.8 b0.1 1.6 16 3.0 0.48 0.11 0.35 1.3 0.31
Cd 0.14 b0.1 0.12 0.61 0.09 0.17 b0.1 0.14 0.64 0.13 0.11 b0.1 0.11 0.34 0.07
Sn 3.0 0.88 2.5 12 1.8 3.3 0.52 2.6 14 2.3 2.3 0.62 1.6 9.4 1.5
Sb 0.83 0.13 0.83 1.6 0.35 1.1 0.12 1.0 3.6 0.58 1.0 0.28 0.72 3.5 0.63
Ba 19 b0.1 13 133 20 20 b0.1 12 241 31 3.7 b0.1 2.1 37 5.9
La 0.43 b0.1 0.34 1.6 0.32 0.55 b0.1 0.25 3.6 0.72 b0.1 b0.1 b0.1 0.26 0.06
Pb 7.3 1.9 6.9 19 3.1 8.1 3.1 6.9 24 4.3 6.0 0.23 5.6 14 3.7

a The highest value after the maximum of 26 ng·m−3, which might be considered an outlier due to an extremely polluted week.
b The highest value after two maximums of 21 and 17 ng·m−3, which might be considered an outlier due to an extremely polluted week.
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• Secondary inorganic aerosol (SIA: SO4
2−, NO3

− and NH4
+): these are

urban-regional pollution tracers with the result that they are moder-
ately correlated with EBC but not with Al2O3. Together, the secondary
inorganic aerosols constitute the third most important group in the
two environments (Fig. 3). The levels are similar in both environ-
ments but always higher in the playgrounds, and markedly higher
outdoors for NO3

−.
• Industrial elements (Cd) and fuel-oil combustion (Ni, V): thesemetals
have a low correlation (rb0.5) or do not correlate (rb0.2)with EBC and
with Al2O3. These elements are typically emitted by industrial processes
(Cd) and heavy fuel combustion (Ni and V, mostly shipping in
Barcelona, Amato et al., 2009). They are also correlatedwith one anoth-
er (Table S2). Higher levels of tracers of heavy oil combustion andmet-
allurgical activities (Zn, As, Cd, Cr, Co, Se, V, Ni and Pb, Querol et al.,
2007) have been found in playgrounds than in indoor environments.

• OC and other pollutants associated with mineral matter resuspension
(as in both environments, Co, Pb): elements which have a moderate
correlation (0.2 b r b 0.6)with Al2O3 and a low correlation (r b 0.25) in-
doors or moderate correlation (0.2 b r b 0.6) outdoors with EBC.

• Sea salt (Na): there is no correlation between Na and EBC but Na is
moderately correlated with Al2O3, suggesting an additional source
(mineral) of Na. Its contribution is equal in the two environments.

When comparing outdoor school concentrations of PM2.5

components with those measured in UB-PR, outdoor levels at schools
are:

• Much higher: almost all the crustal elements (Ti, Al2O3, SiO2, Li, Ca, Sr,
La, Ba, Fe,Mn, K) are higher at schools than inUB-PRwith a school/UB-
PR ratio between 3.6 and 15.4; OC and Cr are 2.6 and 2.2 times higher,
respectively (Table 3).

• Higher:Mg is 1.9 times higher in playgrounds than in UB-PR. Na (from
sea salt) has a playground/UB-PR ratio of 1.9 and Ni and V (shipping
emission tracers) ratios are 1.8 and 1.4, respectively. The different
sampling periods (24 h vs 8 h) could play a major role in this compo-
nent, since sea breezes usually occur atmidday. Traffic related compo-
nents such as Sn (1.5), Cu (1.3) and NO3

− (1.7) are also higher in
playgrounds. The same pattern is observed for industrial elements
such as Zn, As, Cd, and Pb (by factors from 1.3 to 1.7).

• Similar: Sb (1.04) and the secondary components NH4
+ (1.09),

and SO4
2− (0.84) have similar levels in the schools and at UB-PR.
4. Discussion

The levels of PM2.5, NO2, and UFP found at schools in Barcelona in
both indoor and outdoor environments are higher than expected
since PM2.5 and NO2 concentrations are 1.7 and 1.2 times higher
than those found in the UB-PR station. Outdoor levels of NO2 at
BREATHE schools can be considered to be representative of all
schools in Barcelona considering that they agree with modelled
data employing Land Use Regression from the ESCAPE project for
all the schools in Barcelona (Cyrys et al., 2012; De Nazelle et al.,
2013). The modelled data yielded an average of 50 μg·m−3, which
is practically the same as the value obtained with measurements at
the 39 BREATHE schools, and higher than the value at the reference
station of UB-PR (41 μg·m−3).



Fig. 3. Average indoor and outdoor PM2.5 chemical composition in BREATHE schools.
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Outdoor levels are higher than indoors for NO2 and UFP as expected
because the main sources (mostly road traffic) of these pollutants are
located outside the buildings (e.g. Dall'Osto et al., 2011; Pey, 2007;
Table 1). However, EBC levels are almost the same in both environ-
ments, thus indicating a high indoor penetration of this pollutant (in
fact, the indoor–outdoor correlation for most of the schools was better
for EBC than UFP). Fresh exhaust emissions from traffic are very fine
(20–30 nm prevailing mode, Dall'Osto et al., 2011), and this primary
UFP may increase their size mode when affected by different processes
such as coagulation and condensation thatmodify their size distribution
and, therefore finding slightly finer outdoor particle sizewith respect to
that found indoors. High UFP concentrations combined with a finer par-
ticle size leads to higher LDSA values outdoors owing to traffic proximity.
By contrast, markedly higher levels of PM2.5 are found in classrooms than
outdoors, suggesting an important indoor source affecting PM2.5 levels.

As expected, most of the PM2.5 components have higher concentra-
tions outdoors, except OC (with an important contribution to PM2.5), Ca,
CO3

2− and Sr. The relatively high indoor levels (close to outdoors in
many cases) of externally emitted traffic-related components (NO2,
Sb, UFP and LDSA), SIA, industrial elements (Cd) and elements derived
from fuel oil combustion (Ni, V) suggest significant infiltration rates
from the outdoor environment. The similarity of the relationship of Sb
levels between schools playgrounds and UB-PR agrees with the one
discussed for EBC, and, together with the higher levels of Sn, Cu and
NO3

−, corroborates our observation that the schools are exposed to
slightly higher traffic emissions than UB in Barcelona. On the other
hand, Na (marine in a relevant proportion), Ni and V (mostly from ship-
ping emissions, Amato et al., 2009) have considerable higher levels at
schools than at UB-PR, and, apart from the different sampling periods,
it should also be noted that the schools are on average closer to the
coast thanUB-PR. Also higher levels at schools are observed for industri-
al elements such as Zn, As, Cd, and Pb. This may be attributed to the fact
that the trajectories of the air masses from the Vallès Depression (loca-
tion of industry) do not especially affect the zone where UB-PR is locat-
ed whereas, some of the schools are directly exposed to industrial
metals (Minguillón et al., 2014).
Mineral matter is usually characterised by a coarse grain size owing
to its mechanical origin. Thus, in urban areas, levels ofmineralmatter in
PM2.5 are lower than 2 μg·m−3 (in UB-PR, 0.91 μg·m−3). However, in
the present study unusually high levels of mineral matter in PM2.5

were found, especially in the schools with sand-filled playgrounds. In
fact, mineral matter is the most significant group in the outdoor envi-
ronment, and second in importance in the indoors (Fig. 3). The activity
in the playgrounds probably contributed to the breakdown of mineral
particles. These finemineral particles are continuously resuspended be-
cause of the very low precipitation in Barcelona (Querol et al., 2007). In
Fig. 5a and b it can be observed that mineral matter correlates with OC
and other pollutants such as As, Co and Pb, suggesting thatmineralmat-
ter was polluted owing to the dry and wet deposition of these elements
in the playgrounds and to their possible retention by adsorption on
crustal elements. Therefore pollutants are resuspended at the same
time as the mineral matter. This seems to be particularly true for As,
which is present in both indoor and outdoor groups. It should be
noted that outdoors OC is also correlated with EBC, thus suggesting
that OC is mostly generated by or at the same time as traffic emissions
(Minguillón et al., 2011) whereas in the indoor environment, OC is
strongly influenced by local indoor sources since it has no relationship
with EBC.

An important source of OC in indoor environments could be cotton
fibres from clothes, skin cells, other organic emissions from children
(as evidenced in studies at schools, Braniš and Šafránek, 2011;
Fromme et al., 2008), cooking emissions (Abdullahi et al., 2013;
Brunekreef et al., 2005; Lanki et al., 2007) and also condensation/nucle-
ation of semi-volatile organic compounds (SVOCs, Weschler and
Shields, 1999). The chalk for the blackboards might be responsible for
the higher levels of Ca, CO3

2− and Sr indoors. X-ray diffraction analysis
revealed that it was composed of calcite (CaCO3). Since the atomic radi-
us of Sr is similar to that of Ca, this element often replaces Ca in calcite
and gypsum (CaSO4·2H2O), accounting for the higher indoor levels of
Sr.

All these elements have also been compared with the Spanish urban
concentration ranges defined by Querol et al. (2007, 2008) (Figs. S2a
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Fig. 4. a. Ternary plot showing the relationship between normalised outdoor EBC, mineral matter and OC for each school. MM= mineral matter. b. Ternary plot showing the relationship
between normalised indoor EBC, mineral matter and OC for each school. MM= mineral matter.
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Fig. 5. a. Dispersion plot of the correlation coefficients (r) between EBC and Al2O3 and the other pollutants considered for the outdoor environment. b. Dispersion plot of the correlation
coefficients (r) between EBC and Al2O3 and the other pollutants considered for the indoor environment.
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and S2b). OC and mineral components (Ca, Al2O3, Fe, K, Sr, Ti, Li,
etc.) are the only ones that attain higher concentrations in the
school playgrounds than the aforementioned ranges (and are
the main reason for the higher PM2.5 levels at schools than at UB-
PR), whereas the remaining PM components are within these
ranges.
High variability among schools is observed for all the pollutants,
highlighting the wide range of concentrations children are exposed to.
It is especially true formineral components (related to the presence/ab-
sence of sand-filled playgrounds) and for NO3

−. As regardsNO3
−, the var-

iation between schools could also be due to different environmental
conditions (T and RH) throughout the campaign. Harrison et al.
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(1994), Wakamatsu et al. (1996) and the references therein reported
that NH4NO3 (the most common NO3

−-bearing species in PM) is very
unstable under typical summer temperatures in Barcelona, resulting in
a wide disparity in NO3

− concentration between colder (February) and
warmer months (June and September). This instability is also the
cause of the lower levels of NO3

− found indoors, where the temperature
is usually higher than outdoors (in particular during winter). In most
cases, the range of concentrations and standard deviations is higher in
outdoor environments. This indicates that indoor sourcesmight be sim-
ilar in schools and that physical barriers (buildings materials, windows,
etc.) hinder, albeit slightly, the entry of outdoor pollutants into indoor
environments (infiltration rates may vary widely from school to school,
Adgate et al., 2003; Dockery and Spengler, 1981). As a representative in-
door sourced component, note that the indoor range of relative normal-
ised ternary (OC–MM–EBC) abundance of OC is narrower (25–45%)
than the one outdoors (15–50%). By contrast, higher outdoor levels of
OC are found in those schools with higher levels of EBC, showing that
OC and EBC have a common outdoor source (traffic) as already stated
before.

PM2.5 levels from BREATHE schools are 4.5 (indoor) and 3.0 (out-
door) times higher to the six schools in Stockholm studied by
Wichmann et al. (2010) where only school hours were considered
(Table 2). Since PM2.5 annual mean levels obtained within the frame-
work of the ESCAPE project in Stockholm County were half those
found in Barcelona (8.5 μg·m−3 vs 16.3 μg·m−3, respectively; Eeftens
et al., 2012), the higher levels in Barcelona are due to a local source of
PM2.5 at schools (activity of children and the existence of sand-filled
playgrounds) plus the higher PM2.5 levels usually found in this city.
This agrees to what is observed when comparing to Munich schools
during summer (1.5 times higher indoor levels in BREATHE schools,
Fromme et al., 2007), where the difference at schools cannot be only ex-
plained by the typical levels found in both cities (annual PM2.5 mean for
Munich 14.6 μg·m−3, similar to the 16.3 μg·m−3 in Barcelona, Eeftens
et al., 2012). Coal for domestic heating in Poland may be the cause for
the higher levels of PM2.5 found in a school inWroclaw (on a 24 h aver-
age basis in this case, Zwoździak et al., 2013) than in BREATHE schools
duringwinter (BREATHE/Wroclaw ratios of 0.6 for both indoor and out-
door), whereas the opposite is found during summer (being 2.5 and 1.8
times higher in BREATHE, indoor and outdoor respectively). Unexpect-
edly, mean PM2.5 concentrationswere higher in five schools in Antwerp
(Belgium, Stranger et al., 2008) than in BREATHE (BREATHE/Antwerp
ratio of 0.6 for indoor and 0.5 for outdoor). Shifting to NO2, the annual
median concentration in Stockholm County was 14.9 μg·m−3 whereas
in Barcelona it was 54.7 μg·m−3 (Cyrys et al., 2012), indicating a rela-
tionship similar to that of the schools (BREATHE/Stockholm ratio of
1.7 and 2.3 for indoor and outdoor, respectively). In Antwerp, NO2 con-
centrations are also higher than in BREATHE (BREATHE/Antwerp ratio
of 0.9 for both environments inwinter and, 0.3 indoors and 0.5 outdoors
in summer). The levels in the Belgian schools are surprisingly high since
the ESCAPE annual NO2 median was 30 μg·m−3 (Cyrys et al., 2012)
which ismuch lower than the 97 and 53 μg·m−3 at Antwerp in summer
and inwinter, respectively.Moreover, EBC (measured in Barcelona) and
soot (measured in Stockholm) are not directly comparable. However,
higher levels are found in Barcelona (Stockholm vs BREATHE; 0.7 vs
1.3 μg·m−3 indoors; 1.1 vs 1.4 μg·m−3 outdoors), especially indoors,
probably because of a higher traffic density and a higher diesel vehicle
proportion in the fleet. In summer, the levels of UFP in Munich schools
are 2.9 times lower than those at BREATHE schools. However, these
levels are not comparable because the different particle size cut-off
(DiSCmini were employed for this study whereas a SMPS system was
used inMunich) for UFPmeasurement is very important when compar-
ing absolute number concentrations.

Bringing the attention to PM2.5 components, the concentrations of K,
Ca, Fe, V, Cr, Mn, Ni, Cu, Zn, Pb were compared to those in Stockholm
(Molnár et al., 2007, Table S3) with the conclusion that higher levels
are found in BREATHE schools. This is particularly evident for mineral
tracers owing to higher resuspension rates because of the low rainfall
in southern Europe (Querol et al., 2004b). In similarity with our results,
Ca levels in Stockholmwere also higher in indoors than outdoors. More-
over,Molnár et al. (2007) concluded that the infiltration of outdoor par-
ticles during winter was relatively low owing to the tightly insulated
buildings in cold climates. No comparison can be made with our study
because no seasonally segregated data is shown. However, it may be as-
sumed that buildings in Barcelona are less well insulated since the Cu
indoor/outdoor ratio is 0.9 for Barcelona whilst it is 0.5 for schools in
Stockholm. When comparing to Wroclaw (Zwoździak et al., 2013), in-
door and outdoor levels of K, Ca, Fe, Cr, Ni, Cu, Zn, Pb andAs in Barcelona
are lower than in Wroclaw with the exception of mineral tracers in
summer owing to the previously stated low rainfall and high resuspen-
sion in southern Europe (Querol et al., 2004b, Table S3). A similar pat-
tern is found when comparing to Antwerp for K, Ca, Fe, V, Cr, Ni, Cu,
Zn and Pb. Therefore, indoor and outdoor pollutants are higher in
schools in Barcelona than in schools in Stockholm and Munich, but
lower than those in Wroclaw and in Antwerp. Mineral components
are an exception because of the higher resuspension rates found in
southern Europe (Querol et al., 2004b) and the higher frequency of
sand playgrounds in the schools of Barcelona.

Regarding the spatial variation of air pollutants, an increasing gradi-
ent of the outdoor concentrations towards the city centre has been ob-
served for EBC, NO2 and, with one important exception, also UFP
(Fig. 2a). Therefore, it may be concluded that the three pollutants
have a similar source and spatial dispersion in Barcelona. On the other
hand, PM2.5 also follows similar patterns although with several excep-
tions, with high PM2.5 levels in many low EBC schools. This again sug-
gests the significance of local school sources of PM2.5 in specific cases.
However, since most of the schools in the highest tercile of PM2.5 con-
centrations are located close to the city centre, it may also be concluded
that despite the school sources that prevent PM2.5 from being a good in-
dicator of traffic emissions, road traffic derived particles also contribute
to PM2.5. The similarities between the patterns of indoor and outdoor
suggest a significant infiltration of outdoor pollutants into indoor
environments.

Themap createdwith data not seasonally adjusted (Fig. S1) demon-
strate that deseasonalisation for EBC and NO2 is fairly reliable, since the
application of this methodology refines the expected ascendant gradi-
ent of concentrations towards the center of the city. However, this is un-
suitable for UFP since its variability is influenced by complex
photochemical processes in addition to road traffic emissions
(Dall'Osto et al., 2011; Reche et al., 2011). Deseasonalisation could also
be inappropriate for PM2.5 because it is influenced by local sources at
schools.

Since deseasonalisation was carried out using outdoor levels of the
UB-PR station, this technique is probably not suitable for indoor levels.
Indoor concentration depends on infiltration of outdoor particles and
gaseous pollutants (that might differ in every school because of differ-
ent building characteristics; Adgate et al., 2003; Dockery and Spengler,
1981) and on indoor-sourced PM (which might also be different in
schools depending on the activities that take place; Kopperud et al.,
2004; Long et al., 2000). Therefore, owing to the added complexity on
the indoor environments, outdoor pollutants concentration should not
be used to deseasonalise indoor concentrations.

5. Conclusions

In Barcelona and Sant Cugat, higher levels of air pollutants are found
in school playgrounds and classrooms when simultaneously compared
with local UB air qualitymonitoring site. Outdoor PM2.5 levels at schools
almost double the usual background levels reported for Barcelona,
mainly because of the high PM2.5 contribution of local school sources
of mineral dust and indoor OC (outdoor OC is mainly the sum of local
traffic and city-scale traffic emissions). Outdoor levels are higher than
indoors for NO2, UFP, Cu, Sn, among otherswith typical outdoor sources.
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Nevertheless, indoor levels are very close to those found outdoors, indi-
cating a fairly easy penetration of outdoor air pollutants into indoor
environments. Moreover, levels of mineral matter components (except
Ca) are also higher outdoors and seem to be very dependent on the
presence of sand-filled playgrounds (also observed indoors). The un-
usually high levels of mineral matter found in PM2.5 are very significant
and suggest the breakdown of mineral particles due to playground ac-
tivities under the specific Barcelona's climate, Thus, this fine mineral
matter is easily resuspended alongside with anthropogenic pollutants
(e.g. OC and a few metals) previously deposited in the sand.

By contrast, PM2.5 levels are markedly higher indoors, which indi-
cates that a significant fraction of PM2.5 mass arises from indoor activi-
ties and is characterised mainly by OC (from clothes fibres, organic
emissions from children and cooking), but also by Ca, CO3

2− and Sr
(from chalk). Since PM2.5 ismore influenced by indoor sources andmin-
eral matter than traffic emissions or other urban pollutants, PM2.5 mass
is not a good indicator of traffic pollution in indoor and outdoor environ-
ments. However, the levels of PM2.5 are also affected by traffic andmost
of central schools recorded high PM2.5 levels. Conversely, levels of EBC,
NO2, UFP and specific metals such as Sb were found to be very good in-
dicators of road traffic emissions in the two environments.

Deseasonalisation of the data based on anUB reference station is fea-
sible for outdoor NO2 and EBC, but it is unsuitable for outdoor UFP and
PM2.5, as well as for indoor concentrations.

Since some traffic tracers such as NO2 are 1.2 times higher in the
playgroundswhen comparedwith the local UB reference station, school
children in Barcelona are about 20%more exposed to traffic-related pol-
lutants. The levels of pollutants assessed in our study are between those
measured at UB and at traffic stations in Barcelona. These stations
should, therefore, be considered when characterising child exposure
and, possibly, exposure of the general population to air pollutants.
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