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ABSTRACT 

Chitosan sulfates have demonstrated ability to mimic heparan sulfates (HS) function. In this 

context, it is crucial to understand how the specific structural properties of HS domains 

determine their functionalities and biological activities. In this study, several HS-mimicking 

chitosans have been prepared in order to mimic the structure of HS-domains that have 

proved to be functionally significant in cell processes. The results presented herein are 

consistent with the hypothesis that interactions between sulfated chitosan and GFs are 

controlled by the combined effect of electrostatic interactions and the conformational 

adaptation of the polymer.  Thus, we found that highly charged O-sulfated S-CS and S-DCS 

polysaccharides with a low degree of contraction interacted more strongly with GFs than N-

sulfated N-DCS, with a higher degree of contraction and a low charge. Finally, the evidence 

gathered suggest that N-DCS would be able to bind to an allosteric zone and is likely to 

enhance GF signaling activity. This is because the bound protein remains able to bind to its 

cognate receptor, promoting an effect on cell proliferation as has been shown for PC12 cells. 

However, S-CS and S-DCS would sequester the protein decreasing the GF signaling activity 

by depleting the protein or locally blocking its active site. 



 

 

1. INTRODUCTION  

Fibroblast growth factors (FGF) play key roles in a variety of relevant biological processes 

such as cell proliferation, differentiation, cell migration and others.
1
 Many of these diverse 

functions arise from their ability to bind heparan sulfates (HS), important components of 

heparan sulfate proteoglycans (HSPG) widespread in the extracellular matrix (ECM) and on 

cell surfaces.
2
 After their secretion by cells, GFs bind HS-modified HSPG before reaching 

their cell-surface receptors. This GF/HS interaction modulates the cellular response, 

mediating growth factor signaling to cells (Scheme 1A). On the other hand, HSPGs can also 

shed to provide storage sites in the ECM, protecting growth factors and other proteins such 

as cytokines, chemokines and morphogens from cleavage by cell-derived metallomatrix and 

other proteinases (Scheme 1B).
3-4

  

Scheme 1. Schematic illustration of HSPGs roles in GFs regulation. A. Heparan sulfate 

proteoglycan (HSPG)-mediated signaling pathways. B. Soluble HSPGs as GFs storage 

sites. The HS chains are symbolized as a string cord with the repeating disaccharide unit 

(GlcN: black, uronic acid: grey). The circles on the cord represent O-sulfates (orange), 

N-sulfates (red) and N-acetyl groups (blue). 
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HSs consist of alternating simple subunits of 1→4 linked N-glucosamine (GlcN) and uronic 

acids (either D-glucuronic, GlcA, or L-iduronic acid, IdoA), which can be sulfated at 

different positions. Its biosynthesis is a complex multistep process that occurs via 

polymerization of alternating GlcA and GlcNAc residues and subsequent modification of the 

repeated disaccharide units.
5
 These modifications include the partial N-deacetylation/N-

sulfation of the GlcNAc residues followed by C-5 epimerization of GlcA to iduronic acid 

and O-sulfation at various positions. This represents only the first level of molecular 

diversity in HS chains (Figure 1).
6
  

 Despite the apparent heterogeneity of these modifications, post-polymerization 

transformations occur with high specificity, generating regions or domains throughout the 

HS polymer which are of defined size, spacing and general composition (Figure 1) known as 

NS-domains (NS), NA domains (NA) and transition zones (NS/NA). The NS-domains are 

regions enriched in N-sulfate GlcN, whilst NA domains have stretches of unmodified N-

acetylated disaccharide units. Both regions are interconnected via interspacing domains 

composed of alternating N-sulfated and N-acetylated disaccharides (transition zone).
7
 The 

multiple combinations of these domains generate the second level of diversity of these 

biopolymers. 
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Recent studies have demonstrated that the tight and specific binding between HS and growth 

factors is not solely regulated by sulfation profile and GlcA/IdoA relationship, both the 

structure of the highly NS-domains and the organization/availability of such domains within 

the HS chains are determinant on FGF-2 signaling.
8-9

  

 

Figure 1. Dual molecular diversity in HS chains. Micro-heterogeneities resulting from the 

various uronic acid and sulfation motifs generate a first level of molecular diversity. The 

distribution of NS-domains, NA-domains and transition zones of variable length leads to a 

second level of molecular diversity.  

Nevertheless, the plethora of combinations of these domains complicates the detailed 

understanding of HS sulfation patterning and the direct determination of structure-function 

relationships of HS motifs.  It is important to note that, unlike other instances where 

biological information is encrypted as linear sequences in molecules such as DNA, HS 

chains are generated through a non-template driven processes and may also be dynamically 

remodeled in response to variations in the environment.  These modifications provide 

additional variability with regard to biological functions
10

 and are typically characterized by 
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the degradation of the chains by the heparanase
11

 or by modification of the sulfation patterns 

via O-sulfatases.
12

 

For these reasons, deciphering the structural code of HSs and their dynamic nature 

generation processes are currently very important challenges. Recent efforts have relied on 

the total synthesis
13

 or the chemical
14

 or enzymatic
15

 modification of HSs. These are 

expensive and time-consuming procedures that are still challenging. Alternatively, there is a 

growing interest in the preparation of synthetic glycans
16

 and glycomimetics
17

 as 

alternatives to the natural polysaccharides.
18

  

Among them, chitosan sulfates have demonstrated the ability to mimic HSs for protein 

binding,
19

 exhibiting intrinsic biological properties towards cell differentiation, proliferation 

and growth
20-21

 and a protective effect against proteolytic digestion of GFs,
22

 depending on 

the sulfation states of the chains. 

Herein, chitosan has been modified in order to mimic the structure of NS-domains and the 

transition zones of HS, the regions that have demonstrated functional significance in cell 

processes in terms growth factor binding (Figure 2A). It is conceivable to think that in 

heparanized chitosan mimics, as in natural polysaccharides, selective recognition properties 

may reside at the domain topology.  Our strategy addresses the unmet challenges of how 

the domain structures orchestrate cellular responses when they are introduced in 

chitosan sulfate mimetics (Figure 2B). 

 



 

Figure 2. A. Design of HS-mimicking chitosan.  B. Schematic representation of the CS 

used in this work. The chitosan chains are symbolized as a string black (CS: Chitosan; 

DCS: Depolymerized chitosan and CS-26: Chitosan with an acetylation degree (DA)= 

0.26). These have been decorated with NS-domain (O-sulfates or N-sulfates) and NA-

domain (N-acetyl) motifs.  The circles on the cord represent O-sulfates (orange), N-

sulfates (red) and N-acetyl groups (blue). S- and N- indicate the O- or N-sulfation of the 

polysaccharide. 

2. EXPERIMENTAL SECTION 

General methods. Chitosan (CS) (see Table S1) was purchased from INFIQUS, S.L. 

(Spain). DCS and CS-26 were prepared according to previously reported methods 

(Supporting Information). Heparin was purchased from Alfa-Aesar. FT-IR spectra were 

recorded with KBr pellets on a Perkin Elmer Spectrum One spectrophotometer. 
1
H NMR 

spectra were registered at 400 or 500 MHz and 
13

C NMR spectra were obtained at 100 or 

125 MHz on Varian INOVA and Varian SYSTEM spectrometers, respectively. Elemental 

analyses were performed in a Heraus CHN-O analyzer. The total degree of acetylation (DA) 
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was calculated from 
1
H NMR according to Lavertu et al.

23
 The total degree of sulfation (DS) 

was calculated from elemental analysis of the compounds according to the following 

equation: Total DS = (S%/32.06)/(N%/14.01). Statistical analysis was performed using 

Unpaired t-test. 

Preparation of O-sulfated chitosan. Sulfated chitosans were prepared according to a 

previously reported method.
20

 For example, a solution of CS (0.5 g) in formic acid (23 mL) 

was stirred within 1 h at room temperature. Then DMF (122 mL) was added, followed by 

another 2 h of stirring. After that, chlorosulfonic acid (1.4 mL) in DMF (8 mL) was dropped 

slowly into the CS solution within 15 min and the mixture was kept at room temperature for 

5 h. The resulting yellow solution was poured into a saturated ethanolic solution of 

anhydrous sodium acetate (300 mL) and the mixture was kept overnight. The obtained 

precipitate was washed with ethanol/water (4:1) mixture (v/v) and then dissolved in water 

(45 mL) and the pH value of the solution was adjusted to 7.5. Subsequently, the solution was 

dialyzed against water and lyophilized to give S-CS. This procedure was also applied for the 

sulfation of CS-26 and DCS, to give S-CS-26 and S-DCS respectively (see Table 1).  

Preparation of N-sulfated chitosan. N-sulfated chitosans were prepared following the 

conditions described by Holme et al.
24

 For example, DCS (1 g) was dispersed in distilled 

water (30 mL), and treated with Na2CO3 (357 mg) and Me3N·SO3 (710 mg). The mixture 

was heated at 50 °C until a clear viscous solution was formed (~24 h). The cooled mixture 

was then dialyzed exhaustively against distilled water and then lyophilized to give N-DCS. 

This procedure was also applied for the sulfation of CS, to give N-CS. 

NMR solids. N-15 solid-state NMR measurements were performed on a Bruker 

Avance spectrometer equipped with a wide bore superconductive magnet operating at 9.4 

T (N-15 Larmor frequency at 40.56 MHz). Powdered samples were packed in 4 mm  



zirconia rotors. The CP/MAS NMR measurements with contact times of 3 ms, repetition 

rates of 2 s and high-power proton decoupling (75 kHz) were carried out at room 

temperature, and spinning rates of 5 kHz. Generally, 45,000 scans were averaged unless 

specified otherwise. The spectra were externally referenced to ammonium chloride (-338.1 

ppm) secondary to nitromethane (0.00 ppm). 

Molecular weight analysis. The Mw and Mn of the polysaccharides were determined 

using gel permeation chromatography (GPC). GPC measurements were performed in a 

Waters 625 LC System pump with a linear ultrahydrogel column (Waters, i.d = 7.8 mm, 

l = 300 mm) thermostated at 35 °C. Waters 2414 differential refractometer was connected 

online. 0.04 M sodium dihydrogen phosphate anhydrous-0.06 M disodium hydrogen 

phosphate anhydrous (pH= 6.8) was used as eluent for chitosan sulfate derivatives. Chitosan 

samples were eluted using 0.2 M AcNH4-/0.2 M AcOH as eluent. The flow rate was 

0.6 mL/min and 20 μL of samples dissolved in the buffer were injected. 

Zeta potential. Chitosan sulfates were dissolved (1 mg/mL) in NaCl 1 mM and chitosan 

were dissolved (1 mg/mL) in AcOH 0.1 M. Zeta potential measurements were performed on 

a Malvern Zetasizer Nanoseries Nano ZS (Malvern Instruments, Herrenberg, Germany). 

Each experiment was carried out in triplicate. 

DOSY experiments. Diffusion ordered spectroscopy experiments were performed on a 

500 MHz VARIAN System, using 16 gradients (2.5–50.0 gauss per cm) with a gradient 

pulse (d) of 3 ms and a diffusion time (D) of 150 ms.16 gradients between 2.5 and 50.0 

gauss per cm with a gradient pulse () of 3 ms, a diffusion time () 150 ms.  

Circular dichroism spectroscopy. Circular dichroism spectra were acquired in a Jasco-

710 dichrograph, previously calibrated with D-10-camphorsulphonic acid. Measurements 

were performed in 1 cm Quartz Hellma cuvettes cells at 25 °C. The temperature was kept 



constant with a Neslab bath RTE-111. Five accumulations were acquired for each spectrum. 

The ellipticity was measured with a 1 nm bandwidth and 2 s response. The CD spectra were 

recorded between 200 and 240 nm. 

Determination of Intrinsic Viscosity and “Degree of Contraction”. The dynamic 

viscosity of dilute polysaccharide solutions was measured using an AMVn automated rolling 

ball micro-viscometer (Anton Paar, Ostfildern, Germany) with a programmable tube angle 

based on the principle of the rolling ball time. The intrinsic viscosity [ƞ] in water ([ƞ]H2O) and 

0.1 M NaCl ([ƞ]NaCl), both at pH 7.0, was determined as previously described. The degree of 

coil contraction was thus expressed as the following ratio: [ƞ]H2O/[ƞ]NaCl. 

Protein binding assays. Heparin or chitosan derivatives (S-CS, S-DCS, N-DCS and S-

CS-26, 2 mg/mL) were dissolved in sodium bicarbonate buffer (pH 9.6) and transferred to 

the wells of Nunc Immobilizer Amino™. Blank wells were incubated with 100 mM 

ethanolamine in sodium phosphate buffer (pH 9.6) containing hexadecyl-trimethyl 

ammonium bromide (1 mM). All samples were performed in triplicate. The plate was shaken 

overnight, then emptied and washed with water. All wells were then blocked by 1 h 

incubation at 37 °C with 3% BSA in PBS. Then, the cells were washed with PBS-t three 

times. 100 μL of Growth Factor solution (FGF-2, FGF-1, NT-3, BDNF or EGF from 

PeproTech, 25 ng/well in PBS) were added to each well. The microplate was incubated with 

gentle agitation at room temperature for 1 h and washed with PBS containing 1% Tween 20, 

and water. 100 μL of anti-human (FGF-2, FGF-1, NT-3, BDNF or EGF antibody, 50 ng) 

was added to the wells. The plate was shaken for 1 h and washed with PBS containing 1% 

Tween 20, and water. Immediately after the final wash step, dry the slide, and Anti-Rabbit 

IgG peroxidase is added. The colorimetric assay was used by on Amplex® UltraRed reagent 

(Ex/Em 568/581 nm). 



Isothermal Titration Calorimetry (ITC). These studies were performed at 20 ºC in 

PBS (100 mM NaCl, 20 mM Na3PO4, pH 7.4) by using a Nano ITC calorimeter (TA 

Instruments). Dilution experiments with S-CS and N-CS were performed with a starting 

concentration of polysaccharide in the syringe of 200 M. For binding studies, a 10 M 

solution of FGF-2 (190 L) was titrated in the reaction cell with a 200 M solution of S-

DCS and N-DCS respectively. In all cases, buffer composition in the syringe and titration 

cell was identical. In each experiment, 17 injections of 3 L were carried out while the 

protein solution was stirred at a constant speed of 300 rpm. Experiments were performed in 

duplicates. Experimental curves were analyzed using the software provided by TA 

instruments.  

Preparation of primary neural precursors cells. The neural precursor cells (NPCs) 

were obtained from striatum E15 rat embryos that were dissected and mechanically 

dissociated to individual cells. This cell suspension was incubated in NB27 medium 

containing human FGF-2 (10 ng/mL) and EGF (20 ng/mL; Peprotech, New Jersey, USA)].
25

 

After about 7 days in this medium floating neurospheres formed were collected by low-speed 

centrifugation, dissociated by mild trypsinization and passed through a 25-gauge needle, and 

expanded every 3–4 days.  

Neurosphere cell differentiation. After fourth passage, neurospheres were dissociated to 

individual NPCs and were plating (10
5
 cells/well) on 24-well culture plates (Falcon, NJ, 

USA) pre-treated with poly-l-lysine and laminin (1 mg/mL) to permit cell attachment. Then, 

NPCs were incubated 10 days for differentiation in NB27 containing growth factors and 

chitosan sulfates derivatives at tolerated doses. The medium was renewed every third day 

and finally, the cells were fixed with 2% paraformaldehyde/sucrose in PBS (12 min, 25 °C) 

for immunocytochemistry. 



Preparation of PC-12 cells. The PC-12 rat pheochromocytoma cells [PC¬12 (ATCC® 

CRL¬1721™)], were used as a cell model for neurotoxicity
26-27

 and cell cancer inhibition.
28-

29
 The PC-12 cells were cultured in DMEM plus 7,5% horse serum and 7.5% bovine serum 

until treatment. The neurotoxicity in PC12 cells was assayed at densities between 5–10
4
 

cells per well and treated by 72 h with the polysaccharides. The MTT assay was used to 

follow cell growth and viability (Supporting Information). 

 Cell Growth Inhibition. The PC12 cells were seeded at 10
4
 cells/well and allowed to 

attach for 6 h. After the cells were attached to the substrate, the medium was changed to 

serum-free DMEM, and the cells were incubated for 48 h. Then the medium was 

replaced by DMEM plus 1% HS/BS, containing the polysaccharides, in triplicate. The 

cell growth inhibition of the cells was calculated as follows: % inhibition = 100 - 100[(X - 

B)/(A - B)] Where A is mean experimental Abs corresponding to cells maintained in DMEM  

plus  serum;  B is the mean experimental Abs. from medium free of cells, and X corresponds 

to experimental Abs. of cells treated with chitosan sulfate variants. Each treatment was 

assayed in triplicate at least.  

Immunocytochemistry. The fixed   NPCs were washed with PBS and immunostained as 

follows: they were incubated for 30 min, at 25°, in PBS containing bovine serum (2%) and 

0.1% Triton X100. The cells were then incubated (16 h at 4 °C) in the same mixture 

containing the primary mouse monoclonal antibody for nestin (Santa Cruz Biotechnology) 

or rabbit polyclonal antibody for GFAP (Acris) diluted at 1/500. After repeated washing with 

PBS, the cells were treated with secondary antibody, a goat anti-mouse or anti-rabbit IgG 

antibody (Molecular Probes) diluted 1/1000 (45 min, 25 °C); Hoechst agent at 10 μg/mL 

(Sigma) was added for cell nuclei labeling during 10 min at 25 °C, washed three times with 

PBS, and conserved with glycerol/PBS (1/1). The assays were made three times by 



duplicates, in each replicate 40 fields were selected and analyzed by IN Cell Analyzer 1000 

Cellular Imaging (General Electric). 

3. Results and discussion 

3.1. Synthesis and chemical characterization of polysaccharides.  

To mimic the structure of the different domains we have prepared polysaccharides with 

different properties (Mw and DA) and with sulfate residues in the range of natural HSs that 

bind growth factors.  

O-sulfonations of CS, DCS and CS-26 were achieved under homogeneous conditions 

using a chlorosulfonic acid/formic acid system, to produce S-CS, S-DCS and S-CS-

26.
20

 The N-sulfated derivatives (N-CS, N-DCS) were prepared from polysaccharides 

CS and DCS using the SO3·NMe3 complex as sulfating reagent in the presence of 

Na2CO3.
24

 Elemental analysis indicated that chitosans are substituted with sulfate 

groups in the range of 0.6-1.4 sulfates/monosaccharide (Table 1), which mimic the level 

of sulfate modification of natural HSs.
30

 

Table 1. Sulfation of chitosan. 

 

 
Starting 

chitosan 
Sample Yield DA

[a]
 Total DSS 

[b]
 

O-sulfated 

chitosan 

CS S-CS 65% 3.2 1.38 

DCS S-DCS 72% 3.1 1.35 

CS-26 S-CS-26 61% 3.5 1.31 

N-sulfated CS N-CS 79% 3.5 0.63 



chitosan DCS N-DCS 81% 3.35 0.65 

 [a]
Degree of acetylation. Calculated according with reference 23; [b]Degree of sulfation. Determined using 

elemental analysis. 

The chemo-selectivity of the sulfonations was analyzed by FTIR spectroscopy (Figure 

3A). Spectra of S-CS have two peaks that are representative of a O-sulfate at 

approximately 1234 cm
-1

 (νas O=S=O) and 802.06 cm
-1

 (νas C-O-S). However, in N-CS 

this last peak is not observed, indicating that the chitosan is sulfated only at the 2-N 

position. This selectivity was corroborated by 
15

NCP/MAS NMR spectroscopy. In this 

case, N-DCS spectra shows the presence of a signal around -283 ppm corresponding to 

the sulfamic acid (NHSO3) that is not observed in the S-DCS (Figure 3A).  

On the other hand, 
13

C and two-dimensional (2D)-NMR experiments allowed the 

determination of the regio-selectivity of O-sulfonations. For example, HSQC-DEPT 

spectrum of S-DCS (Figure 3B) displayed antiphase signals for both sulfated (δH,C= 

4.25/66.5) and non-sulfated (δH,C= 3.83/60.0 ppm) CH2 at position six. Furthermore, 

two phase signals at δH,C = 4.3/78.8 ppm (minor) and at δH,C = 3.8/72.8 ppm (major) 

were attributed to sulfated and non-sulfated CH at position three. In both cases, an 

estimation of the sulfation degree was carried out by integration of each set of signals 

with respect to the CH-2 density.
20

   

Finally, the net surface electrical charge was estimated by the zeta potential, seeming to 

be independent of the degree of sulfation (Figure 3C). These results suggest that the 

structural motifs of the different domains could display a significant effect on the 

polysaccharide 3D-structure and, therefore, on the surface charge.  



 

Figure 3. Characterization of chitosan-based HS-domains mimics. A. Key regions of IR 

(top) and 15NCP/MAS NMR (bottom) spectra of S-DCS (blue) and N-DCS (brown). B. 

Key region of HSQC spectra of polysaccharide S-CS. Densities enclosed in the color 

boxes were integrated for sulfation degree estimation: 6-position (dashed red line) and 

3-position (solid green line). C. Degree of sulfation of chitosan sulfates. The red line 

indicates the zeta-potential values. Their numerical values are indicated at the bottom 

in red. 

 

3.2. Conformational analysis of polysaccharides:  Physicochemical 

characterization.  

Chitosan sulfates are polyampholytic polymers due to the presence of positive and 

negative charges randomly distributed along the chain. These charges control the 

structural and dynamic properties of the polymers and play a crucial role in the binding 

of polysaccharides with proteins,
31-32

 giving rise in several cases, to distinct biological 

responses.
33

 To gain insight into those properties, we have used a panel of biophysical 

techniques. The intrinsic structures of the polysaccharides were estimated by analysis of 

two variables, the hydrodynamic volume and the zeta-potential, whilst the “degree of 

contraction” has been employed as an estimation of the intrinsic chain flexibility (Table 
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2).
34

 It is important to note that in polyampholytic polymers, both properties are 

dependent not only on the net charge but also on the charge distribution through the 

chain. Moreover, they can exist either as individual chains stabilized by cooperative 

intra-polymer interaction or as soluble complexes when attractive interactions between 

different polymer chains take place.
35-36

 

Table 2. Chitosan sulfates physicochemical parameters. 

Sample 
Mw  

(kDa)
[a] 

Mn  

(kDa)
[b] PI

[c]  (mV) 
[d]

 

ȠH20 
[e]

  

(mL/g) 

ȠNaCl 
[e]

 

(mL/g) 
ȠH20/ ȠNaCl 

[f] 

S-CS 77.5 34.0 2.28 -47.9 850 88 9.6 

S-CS-26 262.3 55.4 4.74 -47.6 1800 130 13.8 

N-CS 142.6 36.9 3.85 -50.8 650 68 9.5 

S-DCS 52.2 26.2 1.99 -51.1 225 13 17.3 

N-DCS 36.0 15.9 2.27 -32.7 450 14 32.0 

[a] Mw = weight-averaged molecular mass. [b] Mn= number-averaged molecular mass. [c] PI= 

Polydispersity index. [d] = Zeta-potential. [e] [η] = intrinsic viscosity (subscript denotes the solvent). 

Microviscosimetric measurements taken at pH 7.0 in water and 0.1 M NaCl at 37 °C, inclination angle 

50°.  [f] ȠH20/ ȠNaCl = degree of contraction. 

S-CS, N-CS and S-CS-26 had very different hydrodynamic volumes, according to the 

Mw determined by gel permeation chromatography (GPC) (Table 2). Dependence on the 

N-substitution degree was evident thus reflecting the existence of important structural 

changes when the number of free amine groups along the chitosan chain is reduced. 

Therefore, the relatively low hydrodynamic volume observed for S-CS in comparison 

with S-CS-26 and N-CS could be explained by rigid individual chains stabilized by 

cooperative intra-polymer electrostatic interactions between the sulfate groups at C-6 

and the protonated amino groups on adjacent residues, as previously suggested (Figure 

4).
37

 The low [η]H2O/[η]NaCl ratio in comparison with other charged polysaccharides 

suggests that this compact conformation of S-CS may be less sensitive to long-range 

electrostatic charge screening in the presence of NaCl.
31

  



This structure is consistent with the observed behavior when the degree of acetylation 

reaches 26% (S-CS-26). Our results showed that increasing the DA increases the 

hydrodynamic volume and the [η]H2O/[η]NaCl ratio. This can be explained in terms of a 

more expanded and less rigid conformation due to the decrease in electrostatic 

interactions between neighboring residues by loss of free amino groups by the 

acetylation. In turn, the highest hydrodynamic volume implies that S-CS-26 adopts a 

less compact structure which suggests the presence of molecular and structural 

heterogeneity. This is likely due to the block acetyl groups distribution. These results 

could be supported by the slight decrement on the crystallinity index from 16% of S-CS 

to 11% in the case of S-CS-26, estimated from XRD data according to a previously 

described method.
38

 

When chitosan was N-sulfated an important increase in hydrodynamic volume was 

observed, which could be attributed to a chain expansion. However, our results showed 

that increasing the hydrodynamic volume did not increase the ratio [η]H2O/[η]NaCl, which 

suggest that N-CS adopts a completely different structure to S-CS. Based on these 

results, we propose that a charge-driven self-association between chains could take 

place, giving rise to rigid poly-electrolytic complexes (Figure 4).
36,39

 In fact, it has been 

observed that N-CS spontaneously forms a hydrogel in aqueous medium at room 

temperature without any chemical treatment (Figure 4).  



 

Figure 4. Schematic illustrations of the proposed structures for S-CS as individual 

chains stabilized by cooperative intra-polymer interaction (left) and for N-CS (right) as 

soluble complexes when attractive interactions between different polymer chains have 

taken place (right). An image of the spontaneously formed N-CS hydrogel is shown. 

Finally, in the case of depolymerized sulfated chitosan (S-DCS and N-DCS) a different 

tendency was observed.  In this case, the hydrodynamic volume of N-DCS is minor 

than in S-DCS, whilst the ratio [η]H2O/[η]NaCl increases in N-sulfate versus O-sulfate. This 

support previous research suggesting that there is a critical chain length, above which 

chitosan and its derivatives tend to form stable self-assembled structures.
40

  

To gain insight into these proposed structures, isothermal calorimetry (ITC) was used. 

Dilution enthalpogram for S-CS shows the normal effect of a dilution process on non-

assembled structures (Figure 5A). In contrast, dilution enthalpogram for N-CS is 

consistent with the presence of self-assembling structures (Figure 5B). Based on results 

described previously for these systems,
41

 the first region of the enthalpogram reflects 

the result of de-complexation of the cooperative binding, which is ended during the 

second set of injections. During this set, a dilution process of the polymer chains is also 

observed. When polymers form stable self-assembled structures, these are resilient to 

the replacement of polymer chains by hydration molecules, thus resulting in an 

endothermic dilution process which is observed in the final region.  

= = =



 

Figure 5. A. ITC dilution experiments performed with S-CS (A) and N-CS (B). B. 

DOSY spectrum of N-CS at different concentrations (purple: 1 mg/mL and red: 0.01 

mg/mL). The polysaccharide has a different translational diffusion coefficient when this 

was diluted at 25 ºC in D2O, indicating the presence of soluble complexes at high 

concentrations. C. CD spectra of sulfated chitosan in PBS solution with a concentration 

of 20 mg/mL. N-DCS (red) exhibits clearly the highest ellipticity value, indicating a 

higher tertiary structure for this polymer. 

   

Diffusion ordered spectroscopy experiments (DOSY) indicate that translational 

diffusion coefficients of N-CS in D2O at 25 ºC decrease when diluted conditions are 

employed (Figure 6). 

Finally, to delve more deeply into these structural questions, circular dichroism (CD) 

studies were carried out (Figure 7). S-CS and S-CS-26 did not have any visible bands. 

For N-sulfated chitosan (N-CS and N-DCS) and for S-DCS a positive band around 245 

nm was observed. Interestingly, N-DCS exhibits the highest ellipticity value (+6 

ellipticity/mdeg), indicating a higher tertiary structure for this polymer. Previous 

results
43

 suggest that the polymer may adopt a helical (right-handed) secondary 

structure. 
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These diverse structures are in agreement with the non-correspondence between the zeta 

potential and the sulfation degree (Table 1).  

3.3. Interaction of sulfated chitosan with growth factors. 

Firstly, we analyzed the interaction capacity of the polysaccharides with different 

growth and neurotrophic factors (Figure 6A). Binding assays were performed in a 

standard fluorescence microplate reader using heparin (Hp) as control based on its 

availability and on its low price in comparison to heparan sulfates. The rapid ionic 

gelation of N-CS under the employed conditions prevented its use in these experiments.   

 

Figure 6. A. Interaction of heparin (blue) chitosan sulfates (N-DCS: orange, S-CS: 

grey, S-CS-26: yellow, S-DCS: green) with growth and neurotrophic factors (FGF-1, 

FGF-2, NT-3, BDNF, EGF). Zeta potential values are shown in the left. B. ITC titration 

experiments performed with N-DCS and S-DCS. KD values are given in M. 

The observed response was specific for each of the chitosan sulfate-GF pairs tested; 

nevertheless, some general conclusions could be deduced. Overall, Hp and synthetic 
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chitosan sulfates follow a similar pattern of interaction. Notably, they showed 

significantly greater interaction with FGF-1, FGF-2 and NT-3 than with BDNF and 

EGF. 

On the other hand, O-sulfated CSs (S-CS, S-DCS and S-CS-26) belonged to the 

strongest binding partners for all growth factors and had a significantly higher affinity 

for them than the N-sulfated species (Hp and N-DCS) that were composed exclusively 

of N-sulfated or even N-sulfated/O-sulfated residues. These results suggest that the O-

sulfated residues in the binding sequences can actively contribute to the intermolecular 

interaction of these with GFs.  

However, if we assume that O-sulfate residues are predominant elements in the Hp 

composition, we can hypothesize that any marked alterations in the proportion of the N-

sulfated and O-sulfated units can significantly modulate the binding potential through 

an influence on the conformational adaptation of the polysaccharide and/or the proper 

positioning of the sulfate residues.  

According to the determined binding capacities, it is reasonable to postulate that O-

sulfates are more adaptable than N-sulfates. However, a simple comparison between the 

“degree of contraction” values determined for S-DCS and N-DCS (Table 2) suggests 

that, despite a necessary conformation adaptation of the polysaccharide during the 

interaction process, the accessibility of sulfate groups for binding plays a crucial role in 

the interaction process.  

In this context, a remarkable result was obtained for Hp and N-DCS.  The binding 

capacity data were close, regardless of their substantially different degrees of sulfation. 

This similarity in the binding capacity of both polysaccharides could be explained by 

the fact that both have the lowest net charge on the surface as it is indicated by their zeta 



potential values (fewer negatives). This is in accordance with our previously published 

results,
20,32

 and highlights the key role of the net charge on the surface in the binding 

process. 

To deepen our knowledge of these processes, we used ITC in two selected systems 

containing S-DCS and N-DCS. The data shown in Figure 6B did fit to a classical one-

site binding model for the first injections. However, the observed switch from an 

exothermic to an endothermic process during the last injections at a well-defined 

composition ratio of sulfated chitosan did not fit to a classical model and can be 

interpreted as the result of the aggregation and subsequent coacervation of the 

complexes.
44

 This characteristic multistage behavior has previously been observed when 

-casein and mucin were titrated with chitosan.
34,44

  

From these results, we envisaged that in the first injections the gradual addition of 

sulfated chitosan to the protein would result in the formation of complexes as an 

exothermic, enthalpy-driven process, resulting from heterotypic binding between the 

polymer and the growth factor. In both cases, this process was characterized by the 

same picks (13 injections) and the overall magnitude of the net integrated area of the 

exothermic component was similar for both sulfated chitosan (see Table S2). As the 

titration continued a saturation point was reached, beyond which heterotypic 

interactions with chitosan-growth factor no longer occurred when more ligand was 

added and endothermic peaks were observed. These inversion points suggest that the 

formation of chitosan sulfate/growth factor complexes occurs at a well-defined chitosan 

sulfate/growth factor proportion.  

3.4. Influence of chitosan sulfates on in vitro cell proliferation/differentiation. 



According to our results, chitosan sulfate variants with different structural motifs of the 

natural HSs are able to bind to the same GF. However, it is conceivable that the 

presence of these motifs can direct these polysaccharides to fulfill different biological 

functions by strictly determining their binding partner profile, as occurs in the natural 

GAGs. It is important to note that the action of HS mimics as GF ligands, appears to be 

context-dependent, adopting different mechanisms of action and, consequently, 

different biological effects depending on the cellular context.   

With these considerations in mind, in vitro analysis was performed to determine the 

effects of different sulfated chitosan on the behavior of PC12 pheochromocytoma cells
45

 

and neural precursor cells from rat embryos cultures. In view of the possible future 

applications of these modified CSs, especially in the complex biological in vivo 

environment, we evaluated the cytotoxicity and the biodegradability of these unnatural 

polysaccharides (see Supporting Information, Figure S1 and S2). From our results, we 

can infer that polysaccharides have no toxicity to cells. Besides we have observed that 

sulfated chitosan are 1.5-2.0 times less biodegradable by lysozyme than that of CS, 

being their enzymatic hydrolysis rate controlled by the sulfation profile. 

3.4.1. Effect of sulfated CSs on PC12 cells proliferation. 

Recently, we
20

 and others
22,46

 have proposed that CSs as mimics of HPs can play a role 

in the proliferation/differentiation of cells, having hypothesized that the binding of GFs 

with their cell membrane receptors is enhanced by a low dose of CS, whilst an increase 

in concentration leads to inhibition of proliferation, presumably by sequestering the GF.   

To gain insight into this dose-dependent effect we analyzed the effect of the 

polysaccharides in PC12 proliferation. 



As can be observed in Figure 7, the dose-dependent effect cited previously occurs for S-

CS and S-DCS. These slightly promote proliferation at the lowest concentrations 

(0.005-0.1 g/mL), whilst the increase in concentration leads to proliferation inhibition.  

In contrast, re-acetylated polysaccharide S-CS-26 exhibited anti-proliferative activity at 

all concentrations tested. Finally, the potency of N-DCS to enhance proliferation is 

much higher than S-CS and S-DCS. The break-over point (enhancing to inhibiting) 

occurred at the high concentration of 50 g/mL. At concentrations below this, we 

observed a similar behavior to the Hp.  

 

Figure 7. Effect of sulfated CSs in PC-12 cell proliferation. Hp was used as control.  

These results suggest that N-sulfate motifs could be critical to activate the signaling 

pathways in PC12 cells proliferation, whilst O-sulfated CSs could preclude the 

interaction of the proteins with the corresponding cell membrane receptor, thus leading 

to the inhibition of cell proliferation. The effect of the polysaccharides correlates with 
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the zeta potential. In fact, compounds with the lowest zeta potential and lowest 

interaction capacity with FGF-2 (Hp and N-DCS) did not inhibit cell proliferation 

whilst a different effect has been observed with compounds that are highly charged on 

the surface (S-CS, S-DCS and S-CS-26).  

Previous studies have proposed that although the electrical charge density determines 

the interaction between polyanionic polysaccharides and proteins, the unique properties 

of each protein-polysaccharide system are determined by other polysaccharide 

characteristics such as the chain flexibility.
31

 The relatively high degree of contraction 

observed for N-DCS (32.0) reflects the flexible character of this macromolecule in 

comparison with S-CS, S-DCS and S-CS-26 (9.6, 17.3, 13.8 respectively). These 

results and the known conformational flexibility of the Hp suggest that both 

macromolecules could allow the conformational molecular adaptation necessary for the 

specific formation of the ternary complex.   

This interesting behavior could be related to the role of NS-domains on the cell surface 

or in the ECM.
8
 Recent studies have demonstrated that flexible NS-domains are 

required for FGF-2 signaling,
47

 suggesting a correlation between the N-sulfation degree 

and the FGF2·HS·FR1c complex formation.
48

   

3.4.2. Effect of chitosan sulfates on neural precursor cells differentiation. 

To study the effect of chitosan sulfates on cell differentiation we analyzed their effect in 

neural precursor cells (NPCs) cultures from rat embryos. Cells were cultured in a 

medium supplemented with 0.1 g/mL of polysaccharide. Neural differentiation was 

studied by measuring the expression levels of GFAP(+)/Nestin(-),  and III-



tubulin(+)/Nestin(-). Nestin is currently used as a marker of immature neural cells and 

GFAP(+) and III-tubulin(+) are astrocytic and neuron-specific markers, respectively.  

As can be observed in Figure 8, the relative expression level of GFAP in chitosan 

sulfates-treated cells (0.1 g/mL) was approximately five times greater than the level of 

III tubulin (Figures 8A and 8B). This suggests that more cells can be induced to 

astroglia than into neuron cells when they are treated with chitosan sulfates.  

The O-sulfated S-CS and S-CS-26 with higher Mw can better support the formation of 

astroglial cells. Evidenced for this can be seen in the greater expression of GFAP 

marker genes (Figure 8A) and the more altered cell morphology (Figures 8F and 8H), 

compared with the depolymerized S-DCS (Figure 8G). According to these results, the 

size of the polysaccharide chain exerts an influence on the promotion of cell 

differentiation of NPCs. A plausible explanation for this could be the fact that 

proliferation and neural differentiation are sequential and mutually exclusive processes 

as if crosstalk mechanisms exist that link the cell proliferation machinery and 

differentiation pathways. In this case, it can be supposed that if cells are treated with 

polymers with higher Mw (S-CS and S-CS-26) these could preclude more efficiently 

the interaction of the proteins with the corresponding cell membrane receptor thus 

leading to the inhibition of cell proliferation and allowing the cell to differentiate. 

However, the relative differentiation levels dropped when cells were treated with S-

DCS which could indicate that a minimal chain size is necessary for achieving an 

efficient protein preclusion. In fact, previous studies have demonstrated the importance 

of Hp molecular weight to sequester GFs and their effect on stem cell differentiation.
49

  

On the other hand, as shown in Figure 8A, cells treated with N-DCS (0.1 g/mL) 

exhibited a relatively high differentiation level, despite its both relatively low molecular 



weight and sulfation degree. In addition, the differentiation level showed an obvious 

dependence on the concentration (Figure 8J), exhibiting a maximum at this 

concentration whilst at higher concentrations the level declined.  

 

Figure 8. Effect of sulfated chitosan and Hp (0.1 g/mL) on neural differentiation of 

NPCs. A. Differential expression (%) in glia, using GFAP marker. B. Effect of 

concentration on glial cell differentiation of NPCs. C. Different expression (%) in 

neuron, using III-tubulin marker. D-I. Immunofluorescence images of NPCs 

correspond to GFAP, green; nestin, red and nuclei, blue. The EGF/FGF-2 were present 

in all treatments, cells treated only with these GFs or without them were used as 

control. Scale bar: 100 m. * P < 0,001 (n= 3); ** P < 0,1 (n= 3). 

The idea that this polysaccharide could exhibit the best differentiation-promoting 

potential at this low concentration can be interpreted on the basis of the capacity of 

sulfated polysaccharides to form a ternary complex by directly interacting with both GF 

and its receptor and its dependence with the polysaccharide concentration. Recent 

studies have demonstrated the existence of an optimal concentration for the formation of 
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the ternary complex between the polysaccharide, the GF and its receptor.
17

 As has been 

observed for N-DCS (Figure 8J), when concentrations are below this optimal 

concentration, the formation of the ternary complex can be effectively increased with 

increasing concentration, activating the signaling pathways in cells proliferation. These 

results demonstrated that there is an optimal concentration for inducing differentiation 

between 0.1 and 1.0 g/mL for inducing differentiation, which is lower than the optimal 

concentration for Hp (5-10 g/mL). Finally, it should be noted that although some 

polysaccharides at 0.1 g/mL promoted III tubulin expression (Figure 8B), the 

expression at higher concentrations was minimal (see Supporting Information, Figure 

S3).  

CONCLUSIONS 

In this work, several heparanized chitosan with different properties (Mw, DA or DS) were 

prepared to mimic the sulfated domains of HS chains that are implicated in signaling events 

mediated by GFs. A combination of microviscosimetry, zeta potential analysis, isothermal 

titration calorimetry (ITC), diffusion ordered spectroscopy (DOSY), circular dichroism and 

fluorescence were employed to establish structure-function relationships. Our results 

highlight that the difference in the structure of heparan-mimicking chitosan would 

significantly influence their binding to GFs and are consistent with the hypothesis that 

interactions of sulfated chitosan with GFs are controlled by the combined effect of 

electrostatic interactions and the conformational adaptation of the polymer.  Thus, we have 

found that highly charged O-sulfated S-CS and S-DCS polysaccharides with a low degree of 

contraction interacted more strongly with GFs that N-sulfated N-DCS, with a higher degree 

of contraction and a low charge.  

Although the present study only represents an in vitro model and is an oversimplification of 

the phenomena occurring in vivo, these different degrees of interference of polysaccharides 



with the GFs would significantly influence the promoting/inhibitory effects in cell 

proliferation/differentiation phenomena.   Thus, the evidence gathered suggests that N-DCS 

would be able to bind to an allosteric zone and is likely to enhance GF signaling activity 

because the bound protein remains able to bind to its cognate receptor, promoting an effect 

on cell proliferation as has been shown for PC12 cells. However, S-CS and S-DCS would 

sequester the protein thus decreasing the GF signaling activity by depleting the protein or 

locally blocking its active site.   

Therefore, our results contribute to recognizing the importance of the HS-domain topology 

in heparanized chitosan mimics and its decisive role on the orchestration of cellular 

responses.  
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