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Abstract

White root rot, caused by the soilborne fungus Rosellinia necatrix, is an
important constraint to production for a wide range of woody crop plants
such as avocado trees. The current methods of detection of white root rot
are based on microbial and molecular techniques, and their application at
orchard scale is limited. In this study, physiological parameters provided
by imaging techniques were analyzed by machine learning methods.
Normalized difference vegetation index (NDVI) and normalized canopy
temperature (canopy temperature — air temperature) were tested as

predictors of disease by several algorithms. Among them, logistic regres-
sion analysis (LRA) trained on NDVI data showed the highest sensitiv-
ity and lowest rate of false negatives. This algorithm based on NDVI
could be a quick and feasible method to detect trees potentially af-
fected by white root rot in avocado orchards.

Keywords: machine learning, NDVI, Persea americana, Rosellinia
necatrix, thermal imaging

Avocado (Persea americana Miller) is a highly valued fruit crop in
tropical and subtropical regions around the world (Pérez-Jiménez
2008). Spain, the main producer in Europe, is ranked 15th in the
world (FAOSTAT 2016). Moreover, 57% of the Spanish avocado
area is found in the province of Malaga, in southern Spain, producing
48% of the crop in the country (MAPAMA 2017). In Spain, the most
important avocado diseases are Phytophthora root rot, caused by the
oomycete Phytophthora cinnamomi, and white root rot, caused by
the ascomycete fungus Rosellinia necatrix. Both diseases are found
worldwide but the latter is generally restricted to temperate and sub-
tropical areas such as the Mediterranean basin (Pliego et al. 2009).
Indeed, productivity has decreased in southern Spain due to soilborne
diseases, and those caused by oomycetes and fungi are the greatest
constraints (Pérez-Jiménez 2008).

Avocado trees affected by R. necatrix have rotten roots, leading to
a water deficit in the aerial part of the plant (Pérez-Jiménez 2006). As
aresult, leaves show a distinctive yellowing and wilt, and trees even-
tually die. Evolution of aerial symptoms can occur either quickly
(within weeks) or slowly (within years), depending upon environ-
mental, microbial, and plant factors (Guillaumin et al. 1982; Pasini
et al. 2016). R. necatrix spreads by either mycelial strands growing
from infected plants or direct contact between roots from the same
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or different trees. Thus, white root rot occurs in patches that spread
in a circular pattern (Schena et al. 2008).

At present, identification of putative isolates of R. necatrix is based
on either microscopic observation of the typical pear-shape swellings
of its hyphal septa (Eguchi et al. 2009; Petrini 1992; Sztejnberg et al.
1987) or polymerase chain reaction (PCR) analysis (Ruano-Rosa
etal. 2007; Schena and Ippolito 2003). Both techniques are time con-
suming and could delay decisions about possible treatments. There-
fore, a quick and economical method for detection and diagnosis of
the disease would be desirable.

Remote imaging techniques are widely used in crop protection.
Together with information systems, they open new opportunities
for precision agriculture (Mahlein 2016; Shakoor et al. 2017). Imag-
ing sensors exploit a wide range of the electromagnetic spectra, and
can be used to analyze the effects of biotic or abiotic stress factors on
plants (Fiorani and Schurr 2013). Reflectance and thermography are
of particular interest in proximal and remote sensing, as well as in
plant phenotyping. Reflectance imaging sensors measure light
reflected in the visible near-infrared and short-wavelength infrared
region of the spectrum (Lowe et al. 2017; Sankaran et al. 2010). Sev-
eral vegetation indexes can be calculated based on these measure-
ments. For example, the normalized difference vegetation index
(NDVI), which estimates vegetation vitality, is broadly used in re-
mote sensing (Pettorelli 2013; Tucker 1979). NDVI has been found
to be suitable to distinguish between healthy, asymptomatic, and
symptomatic avocado trees affected by laurel wilt (Sankaran et al.
2012). On the other hand, thermography captures radiation in
the infrared region of the spectrum. The temperature of the canopy
inversely correlates with the leaf transpiration rate, which is con-
trolled by stomatal aperture (Jones 1999). In turn, stomata closure
is tightly regulated by plants as a general mechanism of defense upon
pathogens and abiotic stress (Melotto et al. 2008). Thus, thermogra-
phy is widely used to characterize drought susceptibility and re-
sponse to pests (e.g., pathogens, insects, and nematodes) (Barén
et al. 2016; Costa et al. 2013; Mahlein et al. 2012).

The interpretation of images is often challenging and requires in-
tegrating knowledge of sensor physics and image analysis. The time-
space information collected is large and complex and, consequently,
very difficult to analyze by conventional mathematical tools (Fiorani
et al. 2012; Pérez-Sanz et al. 2017). The development of advanced
statistical methods such as classifiers has been an important contribu-
tion to precision agriculture because they enable plant monitoring
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and classification (Behmann et al. 2015). Classifiers have been used
to categorize and forecast stressed plants at laboratory (Berdugo et al.
2014; Pérez-Bueno et al. 2016; Pineda et al. 2018), greenhouse
(Abdulridha et al. 2016), and field (Calderdn et al. 2015; Hou et al.
2016; Sankaran et al. 2013) scales. These algorithms are trained on
datasets from different categories or subpopulations. In this way,
suitable models would accurately classify new data to the correct cat-
egory (Singh et al. 2016). Generally, about two-thirds of the dataset is
used for training the model while the remaining part is used for val-
idation. Thus, different parameters can be used to evaluate the fit. The
most frequent ones are sensitivity, specificity, and accuracy (Ma et al.
2014).

In the present work, NDVI and normalized canopy temperature
(canopy temperature [T.] — air temperature [T,]) data were collected
in an avocado orchard affected by white root rot. Several algorithms,
trained on these data, were able to classify trees as healthy or diseased
with high accuracy. The suitability of NDVI and temperature of the
canopy as predictors is discussed.

Materials and Methods

Study area. This work was conducted in a 1-ha commercial avo-
cado orchard (Hass grafted onto Topa-Topa seedling rootstocks) in
Torrox (36°46’05.94”N, 3°56’58.46”W) that contained approxi-
mately 300 well-watered trees of different ages. This orchard was
particularly suitable for this study because it was distributed in three
flat terraces and managed reasonably homogeneously. Irrigation was
performed by two sprinklers per tree to ensure an even irrigation
across the orchard. Aerial symptoms were estimated for 24 selected
trees using the following subjective scale: 0 = healthy or nonsympto-
matic, 1 = mild wilt, 2 = severe wilt, and 3 = dead (Gonzélez-Sanchez
et al. 2013).

Fungal detection. The detection on R. necatrix and other fungi in
roots and surrounding soil was carried out at the time of the measure-
ments in autumn 2015, as previously described by Ruano-Rosa et al.
(2007). Soil samples were collected from two points located 1 m
from the trunk and on opposite sides of it. The superficial soil was
removed in order to localize thick roots with a diameter greater than
5 cm. At each sampling point, three root pieces were obtained and
placed in cold storage for transportation to the laboratory. Then, root
samples were washed with tap water, and pieces of 0.5 to 1 cm? were
cut and surface disinfected in a solution of 10% ethanol and 20% so-
dium hypochlorite for 3 min, then rinsed two times in sterile distilled
water. The root samples were then air dried on sterile filter paper
for 15 min and placed onto plates of potato dextrose agar (Oxoid
Ltd., Hants, UK). The plates were incubated at 25°C for 48 h. Small
samples of mycelia growing from roots were collected and grown
in individual plates to obtain pure cultures and facilitate their
identification.

In order to identify the fungi present in the soil surrounding the
trees, avocado twigs (1 to 2 cm in diameter) were inserted into the soil
as bait at two diametrically opposed points 0.3 m from the trunk base
and 10 to 20 cm deep (Eguchi et al. 2009). After 1 month, the baits
were collected and cold stored for transport to laboratory. Fungal iso-
lation from the baits was carried out as described above.

The identification of fungi in pure culture was based on the mor-
phology of its mycelium. To facilitate hyphae observation, prepara-
tions of mycelium from each isolate were stained with Amman’s
lactophenol solution with cotton blue (20 g of phenol, 20 ml of lactic
acid, 40 ml of glycerin, 20 ml of distilled water, and 2 ml of cotton
blue at 1%). A Nikon Optiphot microscope (Nikon, Tokyo, Japan)
equipped with a Moticam Pro 285B camera (Motic Asia, Kowloon,
China) controlled by the software Motic Images Plus 2.0 (Motic
Asia) was used to observe fungal isolates. R. necatrix was identified
by the presence of typical pear-shaped swellings near hyphae septa
(Petrini 1992; Sivanesan and Holliday 1972).

The detection on R. necatrix and other fungi in roots and surround-
ing soil was carried out at the time of the measurements (in autumn
2015). Furthermore, the presence of R. necatrix was corroborated by
a PCR-based identification method performed on soil samples col-
lected in 2018. DNA was extracted from 1-g soil samples by a
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DNeasy PowerSoil Kit (Qiagen N.V. Hilden, Germany) and quanti-
fied using a NanoDrop ND-1000 spectrophotometer (Thermo Scien-
tific, Waltham, MA, U.S.A.). The amplification of a 493-bp fragment
was performed using the R2 (CAAAACCCATGTGAACATACCA)
and R8 (CCGAGGTCAACCTTTGGTATAG) primers (Schena
et al. 2002). PCR products were visualized by agarose gel (0.8%)
electrophoresis and ethidium bromide staining.

Remotely piloted aircraft system and imaging sensors. In total,
eight flights were performed from June through October 2015 (24
June; 1, 8, and 15 July; and 1, 13, 22, and 29 October), providing
eight independent replicates. The remotely piloted aircraft system
(RPAS) used was the highly portable aerial system DJI S900 (DJI
Ltd., Shenzhen, China). Remote control of the RPAS was performed
with a computer radio system Futaba 14SG (Hobbico Inc., Cham-
paign, IL, U.S.A.). The software Ground Station (version 3.04; DJI
Ltd.) was used to plan the flights, allowing an image overlap of 60
and 75%, horizontally and vertically, respectively.

Three cameras were mounted on the RPAS: (i) a video recording
GoPro Hero-3 Silver Edition (GoPro Inc., San Mateo, CA, U.S.A.)
with a spatial resolution of 1,920 x 1,080 pixels, (ii) a multispectral
reflectance ADC Micro (TetraCam Inc., Chatsworth, Los Angeles,
CA, U.S.A)), and (iii) a long-wavelength (7.5 to 13.5 wm) uncooled
thermal camera Optris PI-450 (Optris GmbH, Berlin, Germany). The
ADC Micro multispectral camera was equipped with three filters
atop the sensor that limits the radiation to bands in the green
(560 nm), red (660 nm), and near-infrared (830 nm) regions of the
spectrum. These bands are equivalent to the Landsat Thematic Map-
per bands TM2, TM3, and TM4, respectively. Single images of 2,048
by 1,536 pixels were corrected and used to calculate NDVI images as
(R830 - R660)/(R830 + RGGO)a aCCOrding to Tucker (1979) Fina]]y, an
NDVI map was built for each time point using the software Pixel-
Wrench2 (TetraCam Inc.). The thermal camera Optris PI-450 pro-
vided images of 382 by 288 pixels, with a thermal sensitivity of
0.04°C within the range of —20°C to 900°C. Digital video data were
recorded and stored in a MiniPC PI Netbox LW (Optris GmbH), also
mounted on the RPAS. Air temperature and temperature of two ref-
erences (black for hottest and white for coldest temperatures) were
taken on the field with an Optris MS noncontact infrared thermome-
ter (Optris GmbH). Thermal images were analyzed by software PI
Connect (version 2.7.2132.0; Optris GmbH). In this case, only six
temperature maps could be obtained.

Image processing and statistical analysis. The software ArcGIS
(version 10.4; Esri, Redlands, CA, U.S.A.) was used to compose the
mosaic images of the plot using the pictures extracted from the
recorded videos. ArcGIS was also used to extract numerical data
from thermal and NDVI maps for each individual tree. Moreover,
normalized canopy temperature was calculated as difference in can-
opy and air temperatures (T, — T,) for each tree. The numerical data
were analyzed by Excel 2010 (Microsoft Corporation, Redmond,
WA, U.S.A).

Several classifiers were used to analyze the numerical data (NDVI
or NDVI with T, — T,): artificial neural network (ANN), logistic re-
gression analysis (LRA), linear discriminant analysis (LDA), and
support vector machine (SVM) using SPSS (version 23.0; IBM,
Armonk, NY, U.S.A.). ANNs, inspired by the biological systems,
are one of the most commonly used algorithms (Hahn 2009). Binary
LRA is a statistical method widely used in biomedicine because it
estimates the probability of a dichotomous outcome (“healthy” versus
“infected”’) (Hosmer et al. 2013). LDA is an algorithm able to find a
linear combination of variables that can be used to separate two or
more classes of objects (McLachlan 2004). Finally, SVMs represent
samples as points in a high-dimensional feature space in which sup-
port vectors define a hyperplane that separates samples in classes.
SVMs classify new samples based on which side of the hyperplane
they fall on (Behmann et al. 2015).

The analysis of NDVI and thermal maps provided two databases.
The first one comprised the NDVI values found for each tree in every
time point and the second one also contained the T, — T, values. Al-
gorithms were trained with 67% of cases in the corresponding data-
base, randomly selected from the numerical database. The remaining



33% of cases in that database were used as validation dataset. Thus,
in the case of models fitted with NDVI data (ANN; and LRA ), sam-
ple size was 123 in the training set (63 and 60 images from of healthy
and diseased trees, respectively) and 61 in the validation set (33 and
28 images from healthy and diseased trees, respectively). For NDVI
and T, — T, models (ANN,, LRA,, LDA, and SVM), sample sizes
were 70 (43 for healthy and 33 for diseased) and 40 (22 for healthy
and 18 for diseased) in the training and validation set, respectively.

It is worth noting that tree number 11 was asymptomatic but diag-
nosed as infected in 2015 (Table 1). Therefore, it could not be fit
accurately into the defined categories “healthy” or “diseased”. Con-
sequently, all data from tree number 11 were excluded from the train-
ing dataset used for feeding the algorithms as well as from the
subsequent validation datasets.

The goodness of fits were evaluated by the specificity, sensitivity,
and accuracy of each model. Sensitivity or true-positive rate is the
proportion of infected samples correctly predicted as “infected”.
Specificity or true-negative rate is the proportion of healthy samples
that are correctly identified. Accuracy is the proportion of correct
predictions.

Results

White root rot assessment in the orchard. The orchard under
study had a previous history of white root rot (Fig. 1A). In June
2015, 24 trees were selected prior to the image analysis. In all, 12
of the selected trees were classified as healthy and 12 as diseased
based on aerial symptoms of avocado white root rot and the presence
of fungal growth in their roots (Table 1). It is worth noting that most
of the trees showing aerial symptoms of white root rot in the orchard
(resembling drought stress) were located along the stream (Fig. 1B).

The results of the detection of R. necatrix by microbiological diag-
noses in root, soil trap, or PCR for the 24 trees under study are sum-
marized in Table 1. The 12 trees diagnosed as healthy were analyzed
for the presence of R. necatrix in 2015. In nine of them, the pathogen
could not be detected by any method. However, the pathogen was

Table 1. Relation of fungi found in the studied orchard?®

found in the surroundings of trees 2, 6, and 12. Nevertheless, the first
two trees were still free of pathogen in 2018, while number 12 was
found to be infected by PCR diagnosis. In the same way, 12 more
trees were analyzed and found positive for the presence of R. necatrix
in 2015 by at least one of the detection methods. All of them showed
aerial symptoms of white root rot, except for tree 11. Thus, tree 11
was classified as level O in the scale of symptoms, even though its
roots and the surrounding soil contained R. necatrix, indicating that
this tree was in an early asymptomatic phase of the infection. Conse-
quently, this tree was diagnosed as diseased in 2015 but excluded
from the training and validation datasets.

Evaluation of healthy and diseased avocado trees by
imaging techniques. Eight measurements of NDVI and six of can-
opy temperature were carried out from June to October 2015, gener-
ating one map per parameter. The average value of NDVIand T, - T,
was extracted individually for each tree and map.

Trees classified as healthy had significantly higher values of
NDVI than those classified as diseased at every measurement (P <
0.001; Fig. 2A). Moreover, NDVI was very stable for healthy trees
and little or no change was found in the diseased trees during the pe-
riod of study. Taking into consideration the average NDVI value for
trees from all the measurements, a highly significant difference was
found between healthy and diseased trees (P < 0.001; Fig. 2B and C)
and between trees showing symptoms classified as level 1 or 2 of se-
verity (P < 0.001 in every case; Fig. 2C). In contrast, the T, — T, was
higher in diseased trees for every measurement considered indepen-
dently (P<0.1 and 0.01; Fig. 3A) or all together (P < 0.001; Fig. 3B).
The T, — T, of trees classified as a 1 or 2 on the severity scale showed
statistically significant differences relative to the healthy trees (P <
0.001 and 0.01, respectively). However, in this case, no significant
difference between trees rated as a 1 or 2 was found (Fig. 3C).

Classifying algorithms to identify healthy and diseased avo-
cado trees in the orchard. Several algorithms were fitted to the val-
ues of NDVI or T, — T, obtained for each avocado tree previously
classified as healthy or symptomatic. The features of the used

Rosellinia necatrix on

Tree SympP Roots Baits PCR Diagnosis® Other fungal genera found in soil
1 2 + - - Diseased Fusarium, Penicillium, Pythium

2 0 - + - Healthy Fusarium, Aspergillus, Trichoderma, Rhizopus
3 2 + + + Diseased Fusarium, Penicillium, Trichoderma

4 0 ND ND - Healthy

5 1 + + - Diseased Fusarium, Aspergillus

6 0 - + - Healthy Fusarium, Aspergillus, Penicillium

7 1 + + + Diseased Fusarium, Aspergillus, Trichoderma

8 0 ND ND - Healthy

9 2 + - - Diseased Fusarium, Aspergillus, Trichoderma

10 0 ND ND - Healthy e

11 0 + + - Diseased Fusarium, Aspergillus

12 0 - + + Healthy Fusarium, Aspergillus, Trichoderma, Penicillium
13 1 - + - Diseased Fusarium, Penicillium

14 0 ND ND - Healthy

15 1 + + + Diseased Fusarium, Aspergillus

16 0 ND ND - Healthy

17 2 + + - Diseased Fusarium

18 0 - - - Healthy Fusarium, Trichoderma

19 1 + + - Diseased Fusarium, Aspergillus

20 0 ND ND - Healthy .

21 2 + - - Diseased Fusarium, Trichoderma, Penicillium

22 0 ND ND - Healthy e

23 2 + - - Diseased Trichoderma, Penicillium

24 0 ND ND - Healthy

2 Diagnosis of Rosellinia necatrix infection on avocado trees based on estimation of aerial symptoms of avocado white root rot and detection of R. necatrix in

roots and baits (in 2015) and by polymerase chain reaction (PCR) (in 2018).

b Aerial symptoms of avocado white root rot: 0 = healthy tree; 1 = light yellowing and wilt in leaves; 2 = yellowing, overall wilt, and some tip leaves dry; and

ND = not determined.
¢ Diagnosis in 2015.
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classifiers are described in Supplementary Appendix S1. ANN and
LRA were the models of choice when only one input variable (either
NDVI or T, — T,) was taken into consideration. According to their
sensitivity (79%), specificity (85%), and accuracy (82%), the classi-
fication performance of the NDVI models (from now on, ANN; and
LRA,) was equivalent (Table 2; Fig. 4). In contrast, T, — T, was a bad
predictor on its own (e.g., 64% accuracy for LRA; data not shown).

ANN,, LRA,, LDA, and SVM were trained on NDVI and T, - T,
data for each canopy tree at every time point. These four models had
the same specificity (86.4%), denoting a good capacity for identify-
ing healthy trees. Conversely, the sensitivity varied from 55.5 for
LDA to 78.6% for ANN, and SVM, both of them with the highest
accuracy (82.5%; Table 2; Fig. 4).

Discussion

Orchards affected by R. necatrix usually present a patchy distribu-
tion of infected trees. This is mainly because the fungus spreads by
dissemination of contaminated materials and from there through

Fig. 1. A, RGB image of the commercial avocado orchard (Hass) located in Torrox.
Trees under study are labeled (1 to 24). Terraces and stream within the analyzed
area are marked in black and blue, respectively. B, Schematic representation of the
2015 disease status of selected trees under study. Each tree is represented by a
labeled circle. Colors indicate the scale of aerial symptoms of white root rot in
2015: green for level 0 (asymptomatic trees), orange for level 1 (light yellowing of
canopy and mild wilt), and red for level 2 (strong yellowing of the canopy and
severe wilt). Blue indicates an asymptomatic tree containing Rosellinia necatrix in
its roots. For each tree, a blue cross indicates positive detection of R. necatrix in
root or bait samples and the yellow bar indicates negative detection of R. necatrix,
according to the analyses carried out on 2015 samples.
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the soil by mycelia, and also from tree to tree by mycelial strands
along the infected roots in direct contact (Pliego et al. 2009). This or-
chard was particularly interesting because it was distributed in flat
terraces. Moreover, the orchard was known to be efficiently man-
aged, with the orchard manager paying particular attention to the
watering schedule and the application of phytosanitary measures in
the area under study.

The evaluation of aerial symptoms of avocado white root rot in
2015 delimited the affected area under study. Most of the infected
trees were found along the stream line. This is in accordance with pre-
vious results showing that soil water content and temperature are the
most important factors limiting R. necatrix growth (Pasini et al.
2016). The presence of R. necatrix in the roots or surrounding soil
of symptomatic trees strongly correlated with symptoms of wilting,
as previously reported for other crops (Pasini et al. 2016). Moreover,
in 2015, this pathogen was found not only in the roots and surround-
ing soil of diseased trees but also in the soil surrounding healthy trees
(numbers 2, 6, and 12). The spreading of R. necatrix tree to tree from
feeder roots by hyphae (Dann et al. 2013) would explain the presence
of the pathogen in the neighborhood of pathogen-free trees and may
also be the position of the front line of the fungus spreading through
the soil. Nevertheless, the original diagnosis of “healthy” on these
three trees in 2015 was confirmed by PCR 3 years later. Furthermore,
some typical saprophytic soilborne fungi were detected in soil sam-
ples from this orchard (Table 1). However, no correlation was found
between their presence and the healthy or symptomatic white root
rot status of the trees.

NDVIis widely used to evaluate, among others, plant nitrogen sta-
tus, chlorophyll content, green leaf biomass, insect infestation, and
disease in plants, as reviewed by Pettorelli (2013). In this work,
NDVI showed highly significant differences between diseased and
healthy avocado trees and between those rated as a 1 or 2 on the scale
of symptoms. Moreover, the NDVI values from those trees rated as
level 2 showed a tendency to decrease over the course of the study
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Fig. 2. A, Mean normalized difference vegetation index (NDVI) values for healthy and
diseased trees for each measuring time. B, Mean NDVI values for healthy and
diseased trees averaged for all measuring times. C, Mean NDVI values for healthy
trees and trees classified as level 1 or 2 in the scale of symptoms averaged for all
measuring times. Error bars indicate standard error and *** denotes P < 0.001,
according to a one-way analysis of variance (ANOVA) test (A and B) or one-way
ANOVA with honestly significant difference Tukey post hoc test (C). Asymptomatic
tree number 11 was excluded from this analysis.



(data not shown). This decrease in NDVI could be related to a de-
crease in the chlorophyll content, as previously reported for avocado
trees affected by Raffaelea lauricola, which causes symptoms similar
to those of white root rot (Sankaran et al. 2012). Unlike NDVI, the
T, — T, did not show a clear ability to discriminate between healthy
and diseased trees in this study. These findings are in accordance with
a previous work suggesting that severe metabolic changes in Roselli-
nia necatrix-infected avocado trees, including those related to leaf
temperature, only take place at late stages of the infection. Those met-
abolic changes were suggested to be related to the loss of functional-
ity of the plant radical system (Granum et al. 2015).

Several authors have addressed the identification of infected plants
by analyzing reflectance indices. For example, the infection by
R. lauricola has been analyzed by a nonimaging spectroradiometer on
detached leaves of avocado trees growing in greenhouses. Class ac-
curacies were 56 and 100% for very mild and severe symptoms, re-
spectively (Abdulridha et al. 2016; Sankaran et al. 2012). Similarly,
de Castro et al. (2015) defined the parameter ExR (based on RGB im-
ages), which offered the best contrast between laurel wilt-affected
and healthy trees. However, no information about sensitivity, speci-
ficity, or accuracy was provided. On the other hand, grapevines suf-
fering from grapevine leafroll disease could be identified at different
stages of the disease. In that case, NDVI and other multispectral pa-
rameters were analyzed by an ant colony clustering algorithm with
class accuracies ranging from 75 to 94.4%, depending on the severity
of symptoms (Hou et al. 2016). Reflectance measurements have also
been used to study the bacterial disease huanglongbing or citrus
greening in citrus groves. Measurements obtained with a multiband
and hyperspectral camera achieved 67 to 85% accuracy with a 7 to
32% false-negative rate by applying an SVM to the multiband images
(Garcia-Ruiz et al. 2013). In addition, Yang et al. (2010) used multi-
band and hyperspectral cameras to study cotton root rot caused by the
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Fig. 3. A, Mean normalized canopy temperature (canopy temperature [T ] — air
temperature [Tj]) for healthy and diseased trees for each measuring time. B, Mean
T - T, values for healthy and diseased trees averaged for all measuring times.
C, Mean T, - T, values for healthy trees and trees classified as level 1 or 2 in the
scale of symptoms averaged for all measuring times. Error bars indicate standard
error; ¥, **, and *** indicate P < 0.1, 0.01, and 0.001, respectively, according to the
one-way analysis of variance (ANOVA) test (A and B) or one-way ANOVA with
honestly significant difference Tukey post hoc test (C). Asymptomatic tree number
11 was excluded from this analysis.

fungus Phymatotrichum omnivorum. These authors used principal
component analysis to obtain an overall accuracy of 96 to 98% when
classifying root-rot-infested and noninfested areas. More recently,
NDVI combined with unsupervised classification was shown to be
an effective tool for detecting cotton root rot, reaching overall accu-
racy values of up to 95% when using an aircraft-based multispec-
tral camera (Yang et al. 2015) or historical satellite images (Yuan
et al. 2016).

Reflectance imaging has been combined with thermography for
the analysis of healthy and diseased trees. That was the case in the
study by Calderén et al. (2015), in which olive trees infected by Ver-
ticillium dahliae were analyzed by an SVM on temperature and veg-
etation indices, reaching an overall accuracy of 79%. However, LDA
classified trees at low severity levels, obtaining a better class accu-
racy than SVM (75 and 40.6%, respectively). In a study on citrus
greening, a number of classifying models were applied to several
spectral bands plus thermal data (Sankaran et al. 2013). Among those
models, SVM provided the best performance, with an overall accu-
racy of 87% and the lowest rate of false negatives. However, in the
present work, the use of thermal data as an input feature for classifiers
did not improve substantially the accuracy of the algorithms trained
on an NDVI database. Thus, accuracy and specificity were slightly
higher for ANN, and SVM than for ANN,; and LRA,. However,
ANN; and LRA| had higher sensitivity and, consequently, a lower

Table 2. Confusion matrices for the validation of the models artificial neural
network (ANN); and logistic regression analysis (LRA); (normalized differ-
ence vegetation index [NDVI] as the only input feature) and ANN,, LRA,,
lineal discriminant analysis (LDA), and support vector machine (SVM)
(NDVI and normalized canopy temperature as input features)

Predicted
Algorithm Observed Healthy Diseased
ANN; Healthy 28 5
Diseased 6 22
LRA; Healthy 28 5
Diseased 6 22
ANN, Healthy 19 3
Diseased 4 14
LRA, Healthy 19 3
Diseased 5 13
LDA Healthy 19 3
Diseased 8 10
SVM Healthy 19 3
Diseased 4 14
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Fig. 4. Values of sensitivity, specificity, and accuracy evaluating the goodness of the
performance of the best models trained on normalized difference vegetation index
(NDVI) data or NDVI and canopy temperature — air temperature: artificial neural
network (ANN), logistic regression analysis (LRA), lineal discriminant analysis
(LDA), and support vector machine (SVM). Sensitivity and specificity are the true
positive and negative rate, respectively, and accuracy is the rate of true results
over the number of cases analyzed.
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false-negative rate, in which case these algorithms could be consid-
ered the most appropriate method for disease detection (Sankaran
et al. 2013).

The current methods of detection of R. necatrix, based on micro-
bial and molecular techniques, have serious limitations for their
application in large orchards. For example, tree number 13 was
diagnosed to be infected by R. necatrix according to its symptoms,
whereas all of the analysis performed in 2015 on roots and soil were
negative for the presence of pathogens. In addition, infected trees can
go undetected until the appearance of aerial symptoms. These issues
make the detection of the pathogen across large areas extremely dif-
ficult. Consequently, rapid, reliable, sensitive, inexpensive, and easy-
to-use diagnostic methods for fungal pathogen detection would be
desirable (Ray et al. 2017). Remote sensing appears to be a suitable
approach to study the progress of infections and the control of this
pathogen in crop fields because they provide sensitivity and prompt-
ness and are cost effective. However, the development of diagnostic
methods based on imaging techniques faces the challenge of identi-
fying asymptomatic or weakly symptomatic individuals. Indeed, the
literature is replete with examples where it was concluded that clas-
sification of diseased trees at early stages of infection by imaging-
based methods is very difficult (Abdulridha et al. 2016; Calderén
et al. 2015; Hou et al. 2016; Leckie et al. 2004; Sankaran et al.
2012). The performance of the classifying algorithms based on
NDVI reported here for R. necatrix-infected avocado trees is compa-
rable with the results found in the literature, suggesting the method to
be suitable for the detection of diseased avocado trees in the field.

The use of NDVI recorded from an RPAS as the only input feature
for an ANN or LRA appears to be a reliable and inexpensive method
to detect avocado trees potentially affected by white root rot, even
when the symptoms are very mild or absent. However, the disease
could be due to multiple causes that are not specific to this disease.
Consequently, the remote sensing methods could be used as a quick
“prescreening” procedure to identify potentially diseased trees.
LRA; was the most reliable classifier because it showed the best
general performance, with the highest sensitivity and lowest rate of
false negatives. Furthermore, LRA is only based on data obtained
by a multispectral camera, providing a simple detection method.
This methodology could be particularly relevant in southern Spain,
the largest producer of avocado in Europe, where production has
been particularly threatened in recent years due to white root rot.
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