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Abstract We present a detailed analysis of the kinetic and
mass terms associated with the Landau gauge gluon propaga-
tor in the presence of dynamical quarks, and a comprehensive
dynamical study of certain special kinematic limits of the
three-gluon vertex. Our approach capitalizes on results from
recent lattice simulations with (2+1) domain wall fermions,
a novel nonlinear treatment of the gluon mass equation, and
the nonperturbative reconstruction of the longitudinal three-
gluon vertex from its fundamental Slavnov–Taylor identi-
ties. Particular emphasis is placed on the persistence of the
suppression displayed by certain combinations of the ver-
tex form factors at intermediate and low momenta, already
known from numerous pure Yang–Mills studies. One of our
central findings is that the inclusion of dynamical quarks
moderates the intensity of this phenomenon only mildly,
leaving the asymptotic low-momentum behavior unaltered,
but displaces the characteristic “zero crossing” deeper into
the infrared region. In addition, the effect of the three-gluon
vertex is explored at the level of the effective gauge cou-
pling, whose size is considerably reduced with respect to its
counterpart obtained from the ghost-gluon vertex. The main
upshot of the above considerations is the further confirma-
tion of the tightly interwoven dynamics between the two- and
three-point sectors of QCD.

1 Introduction

The three-gluon vertex of QCD [1–5], to be denoted by �αμν ,
has received particular attention in recent years because, in
addition to its phenomenological relevance, it displays fea-
tures that are inextricably connected with subtle dynamical
mechanisms operating in the two-point sector of the theory.
In particular, the emergence of a gluonic mass scale [6–12],
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in conjunction with the nonperturbative masslessness of the
ghost field [13–16], would appear to account for the “infrared
(IR) suppression” of the basic form factors of �αμν , estab-
lished in lattice simulations [17–20] as well as in numerous
continuum approaches [21–31].

The IR saturation of the Landau gauge gluon propa-
gator [15,16,32–49], �(q2), has been extensively studied
within the framework developed from the fusion of the pinch-
technique (PT) [6,50–52] with the background-field method
(BFM) [53], known as the “PT-BFM scheme” [38,54]. From
the dynamical point of view, the saturation is explained by
implementing the Schwinger mechanism at the level of the
SDE that controls the momentum evolution of�(q2) [48,55].
In this context, it is natural to regard �(q2) as the sum
of two distinct components, the “kinetic term”, J (q2), and
the (momentum-dependent) mass term, m2(q2), as shown in
Eq. (3.1). This splitting enforces a special realization of the
Slavnov–Taylor identity (STI) satisfied by the fully dressed
�αμν [55], which allows the reconstruction of its longitudi-
nal part by means of a nonperturbative generalization [31]
of the well-known Ball-Chiu (BC) construction [2]. Specifi-
cally, the 10 longitudinal form factors of �αμν , to be denoted
by Xi , are fully determined by the J (q2), the ghost dressing
function, F(q2), and three of the five form factors compris-
ing the ghost-gluon kernel, Hμν [2,3,56]. However, out of all
these ingredients, it is the J (q2) that is largely responsible
for the main qualitative characteristics of the Xi [31].

As has been explained in earlier works, the SDE govern-
ing the J (q2) is composed by two types of (dressed) loops,
those containing gluons with a dynamically generated mass
scale, and those with massless ghosts [23]. The former fur-
nish contributions that, due to the presence of the mass, are
regulated in the IR, while the latter give rise to “unprotected”
logarithms, of the type ln(q2/μ2), which diverge as q2 → 0.
The combined effect of these terms is rather striking: as the
(Euclidean) momentum q2 decreases, J (q2) departs gradu-
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ally from its tree-level value (unity), reverses its sign (“zero
crossing”), and finally diverges logarithmically at the origin
[23]. Quite interestingly, the same overall pattern is displayed
by the special combinations of vertex form factors studied
in the (quenched) SU(2) lattice simulations of [17,18] and
SU(3) [19,20,57], exposing the deep connection between the
two- and three-point sectors of the theory, encoded in the fun-
damental STIs.

To date, the three-gluon vertex studies carried out within
the PT-BFM framework have been limited to the pure Yang-
Mills theory [31]. In the present work, we take a closer look
at the structure of this vertex in the presence of dynamical
quarks, thus making contact with real-world QCD.

In particular, we present and analyze results for �(q2) and
�αμν obtained from numerical simulations of lattice QCD,
using ensembles of gauge fields with N f = 2 + 1 domain
wall fermions [58–60], at the physical point, mπ = 139 MeV.
These lattice results are complemented by a detailed analysis
based on the gluon SDE and the STIs that connect the kinetic
term of �(q2) with the form factors of �αμν ; for brevity,
we will refer to our continuum treatment as “SDE-based”.
Within this latter approach, the “unquenched” J (q2) is deter-
mined following the procedure first introduced in [61], using
as aid the aforementioned lattice results for �(q2). Then,
the J (q2) is employed as the main ingredient of the non-
perturbative BC construction introduced in [31], which pro-
vides definite predictions for the two special combinations
of vertex form factors, denoted by �

sym
1 (q2) and �

asym
3 (q2),

considered in our lattice simulation.
The main findings of this work may be summarized as

follows. (i) There is excellent agreement between the SDE-
based calculation and the lattice data for �

sym
1 (q2) and

�
asym
3 (q2). (ii) Given that all quark loops are tamed in the

IR by the constituent quark masses, the logarithmic diver-
gence displayed by J (q2) is still controlled by the ghost-loop,
which is essentially insensitive to unquenching effects [36].
(iii) The deep IR behavior of �

sym
1 (q2) and �

asym
3 (q2) is

determined by the corresponding asymptotic form of J (q2),
multiplied by the value of the ghost dressing function at the
origin, namely F(0). (iv) The positions of the zero cross-
ings displayed by the unquenched J (q2), �

sym
1 (q2), and

�
asym
3 (q2) move deeper into the IR region with respect to

the quenched cases, in agreement with the results reported
in [28]. (v) The suppression of J (q2), and, correspondingly,
of �

sym
1 (q2) and �

asym
3 (q2), is about 25% milder than in the

quenched case.
The article is organized as follows. In Sect. 2 we introduce

the necessary concepts and notation, and define the quanti-
ties studied in the lattice simulation. In Sect. 3 we present the
salient theoretical notions associated with the gluon kinetic
term, J (q2), and outline the procedure that permits us its
indirect determination when dynamical quarks are included.
Next, in Sect. 4 the SDE-based predictions for �

sym
1 (q2)

and �
asym
3 (q2) are derived, and subsequently compared with

the lattice results. Moreover, the corresponding running cou-
plings are constructed, and directly compared with the cor-
responding quantity obtained from the ghost-gluon vertex.
Finally, in Sect. 5 we discuss the results and summarize our
conclusions.

2 The three-gluon vertex: general considerations

In this section we first present the basic definitions and con-
ventions related with the gluon propagator and the three-
gluon vertex. Then, we review the two main quantities (vertex
projections) that have been evaluated in the lattice simulation
reported here.

2.1 Notation and basic properties

Throughout this article we work in the Landau gauge, where
the gluon propagator is completely transverse,

�ab
μν (p) = 〈˜Aa

μ(p)˜Ab
ν(−p)〉 = �(p2)δab Pμν(p); (2.1)

˜Aa
μ are the SU(3) gauge fields in Fourier space, the average

〈·〉 indicates functional integration over the gauge space, and
Pμν(p) = gμν − pμ pν/p2.

In addition, we introduce the ghost propagator, Dab(q2) =
δab D(q2), related to its dressing function, F(q2), by

D(q2) = i F(q2)

q2 . (2.2)

Similarly, in the three-point sector of QCD, one defines
the correlation function of three gauge fields, at momenta q,
r , and p (with q + r + p = 0),

Gabc
αμν (q, r, p) = 〈˜Aa

μ(q)˜Ab
ν(r)˜Ac

ρ(p)〉
= f abcGαμν (q, r, p) , (2.3)

where the connected three-point function Gαμν(q, r, p) is
given by

Gαμν(q, r, p) = g �α′μ′ν′(q, r, p)Pα′
α (q)

× Pμ′
μ (r)Pν′

ν (p)�(q2)�(r2)�(p2), (2.4)

with �αμν(q, r, p) denoting the conventional one-particle
irreducible (1-PI) three-gluon vertex (see Fig. 1).

It is customary to introduce the transversally projected
vertex, �αμν(q, r, p), defined as [17]

�αμν(q, r, p) = �α′μ′ν′(q, r, p)Pα′
α (q)Pμ′

μ (r)Pν′
ν (p),

(2.5)

such that

Gαμν(q, r, p) = g �αμν(q, r, p)�(q2)�(r2)�(p2). (2.6)
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α, a

ν, c μ, b

Γabc
αμν(q, r, p) =

q

rp

Fig. 1 The three-gluon vertex and the corresponding momentum/index
conventions

Evidently,

qα�αμν(q, r, p) = rμ�αμν(q, r, p)

= pν�αμν(q, r, p) = 0. (2.7)

The vertex �αμν(q, r, p) is usually decomposed into two
distinct pieces, according to [2,3,61],

�αμν(q, r, p) = �
αμν
L (q, r, p) + �

αμν
T (q, r, p), (2.8)

where the “longitudinal” part, �
αμν
L (q, r, p), saturates the

corresponding STIs [see Eq. (3.5)], while the totally “trans-
verse” part, �

αμν
T (q, r, p), satisfies Eq. (2.7).

The tensorial decomposition of �
αμν
L (q, r, p) and

�
αμν

T (q, r, p) reads

�
αμν
L (q, r, p) =

10
∑

i=1

Xi (q, r, p)	
αμν
i ,

�
αμν

T (q, r, p) =
4

∑

i=1

Yi (q, r, p)tαμν
i , (2.9)

where the explicit expressions of the basis elements 	
αμν
i and

tαμν
i are given in Eqs. (3.4) and (3.6) of [31], respectively.

It is clear that, due to Eq. (2.7), �αμν(q, r, p) may be
expressed entirely in terms of the 4 tensors tαμν

i , i.e.,

�
αμν

(q, r, p)

=
4

∑

i=1

⎡

⎣Yi (q, r, p) +
10
∑

j=1

ci j X j (q, r, p)

⎤

⎦ tαμν
i . (2.10)

The presence of the X j (q, r, p) in the final answer may be
understood by simply noticing that, after their transverse pro-

jection, the elements 	
αμν

i := 	
α′μ′ν′
i Pα

α′(q)Pμ

μ′(r)Pν
ν′(p),

can be expressed as linear combinations of the tαμν
i ; the exact

expressions for the ci j may be straightforwardly worked out.
In addition, we define the tree-level analogue of Eq. (2.5),

�
αμν

0 (q, r, p) = �
α′μ′ν′
0 (q, r, p)Pα

α′(q)Pμ

μ′(r)Pν
ν′(p),

(2.11)

where

�
αμν
0 (q, r, p) = (q − r)νgαμ + (r − p)αgμν

+(p − q)μgαν. (2.12)

Note finally that, in the Euclidean space, the form factors
Xi (q, r, p) and Yi (q, r, p) are usually expressed as functions
of q2, r2, and the angle θ formed between q and r , namely
Xi (q, r, p) → Xi (q2, r2, θ) [31].

2.2 The lattice observables

The lattice two- and three-point correlation functions
employed in the present work have been obtained from
N f =2+1 ensembles published in [58–60]; they were gen-
erated with the Iwasaki action for the gauge sector [62], and
the Domain Wall action for the fermion sector [63,64] (for
related reviews, see, e.g., [65,66]). In order to reach the phys-
ical point, mπ = 139 MeV, the Möbius kernel [67] has been
used, resulting in a simulation of light quarks with a mass
ranging from 1.3 to 1.6 MeV, while the strange quark mass
is 63 MeV; additional information on the particular setups is
provided in Table 1. Note that the data for the gluon propaga-
tor have been recently presented in [68], constituting a cen-
tral ingredient in the construction of the process-independent
QCD effective charge. In addition, in an earlier work [69], the
same data were employed in the determination of the strong
running coupling at the Z0-boson mass within the so-called
Taylor scheme. Finally, details on the Landau gauge com-
putation of the gauge fields, and the correlation functions
defined in Eqs. (2.1) and (2.3), may be found in [36,70].
In addition, the treatment of the O(4)-breaking artifacts has
been carried out as described in [57,71–73].

Let us now consider the special quantity

T (q, r, p) = W αμν(q, r, p)Gαμν(q, r, p)

W αμν(q, r, p)Wαμν(q, r, p)
, (2.13)

where the explicit form of the tensors Wαμν(q, r, p) will be
judiciously chosen in order to project out particular compo-
nents of the connected three-point function, Gαμν(q, r, p),
in certain simplified kinematic limits. Note that, in general,
the quantity T (q, r, p) is comprised of both longitudinal and
transverse components, Xi and Yi .

As in [19], we focus on two special kinematic configura-
tions:

(i) The totally symmetric limit, obtained when

q2 = p2 = r2 := s2, q · p = q · r = p · r = − s2

2
,

θ = 2π/3. (2.14)
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Table 1 Setup parameters for
the four lattice ensembles used
in this work

β Size mπ (MeV) a−1 (GeV) V (fm4) Confs

2.37 323 × 64 370 3.148 2.003 × 4.00 590

2.25 643 × 128 139.15 2.359 5.353 × 10.70 330

2.13 483 × 96 139.35 1.730 5.473 × 10.93 350

1.63 483 × 64 137.5 0.997 9.433 × 12.57 276

(ii) The asymmetric limit, corresponding to the kinematic
choice

p → 0, r = −q, θ = π. (2.15)

Starting with case (i), it is relatively straightforward to
establish that the application of the symmetric limit in
Eq. (2.14) reduces the tensorial structure of �

αμν
(q, r, p)

down to [19]

�
αμν

sym (q, r, p) = �
sym
1 (s2)λ

αμν
1 (q, r, p)

+�
sym
2 (s2)λ

αμν
2 (q, r, p), (2.16)

with

λ
αμν
1 (q, r, p) = �

αμν

0 (q, r, p) ,

λ
αμν
2 (q, r, p) = (r − p)α(p − q)μ(q − r)ν

s2 . (2.17)

The form factor �
sym
1 (s2) is particularly interesting, because

it captures certain exceptional features linked to a vast array
of underlying theoretical ideas. �

sym
1 (s2) may be projected

out by contracting Eq. (2.16) with the tensor

˜λ
αμν
1 = λ

αμν
1 (q, r, p) + 1

2
λ

αμν
2 (q, r, p), (2.18)

which is orthogonal to λ
αμν
2 (q, r, p). Therefore, the sub-

stitution W αμν(q, r, p) → ˜λ
αμν
1 (q, r, p) at the level of

Eq. (2.13), and the subsequent implementation of Eq. (2.14)
in the resulting expressions, leads to

T sym(s2) := T (q, r, p)
∣

∣

W→˜λ1

Eq.(2.14)
= g �

sym
1 (s2)�3(s2).

(2.19)

As has been shown in [31], the use of the basis of Eq. (2.9)
allows one to express �

sym
1 (s2) in the form

�
sym
1 (s2) = X1(s

2) − s2

2
X3(s

2) + s4

4
Y1(s

2) − s2

2
Y4(s

2).

(2.20)

Turning to case (ii), the implementation of the asymmetric
limit gives rise to an expression for �

αμν
(q, r, p) given by a

single tensor, namely [19]

�
αμν

asym(q, r, p) = �
asym
3 (q2)λ

αμν
1 (q,−q, 0), (2.21)

with

λ
αμν
1 (q,−q, 0) = 2qν Pαμ(q). (2.22)

Setting W → λ
αμν
1 (q,−q, 0) into Eq. (2.13), one obtains

T asym(q2) := T (q, r, p)
∣

∣

W→λ1

Eq.(2.15)

= g�
asym
3 (q2)�(0)�2(q2). (2.23)

Again, using Eq. (2.9), we may cast �
asym
3 (q2) in the form

[31]

�
asym
3 (q2) = X1(q

2, q2, π) − q2 X3(q
2, q2, π) . (2.24)

Interestingly, �
asym
3 (q2) does not contain any reference to the

transverse form factors Yi , and may be therefore determined
in its entirety by the nonperturbative BC construction of [31].

3 The kinetic term of the gluon propagator

In this section we take a closer look at the kinetic term of the
gluon propagator, which, by virtue of the fundamental STIs,
is closely connected with the longitudinal form factors Xi ,
introduced in Eq. (2.9). After reviewing certain salient the-
oretical concepts related to this quantity, we outline its indi-
rect derivation from the unquenched gluon propagator and
the corresponding gluon mass equation, and discuss some of
its most outstanding properties.

3.1 Basic concepts and key relations

A special feature of �(q2), observed in the Landau gauge,
is its saturation in the deep IR [6,15,74]. This property has
been firmly established in a variety of SU(2) [32,75,76] and
SU(3) [33–36,77–79] large-volume lattice simulations, both
quenched and unquenched. Due to its far reaching theoretical
implication, this property has been scrutinized in the contin-
uum using a multitude of distinct approaches [15,16,37–
49,80–82].

This characteristic behavior of �(q2) is considered to be
intimately connected with the emergence of a gluon mass
scale [6,11,12], and has been studied in detail within the
framework of the “PT-BFM” [38,54]. For the purposes of
the present work, we will briefly comment on a limited num-
ber of concepts and ingredients related with this particular
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approach; for further details, the reader is referred to the
extended literature cited above.

(a) The IR finiteness of �(q2) motivates the splitting
of its inverse into two separate components, according to
(Euclidean space) [55]

�−1(q2) = q2 J (q2) + m2(q2), (3.1)

where J (q2) corresponds to the so-called “kinetic term”
[at tree-level, J (q2) = 1], while m2(q2) to a momentum-
dependent gluon mass scale, with the property m2(0) =
�−1(0). Note that we have suppressed the dependence of
all quantities appearing in Eq. (3.1) on the renormalization
point μ. For large values of q2, the component J (q2) captures
the standard perturbative corrections to the gluon propaga-
tor, while in the IR it exhibits exceptional nonperturbative
features [23,31].

(b) The emergence of the component m2(q2) is triggered
by the non-Abelian realization of the well-known Schwinger
mechanism [83,84] for gauge boson mass generation. This
latter mechanism is activated through the inclusion of longi-
tudinally coupled massless poles into the three-gluon vertex
that enters in the SDE governing the evolution of �−1(q2)

[55,85–88]. In particular, one implements the replacement

�αμν → I�αμν = �αμν + Vαμν, (3.2)

where Vαμν contains the aforementioned poles, arranged in
the special tensorial structure [86]

Vαμν(q, r, p) =
(

qα

q2

)

Aμν(q, r, p) +
(rμ

r2

)

Bαν(q, r, p)

+
(

pν

p2

)

Cαμ(q, r, p). (3.3)

Consequently, by virtue of the relation Vα′μ′ν′(q, r, p)Pα′
α

(q)Pμ′
μ (r)Pν′

ν (p) = 0, the component Vαμν(q, r, p) drops
out from the quantity T (q, r, p) defined in Eq. (2.13), and
only the “no-pole” part of the vertex, �αμν , contributes to it.

(c) It turns out that the two functions composing �−1(q2)

in Eq. (3.1) and the two vertices comprising I�αμν in
Eq. (3.2) are firmly linked. Specifically, the STI satisfied by
I�αμν(q, r, p),

qαI�αμν(q, r, p) = F(q2)[�−1(p2)Pα
ν (p)Hαμ(p, q, r)

−�−1(r2)Pα
μ (r)Hαν(r, q, p)], (3.4)

is naturally separated into two “partial” ones, relating the
divergences of �αμν and Vαμν with J (q2) and m2(q2),
respectively, namely 1

qα�αμν(q, r, p) = F(q2)[p2 J (p2)Pα
ν (p)Hαμ(p, q, r)

−r2 J (r2)Pα
μ (r)Hαν(r, q, p)], (3.5)

1 Exactly analogous relations hold for the STIs with respect to the other
two legs.

qαVαμν(q, r, p) = F(q2)[m2(r2)Pα
μ (r)Hαν(r, q, p)

−m2(p2)Pα
ν (p)Hαμ(p, q, r)]. (3.6)

The practical implication of this separation is that the form
factors Xi of �

αμν
L (q, r, p) may be reconstructed by means

of a nonperturbative generalization [31] of the well-known
BC procedure [2]. In particular, the Xi are expressed as com-
binations of the J (q2), the ghost dressing function, F(q2),
and three of the five components appearing in the tensorial
decomposition of Hμν , whose one-loop dressed approxima-
tion has been computed in [56]. These results are especially
relevant for the study in hand, because they provide a the-
oretical (albeit approximate) handle on the form of the Xi

appearing in Eqs. (2.20) and (2.24); note, however, that the
Yi remain undetermined by this procedure.

(d) The special realization of the STIs explained in point
(c) leads to the separation of the original SDE governing
�(q2) into a system of two coupled integral equations, one
determining J (q2) and the other m2(q2) [55]. As has been
demonstrated recently in [61], the self-consistent treatment
of the equation controlling m2(q2), in conjunction with the
(quenched) lattice data for �(q2), permits one to pin down
the form of J (q2) quite accurately, without actually invoking
its own (considerably more complicated) integral equation.
The subsequent use of this J (q2) as ingredient in the BC
construction of the Xi described above, allows one to obtain,
through Eqs. (2.20) and (2.24), SDE-derived predictions for
T sym(s2) and T asym(q2), which are in excellent agreement
with the lattice data of [19].

3.2 The “unquenched” J (q2): general construction and
main results

The above considerations, and in particular the procedure
summarized in point (d), will be applied in the present work in
order to obtain SDE-derived predictions for the unquenched
�

sym
1 (s2) and �

asym
3 (q2), which will be subsequently com-

pared with the corresponding sets of lattice results. In what
follows we outline the main points of this construction, post-
poning the multitude of technical details for a future com-
munication.

(P1): The starting point is the gluon mass equation consid-
ered in [61], whose general form is given by (αs := g2/4π )

m2(q2) =
∫

d4k

(2π)4 m2(k)�(k)�(k + q)K(k, q, αs),

(3.7)

where the kernel K receives one-loop and two-loop dressed
contributions.

(P2): The effective treatment of multiplicative renormal-
ization amounts to the substitution of the vertex renormal-
ization constants, multiplying the one- and two-loop compo-
nents of K, by kinematically simplified form factors of the
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three- and four-gluon vertices, denoted by C3(k2) and C4(k2),
respectively.

(P3): The kinetic term J (q2) enters into the gluon mass
equation when the substitution given in Eq. (3.1) is imple-
mented at the level of the term �(k)�(k + q). In addition,
the function C3(k2) depends on J (k2); specifically, for its
derivation we adopt the Abelian version of the BC construc-
tion [2], setting the ghost dressing function and the ghost-
gluon kernel at their tree-level values, which yields simply
C3(k2) = J (k2).

(P4): The term C4(k2) is approximated by the same func-
tional form given in Eq. (4.8) of [61]. As explained there, the
main feature of C4(k2), which is instrumental for the stabil-
ity of the gluon mass equation, is its mild enhancement with
respect to its tree-level value in the critical region of a few
hundred MeV.

(P5): An initial Ansatz for J (q2) is introduced as a “seed”,
and is subsequently improved by means of a well-defined
iterative procedure, described in detail in Sec. VB of [61]. In
particular, both the form of J (q2) and the value of αs are grad-
ually modified, and each time the corresponding solution,
m2(q2), obtained from the gluon mass equations, is recorded.
The procedure terminates when the pair {m2(q2), J (q2)} has
been identified which, when combined according to Eq. (3.1),
provides the best possible coincidence with the lattice data
for �(q2) with N f = 2 + 1 (see the left bottom panel of
Fig. 2). The final value of the gauge charge is αs = 0.27.

An excellent fit for m2(q2), shown in the top left panel of
Fig. 2, is given by

m2(q2) = m4
0

κ2
1 + q2 ln[(q2 + κ2

2 )/σ 2] , (3.8)

where the parameters are given by m4
0 = 0.134 GeV4, κ2

1 =
0.705 GeV2, κ2

2 = 9.31 GeV2, and σ 2 = 5.13 GeV2.
Similarly, the solution for J (q2), shown in the top right

panel of Fig. 2, is accurately fitted by

J (q2) = 1 + 3λs

4π

(

1 + τ1

q2 + τ2

)[

2 ln

(

q2 + η2(q2)

μ2 + η2(μ2)

)

+1

6
ln

(

q2

μ2

)]

, (3.9)

with

η2(q2) = η1

q2 + η2

, (3.10)

where λs = 0.237, τ1 = 7.06 GeV2, τ2 = 0.709 GeV2,
η1 = 22.35 GeV4, η2 = 1.19 GeV2, and μ2 = 18.64
GeV2. Notice that J (μ2) = 1, as required by the momentum

subtraction (MOM) renormalization prescription.
We emphasize that, even though several aspects of

the unquenched gluon propagator have been previously

addressed within the PT-BFM formalism2 [92,93], the results
presented in Eqs. (3.8) and (3.9) are completely new.

3.3 Asymptotic analysis for the deep IR

By expanding the above fits for J (q2) and m2(q2) around
q2 → 0, we obtain

J (q2) = a ln

(

q2

μ2

)

+ b, m2(q2) = d + c q2, (3.11)

and therefore

�−1(q2) = d + q2
[

a ln

(

q2

μ2

)

+ b + c

]

, (3.12)

with

a = λs

8π

(

1 + τ1

τ2

)

,

b = 1 + 3λs

2π

(

1 + τ1

τ2

)

ln

[

η1

η2

[

μ2 + η2(μ2)
]

]

,

c = −m4
0

κ4
1

ln

(

κ2
2

σ 2

)

, d = m4
0

κ2
1

. (3.13)

Employing the numerical values of the parameters in
Eqs. (3.9) and (3.10), one obtains a = 0.104, b = 0.934,
c = −0.160, d = 0.190 GeV2.

With the above asymptotic expressions at our disposal, we
proceed to elaborate on the following important points.

(i) As can be seen in the bottom right panel of Fig. 2,
for momenta lower than about 500 MeV, the quenched and
unquenched J (q2) run nearly parallel to each other. In view
of Eq. (3.11), this indicates that the coefficient of the loga-
rithm remains practically unchanged in the presence of quark
loops, whose net effect in the deep IR is to simply modify
(increase) the numerical value of the constant b, thus shifting
the position of the zero crossing towards lower momenta. A
qualitative explanation of these observations may be given by
noting that (a) the ghost dressing function is rather insensitive
to unquenching effects [36], and hence, the contribution of
the ghost loops is essentially the same, and (b) the quark loops
provide IR finite contributions, since the corresponding loga-
rithms are protected by the quark masses; their size and sign is
consistent with the analysis presented in [92]. It is important
to emphasize, however, that throughout our present deriva-
tion, no quark loops have been actually evaluated; instead, by
means of the optimization procedure described in (P5), the
effects of the dynamical quarks, implicit in the lattice data
for �(q2), have been indirectly transmitted to the individual
components J (q2) and m2(q2).

(ii) From Eq. (3.11) we can obtain a particularly accu-
rate estimate of the position of the “zero crossing”, i.e., the

2 For related works, see also, e.g., [28,89–91].
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Fig. 2 Top left panel: the dynamical gluon mass, m2(q), obtained
from Eq. (3.7) and fitted by Eq. (3.8). Top right panel: the J (q)

obtained through the procedure described in points (P1)-(P5), and the
corresponding fit, given in Eq. (3.9). Bottom left panel: Comparison
of the unquenched gluon propagator, �(q), obtained from Eq. (3.1)

(black continuous), with the lattice data (solid circles in different col-
ors for each β). Bottom right panel: The quenched (blue dashed) and
unquenched (black continuous) J (q); the stars indicate the momentum
q0 where J (q0) = 0

momentum q0 for which J (q0) = 0; it is given by

q0 = μ e− b
2a . (3.14)

With the values of the coefficients found before, this leads to
q0 = 48.19 MeV. On the other hand, computing the crossing
of the full fit of Eq. (3.9) numerically yields q0 = 47.18 MeV
(see the red star in the bottom right panel of Fig. 2). Thus, the
asymptotic form is accurate to within 0.3% for the position
of the crossing of J (q2).

(iii) Let us next consider the maximum of �(q2), and
denote by q∗ the momentum where it occurs, namely the
solution of the condition �′(q2) = 0, where the “prime”
denotes differentiation with respect to q2. The appearance of
this maximum is inextricably connected with the presence of
the unprotected logarithm originating from the ghost loop. In
addition to confirming the known nonperturbative behavior

of the ghost propagator in Euclidean space (i.e., absence of a
“ghost mass”), it has a direct implication on the general ana-
lytic structure of the gluon propagator [49,94]. In particular,
from the standard Källén–Lehmann representation [95,96]

�(q2) =
∫ ∞

0
dt

ρ(t)

q2 + t
, (3.15)

where ρ (t) is the gluon spectral function, we have that

�′(q2) = −
∫ ∞

0
dt

ρ(t)

(q2 + t)2 . (3.16)

Then, the maximum for �(q2) at q2 = q2∗ leads necessarily
to positivity violation [13,97–99], because the condition
∫ ∞

0
dt

ρ(t)

(q2∗ + t)2 = 0, (3.17)

may be fulfilled only if ρ(t) is not positive-definite.
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A reasonable estimate for the value of q∗ may be derived
from Eq. (3.12); specifically one obtains the equation

[�−1(q2)]′ = a ln

(

q2

μ2

)

+ c̃ = 0, (3.18)

where c̃ := a + b + c, whose solution is given by

q∗ = μ exp

(

− c̃

2a

)

, (3.19)

yielding the numerical value q∗ = 63 MeV.
The expression for the gluon propagator at the maximum

is given by

�∗ := �(q2∗) =
[

d − aμ2 exp

(

− c̃

a

)]−1

, (3.20)

its numerical value is given by �∗ = 5.28 GeV−2.
(iv) Finally, we turn to another characteristic feature asso-

ciated with the presence of the unprotected logarithm, namely
the logarithmic divergence of �′(q2) at the origin. In partic-
ular, using Eq. (3.12), it is straightforward to establish that

�′(q2) �
q2→0

− a

d2 ln

(

q2

μ2

)

→ +∞,

[�−1(q2)]′ �
q2→0

a ln

(

q2

μ2

)

→ −∞. (3.21)

(v) While the functional form of �−1(q2) is motivated by
sound theoretical considerations, the numerical values for
the parameters a, b, c, and d, quoted below Eq. (3.13), have
been obtained by fitting the entire range of the SDE solu-
tion. It would be therefore interesting to probe the stability
of our asymptotic results by contrasting them directly with
the low-momentum domain of the lattice data, and subse-
quently refitting the aforementioned parameters. To that end,
we consider only the lattice ensemble with β=1.63, because
it contains the largest number of points in the desired region.
Our fitting procedure is limited to the data below a given
momentum cutoff, qcut; we have chosen two values for it,
namely qcut = 0.3 GeV and qcut = 0.4 GeV. The result of
this analysis can be found in Fig. 3 and in Table 2.

The black continuous line corresponds to the SDE-based
result, while the red dashed curve is its asymptotic limit.
All asymptotic curves are obtained with Eq. (3.12) using the
fitting parameters listed in the Table 2.

As we can see in Fig. 3, the asymptotic expression of
Eq. (3.12) describes the lattice data particularly well. Essen-
tially, the difference between the asymptotic limit of the
SDE result (red dashed line) and the best fits for the IR lat-
tice points (green band) appears for very low momenta, and
is of the order of 3%. The lattice data for �−1(q2) show
a linear behavior, consistent with a q2-increase, except for
momenta below 180 MeV, where the effect of the logarithm
in Eq. (3.12) becomes apparent. Note also the onset of a

0.0 0.04 0.08 0.12 0.16
0.18

0.19

0.2

0.21

0.22

0.23

0.24

Fig. 3 The green band represents the asymptotic fits for the lattice
data (gray solid circles) with qcut = 0.3 GeV (green dash-dotted line)
and qcut = 0.4 GeV (green dashed curve), given by Eq. (3.12). The
black continuous line corresponds to the SDE-based result, while the
red dashed curve is its asymptotic limit. All asymptotic curves are given
by Eq. (3.12), with the corresponding fitting parameters listed in the
Table 2

steep derivative close to the origin, in qualitative agreement
with point (iv). In addition, the refitted values of a, b + c,
and d are completely consistent with those obtained from the
full-range fit of the SDE result.

4 IR suppression of the three-gluon vertex

In this section we present the SDE-based computation of
�

sym
1 (s2) and �

asym
3 (q2). After an instructive study of the

low-momentum limit, our results for the entire range of
momenta are presented and compared with the new lattice
data. In addition, the two effective couplings obtained from
�

sym
1 (s2) and �

asym
3 (q2) are constructed, and the former is

compared with the corresponding quantity obtained from the
ghost-gluon vertex.

4.1 The SDE-based derivation

The detailed form of the function J (q2) captured by Eq. (3.9)
constitutes a key ingredient for the approximate evalua-
tion of the vertex form factors �

sym
1 (s2) and �

asym
3 (q2)

by means of the main equations Eq. (2.20) and Eq. (2.24),
respectively. This becomes possible because the nonpertur-
bative BC construction of [31] allows one to express the Xi

in terms of the kinetic term of the gluon propagator, the
ghost dressing function, and the ghost-gluon form factors.
Even though this procedure does not determine the terms
(s4/4)Y1(s2) − (s2/2)Y4(s2) contributing to �

sym
1 (s2), the

overall agreement with the (admittedly error-burdened) lat-
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Table 2 Fitting parameters of Eq. (3.12) for different values of the cut-
off qcut considered in the fitting process of the lattice data with β = 1.63.
In the last line, we show the fitting parameters of the SDE asymptotic
limit, given by Eq. (3.12), which was obtained by expanding the result

given in Eqs. (3.8) and (3.9). In the last column, we quote the momen-
tum q∗, where the minimum of �−1(q2) [or maximum of �(q2)] occurs
for each case

IR asymptotic fits a b + c d (GeV2) q∗ (MeV)

Lattice – qcut = 0.3 (GeV) 0.165 1.036 0.195 113

Lattice – qcut = 0.4 [GeV] 0.107 0.746 0.193 82

SDE expansion 0.104 0.774 0.190 63

tice results suggests that their omission does not alter drasti-
cally the qualitative features of the BC solution; see also the
related discussions in Sect. 4.3.

Focusing precisely on �
sym
1 (s2), the part that depends on

the two longitudinal components is given by [31]

X1(s
2)− s2

2
X3(s

2) = F(s2)

[

J (s2)

(

H1(s
2)+ s2

2
H3(s

2)

)

+ s2

2

d J (s2)

ds2 H2(s
2)

]

, (4.1)

where

H1(s
2) = A1(s

2) − s2

2
A3(s

2),

H2(s
2) = A1(s

2) + s2

2
[A3(s

2) − A4(s
2)],

H3(s
2) = A(1,0,0)

1 (s2) +
√

3

2s2 A(0,0,1)
1 (s2)

+ s2

2
[A(1,0,0)

3 (s2) − A(1,0,0)
4 (s2)]

+
√

3

4
[A(0,0,1)

3 (s2) − A(0,0,1)
4 (s2)], (4.2)

with the partial derivatives defined as

A(1,0,0)
i (s2) = ∂ Ai (q2, r2, θ)

∂q2

∣

∣

∣

∣

q2=r2=s2, θ=2π/3
,

A(0,1,0)
i (s2) = ∂ Ai (q2, r2, θ)

∂r2

∣

∣

∣

∣

q2=r2=s2, θ=2π/3
,

A(0,0,1)
i (s2) = ∂ Ai (q2, r2, θ)

∂θ

∣

∣

∣

∣

q2=r2=s2, θ=2π/3
. (4.3)

Analogous relations, not reported here, hold for the asym-
metric configuration.

Before turning to the full construction of �
sym
1 (s2), we

focus on certain global aspects that it displays at low
momenta, which may be obtained from the above expres-
sions with a moderate amount of effort.

4.2 The low-momentum limit

In particular, Eq. (4.1) allows one to deduce the exact func-
tional form of �

sym
1 (s2) in the limit s2 → 0. Indeed, a prelim-

inary one-loop dressed analysis reveals that, in that limit, the

combination (s4/4)Y1(s2) − (s2/2)Y4(s2) yields a constant
term, to be denoted by Ct . Moreover, s2 H3(s2), s2 A3(s2) and
s2 A4(s2) vanish, while A1(0) = 1, by virtue of the Taylor
theorem [100]. Consequently, the leading contribution orig-
inates from the combination F(s2)[J (s2) + (s2/2)J ′(s2)].

Then, it is straightforward to establish from Eq. (3.9)
that lims2→0 s2 J ′(s2) = a. Thus, the asymptotic form of
�

sym
1 (s2) is given by

�
sym
1 (s2) �

s2→0
F(0)

[

a ln

(

s2

μ2

)

+ b + a

2

]

= ã ln

(

s2

μ2

)

+ b̃, (4.4)

where we have set Ct = 0. Then, using the fact that the
saturation value of the ghost dressing function is F(0) =
2.92 when one renormalizes at μ = 4.3 GeV, together with
the values for a and b quoted below Eq. (3.13), one finds
ã = 0.303 and b̃ = 2.87.

In the asymmetric case, a similar procedure may be
employed to fully determine the behavior of �

asym
3 (q2) for

small q2, leading to

�
asym
3 (q2) �

q2→0
F(0)

[

J (q2) + lim
q2→0

q2 J ′(q2)

]

= ã ln

(

q2

μ2

)

+ (b + a)F(0). (4.5)

It is important to clarify at this point that, in a bona fide
SDE analysis of the three-gluon vertex [21,24,26,28,101–
103], the asymptotic behavior found in Eq. (4.4) emerges
from the ghost triangle diagram, shown in Fig. 4, which
furnishes an unprotected logarithm. Of course, in the BC

STI

Fig. 4 The ghost loop diagram contributing to the kinetic term J (q2),
and the ghost triangle diagram entering in the skeleton expansion of
three-gluon vertex. Both diagrams are connected by the STI of Eq. (3.5),
which imposes the equality of the corresponding unprotected logarithms
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construction followed in [31] and here, no vertex diagrams
are considered; instead, the corresponding unprotected loga-
rithm originates from the ghost loop diagram contributing to
J (q2), shown in Fig. 4, which is related to the ghost triangle
diagram by the STI of Eq. (3.5), as shown schematically in
Fig. 4.

Note that the logarithms appearing in both Eq. (4.4) and
Eq. (4.5) are multiplied by the same coefficient, namely ã;
this is a direct consequence of the fact that, in the Landau
gauge, the ghost-gluon scattering kernel, Hνμ, assumes its
tree level value when the momentum of its ghost leg van-
ishes, in compliance with the well-known Taylor theorem. In
particular, the Ai enter into the BC solution with various per-
mutations of (q, r, p) in their arguments. Since in both cases
considered all momenta eventually vanish, the substitution
A1 → 1 and t2 Ai → 0 with i = 2, 3, 4, 5 is eventually trig-
gered, where t denotes any of these momenta.3 Specifically,
one gets

X1(s
2) �

s2→0
F(s2)J (s2),

X3(s
2) �

s2→0
−F(s2)J ′(s2),

X1(q
2, q2, π) �

q2→0
F(q2)J (q2),

X3(q
2, q2, π) �

q2→0
−F(0)J ′(q2), (4.6)

and the results of Eqs. (4.4) and (4.5) follow straightfor-
wardly.

Note that, within a self-consistent renormalization scheme,
the coefficient ã multiplying the IR divergent logarithm is
common to both �

asym
3 (q2) and �

asym
3 (q2). However, the

conditions �
sym
1 (μ2) = �

asym
3 (μ2) = 1, enforced on the

lattice data, cannot be simultaneously accommodated within
a single scheme. Thus, the corresponding ã differ by a finite
renormalization constant, which deviates very slightly from
unity.

Let us finally point out that the qualitative analysis pre-
sented in this subsection remains valid even when Ct 
= 0,
except for the location of the zero crossing, which will be
shifted in a direction and by an amount that depend on the
sign and size of this constant.

4.3 Comparison with the lattice and further discussion

Next, we proceed to the full determination of �
sym
1 (s2) and

�
asym
3 (q2) from the set of formulas given above [in partic-

ular Eqs. (2.20) and (2.24), together with Eqs. (4.1) (4.2)

3 The equality of the leading logarithms holds also perturbatively; how-
ever, in general, the Ai cannot be set individually to their tree-level val-
ues, due to their higher rate of IR divergence. Nonperturbatively, the
presence of a gluon mass scale attenuates these divergences [56], thus
validating these substitutions.

0 1 2 3 4 5

-0.1

0.0

0.1

0.2

Fig. 5 The deviations of the combinations H1(s2), H2(s2), and
s2 H3(s2), defined in the Eq. (4.2), from their tree-level counterparts

and (4.3)]. In order to accomplish this task, the functions
H1(s2), H2(s2), and s2 H3(s2) must be computed from their
defining equations, given in Eq. (4.2). This, in turn, requires
the determination of the form factors A1(s2), A3(s2), and
A4(s2), and the corresponding derivatives; since the impact
of the unquenching effects on the ghost sector is expected to
be rather small [36], for simplicity we use the quenched Ai

of [56]. The final H1(s2), H2(s2), and s2 H3(s2) are shown in
Fig. 5, for the symmetric configuration; similar results have
been obtained for the asymmetric case (not shown).

The comparison between the final SDE-based predic-
tion for �

sym
1 (s2) and �

asym
3 (q2) and the corresponding

unquenched lattice data is shown in Fig. 6; we observe a
very good agreement for the entire range of momenta. It is
rather evident that the particular shape of J (q2), shown in
the top right panel of Fig. 2 and given by Eq. (3.9), is largely
responsible for the most characteristic features of the ver-
tex form factor at intermediate and low momenta, namely its
overall suppression with respect to its tree-level value, and
the inevitable (albeit hard to observe) reversal of sign (zero
crossing) in the deep IR.

It is clear that, due to the well-known ambiguities related
with the scale setting [104–107], direct comparisons between
quenched and unquenched data may be quantitatively sub-
tle. Notwithstanding this caveat, the inclusion of quarks
seems to moderate the amount of suppression with respect to
[19]. Specifically, the decrease observed between the renor-
malization point of μ = 4.3 GeV [where �

sym
1 (μ2) =

�
asym
3 (μ2) = 1] and a typical IR momentum, say qIR = 300

MeV, is given by �
sym
1 (q2

IR) = 0.47 and �
asym
1 (q2

IR) = 0.26,
to be compared with �

sym
1 (q2

IR) = 0.33 and �
asym
1 (q2

IR) = 0.2
for the quenched case; thus, the observed suppression is
reduced by about 25%. In addition, as expected from the
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Fig. 6 Left panel: The form factor of the three-gluon vertex in the
symmetric configuration, �

sym
1 (s), obtained from lattice QCD (circles

in different colors for each setup) and from the SDE-based approach

(black continuous curve). Right panel: The same for the asymmetric
form factor �

asym
3 (q). The IR asymptotes (red dashed lines) are given

by Eqs. (4.4) and (4.5), respectively

corresponding displacement of q0 at the level of the J (q2)

[see Sect. 3.3, point (i)], the zero crossing of both vertex
configurations occurs at momenta lower compared to the
quenched case, in qualitative agreement with the analysis
of [28]. In particular, we find that the zero crossing moves
from about 150 MeV down to 105 MeV (symmetric case)
and from roughly 240 MeV to about 170 MeV (asymmetric
case).

We next study in more detail the impact of the unprotected
logarithm of J (q2) on the IR behavior of the vertex. In partic-
ular, �

sym
1 (s2) is computed by plugging into Eq. (4.1) (i) the

full J (q2) given in Eq. (3.9) (black continuous curve), and
(ii) a J (q2) without the term (1/6) ln

(

q2/μ2
)

(red dashed
curve). As we can see in the top left panel of Fig. 7, for
momenta below 800 MeV the unprotected logarithm starts to
dominate the behavior of �

sym
1 (s2), forcing not only its sup-

pression but also its IR divergence. In the remaining panels of
Fig. 7 we show that the three sets of lattice data considered
exhibit individually a clear preference for case (i); in fact,
even in the least favorable case (top right panel), where the
data are rather sparse and with sizable errors, the χ2/d.o.f.
is 1.8 times smaller than that of case (ii).

Finally, turning to the transverse part of �αμν , it is clear
that the corresponding form factors ought to be determined
from a detailed SDE study, which is still pending. In fact, the
good coincidence found between the SDE-based prediction
[with Y1(s2) = Y4(s2) = 0] and the lattice must be inter-
preted with caution, especially in view of the sizable errors
assigned to the data. Indeed, given the present precision, one
may easily envisage how reasonably sized transverse con-
tributions could be rather comfortably accommodated, pro-

vided they follow the general trend of the data. We hope to
report progress in this direction in the near future.

4.4 Effective couplings

It is rather instructive to study how the suppression of the
three-gluon vertex manifests itself at the level of a typical
renormalization-group invariant quantity, which is tradition-
ally used to quantify the effective strength of a given inter-
action.

To that end, we next consider the two effective cou-
plings related to �

sym
1 (s2) and �

asym
3 (q2), to be denoted by

ĝ sym(s2) and ĝ asym(q2), respectively. In particular, follow-
ing standard definitions [19,27,108], we have

ĝ sym(s2) = g sym(μ2) s3 �
sym
1 (s2)�3/2(s2),

ĝ asym(q2) = g asym(μ2) q3 �
asym
3 (q2)�3/2(q2). (4.7)

We emphasize that these two couplings may be recast in the
form

ĝ sym(s2) = s3 T sym(s2)

�3/2(s2)
,

ĝ asym(q2) = q3 T asym(q2)

�(0)�1/2(q2)
, (4.8)

thus making contact with the corresponding definitions
employed within the MOM schemes [109,110]. Turning to
their computation, we use for the ingredients entering in
the above definitions both lattice data as well as the cor-
responding SDE-derived quantities; the results obtained are
displayed in Fig. 8.
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Fig. 7 Top left plot: the effect of the unprotected logarithm of J (q2)

[see Eq. (3.9)] on the IR behavior of �
sym
1 (s). The black continuous

line is �
sym
1 (s) derived using the full expression for J (q2), given by

Eq. (3.9). The red dashed curve represents the case where the mass-
less logarithm, appearing in Eq. (3.9), is neglected. Top right plot: The

χ2/d.o.f. when we compare the lattice data for β = 1.63 with the
results for �

sym
1 (s) with (black continuous) and without (red dashed)

the unprotected logarithm. Bottom left plot: The same as the previous
panel but for the lattice data with β = 2.13. Bottom right plot: Same
analysis, using the lattice data with β = 2.25

It is interesting to carry out a direct comparison of the
effective coupling, ĝ sym(s2), with the corresponding quan-
tity, ĝ sym

gh (s2), associated with the ghost-gluon vertex in the

symmetric configuration. Specifically,4

ĝ sym
gh (s2) = g sym(μ2) s B

sym
1 (s2)F(s2)�1/2(s2), (4.9)

where B
sym
1 (s2) denotes the form factor proportional to the

tree-level component of the ghost-gluon vertex, renormalized
at the same MOM point, μ = 4.3 GeV. The functional
form used for B

sym
1 (s2) has been obtained from the analysis

of [56] and it is shown in the left panel of Fig. 9. The two

4 Using the formulas of [111], one finds that gsym(μ2)/gsym
gh (μ2) =

1.03 at μ = 4.3 GeV, which justifies the use of gsym(μ2) instead of
gsym

gh (μ2) in the definition of Eq. (4.9).

couplings are displayed in the left panel of Fig. 10; clearly, as
the momentum s decreases, ĝ sym(s2) becomes considerably
smaller than ĝ sym

gh (s2).
In order to analyze in detail the origin of this relative sup-

pression, it is advantageous to introduce the gluon dressing
function, Z(q2), defined as Z(q2) = q2�(q2), which is
shown on the right panel of Fig. 9, together with the cor-
responding quantity for the ghost propagator, F(q2), intro-
duced in Eq. (2.2). Then, the two effective couplings assume
the form

ĝ sym(s2) = g sym(μ2) �
sym
1 (s2)Z3/2(s2),

ĝ sym
gh (s2) = g sym(μ2) B

sym
1 (s2)F(s2)Z1/2(s2). (4.10)
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Fig. 8 Left panel: The symmetric effective coupling, ĝ sym(s), defined
in Eq. (4.7), obtained using the lattice data (full circles) and the results
of the SDE-based approach (black continuous line). The yellow band
represents how the SDE result for ĝ sym(s) changes when the value

of g at μ=4.3 GeV has an uncertainty of ±5%, with central val-
ues g sym(μ2) = 1.86 [α sym(μ2) = 0.27]. Right panel: The same
for the asymmetric effective coupling, ĝ asym(q2), with a central value
g asym(μ2) = 2.16 [α asym(μ2) = 0.37]
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Fig. 9 Left panel: �
sym
1 (s) (black continuous line) compared with the form factor B

sym
1 (s) of the ghost-gluon vertex (red dashed curve), in the

symmetric configuration. Right panel: The gluon and ghost dressing functions, Z(s) and F(s), respectively

We next consider the ratio of these two couplings,

Rg(s
2) = ĝ sym(s2)/ĝ sym

gh (s2)

=
[

Z(s2)/F(s2)
]

︸ ︷︷ ︸

R2(s2)

[

�
sym
1 (s2)/B

sym
1 (s2)

]

︸ ︷︷ ︸

R3(s2)

, (4.11)

where the partial ratios R2(s2) and R3(s2) quantify the
relative contribution from the two- and three-point sectors,
respectively, at the various momentum scales involved. The
three ratios, Rg(s2), R2(s2), and R3(s2) are shown on the
right panel of Fig. 10.

Interestingly, R2(s2) and R3(s2) are smaller than 1 for
s < 880 MeV and s < 4.3 GeV, respectively. Therefore, in

the region of momenta between (0–880) MeV, the suppres-
sion of ĝ sym(s2) emerges as a combined effect of both the
two- and the three-point sectors, whereas, from 880 MeV to
2.4 GeV the suppression is exclusively due to the behavior of
the three-gluon vertex.

5 Discussion and conclusions

In this article we have considered several nonperturbative
aspects related to the gluon propagator, �(q2), and the three-
gluon vertex, �αμν , in the context of Landau gauge QCD
with N f = 2+1 dynamical quarks. Our approach combines
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Fig. 10 Left panel: the comparison of the effective couplings, ĝ sym(s)
(blue solid line) and ĝ sym

gh (s) (magenta dashed), defined from the three-
gluon vertex, Eq. (4.7), and from the ghost-gluon vertex, Eq. (4.9),

respectively. Right panel: the ratios Rg(s) (black continuous), R2(s)
(green dotted), and R3(s) (red dashed) introduced in the Eq. (4.11)

a SDE-based analysis, carried out within the PT-BFM frame-
work, with new data gathered from lattice QCD simulations
with N f = 2 + 1 domain wall fermions. In particular, from
the SDE point of view, the gluon kinetic term J (q2) has been
computed indirectly, by obtaining m2(q2) from its own “gap
equation” and then “subtracting” it from the new lattice data
for �−1(q2). The J (q2) so determined is subsequently used
for the “gauge technique” reconstruction (BC solution) of
certain key form factors of �αμν , evaluated at two special
kinematic configurations (“symmetric” and “asymmetric”).
The two main quantities emerging from this construction,
denoted by �

sym
1 (s2) and �

asym
3 (q2), are then compared with

recently acquired lattice data, displaying very good coinci-
dence. We emphasize that, while the determination of J (q2)

hinges on the use of the lattice data for the gluon propaga-
tor, the subsequent results derived by means of this J (q2)

constitute genuine theoretical predictions.
There are certain key theoretical notions underlying this

work which are worth highlighting.
(i) The recent nonlinear SDE analysis of [61] generalizes

from pure Yang-Mills to the case of real-world QCD with
dynamical quarks, giving rise to a m2(q2) that displays all
qualitative features known from the quenched case.

(ii) The low-momentum behavior of J (q2) is clearly domi-
nated by the unprotected logarithm originating from the ghost
loop. In a pure Yang-Mills context, the diverging contribution
of this logarithm overcomes the opposing action of its pro-
tected counterparts, leading to the IR suppression of J (q2)

and its zero crossing. The inclusion of quark loops, which
are regulated by the quark masses, gives rise to additional
IR finite contributions, whose net effect is to attenuate the
aforementioned outstanding features.

(iii) By virtue of the fundamental STI of Eq. (3.5), the lon-
gitudinal form factors of �αμν display the same qualitative
characteristics as the J (q2); in that sense, the influence of
the ghost sector, and in particular of the ghost-gluon kernel,
is rather limited, and does not alter the main dynamical prop-
erties that �

sym
1 (s2) and �

asym
3 (q2) inherit from the J (q2).

(iv) In our opinion, the present analysis provides addi-
tional support for the picture of the IR sector of (Landau
gauge) QCD that has emerged in recent years from a plethora
of complementary considerations [15,16,39,44,47]. Specif-
ically, the quarks acquire dynamically generated constituent
masses, the ghosts remain strictly massless, while the gluons
display the phenomenon of “gapping” [29,80], according to
which, the generation of a fundamental mass gap in the gauge
sector enforces the property �(0) < ∞. Within this latter
context, one distinguishes “scaling solutions” [13,14,39],
for which �(0) = 0, from “decoupling solutions”, with
�(0) > 0; the latter type has been the focal point of the
present work, with the mass function m2(q2) implementing
explicitly the IR saturation of �(q2) at m−2(0). Evidently,
the intricate structure and exceptional features displayed by
�(q2), together with the nontrivial dynamics needed for gen-
erating the aforementioned mass gap (such as the Schwinger
mechanism), clearly differentiate the nonperturbative gluon
from a naive “massive” gauge boson. The three-gluon vertex
appears to be the host of an elaborate synergy between the
mechanisms responsible for this exceptional mass patterns,
thus providing an outstanding testing ground both for physics
ideas as well as computational methods.

Acknowledgements We are very grateful to Ph. Boucaud for his
crucial help in obtaining the numerical data, during the early stages

123



Eur. Phys. J. C (2020) 80 :154 Page 15 of 17 154

of this project, and to the RBC/UKQCD collaboration, especially
P. Boyle, N. Christ, Z. Dong, C. Jung, N. Garron, B. Mawhin-
ney and O. Witzel, for access to the lattice configurations employed
herein. Our lattice calculations benefited from the following resources:
CINES, GENCI, IDRIS (Project ID 52271); and the IN2P3 Comput-
ing Facility. This work is supported by the Spanish Ministry of Econ-
omy and Competitiveness (MINECO) under Grants FPA2017-84543-
P (J.P.) and FPA2017-86380-P (J.R.-Q. and F.S.). J.P. also acknowl-
edges the Generalitat Valenciana for the grant Prometeo/2019/087. The
work of A.C.A. and M.N.F. is supported by the Brazilian National
Council for Scientific and Technological Development (CNPq) under
the Grants 305815/2015, 142226/2016-5, and 464898/2014-5 (INCT-
FNA). A.C.A. also acknowledges the financial support from São Paulo
Research Foundation (FAPESP) through the project 2017/05685-2.

Data Availability Statement This manuscript has no associated data
or the data will not be deposited. [Authors’ comment: All data generated
or analysed during this study are included in this published article.]

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3.

References

1. W.J. Marciano, H. Pagels, Phys. Rep. 36, 137 (1978)
2. J.S. Ball, T.-W. Chiu, Phys. Rev. D 22, 2550 (1980)
3. A.I. Davydychev, P. Osland, O.V. Tarasov, Phys. Rev. D 54, 4087

(1996)
4. J.A. Gracey, Phys. Rev. D 84, 085011 (2011). https://doi.org/10.

1103/PhysRevD.84.085011
5. J.A. Gracey, H. Kißler, D. Kreimer, Phys. Rev. D 100(8), 085001

(2019)
6. J.M. Cornwall, Phys. Rev. D 26, 1453 (1982)
7. C.W. Bernard, Phys. Lett. B 108, 431 (1982)
8. C.W. Bernard, Nucl. Phys. B 219, 341 (1983)
9. J.F. Donoghue, Phys. Rev. D 29, 2559 (1984)

10. K.G. Wilson, T.S. Walhout, A. Harindranath, W.-M. Zhang, R.J.
Perry, S.D. Glazek, Phys. Rev. D 49, 6720 (1994). https://doi.org/
10.1103/PhysRevD.49.6720

11. O. Philipsen, Nucl. Phys. B 628, 167 (2002). https://doi.org/10.
1016/S0550-3213(02)00089-5

12. A.C. Aguilar, A.A. Natale, P.S. Rodrigues da Silva, Phys. Rev.
Lett. 90, 152001 (2003)

13. R. Alkofer, L. von Smekal, Phys. Rep. 353, 281 (2001)
14. C.S. Fischer, J. Phys. G32, R253 (2006)
15. A.C. Aguilar, D. Binosi, J. Papavassiliou, Phys. Rev. D 78, 025010

(2008). https://doi.org/10.1103/PhysRevD.78.025010
16. P. Boucaud, J. Leroy, L.Y.A.J. Micheli, O. Pène, J. Rodríguez-

Quintero, JHEP 06, 099 (2008). https://doi.org/10.1088/
1126-6708/2008/06/099

17. A. Cucchieri, A. Maas, T. Mendes, Phys. Rev. D 74, 014503
(2006). https://doi.org/10.1103/PhysRevD.74.014503

18. A. Cucchieri, A. Maas, T. Mendes, Phys. Rev. D 77, 094510
(2008). https://doi.org/10.1103/PhysRevD.77.094510

19. A. Athenodorou, D. Binosi, P. Boucaud, F. De Soto, J. Papavassil-
iou, J. Rodriguez-Quintero, S. Zafeiropoulos, Phys. Lett. B 761,
444 (2016). https://doi.org/10.1016/j.physletb.2016.08.065

20. A.G. Duarte, O. Oliveira, P.J. Silva, Phys. Rev. D 94, 074502
(2016). https://doi.org/10.1103/PhysRevD.94.074502

21. M.Q. Huber, A. Maas, L. von Smekal, JHEP 11, 035 (2012).
https://doi.org/10.1007/JHEP11(2012)035

22. M. Pelaez, M. Tissier, N. Wschebor, Phys. Rev. D 88, 125003
(2013). https://doi.org/10.1103/PhysRevD.88.125003

23. A.C. Aguilar, D. Binosi, D. Ibañez, J. Papavassiliou, Phys.
Rev. D 89, 085008 (2014). https://doi.org/10.1103/PhysRevD.89.
085008

24. A. Blum, M.Q. Huber, M. Mitter, L. von Smekal, Phys. Rev. D 89,
061703 (2014). https://doi.org/10.1103/PhysRevD.89.061703

25. A.L. Blum, R. Alkofer, M.Q. Huber, A. Windisch, Acta Phys. Pol.
Supp. 8, 321 (2015)

26. G. Eichmann, R. Williams, R. Alkofer, M. Vujinovic, Phys.
Rev. D 89, 105014 (2014). https://doi.org/10.1103/PhysRevD.89.
105014

27. M. Mitter, J.M. Pawlowski, N. Strodthoff, Phys. Rev. D 91,
054035 (2015). https://doi.org/10.1103/PhysRevD.91.054035

28. R. Williams, C.S. Fischer, W. Heupel, Phys. Rev. D 93, 034026
(2016). https://doi.org/10.1103/PhysRevD.93.034026

29. A.K. Cyrol, L. Fister, M. Mitter, J.M. Pawlowski, N. Strodthoff,
Phys. Rev. D 94, 054005 (2016). https://doi.org/10.1103/
PhysRevD.94.054005

30. L. Corell, A .K. Cyrol, M. Mitter, J .M. Pawlowski, N.
Strodthoff, SciPost Phys. 5, 066 (2018). https://doi.org/10.21468/
SciPostPhys.5.6.066

31. A.C. Aguilar, M.N. Ferreira, C.T. Figueiredo, J. Papavassil-
iou, Phys. Rev. D 99, 094010 (2019a). https://doi.org/10.1103/
PhysRevD.99.094010

32. A. Cucchieri, T. Mendes, PoS LAT2007, 297 (2007)
33. I .L. Bogolubsky, E .M. Ilgenfritz, M. Muller-Preussker, A. Stern-

beck, PoS LATTICE2007, 290 (2007)
34. I. Bogolubsky, E. Ilgenfritz, M. Muller-Preussker, A. Sternbeck,

Phys. Lett. B 676, 69 (2009). https://doi.org/10.1016/j.physletb.
2009.04.076

35. O. Oliveira, P. Silva, PoS LAT2009, 226 (2009)
36. A. Ayala, A. Bashir, D. Binosi, M. Cristoforetti, J. Rodriguez-

Quintero, Phys. Rev. D 86, 074512 (2012). https://doi.org/10.
1103/PhysRevD.86.074512

37. A.C. Aguilar, A.A. Natale, JHEP 08, 057 (2004)
38. A.C. Aguilar, J. Papavassiliou, JHEP 12, 012 (2006)
39. C.S. Fischer, A. Maas, J.M. Pawlowski, Ann. Phys. 324, 2408

(2009). https://doi.org/10.1016/j.aop.2009.07.009
40. D. Dudal, J.A. Gracey, S.P. Sorella, N. Vandersickel, H. Ver-

schelde, Phys. Rev. D 78, 065047 (2008). https://doi.org/10.1103/
PhysRevD.78.065047

41. J. Rodriguez-Quintero, JHEP 01, 105 (2011). https://doi.org/10.
1007/JHEP01(2011)105

42. M. Tissier, N. Wschebor, Phys. Rev. D 82, 101701 (2010). https://
doi.org/10.1103/PhysRevD.82.101701

43. M. Pennington, D. Wilson, Phys. Rev. D 84, 119901
(2011). https://doi.org/10.1103/PhysRevD.84.094028, https://
doi.org/10.1103/PhysRevD.84.119901

44. I.C. Cloet, C.D. Roberts, Prog. Part. Nucl. Phys. 77, 1 (2014).
https://doi.org/10.1016/j.ppnp.2014.02.001

45. L. Fister, J.M. Pawlowski, Phys. Rev. D88, 045010 (2013). https://
doi.org/10.1103/PhysRevD.88.045010

46. A.K. Cyrol, M.Q. Huber, L. von Smekal, Eur. Phys. J. C 75, 102
(2015). https://doi.org/10.1140/epjc/s10052-015-3312-1

47. D. Binosi, L. Chang, J. Papavassiliou, C.D. Roberts, Phys. Lett. B
742, 183 (2015). https://doi.org/10.1016/j.physletb.2015.01.031

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1103/PhysRevD.84.085011
https://doi.org/10.1103/PhysRevD.84.085011
https://doi.org/10.1103/PhysRevD.49.6720
https://doi.org/10.1103/PhysRevD.49.6720
https://doi.org/10.1016/S0550-3213(02)00089-5
https://doi.org/10.1016/S0550-3213(02)00089-5
https://doi.org/10.1103/PhysRevD.78.025010
https://doi.org/10.1088/1126-6708/2008/06/099
https://doi.org/10.1088/1126-6708/2008/06/099
https://doi.org/10.1103/PhysRevD.74.014503
https://doi.org/10.1103/PhysRevD.77.094510
https://doi.org/10.1016/j.physletb.2016.08.065
https://doi.org/10.1103/PhysRevD.94.074502
https://doi.org/10.1007/JHEP11(2012)035
https://doi.org/10.1103/PhysRevD.88.125003
https://doi.org/10.1103/PhysRevD.89.085008
https://doi.org/10.1103/PhysRevD.89.085008
https://doi.org/10.1103/PhysRevD.89.061703
https://doi.org/10.1103/PhysRevD.89.105014
https://doi.org/10.1103/PhysRevD.89.105014
https://doi.org/10.1103/PhysRevD.91.054035
https://doi.org/10.1103/PhysRevD.93.034026
https://doi.org/10.1103/PhysRevD.94.054005
https://doi.org/10.1103/PhysRevD.94.054005
https://doi.org/10.21468/SciPostPhys.5.6.066
https://doi.org/10.21468/SciPostPhys.5.6.066
https://doi.org/10.1103/PhysRevD.99.094010
https://doi.org/10.1103/PhysRevD.99.094010
https://doi.org/10.1016/j.physletb.2009.04.076
https://doi.org/10.1016/j.physletb.2009.04.076
https://doi.org/10.1103/PhysRevD.86.074512
https://doi.org/10.1103/PhysRevD.86.074512
https://doi.org/10.1016/j.aop.2009.07.009
https://doi.org/10.1103/PhysRevD.78.065047
https://doi.org/10.1103/PhysRevD.78.065047
https://doi.org/10.1007/JHEP01(2011)105
https://doi.org/10.1007/JHEP01(2011)105
https://doi.org/10.1103/PhysRevD.82.101701
https://doi.org/10.1103/PhysRevD.82.101701
https://doi.org/10.1103/PhysRevD.84.094028
https://doi.org/10.1103/PhysRevD.84.119901
https://doi.org/10.1103/PhysRevD.84.119901
https://doi.org/10.1016/j.ppnp.2014.02.001
https://doi.org/10.1103/PhysRevD.88.045010
https://doi.org/10.1103/PhysRevD.88.045010
https://doi.org/10.1140/epjc/s10052-015-3312-1
https://doi.org/10.1016/j.physletb.2015.01.031


154 Page 16 of 17 Eur. Phys. J. C (2020) 80 :154

48. A.C. Aguilar, D. Binosi, J. Papavassiliou, Front. Phys. (Beijing)
11, 111203 (2016)

49. A .K. Cyrol, J .M. Pawlowski, A. Rothkopf, N. Wink, SciPost
Phys. 5, 065 (2018). https://doi.org/10.21468/SciPostPhys.5.6.
065

50. J.M. Cornwall, J. Papavassiliou, Phys. Rev. D 40, 3474 (1989)
51. A. Pilaftsis, Nucl. Phys. B 487, 467 (1997)
52. D. Binosi, J. Papavassiliou, Phys. Rep. 479, 1 (2009). https://doi.

org/10.1016/j.physrep.2009.05.001
53. L.F. Abbott, Nucl. Phys. B 185, 189 (1981)
54. D. Binosi, J. Papavassiliou, Phys. Rev. D 77, 061702 (2008).

https://doi.org/10.1103/PhysRevD.77.061702
55. D. Binosi, D. Ibañez, J. Papavassiliou, Phys. Rev. D 86, 085033

(2012). https://doi.org/10.1103/PhysRevD.86.085033
56. A.C. Aguilar, M.N. Ferreira, C.T. Figueiredo, J. Papavassil-

iou, Phys. Rev. D 99, 034026 (2019b). https://doi.org/10.1103/
PhysRevD.99.034026

57. P. Boucaud, F. De Soto, K. Raya, J. Rodríguez-Quintero, S.
Zafeiropoulos, Phys. Rev. D 98, 114515 (2018). https://doi.org/
10.1103/PhysRevD.98.114515

58. T. Blum et al., (RBC, UKQCD), Phys. Rev. D 93, 074505 (2016).
https://doi.org/10.1103/PhysRevD.93.074505

59. P.A. Boyle et al., Phys. Rev. D 93, 054502 (2016). https://doi.org/
10.1103/PhysRevD.93.054502

60. P.A. Boyle, L. Del Debbio, A. Jüttner, A. Khamseh, F. Sanfil-
ippo, J.T. Tsang, JHEP 12, 008 (2017). https://doi.org/10.1007/
JHEP12(2017)008

61. A.C. Aguilar, M.N. Ferreira, C.T. Figueiredo, J. Papavassiliou,
Phys. Rev. D 100, 094039 (2019c)

62. Y. Iwasaki, Nucl. Phys. B 258, 141 (1985). https://doi.org/10.
1016/0550-3213(85)90606-6

63. D.B. Kaplan, Phys. Lett. B 288, 342 (1992). https://doi.org/10.
1016/0370-2693(92)91112-M

64. Y. Shamir, Nucl. Phys. B 406, 90 (1993). https://doi.org/10.1016/
0550-3213(93)90162-I

65. P.M. Vranas, Nucl. Phys. B Proc. Suppl. 94, 177 (2001)
66. D.B. Kaplan. arXiv:0912.2560 [hep-lat]
67. R.C. Brower, H. Neff, K. Orginos, Nucl. Phys. Proc. Suppl. 140,

686 (2005)
68. Z.-F. Cui, J.-L. Zhang, D. Binosi, F. de Soto, C. Mezrag, J.

Papavassiliou, C.D. Roberts, J. Rodríguez-Quintero, J. Segovia,
S. Zafeiropoulos, arXiv:1912.08232 [hep-ph]

69. S. Zafeiropoulos, P. Boucaud, F. De Soto, J. Rodríguez-Quintero,
J. Segovia, Phys. Rev. Lett. 122, 162002 (2019). https://doi.org/
10.1103/PhysRevLett.122.162002

70. P. Boucaud, F. De Soto, J. Rodríguez-Quintero, S. Zafeiropou-
los, Phys. Rev. D 95, 114503 (2017). https://doi.org/10.1103/
PhysRevD.95.114503

71. D. Becirevic, P. Boucaud, J. Leroy, J. Micheli, O. Pene, J.
Rodriguez-Quintero, C. Roiesnel, Phys. Rev. D 60, 094509
(1999). https://doi.org/10.1103/PhysRevD.60.094509

72. D. Becirevic, P. Boucaud, J. Leroy, J. Micheli, O. Pene, J.
Rodriguez-Quintero, C. Roiesnel, Phys. Rev. D 61, 114508
(2000). https://doi.org/10.1103/PhysRevD.61.114508

73. F. de Soto, C. Roiesnel, JHEP 09, 007 (2007). https://doi.org/10.
1088/1126-6708/2007/09/007

74. A.C. Aguilar, D. Binosi, J. Papavassiliou, Phys. Rev. D 95, 034017
(2017). https://doi.org/10.1103/PhysRevD.95.034017

75. A. Cucchieri, T. Mendes, Phys. Rev. Lett. 100, 241601 (2008).
https://doi.org/10.1103/PhysRevLett.100.241601

76. A. Cucchieri, T. Mendes, Phys. Rev. D 81, 016005 (2010). https://
doi.org/10.1103/PhysRevD.81.016005

77. P. Boucaud et al., JHEP 06, 001 (2006)
78. P.O. Bowman et al., Phys. Rev. D 76, 094505 (2007)

79. P. Bicudo, D. Binosi, N. Cardoso, O. Oliveira, P.J. Silva, Phys.
Rev. D 92, 114514 (2015). https://doi.org/10.1103/PhysRevD.92.
114514

80. J. Braun, H. Gies, J.M. Pawlowski, Phys. Lett. B 684, 262 (2010).
https://doi.org/10.1016/j.physletb.2010.01.009

81. D. Epple, H. Reinhardt, W. Schleifenbaum, A. Szczepaniak, Phys.
Rev. D 77, 085007 (2008). https://doi.org/10.1103/PhysRevD.77.
085007

82. J. Serreau, M. Tissier, Phys. Lett. B 712, 97 (2012). https://doi.
org/10.1016/j.physletb.2012.04.041

83. J.S. Schwinger, Phys. Rev. 125, 397 (1962a)
84. J.S. Schwinger, Phys. Rev. 128, 2425 (1962b)
85. A.C. Aguilar, D. Ibanez, V. Mathieu, J. Papavassiliou, Phys.

Rev. D 85, 014018 (2012a). https://doi.org/10.1103/PhysRevD.
85.014018

86. D. Ibañez, J. Papavassiliou, Phys. Rev. D 87, 034008 (2013).
https://doi.org/10.1103/PhysRevD.87.034008

87. D. Binosi, J. Papavassiliou, Phys. Rev. D 97, 054029 (2018).
https://doi.org/10.1103/PhysRevD.97.054029

88. A.C. Aguilar, D. Binosi, C.T. Figueiredo, J. Papavassiliou,
Eur. Phys. J. C 78, 181 (2018). https://doi.org/10.1140/epjc/
s10052-018-5679-2

89. J. Braun, L. Fister, J.M. Pawlowski, F. Rennecke, Phys. Rev. D 94,
034016 (2016). https://doi.org/10.1103/PhysRevD.94.034016

90. C. Fischer, P. Watson, W. Cassing, Phys. Rev. D 72, 094025
(2005). https://doi.org/10.1103/PhysRevD.72.094025

91. A.K. Cyrol, M. Mitter, J.M. Pawlowski, N. Strodthoff, Phys.
Rev. D 97, 054006 (2018b). https://doi.org/10.1103/PhysRevD.
97.054006

92. A.C. Aguilar, D. Binosi, J. Papavassiliou, Phys. Rev. D 86, 014032
(2012b)

93. A.C. Aguilar, D. Binosi, J. Papavassiliou, Phys. Rev. D 88, 074010
(2013a). https://doi.org/10.1103/PhysRevD.88.074010

94. W. Kern, M.Q. Huber, R. Alkofer, Phys. Rev. D 100, 094037
(2019). https://doi.org/10.1103/PhysRevD.100.094037

95. G. Källén, Helv. Phys. Acta 25, 417 (1952). https://doi.org/10.
1007/978-3-319-00627-7_90

96. H. Lehmann, Nuovo Cim. 11, 342 (1954). https://doi.org/10.
1007/BF02783624

97. K. Osterwalder, R. Schrader, Commun. Math. Phys. 31, 83 (1973).
https://doi.org/10.1007/BF01645738

98. K. Osterwalder, R. Schrader, Commun. Math. Phys. 42, 281
(1975). https://doi.org/10.1007/BF01608978

99. J.M. Cornwall, Mod. Phys. Lett. A 28, 1330035 (2013). https://
doi.org/10.1142/S0217732313300358

100. J.C. Taylor, Nucl. Phys. B 33, 436 (1971)
101. W. Schleifenbaum, A. Maas, J. Wambach, R. Alkofer, Phys. Rev.

D 72, 014017 (2005)
102. M.Q. Huber, L. von Smekal, JHEP 04, 149 (2013). https://doi.

org/10.1007/JHEP04(2013)149
103. A.C. Aguilar, D. Ibañez, J. Papavassiliou, Phys. Rev. D 87, 114020

(2013b). https://doi.org/10.1103/PhysRevD.87.114020
104. R. Sommer, Nucl. Phys. B 411, 839 (1994). https://doi.org/10.

1016/0550-3213(94)90473-1
105. S. Capitani, M. Lüscher, R. Sommer, H. Wittig,

Nucl. Phys. B544, 669 (1999), [Erratum: Nucl. Phys. B582,
762 (2000)]. https://doi.org/10.1016/S0550-3213(00)00163-2,
https://doi.org/10.1016/S0550-3213(98)00857-8

106. D. Becirevic, P. Boucaud, L. Giusti, J.P. Leroy, V. Lubicz,
G. Martinelli, F. Mescia, F. Rapuano. arXiv:hep-lat/9809129

107. P. Boucaud et al., JHEP 04, 006 (2000). https://doi.org/10.1088/
1126-6708/2000/04/006

108. W.-J. Fu, J.M. Pawlowski, F. Rennecke. arXiv:1909.02991 [hep-
ph]

123

https://doi.org/10.21468/SciPostPhys.5.6.065
https://doi.org/10.21468/SciPostPhys.5.6.065
https://doi.org/10.1016/j.physrep.2009.05.001
https://doi.org/10.1016/j.physrep.2009.05.001
https://doi.org/10.1103/PhysRevD.77.061702
https://doi.org/10.1103/PhysRevD.86.085033
https://doi.org/10.1103/PhysRevD.99.034026
https://doi.org/10.1103/PhysRevD.99.034026
https://doi.org/10.1103/PhysRevD.98.114515
https://doi.org/10.1103/PhysRevD.98.114515
https://doi.org/10.1103/PhysRevD.93.074505
https://doi.org/10.1103/PhysRevD.93.054502
https://doi.org/10.1103/PhysRevD.93.054502
https://doi.org/10.1007/JHEP12(2017)008
https://doi.org/10.1007/JHEP12(2017)008
https://doi.org/10.1016/0550-3213(85)90606-6
https://doi.org/10.1016/0550-3213(85)90606-6
https://doi.org/10.1016/0370-2693(92)91112-M
https://doi.org/10.1016/0370-2693(92)91112-M
https://doi.org/10.1016/0550-3213(93)90162-I
https://doi.org/10.1016/0550-3213(93)90162-I
http://arxiv.org/abs/0912.2560
http://arxiv.org/abs/1912.08232
https://doi.org/10.1103/PhysRevLett.122.162002
https://doi.org/10.1103/PhysRevLett.122.162002
https://doi.org/10.1103/PhysRevD.95.114503
https://doi.org/10.1103/PhysRevD.95.114503
https://doi.org/10.1103/PhysRevD.60.094509
https://doi.org/10.1103/PhysRevD.61.114508
https://doi.org/10.1088/1126-6708/2007/09/007
https://doi.org/10.1088/1126-6708/2007/09/007
https://doi.org/10.1103/PhysRevD.95.034017
https://doi.org/10.1103/PhysRevLett.100.241601
https://doi.org/10.1103/PhysRevD.81.016005
https://doi.org/10.1103/PhysRevD.81.016005
https://doi.org/10.1103/PhysRevD.92.114514
https://doi.org/10.1103/PhysRevD.92.114514
https://doi.org/10.1016/j.physletb.2010.01.009
https://doi.org/10.1103/PhysRevD.77.085007
https://doi.org/10.1103/PhysRevD.77.085007
https://doi.org/10.1016/j.physletb.2012.04.041
https://doi.org/10.1016/j.physletb.2012.04.041
https://doi.org/10.1103/PhysRevD.85.014018
https://doi.org/10.1103/PhysRevD.85.014018
https://doi.org/10.1103/PhysRevD.87.034008
https://doi.org/10.1103/PhysRevD.97.054029
https://doi.org/10.1140/epjc/s10052-018-5679-2
https://doi.org/10.1140/epjc/s10052-018-5679-2
https://doi.org/10.1103/PhysRevD.94.034016
https://doi.org/10.1103/PhysRevD.72.094025
https://doi.org/10.1103/PhysRevD.97.054006
https://doi.org/10.1103/PhysRevD.97.054006
https://doi.org/10.1103/PhysRevD.88.074010
https://doi.org/10.1103/PhysRevD.100.094037
https://doi.org/10.1007/978-3-319-00627-7_90
https://doi.org/10.1007/978-3-319-00627-7_90
https://doi.org/10.1007/BF02783624
https://doi.org/10.1007/BF02783624
https://doi.org/10.1007/BF01645738
https://doi.org/10.1007/BF01608978
https://doi.org/10.1142/S0217732313300358
https://doi.org/10.1142/S0217732313300358
https://doi.org/10.1007/JHEP04(2013)149
https://doi.org/10.1007/JHEP04(2013)149
https://doi.org/10.1103/PhysRevD.87.114020
https://doi.org/10.1016/0550-3213(94)90473-1
https://doi.org/10.1016/0550-3213(94)90473-1
https://doi.org/10.1016/S0550-3213(00)00163-2
https://doi.org/10.1016/S0550-3213(98)00857-8
http://arxiv.org/abs/hep-lat/9809129
https://doi.org/10.1088/1126-6708/2000/04/006
https://doi.org/10.1088/1126-6708/2000/04/006
http://arxiv.org/abs/1909.02991


Eur. Phys. J. C (2020) 80 :154 Page 17 of 17 154

109. B. Alles, D. Henty, H. Panagopoulos, C. Parrinello, C. Pittori,
D.G. Richards, Nucl. Phys. B 502, 325 (1997). https://doi.org/10.
1016/S0550-3213(97)00483-5

110. P. Boucaud, J.P. Leroy, J. Micheli, O. Pene, C. Roiesnel, JHEP
10, 017 (1998). https://doi.org/10.1088/1126-6708/1998/10/017

111. K. Chetyrkin, T. Seidensticker, Phys. Lett. B 495, 74 (2000).
https://doi.org/10.1016/S0370-2693(00)01217-X

123

https://doi.org/10.1016/S0550-3213(97)00483-5
https://doi.org/10.1016/S0550-3213(97)00483-5
https://doi.org/10.1088/1126-6708/1998/10/017
https://doi.org/10.1016/S0370-2693(00)01217-X

	Gluon propagator and three-gluon vertex with dynamical quarks
	Abstract 
	1 Introduction
	2 The three-gluon vertex: general considerations
	2.1 Notation and basic properties
	2.2 The lattice observables

	3 The kinetic term of the gluon propagator
	3.1 Basic concepts and key relations
	3.2 The ``unquenched'' J(q2): general construction and main results
	3.3 Asymptotic analysis for the deep IR

	4 IR suppression of the three-gluon vertex
	4.1 The SDE-based derivation
	4.2 The low-momentum limit
	4.3 Comparison with the lattice and further discussion
	4.4 Effective couplings

	5 Discussion and conclusions
	Acknowledgements
	References




