Response to ’Comment on ‘On the strain coupling across vertical interfaces of switchable BiFeO3–CoFe2O4 multiferroic nanostructures’’’ [Appl. Phys. Lett. 96, 076101 (2010)]

N. Dix,1,a R. Muralidharan,1 J. Guyonnet,2 B. Warot-Fonrose,3 M. Varela,4 P. Paruch,2 F. Sánchez,1,b and J. Fontcuberta1

1Institut de Ciència de Materials de Barcelona, CSIC, Campus UAB, Bellaterra 08193, Spain
2DPMC, Université de Genève, 24 Quai Ernest-Ansermet, CH 1211 Geneva 4, Switzerland
3CNRS, CEMES, BP 94347, 31055 Toulouse, France
4Física Aplicada i Optica and IN2UB, Universitat de Barcelona, Diagonal 647, Barcelona 08028, Spain

(Rceived 13 November 2009; accepted 18 November 2009; published online 16 February 2010)

[doi:10.1063/1.3298746]

In our letter1 we reported on the residual lattice strain in epitaxial BiFeO3–CoFe2O4 (BFO-CFO) multiferroic nanostructures on SrTiO3(001) (STO) substrates. The in-plane and out-of-plane parameters of CFO were relaxed and compressively strained, respectively. In the case of BFO, there was coexistence of relaxed (bulk lattice parameters) and epitaxially strained material. After chemical treatment we observed that the x-ray diffracted intensity of the strained and relaxed BFO were reduced or no longer visible, thus indicating that these distinct BFO phases were, respectively, partially and totally removed. This removal did not cause modification in the out-of-plane strain of CFO. Therefore, we concluded that the observed cell parameters of the CFO in the nanocomposites were not modified by epitaxial elastic interaction due to neighboring BFO component. We argued that the absence of residual elastic strain between CFO and BFO does not preclude the observed magnetoelastic coupling which is basically mediated by magnetostriction and piezoresponse of the nanocomposites under external stimuli.

Zhang et al.2 consider in their comment that the out-of-plane strain of CFO in our samples is of elastic origin, and proposed that the strained BFO phase is located closer to the BFO-CFO interface, and that the tensile stress applied by CFO elongates the out-of-plane lattice of BFO, and that at the same time the very thin lateral BFO layer is tensile strained in the out-of-plane direction by CFO.

X-ray diffraction (XRD) reciprocal space maps and high-resolution transmission electron microscopy characterizations reported in Fig. 1 of our letter1 show that the out-of-plane strained BFO presents an in-plane parameter fully strained by the STO substrate. This strongly supports the conclusion that the epitaxial stress induced by the substrate causes the BFO out-of-plane strain in our samples, thus constituting the experimental basis for our claim.

On the other hand, if one would accept the hypothesis of Zhang et al., then it should be expected that the amount of strained BFO in nanocomposite films increases with thickness (t) due to the increase in the BFO-CFO interface area. We included in Fig. 1(e) of Ref. 1 the XRD θ–2θ scan of a t=200 nm thick sample. Other three samples were prepared in the same run of depositions changing only the growth time to obtain t=10, 50, and 100 nm thick samples. Here, the XRD θ–2θ scans of the four samples are shown in Fig. 1(a).

It is clear that the CFO(004) diffraction peak increases in intensity with thickness. The BFO(002) reflection shows only strained material in the thinnest samples and, interestingly, the intensity of this reflection does not change appreciably when the thickness increases. In contrast, the peak corresponding to relaxed BFO emerges and increases in intensity with thickness. The results presented in Fig. 1(a) do not support the spatial distribution suggested by Zhang et al.2

Zhang et al.2 also stated that even if BFO had been completely removed after etching, CFO could remain strained in a metastable state due to an energy barrier between the strained and relaxed CFO. If this was the case an annealing of the sample would favor the relaxation of CFO. To investigate it, the etched sample was annealed for 3 h in air at various temperatures up to 500 °C, at which BFO is still stable.3 XRD θ–2θ scans of the etched sample before and after the annealing at 500 °C [Fig. 1(b)] show no change in the peak positions of both CFO and BFO reflections. This observation points to an equilibrium "strained" state of CFO rather than a metastable one.

FIG. 1. (Color online) (a) XRD θ–2θ scans of t=10, 50, 100, and 200 nm nanocomposites. S and R indicate strained and relaxed BFO, respectively. Vertical lines mark the positions of CFO(004) and BFO(002) in bulk materials. (b) XRD θ–2θ scans of etched BFO-CFO sample before (red curve) and after annealing (500 °C, 3 h) in air (blue curve). Dotted line marks the position of CFO(004) in bulk material.
Finally, we like to emphasize that the absence of residual elastic strain does not imply absence of elastic coupling at the CFO-BFO interface, and indeed we conclude in Ref. 1 that the two phases couple are mechanically effective enough for experimental confirmation of magnetoelastic coupling.

Financial support by the Spanish Government Project under Grant Nos. MAT2008-06761-C03, Nanoselect CSD2007-00041, and Acción Integrada HF2007-0102, and by EU Projects MaCoMuFi under Contract No. FP6-03321 and ESTEEM under Contract No. 0260019 are acknowledged.