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Abstract: Near infrared spectroscopy (NIRS) is an accurate, fast and nondestructive technique 

whose use in predicting forage quality has become increasingly relevant in recent decades. Epichloë-

infected grass varieties are commonly used in areas with high pest pressure due to their better 

performances compared to endophyte-free varieties. The insect resistance of Epichloë-infected 

grasses has been associated with four main groups of endophyte secondary metabolites: ergot 

alkaloids, indole-diterpenes, lolines and peramine. Concentrations of these alkaloids are usually 

measured with high performance liquid chromatography or gas chromatography analysis, which 

are accurate methods but relatively expensive and laborious. In this paper, we developed a rapid 

method based on NIRS to detect and quantify loline alkaloids in wild accessions of Schedonorus 

pratensis infected with the fungal endophyte Epichloë uncinata. The quantitative NIR equations 

obtained by modified partial least squares algorithm had coefficients of correlation of 0.90, 0.78, 0.85, 

0.90 for N-acetylloline, N-acetylnorloline and N-formylloline and the sum of the three, respectively. 

The acquired NIR spectra were also used for developing an equation to predict in planta fungal 

biomass with a coefficient of correlation of 0.75. These results showed that the use of NIRS and 

chemometrics allows the quantification of loline alkaloids and mycelial biomass in a heterogeneous 

set of endophyte-infected meadow fescue samples. 

Keywords: Epichloë; fungal endophytes; meadow fescue; NIRS; chemometrics 

 

1. Introduction 

The physical, non-destructive technique of near-infrared spectroscopy (NIRS) has dramatically 

changed the analysis of very different materials, especially in agricultural and food industries [1]. 

Using NIRS it is possible to predict some traits of interest in materials due to the light absorption by 

the surface of a sample using incident polychromatic light over a spectral wavelength in the infrared 

region (from 1100 to 2000 nm). The sample absorbs and reflects specific frequencies depending on 

the chemical bonds within the constituent of the matrix [2], thus allowing the identification of specific 

regions of the spectrum associated with protein, fiber, starch, alkaloid, and other compounds. 
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NIRS is not a ‘standalone’ technique; it requires calibration with standard reference samples 

previously analyzed by conventional wet chemistry in order to find an adequate correlation between 

the NIR-spectra and the chemical composition of the sample. Therefore the validity of the NIRS 

calibration equation obtained will never be better than the databases used to establish the calibrations 

[3]. The statistical analysis on which calibrations are based, called “chemometrics”, include multiple 

linear regression, Fourier transform, full spectrum, and non-linear models [4] with the aim to obtain 

a prediction equation for quantification of one or more constituents from a sample. From the 1960s, 

when the technique was first described [5], its use has extended widely thanks to the widespread use 

of monochromators, to the development of user-friendly software for chemometrics, to the versatility 

of this method and to the high amount of information that is possible to infer from a single NIR 

analysis. Almost ten years later NIRS was first used to measure forage quality [6] and since then 

became increasingly relevant to the extent that now it is a routine analysis technique in forage 

research and breeding. Most of these analyses predict aspects about forage composition in terms of 

chemical fractions such as crude protein, neutral-detergent fiber, acid-detergent fiber, water-soluble 

carbohydrates, lignin and dry-matter digestibility [6–8] and recently other parameters such as 

alkaloids [9]. Profiling forage grass cultivars at all these traits gives breeders valuable information on 

which they can base their selection for elite varieties with a high digestibility [10] or particular 

characteristics such as alkaloid profile [9,11]. 

Relevant forage and turf species such as perennial ryegrass (Lolium perenne), tall fescue 

(Schedonorus arundinaceus), meadow fescue (Schedonorus pratensis) and red fescue (Festuca rubra) form 

symbiotic relationships with filamentous fungi of the Clavicipitaceae family belonging to the genus 

Epichloë [12]. When an endophyte-infected seed germinates, the fungus grows systemically 

throughout the aboveground tissue; and in strictly asexual strains, the endophyte reaches the 

inflorescences where it initially colonizes the ovule, then the embryo and endosperm of the 

developing seeds that will form the next grass generation [13]. 

In the last 20 years Epichloë-infected cultivars (E+) of perennial ryegrass and tall fescue became 

crucial in New Zealand, Australia and USA due to their enhanced performances compared to 

endophyte-free (E−) varieties in environments with strong selective pressure [14,15]. Insect resistance 

of E+ varieties has been associated with an array of secondary metabolites produced by Epichloë 

endophytes that are usually grouped in four classes: ergot alkaloids, indole-diterpenes, lolines and 

peramine [16,17]. Identification and quantification of these alkaloids are crucial because ergot 

alkaloids and indole-diterpenes have been identified as the cause of fescue toxicosis and ryegrass 

stagger, respectively [18,19]. Peramine and lolines, on the other hand, are livestock friendly and have 

insecticidal and insect feeding deterrent activities [20–22]. 

Nowadays, quantitative analysis of alkaloids is mostly based on high performance liquid 

chromatography (HPLC) and on gas chromatography [23–25]. These methods allow high precision 

measurements, but they use relatively complicated protocols, expensive chemicals and instruments. 

As an alternative technique for detecting alkaloid concentration, NIRS has been successfully used to 

quantify ergot alkaloids (in tall fescue and perennial ryegrass), indole diterpenoids and peramine (in 

perennial ryegrass) [9,26] but not for lolines. Lolines derive from homoserine and proline and are 

classified as aminopyrrolozidine. According to the modification of the 1-amino group they can be 

found in different forms, the most common and abundant are N-acetylloline (NAL), N-

acetylnorloline (NANL) and N-formylloline (NFL) [27–29]. Among grass species of agricultural 

interest, lolines can be found in tall fescue plants infected with E. coenophiala or in meadow fescue 

plants infected with E. uncinata or E. siegelii. 

Loline alkaloids are positively correlated with fungal biomass, the more fungal cells colonize the 

host, the higher levels of alkaloids are produced [30]. Thus, in planta mycelial biomass should also 

be considered a trait of interest when aiming to achieve high concentrations of lolines in order to 

ensure a wide spectra resistance against insects. Several methods have been described to quantify the 

endophyte concentration in host tissues: by counting endophyte hyphae previously stained with 

aniline blue in a leaf cross-sections [31]; by using quantitative PCR (qPCR) [32–34]; by using an 
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ELISA-based protocol [35]. Despite a variety of strategies, quantification of Epichloë mycelium in 

experimentation or practice in the context of forage companies did not spread. 

The aim of this work was to evaluate the suitability of NIR spectroscopy for quantitative analysis 

of loline alkaloids and mycelial biomass in meadow fescue plants infected with the fungal endophyte 

E. uncinata. 

2. Materials and Methods 

2.1. Plant Material 

The samples for this study were a selection of 216 meadow fescue plants infected with Epichloë 

uncinata previously characterized by Cagnano et al. [36]. This dataset included 135 plants collected in 

wild and semi-wild meadows in different countries in Europe, 65 plants from accessions requested 

to The Nordic Genetic Resource Centre (NordGen) and 19 plants from accessions requested to the 

United States Department of Agriculture (USDA). Endophyte-free plants were collected in the same 

populations and they were used as a negative control of alkaloid production. Infection status of all 

the samples was determined using the immunoblot assay “Phytoscreen Field Tiller Endophyte 

Detection Kit” (Cat. #ENDO797-3; Agrinostics Ltd. Co., Watkinsville, GA, USA) described by Hiatt 

et al. [37] following manufacturer’s description. In order to reduce variability due to different growth 

stages, plants were trimmed very short (approximately 5 cm), cloned in pots (35 × 30 cm) and left 

growing in a greenhouse, with 16 light hours at 15–24 °C, for three months. Samples from the basal 

part of the tiller were harvested and immediately freeze-dried. Samples were subsequently powdered 

in a laboratory mill with a grind size of approximately 5 μm. 

2.2. Reference Analysis of Loline Alkaloids and Mycelial Biomass 

About 50 mg of each sample was analyzed in duplicate in AgResearch Grasslands (Palmerston 

North, New Zealand). Loline alkaloids N-formylloline (NFL), N-acetylloline (NAL), N-

acetylnorloline (NANL) (Figure 1) were measured in all 216 samples using a gas chromatographic 

(GC) method described by Baldauf et al. [26]. The limit of detection of this method, for loline 

alkaloids, was 10 ppm, while limit of quantitation was 25 ppm. 

 

Figure 1. Chemical structures of N-acetylloline (NAL), N-acetylnorloline (NANL), N-formylloline 

(NFL). 

A subset of 100 plant samples, selected to include both accessions (NordGen and USDA) and 

collected plants with different lolines concentrations (min = 26 mg∙kg−1; max = 3435 mg∙kg−1; mean = 

1553 mg∙kg−1; SD = 1064 mg∙kg−1), was used to measure the mycelial mass using an ELISA-based 

analysis as previously described in Cagnano et al. [38] following Faville et al. [35]. 
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2.3. Acquisition of Infrared Spectra 

Figure 2 summarizes the schematic process for the development of NIRS equations for 

quantification of lolines alkaloids and mycelial biomass. 

 

Figure 2. Schematic representation of the steps followed for quantitative analysis in near infrared 

spectroscopy. 

The first step in NIRS is acquisition of the plant sample spectra; this stage was performed at the 

Department of Analytical Chemistry, Nutrition and Bromatology, University of Salamanca (Spain). 

For recording the NIR spectra a 1.5-m fiber optic probe with a remote reflectance system, of the 

210/7210 Bundle (beam) regular type, with a 5 × 5 cm quartz window was applied directly on 2.0 g of 

each freeze-dried ground sample of meadow fescue. Spectra were stored in a NIR System Foss5000 

spectrometer (FOSS Analytical, Hillerød, Denmark). Instrument control, manipulation of spectral 

files and chemometric analyses were made with the software WinISI 1.50 (International, LLC, State 

College, PA, USA). 

Each of the recorded spectra was measured at intervals of 2 nm within the range from 1100 to 

2000 nm. The resulting record was the average of 32 readings both in the grass sample and a ceramic 

plate used as reference material. To minimize sampling error all ground grass samples were analyzed 

in triplicate without moving the fiberoptic probe. The mean of these replicates was used in the 

statistical analysis, stored as the reciprocal logarithm of reflectance (log 1/R, R = intensity of reflected 

light at each wavelength) and used for further chemometrical analyses. 

In order to identify and select the mathematical treatments more effective to reduce the 

signal/noise ratio from spectra and stabilization of the baseline, we evaluated the effect of reduction 

of gaps and application of derivatives and smoothing, in combination with four transformations: 

averaging, standard normal variate (SNV), de trending (DT), and a combination between SNV and 

DT [39,40]. A notation of four digits (a, b, c, d) was assigned to identify each transformation of the 

spectra: derivative order (a); derivative applied points (b); points on the first smoothing (c); points on 

the second smoothing (d) [41]. 

The collected spectra were divided randomly using an automatic algorithm from the WinIsi 

software into two subsets, one of them (ca. 75% of all the samples) was used for calibration of the 

NIRS models, and the rest of samples (ca. 25%) were separated to corroborate, by external validation, 

the performance of the obtained NIR equations. The characteristics of meadow fescue samples are 

indicated in Table 1. 
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Table 1. Characteristics and number of the meadow fescue samples (n) used in the development of 

near infrared spectroscopy (NIRS) models for quantification of Loline alkaloids and mycelial mass. 

Parameter Statistical Descriptor Training/Calibration Set Validation Set 

N-acetylloline (NAL) 

n 143 46 

Range (mg∙kg−1) 31–320 25–339 

Mean (mg∙kg−1) 145 157 

SD (mg∙kg−1) 66 82 

N-acetylnorloline (NANL) 

n 142 38 

Range (mg∙kg−1) 25–982 43–804 

Mean (mg∙kg−1) 295 332 

SD (mg∙kg−1) 189 201 

N-formylloline (NFL) 

n 146 47 

Range (mg∙kg−1) 60–4327 77–2990 

Mean (mg∙kg−1) 1222 1208 

SD (mg∙kg−1) 767 773 

Total Lolines 

n 146 51 

Range (mg∙kg−1) 101–5629 107–3893 

Mean (mg∙kg−1) 1658  

SD (mg∙kg−1) 1009 1038 

Mycelial biomass 

n 64 22 

Range (mg g−1) 0.220–3.960 0.360–3.970 

Mean (mg g−1) 1.500 1.355 

SD (mg g−1) 0.914 0.783 

2.4. Training and Calibration of the NIRS Models 

Spectral data from the calibration set were analyzed by a principal component analysis (PCA) 

generating 20 different files by the combination of the mathematical treatments (spectra averaging, 

SNV, DT, SNV + DT, smoothing, gaps and derivatives) as described above. Anomalous spectra were 

identified by using the Mahalanobis distance (H-statistic, samples with H > 3.0) and discarded. 

A modified partial least squares (MPLS) regression method was used to obtain the NIRS 

equation for alkaloids and mycelial biomass. MPLS is similar to partial least squares (PLS) regression, 

but more stable and accurate. Similar to principal component regression, the PLS is based on a 

reduction of variables but the calibration process uses both the reference data and spectral 

information to form the factors useful for the fitting purposes [42]. The modification in MPLS consists 

of a standardization of the NIRS residuals at each wavelength, after one factor is calculated the 

residual is divided by the standard deviations before calculating the next factor. MPLS equations also 

were optimized by using mathematical treatments (MCS; SNV; DT and SNV-DT) to avoid spectra 

scattering effects. MPLS was applied on the 20 files generated by the PCA, creating a combination of 

other 20 pre-treatments, and obtaining a total of 400 different equations to be evaluated for the 

quantification of each alkaloids and the mycelial biomass. 

A cross-validation process was applied to select the optimal number of factors and to avoid 

overfitting [41]. Cross-validation is a subsequent series of comparisons between groups; in each step 

one group is alternatively evaluated using candidate equations developed from the remaining set. 

Differences among actual and calculated concentrations in each comparison are combined to 

determine the standard error of cross-validation (SECV). The SECV indicates the overall accuracy of 

the equation and it is taken to define the number of factors required in the evaluated equation. A 

removal process of atypical samples is applied twice during cross-validation, outliers are identified 

through the T value (residuals/SECV) and all samples that surpass a T value higher than 2.5 are 

eliminated from the calibration set. 

The selection of the best NIRS equations for alkaloid quantification was based on the following 

statistical methods: (i) the multiple correlation coefficient (RSQ) which measures the fitting degree 

between predicted data and actual concentration; (ii) the Standard Error of Calibration (SEC), an 

estimate of the best accuracy obtainable using the specific wavelengths of the calibration equation; 
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(iii) Residuals, differences between the actual value ��  and the predicted value; (iv) BIAS, the 

medium value of the residuals; (v) the Standard Error of Cross Validation (SECV), and (vi) the ratio 

of standard deviation (SD) to SECV of the data set, known as RPD ratio which according to Williams 

and Sobering [43] is desired to be larger than 2.0 for good calibration. 

Robustness of the NIR models for alkaloids and mycelial biomass quantification were 

corroborated through external validations with samples not included in the calibration set (Table 1). 

The NIRS-predicted and the reference data (GC, or mycelial biomass) were compared through a 

Student’s t-test for paired values, and the residuals were also calculated. 

3. Results 

3.1. Chemical Measurement 

Concentrations of NAL, NANL and NFL were measured in 216 samples of endophyte-infected 

S. pratensis. Non-infected plants did not produce the alkaloids. Results of the chemical measurement 

have been described in Cagnano et al. [36]. Briefly, there was a wide variation of the total 

concentration of lolines, calculated as sum of the concentrations of the single compounds (NAL, 

NANL and NFL), spanning from barely detectable traces (<25 mg∙kg−1) up to 5629 mg∙kg−1 (Table 1). 

NFL was the most abundant loline alkaloid accounting, on average, for 73% of total lolines, 

followed by NANL and NAL accounting for 16% and 11% of total lolines, respectively. Differences in 

the proportion of the three alkaloids were found at increasing concentrations, suggesting a trend 

according to which the production of high levels of lolines is correlated with a slight but significant 

increase in the proportion of NANL and NFL (R2 < 0.10) and with a greater decrease in NAL (R2 < 0.54). 

Fungal concentration was measured in a subset of 100 samples used for lolines quantification. 

Values ranged from 0.22 to 3.97 mg∙g−1 with an average of 1.45 mg∙g−1 (95% CI ± 0.19; SE = 0.1; n = 

100). In Cagnano et al. [38] a significant positive correlation between concentrations of loline alkaloids 

and in planta fungal biomass was measured using the non-parametric Kendall rank correlation 

coefficient (τ = 0.48; p = 2.5 × 10−10). 

3.2. NIR Analysis 

Figure 3 shows the NIR spectra of the 216 E+ meadow fescue samples used in this study within 

the range of 1100–2000 nm. 

 

Figure 3. Spectra from NIR range (1100–2000 nm) of the 216 samples of endophyte-infected 

Schedonorus pratensis. 
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Table 2 presents the results obtained after PCA was applied on the spectra with the mathematical 

treatments, numbers of principal components, variability explained, and spectral outliers. The 

variability explained by each model ranged from 98.88 to 100% and the number of outliers detected 

was relatively low compared to the total number of analyzed samples. 

Table 2. Number of principal components, variability explained, and outliers detected for each of the 

mathematical transformations resulted after principal component analysis on the NIR spectra of the 

Epichloë-infected meadow fescue samples. The mathematical treatments are indicated as follows: n = 

no scattering; s = standard normal variate (SNV); d = correction of trend (DT); and m = application of 

SNV + DT transformations. The smoothing, gaps and derivatives are indicated with a number next to 

the letter that indicate the scatter treatment: 0 = (0,0,1,1); 1 = (1,4,4,1); 2 = (2,4,4,1), 3 = (2,10,10,1); and, 

4 = (2,8,6,1). 

Mathematical Treatment Principal Components Variability Explained (%) Spectral Outliers 

n0 9 99.99 4 

n1 13 99.64 6 

n2 23 99.02 2 

n3 13 99.83 6 

n4 15 99.68 6 

s0 12 100 8 

s1 15 99.55 8 

s2 27 98.91 4 

s3 16 99.78 8 

s4 17 99.66 8 

d0 10 99.95 7 

d1 12 99.72 6 

d2 23 99.02 2 

d3 13 99.83 6 

d4 15 99.68 6 

m0 13 99.97 9 

m1 15 99.66 8 

m2 27 98.88 4 

m3 16 99.78 8 

m4 17 99.65 8 

The development of the quantitative models was done through the modified partial least 

squares method (MPLS) using the spectra and the reference concentrations of each alkaloid (NAL, 

NANL, NFL), and for mycelium biomass. In this procedure samples in which the alkaloid 

concentration was zero in the chemical analysis (GC) were not included. 

For each alkaloid and for the mycelium biomass a calibration model was developed as follows. 

There are two types of outliers, spectral outliers (H > 3) which means that they are too different than 

the average signal of the group, and the chemical outliers (T > 2.5) whose residuals are bigger enough 

therefore the laboratory and the NIRS results are not similar and they cannot be compared so 

including outliers in the development in the NIRS equations will affect they performance. After PCA, 

the number of PCs was selected and the spectral outliers (H > 3) were eliminated; then the 

mathematical treatments were applied, as explained in the Material and Methods section having 400 

equations to be evaluated for every loline alkaloid and the mycelia mass. The quantitative equation 

with the best statistical parameters (RSQ, SEC, SECV, and RPD) was selected and a cross validation 

was performed. Chemical outliers (T > 2.5) were eliminated for optimization of the equations, then 

the errors of prediction (SEP and SEPc) and prediction ability (RPD) were calculated. 

After analyzing samples identified as outliers, reported in Table 2, no particular pattern or 

cluster was detected; on the contrary, they were from different origins and had high heterogeneity in 

their characteristics. Moreover, as NIRS is affected by many causes such as humidity, plant variety, 

phenological state of the plants, and fungus species, the reasons for why those samples were 

identified as outliers are indefinite. 
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3.3. Quantification of N-Acetylloline (NAL) 

The best results of calibration for NAL quantification by NIR were obtained using the spectral 

pre-treatment n3 (no scattering), with the numerals (2,10,10,1). Thirteen principal components were 

required to explain 99.75% of the spectral variability among samples in the calibration set. Six samples 

were eliminated by the H criterion (Table 3). 

Table 3. Statistical parameters obtained from the equations developed for quantification of in planta 

concentrations of loline alkaloids and fungal biomass applying the modified partial least squares 

regressions in the NIR spectra of the meadow fescue samples. 

 NAL NANL NFL LOLINES MYCELIUM 

Principal Component Analysis (PCA)  

Pre-treatment † n3 s2 n0 n0 s0 

Number of principal components (PCs) 13 27 9 9 4 

Explained variability (%) 99.75 98.91 99.99 99.99 98.91 

Spectral outliers (H > 3.0) 6 4 4 4 4 

Modified Partial Least Squares (MPLS)  

Pre-treatment † s2 m2 m2 s2 d2 

Number of samples 143 142 146 146 65 

Standard deviation (SD) (mg∙kg−1) 65 189 767 1008 0.907 

Range (mg∙kg−1) 31–320 25–982 60–4327 101–5629 0.22–3.96 

Chemical outliers (T > 2.5) 6 5 7 7 2 

Multiple correlation coefficient (RSQ) 0.765 0.836 0.893 0.897 0.729 

Standard error of calibration (SEC) 

(mg∙kg−1) 
32 77 251 324 0.473 

Standard error of cross validation (SECV) 

(mg∙kg−1) 
51 141 520 667 0.78 

Number of PLS factors 10 10 10 10 10 

Groups in cross-validation 6 6 6 6 6 

Internal Validation  

Standard error of prediction (SEP) 

(mg∙kg−1) 
31 74 240 310 0.449 

Medium value of the residuals (BIAS) 

(mg∙kg−1) 
0 0 0 0 −0.003 

SEP corrected by the Bias (SEPc) 

(mg∙kg−1) 
31 74 241 311 0.453 

Multiple correlation coefficient (RSQ) 0.778 0.846 0.901 0.905 0.754 

Ratio performance deviation (RPD) 2.129 2.559 3.195 3.252 2.036 

External Validation  

Root mean standard error (RMSE = SEP) 

(mg∙kg−1) 
84 184 718 894 0.979 

Average residual (mg∙kg−1) 66 152 535 665 0.796 

Student’s t-test (p)  0.018 0.048 0.265 0.157 0.894 

Mycelial concentration is expressed in mg∙g−1. † Transformation of the NIR spectra: n = no scattering; 

s = standard normal variate (SNV). The smoothing, gaps and derivatives are indicated with the a 

number next to the letter: 0 = (0,0,1,1); 2 = (2,4,4,1); 3 = (2,10,10,1). 

The MPLS best performance for NAL quantification was obtained with the pre-treatment s2 and 

using ten PLS factors. The final calibration set was constituted by 143 samples because six samples 

were eliminated using the T criterion. The NIR model had an RSQ of 0.778, the lowest among the 

measured alkaloids, with SEC and SECV of 32 and 51 mg∙kg−1, respectively (Table 3). 

Internal validation of the model, by comparing the concentration of NAL obtained with GC with 

the values using NIRS equation (Figure 4) allowed the calculation of the SEP which was 31 mg∙kg−1 

and the predictive capability of the NIRS equation (RPD = 2.129). External validation of the NIR 

equation for quantification of NAL and the GS concentrations showed a p-value of the t-test of 0.02, 

therefore, the results of prediction are acceptable.  
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Figure 4. Internal validation comparing the concentrations of N-acetylloline (NAL), N-acetylnorloline 

(NANL), N-formylloline (NFL) and total lolines (as the sum of three alkaloids) obtained with 

conventional methods (GC) and the ones predicted by NIR spectroscopy using the modified partial 

least squares (MPLS) regression. The IC 95% is represented by the dashed lines. 

3.4. Quantification of N-Acetylnorloline (NANL) 

The model with the best performance for NANL quantification by NIRS was obtained when 

spectra were transformed by the mathematical treatment s2: standard normal variate (SNV) with the 

numerals (2,4,4,1) in the PCA, with twenty-seven factors that explained 98.91% of the spectral 

variability. In this process, four spectral outliers were detected and eliminated (Table 3). 

In the MPLS regression the mathematical treatment used was m2 which consists of the 

application of SNV + DT transformations correction of trend with the numerals (2,4,4,1) and ten PLS 

factors. The model for quantification of NANL had an RSQ of 0.836, a standard error of calibration of 

77 mg∙kg−1 and the standard error of cross-validation was 141 mg∙kg−1 (Table 3). 

Comparing actual NANL concentration with those values predicted by NIRS, it was found that 

the SEP was 74 mg∙kg−1 and the RPD was 2.56. Taking into account this RPD value, it is possible to 

use the NIRS models for quantification of NANL in meadow fescue samples (Figure 4). Results of the 
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external validation, in which the performance of the NIR equation for quantification of NANL was 

evaluated, indicated that the concentrations calculated were on the edge of the chosen statistical 

significance (p = 0.048) therefore, as for NAL, NIRS technology showed a good prediction capacity 

for the quantification of NANL. The RMSE in the calculation of the concentration using NIR was 184 

mg∙kg−1 and the residuals 151 mg∙kg−1. 

3.5. Quantification of N-Formylloline (NFL) 

The model with the best results for NFL was obtained using the spectral pre-treatment n0 (no 

scattering), with the numerals (0,0,1,1). Nine principal components were required to explain 99.99% 

of the spectral variability and four samples were eliminated by the H criterion. 

Similarly to NANL, the mathematical treatment that showed the best results in the MPLS 

regression was the m2 using ten PLS factors. The final calibration set was obtained with 146 samples 

because seven samples were eliminated using the T criterion. The calculated RSQ of this NIRs model 

was 0.901, the highest among the measured loline alkaloids, with a SEC and a SECV of 251 and 519 

mg∙kg−1, respectively (Table 3). 

The correlation between the concentration of NFL obtained with GC with the values using NIRS 

was 0.901 (Figure 4). The SEP was 240 mg∙kg−1 and the predictive capability of the NIRS equation was 

3.195. These statistical parameters show that the NIRS model for quantification of NFL works better 

than the other two loline alkaloids: the predicted concentrations were reliable and not significantly 

different from results obtained with GC (p = 0.265). 

3.6. Quantification of Total Lolines 

The model selected for the quantification of the total amount of loline alkaloids (defined as the 

sum of the concentrations of NAL, NANL and NFL), was obtained when the sample spectra were 

transformed using the mathematical pre-treatment n0: no scattering (0,0,1,1). Nine factors were 

required for PLS regression and explained 99.99% of the spectral variability (Table 3). As is shown in 

Table 3 for total lolines, we obtained a model developed using 146 samples, and only four spectral 

outliers were detected and then eliminated according to the H criterion. On the other hand by using 

the T criterion (high residual, T > 2.5) seven chemical outliers were identified. This equation, designed 

for quantification of total lolines, had a RSQ = 0.897 which is indicative of a high correlation between 

the conventional and NIRS methods ; a standard error of calibration (SEC) of 324 mg∙kg−1 and a 

standard error of cross-validation (SECV) of 667 mg∙kg−1 (Table 3). 

The uncertainty in the prediction due to the model is indicated by the standard error of 

prediction (SEP), the standard error of prediction corrected (SEPc) and by the residual (BIAS) 

obtained by means of internal validation. The correlation between the reference values and the ones 

predicted by NIRS samples from the calibration set is presented in Figure 4. The predictive capability 

of the model (RPD) was 3.252 indicating that the obtained model can be applied to estimate accurately 

total lolines concentration in meadow fescue samples. 

3.7. Quantification of Fungal Mycelium in Planta 

As regards the quantification of fungal mycelium in planta, the spectral pre-treatment s0 (SNV) 

with the numerals (0,0,1,1) was the most accurate model. Four principal components explained 98.91% 

of the spectral variability and four spectral outliers were detected. Calibration was based on 65 samples 

and two samples were eliminated according to the T criterion. The mathematical treatment d2, using 

10 PLS factors, was the one that gave the best results in the MPLS regression (Table 3). 

The calibration equation had a calculated RSQ of 0.754 (Figure 5), lower than the loline alkaloids, 

accordingly its predictive capability was 2.036. This was expected considering the lower number of 

samples. These data suggest that the prediction of fungal biomass using this model can be difficult 

and results should be taken cautiously but the equation could be improved by adding samples to the 

calibration set. 
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Figure 5. Internal validation comparing the concentrations of in planta fungal mycelium measured 

with an ELISA test and the ones predicted by NIR spectroscopy using the MPLS regression. The IC 

95% is represented by the dashed lines. 

4. Discussion 

The objective of this study was to investigate the suitability of NIRS to quantify loline alkaloids 

and fungal biomass in E. uncinata-infected meadow fescues. The results show that the spectral 

information obtained directly from powdered meadow fescue plant samples can be used to reliably 

quantify the total amount of lolines and NFL. The quantification of these alkaloids was accurate and 

highly correlated with data obtained from conventional methods (GC). The prediction models to 

estimate the concentrations of NANL, NAL and fungal mycelium were less precise but still able to give 

an estimation of their in planta concentrations. This report is the latest in a series of studies about the 

use of NIRS to quantify in planta grass endophyte alkaloids [9,27]. This technique can be a helpful and 

relatively cheap tool in studies with a high number of samples or in breeding programs of companies 

working with E+ grass varieties where NIRS is already widely used to phenotype grass varieties. 

The NIRS equation for quantification of the total amount of loline alkaloids had high accuracy 

(RSQ > 0.90) despite the fact that the set of samples was composed of wild meadow fescue accessions 

with diverse origins, conditions and alkaloids concentrations, indicating the high robustness of this 

method. If this method was applied to a single cultivar, the accuracy could have been increased even 

further because of the higher homogeneity of the plant material. For instance, the accuracy of the 

NIRS equation developed to quantify ergovaline on a single tall fescue cultivar (RSQ = 0.93) [27] was 

more accurate than the one reported by Soto-Barajas et al. [9] (RSQ = 0.76) developed on a mixed set 

of wild and commercial plants. Roberts et al. [43] indicated that the precision of the prediction may 

be affected by the concentration of the alkaloid in the plant; this could explain why the prediction 

models for the total amount of lolines and for NFL are more precise than the ones for NAL and 

NANL, which are less concentrated and account for only 10%–15% of the total amount of lolines. 
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Moreover, when working with loline alkaloids, interferences by other lolines or their precursors 

cannot be excluded due to their very similar chemical structure. This could have biased the external 

validation of the less concentrated alkaloids decreasing the precision of the calibration and resulting 

in significant differences with the GC measurements. But this suggestion should be validated because 

herein the near infrared region was studied and not mid-infrared region, where it is easier to attribute 

differences of absorbance to specific chemical bounds and to identify their possible origins [27]. 

Unlike ergovaline or lolitrem B, loline alkaloids are not toxic to livestock, therefore although 

precise measurements are important, there are not legal thresholds that have to be taken into account 

and that cannot be overcome in commercial varieties. Loline alkaloids are correlated with activity 

against Costelytra zealandica at concentrations greater than 450 ppm [44], against the Argentine stem 

weevil at concentrations greater than 400 ppm [45] and against Schizaphis graminum at concentrations 

in the range of 67 to 576 ppm [46]. These toxic levels indicate that the SECV for total lolines (667 ppm) 

or for NFL (520 ppm) would not be inconvenient to detect plant samples with high levels of lolines 

(above 570 ppm) which are desirables for insect deterrence. Note that the range of total lolines 

concentration was 101–5629 ppm and E. uncinata infected plants are commonly found with lolines 

levels from a few thousand parts per million [47] up to 16,000 ppm and above [48]. The measurement 

of the exact concentration of each of the three loline alkaloids might be interesting for some studies, 

but in terms of insect resistance, the most studied trait is the total amount of lolines [28,49] which can 

deter insects from feeding on the host or have insecticide effects. Large-scale screenings are used to 

isolate strains producing high levels of loline alkaloids to artificially inoculate them in elite grass 

varieties [36]. In this respect NIRS can be used for a fast and relatively cheap preliminary screening 

to isolate the most performing strains, where the high levels of lolines are only slightly affected from 

the SECV. 

As regards mycelial biomass, NIRS provides a good estimate (RSQ = 0.75; RPD = 2.04) of the 

endophyte concentration in the host, comparable to the one obtained by Tamburini et al. [50] which 

used NIRS to quantify the concentration Fusarium proliferatum in garlic (RSQ = 0.76; RPD = 2.04). 

Accuracy can be further improved by increasing the number of samples or by using more 

homogenous plant material with a smaller range of concentrations. This method is suitable for 

screening a large number of samples when manual counting of hyphae would be too laborious, and 

it is cheaper than using ELISA and qPCR based protocols. It would be interesting to know how NIRS 

can detect fungal mycelium, if through detection of structural compounds of the fungus, i.e., 

ergosterol a component of fungal cell membranes, or other compounds. 

5. Conclusions 

Near infrared spectroscopy is a versatile analytical technique currently used in many different 

fields, including grass breeding. No matter the constituents of interest, the first required step is the 

acquisition of the near infrared spectrum of the sample. Once the spectrum has been measured, the 

information that can be inferred from it are only limited by the calibrations available on the 

compounds of interest. 

Our results showed that the use of NIRS and chemometrics allows the quantification of loline 

alkaloids and mycelial biomass in a heterogeneous set of meadow fescue samples. The accuracy of 

the equation is affected by several variables, among which there is the concentration of the analyte, 

therefore the prediction of the total amount of lolines and of NFL were more accurate than the ones 

of NANL, NAL, and with similar precision to the conventional (GC) methods. Since NIRS is already 

used in routine analysis of forage, alkaloid measurement can be easily implemented when testing 

Epichloë-infected varieties. This is the first report of the near-infrared spectroscopy for analysis of 

Epichloë fungal biomass in planta, a trait with important implications that has been rarely investigated 

in the current literature. 

Although in this investigation S. pratensis was evaluated as the experimental plant material, this 

technique might be useful in similar situations for other forage species infected with Epichloë 

endophytes, providing an important parameter to scientists involved in routine forage quality 

research and nutritional analyses of feedstuffs. 
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