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Abscisic acid (ABA) is a key plant stress-signaling hormone that accumulates
upon osmotic stresses such as drought and high salinity. Several proteins have
been identified that constitute the ABA-signaling pathway. Among them ABA
receptors (PYR/PYL/RCAR), co-receptor PP2Cs (protein phosphatases), SnRK2
kinases (SNF1-related protein kinases) and ABI5/ABFs (transcription factors) are the
major components. Upon ABA signal, PYR/PYL receptors interact with and recruit
PP2Cs, releasing SnRK2s kinases from sequestration with PP2Cs. This allows SnKR2s
to promote the activation of downstream transcription factors of ABA pathway. However,
apart from activation, ubiquitination and degradation of core proteins in the ABA
pathway by the ubiquitin proteasome system is less explored. In this review we will focus
on the recent findings about feedback regulation of ABA signaling core proteins through
degradation, which is emerging as a critical step that modulates and eventually ceases
the signal relay. Additionally, we also discuss the importance of the recently identified
effector protein HOS15, which negatively regulate ABA-signaling through degradation
of OST1.
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INTRODUCTION

Being sessile by nature, plants have evolved the ability to alter their physiology and development
to adapt to the environmental challenges (Bohnert et al., 1995). Unfavorable conditions, such as
high salinity, cold or drought stress, are important challenges to agriculture as they reduce the
yield potential of crop plants. Phytohormones play a pivotal role in environmental adaptation by
inducing many biochemical and physiological changes to respond to biotic and abiotic stresses
(Cao et al., 2011; Seo et al., 2014; Pozo et al., 2015). Among them, abscisic acid (ABA) is an
important regulator of plant growth and development that also plays a crucial role in both biotic
and abiotic stress responses (Lee et al., 2006; Adie et al., 2007; Mang et al., 2012; Finkelstein, 2013).
ABA regulates multiple physiological processes such as seed maturation, embryo morphogenesis,
and stomatal movement to rescue plants under water deficit condition (Yoshida et al., 2002;
Finkelstein, 2013; Murata et al., 2015). The phenotypes of the ABA-defective mutants (both in
synthesis and/or signaling), which included loss of seed dormancy and early seedling growth and
loss of stomatal movement, supported the importance of ABA in developmental and physiological
responses (Koornneef et al., 1982; Lee et al., 2006; Finkelstein, 2013).
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In response to environmental stresses ABA levels rise and set
in motion the adaptive stress responses (Zabadal, 1974; Lee et al.,
2006; Hua et al., 2012). The perception of ABA is achieved by
a family of ABA receptors named Pyrabactin Resistance (PYR),
or Regulatory Component of ABA Receptor (RCAR) (Ma et al.,
2009; Park et al., 2009). In the presence of ABA, the ABA
receptors PYR/PYL(PYR-Like)/RCAR function at the apex of a
negative regulatory pathway to directly bind to and inactivate
type 2C Ser/Thr protein phosphatases (PP2Cs) (Geiger et al.,
2009; Ma et al., 2009; Park et al., 2009; Rodrigues et al., 2013).
This allows the activation of SnRK2 kinases (Snf1-related protein
kinase class 2), which subsequently phosphorylate ABI5/ABFs
transcription factors (ABA-Insensitive5/ABA-responsive element
binding factors) (Fujii et al., 2009). However, negative effectors
that modulate the intensity of the response, and which will
eventually cancel the signaling cascade, must also come into
action to counteract this positive signal relay and prevent a run-
away process. Finely controlled protein stability is emerging as a
novel critical regulatory layer accounting for signal termination,
and also for desensitization upon repeated or sustained stimuli.
Here, we summarize recent insights into controlled protein
degradation of signaling effectors of the ABA pathway, with an
emphasis on the newly discovered player HOS15, a component
of the protein ubiquitination machinery that tags SnRK2.6/OST1
and histone deacetylase 2C (HD2C) for degradation, thereby
modulating ABA signaling, chromatin status and gene expression
in response to dehydration and cold stresses in Arabidopsis (Park
et al., 2018; Ali et al., 2019).

UBIQUITIN PROTEASOME SYSTEM
(UPS)

Protein degradation by the Ubiquitin Proteasome System
(UPS) is an important posttranslational regulatory step that
controls protein stability and turnover. Protein ubiquitination
combines activities of three enzymes, E1 (ubiquitin-activation),
E2 (ubiquitin-conjugation), and E3 (ubiquitin ligase) (Pintard
et al., 2004; Hotton and Callis, 2008). Target specificity is
conferred by E3 ligases, and hence the Arabidopsis genome
contains over 1400 genes encoding E3 ligases, which are classified
into two groups (Vierstra, 2009). One group acts as a single
subunit, which consists of RING-type (Really Interesting New
Gene) E3 enzymes. The other group, which functions as a
multi subunit complex, includes SCF (Skp1-Cullin-F-box) and
APC (Anaphase Promoting Complex) (Vierstra, 2009). In the
recent past, a number of RING-type E3 ligases were identified
in Arabidopsis that were shown to be involved in various
cellular processes, such as hormones signaling (auxin and ABA),
seed germination and early seedling development and adaptive
pathway to water limitation (Xie et al., 2002; Zhang et al., 2005,
2008; Stone et al., 2006; Bu et al., 2009; Huang et al., 2010).
Among them, CULLIN4 (CUL4) has been described in greater
detail due to its major role in different biological pathways. CUL4
interacts with DDB1 (DAMAGED DNA BINDING PROTEIN1)
and a WD40-repeat protein as its substrate receptor (He et al.,
2006; Hotton and Callis, 2008; Hua and Vierstra, 2011; Seo

et al., 2014). The WD40-repeat (also known as the ß-transducin
repeat) is a structural motif that folds as a solenoid-like structure
called the WD40 domain. WD40-repeat proteins function as to
facilitate multi-protein complex assemblies, where they serve as
the scaffold for protein-protein interactions, including those of
E3 ubiquitin ligases with target proteins. The Arabidopsis protein
HOS15 (HIGH OSMOTIC STRESS GENE EXPRESSION 15) is
a substrate receptor for the CULLIN4 (CUL4)-based ubiquitin
E3 ligase that plays a negative role on ABA signaling and plant
acclimation to cold (Lee et al., 2008; Zhu et al., 2008; Park
et al., 2018). In the cold-stress response, HOS15 functions to
mediate the cold-induced degradation of histone deacetylase 2C
(HD2C) in the promoters of the COLD-RESPONSIVE (COR)
genes. Enhanced histone acetylation switches the chromatin from
an “open” status that facilitates recruitment of CBF (C-REPEAT
BINDING FACTOR) transcription factors to the COR genes
(Park et al., 2018). We have recently shown that HOS15 also
plays a substantial role in regulating the signaling flux in response
to ABA by controlling the protein stability and abundance of
intermediaries in the pathway (Ali et al., 2019).

PYR/PYL/RCAR (ABA receptors), PP2Cs (phosphatases),
SnRKs (SNF1-related protein kinases) and ABI5/ABFs
(transcription factors) are major components of forward
ABA-signaling (Fujii and Zhu, 2009; Park et al., 2009). Ten
SnRK2 members (SnRK2.1 to SnRK2.10) have been identified
in Arabidopsis (Hrabak et al., 2003), with three of them
(SnRK2.2/2.3/2.6) being activated by ABA (Fujita et al., 2009).
Among the three, SnRK2.6/OST1 specifically regulates water
loss through stomata (Yoshida et al., 2002; Hua et al., 2012).
Evidence is emerging that ubiquitination and degradation of
these ABA-signaling components is of upmost importance to
fully understand that how this signaling pathway is modulated
and eventually ceased (Table 1).

TABLE 1 | List of E3 ligases (and other proteins/linkers) which regulate protein
level of ABA signaling core components.

E3 ligases/Linkers Target protein Published by

AFP1 ABI5 Lopez-Molina et al., 2003

DWA1/DWA2 ABI5 Lee et al., 2010

KEG ABI5/ABF1/3 Liu and Stone, 2013;
Chen et al., 2013

ABD1 ABI5 Seo et al., 2014

RSL1 PYL4/PYR1 Bueso et al., 2014

DDA1 PYL4/8/9 Irigoyen et al., 2014

ALIX PYL4/5/8/L9 García-León et al., 2019

RIFP1 RCAR3 Li et al., 2016

REA1 PYL9 Li et al., 2018

PUB22/PUB23 PYL9 Zhao et al., 2017

FYVE1 PYL4 Belda-Palazon et al., 2016

VPS23A PYR1/PYL4 Yu et al., 2016

PUB12/PUB13 ABI1 Kong et al., 2015

RGLG1/RGLG5 PP2CA Wu et al., 2016

PIR1/PIR2 PP2CA Baek et al., 2019

BPM3/BPM5 ABI1/ PP2CA/HAB1 Julian et al., 2019

PP2B11 SnRK2.3 Cheng et al., 2017

HOS15 OST1 Ali et al., 2019
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ABA RECEPTORS (PYR1/PYL/RCAR)

Several reports in the recent past have shown that ABA receptors
are degraded by a number of E3 ligases in an ABA-dependent
manner (Table 1). Sorting and vacuolar degradation of ABA
receptors are mediated by components of the ESCRT machinery
(Endosomal Sorting Complex Required for Transport), i.e.,
FYVE1 and VPS23A (Belda-Palazon et al., 2016; Yu et al., 2016).
ALIX (ALG-2 INTERACTING PROTEIN-X), another ESCRT
protein, directly interact with ABA-receptors (PYL4/5/8/9)
in late endosomes and promote their degradation (García-
León et al., 2019). Furthermore, genetic interference with
ALIX function leads to altered endosomal localization and
increased accumulation of ABA receptors, indicating that to
perform normal function, inhibition of ABA-receptor’s over-
accumulation needs to be carried out (García-León et al.,
2019). Degradation of RCAR1/PYL9 mediated by PUB22 and
PUB23 (U-box E3 ligases) has recently been shown (Zhao
et al., 2017). Additionally, RAE1, a WD40 repeat protein, and

RIFP1, an adaptor subunit of the SCF ubiquitin ligase complex,
promote the degradation of RCAR1 and RCAR3, respectively
(Li et al., 2016, 2018). Based on these reports one can easily
assume that regardless of their positive role, controlled turnover
of ABA-receptors at protein level is a critical step that fine
tunes ABA-signaling pathway. The reason why degradation
of the ABA receptors and of other signaling intermediaries
(Table 1) is redundantly achieved by several types of E3 ligases
is presently unknown. Likely, seemingly redundant ways leading
to protein degradation reflect the diversity of developmental and
physiological processes in which the target proteins participate or
their diverse subcellular locations (see below).

PROTEIN PHOSPHATASES
(ABI/HAI/HAB)

Next to ABA receptors, protein phosphatases (PP2Cs), acting
as co-receptors of ABA, have emerged as important regulators

FIGURE 1 | HOS15 negatively regulates ABA signaling through OST1 degradation. Resting state: Under normal condition ABI1/2 and HOS15 interact with OST1.
ABI1/2 inhibits OST1 activity by de-phosphorylation and HOS15 degrades OST1 to keep it in a resting state. Activation phase: In response to ABA, PYR1 binds to
ABA thus interacting with and inhibiting ABI1, releasing OST1 from sequestration with ABI1/2. HOS15 and OST1 interaction is diminished by ABA, which leads to
OST1 activation. OST1 is first auto-phosphorylated and then trans-phosphorylates target TFs. De-activation: After removal of ABA from the system (4 h later),
ABI1/2 again interacts (reverse reaction) with and dephosphorylates OST1, recruiting HOS15 to OST1 for degradation. Note that HOS15 also degrades OST1 within
hours of sustained ABA treatment by a mechanism that involves ABI1/2 upregulation and dephosphorylation of OST1, leading to ABA de-sensitization (Ali et al.,
2019).
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of ABA-signaling. Primarily, PP2Cs function as inhibitors of
ABA-signaling pathway through inactivation of SnRK2 kinases
(Brandt et al., 2012). Members of protein phosphatases PP2Cs
that include ABI1/2, HAB1/2, HAI1/2/3, and AHG1/3 sequester
SnKR2 kinases, inhibiting their kinase activity and thus functions
as negative regulators of ABA-signaling. To release from
sequestration by PP2Cs, SnRK2 kinases require ABA binding
to PYR1/PYL/RCAR receptors (Fujii et al., 2009). Furthermore,
increased or decreased phosphatase activities of these PP2Cs
result in altered ABA responses that are SnRK2-dependent. For
instance, knock out mutants of PP2Cs such as abi1-2 display
enhanced ABA signaling, whereas dominant-negative mutations
of the same PP2C (abi1-1), lead to suppression of ABA-signaling
in a SnRK2s-dependent manner (Umezawa et al., 2009). PP2Cs
are also regulated through proteasomal degradation. Degradation
of ABI1, a well-known protein phosphatase in the ABA-signaling,
has been reported (Kong et al., 2015). PUB12/PUB13 (U-box E3
ligases) interact with ABI1 and are able to ubiquitinate ABI1 in
the presence of ABA. The ubiquitinated ABI1 is degraded by the
26S proteasome (Kong et al., 2015). Beside ABI1, the degradation
of PP2CA, another phosphatase that negatively regulate SnRK2s
activity, was recently reported, which is mediated by the RING
finger E3 ligases RGLG1/RGLG5 and PIR1/PIR2 (Wu et al., 2016;
Baek et al., 2019). In all these cases, E3 ligases positively modulate
ABA signaling by targeting the phosphatases for degradation,
thereby amplifying the signal flux.

As with the ABA receptors, more than one E3 ligase modifies
a single substrate depending on the physiological context (Hare
et al., 2003; Liu and Stone, 2010; Cheng et al., 2012; Seo
et al., 2014). For instance, PP2CA protein stability is modulated
by both RGLG1/5 and PIR1/2 (Wu et al., 2016; Baek et al.,
2019). However, compared with RGLG1/5, PIR1 and PIR2 can
strongly interact with PP2CA in the absence or the presence of
low ABA, suggesting that PIR1 and PIR2 may regulate PP2CA
protein stability under non-stress conditions (Wu et al., 2016;
Baek et al., 2019).

Snf1-RELATED KINASES2 (SnRK2s)

Although Snf1-Related Kinases (SnRK2s) kinases are major
components that regulate ABA-signaling pathway, little is known
about the feedback regulation of SnRK2s in post-ABA condition
to terminate the signal. Overall, de-activation of SnRK2s at
protein level, has been less studied and only few reports
are available to date (Table 1). Upon ABA signal, activated
SnRK2s phosphorylate and activate target proteins including
ABF transcription factors (Fujita et al., 2009). Interestingly, the
activated ABFs bind to the promoters of ABI1 and ABI2 genes
and promote their transcription, thereby controlling SnRK2s
activity through a negative feedback regulation loop (Wang
et al., 2018). Besides dephosphorylation by PP2Cs, AtPP2-B11,
a component of the SCF ubiquitin E3 ligase complex, has
been shown to promote the ABA-dependent ubiquitination and
degradation of SnRK2.3 (Cheng et al., 2017). More recently,
we have also shown that the degradation of SnRK2 kinases
is really important for the controlled turnover of ABA signal

relay. Using yeast two hybrid screen, we identified that HOS15
interacts specifically with OST1, SnRK2.3 and ABI1/2 (and
very weakly with HAI1). Further analysis showed that HOS15
specifically interacts with OST1 in an ABA-dependent manner
and promotes its degradation (Ali et al., 2019). OST1 level was
highly accumulated in hos15-2 plants, which leads to significant
tolerance to drought stress (Ali et al., 2019).

INVOLVEMENT OF HOS15 IN
ABA-SIGNALING PATHWAY

HOS15, a substrate receptor in the CUL4-DDB1 E3 ligase
machinery, negatively regulate ABA-signaling and drought stress
by interference with OST1 stability (Ali et al., 2019). HOS15
was found to interact with ABI1, ABI2, and OST1; however,
only HOS15 and OST1 interaction was diminished by ABA
(Ali et al., 2019). OST1 level was remarkably stable and
accumulated in hos15-2 compared to wild type (Columbia-0)
plants, demonstrating that HOS15 negatively regulates OST1
stability, presumably leading to termination of ABA signaling (Ali
et al., 2019). Loss-of-function hos15-2 mutant plants are hyper-
sensitive to ABA during germination and extremely tolerant to

FIGURE 2 | ABA signaling core proteins and their correspondent E3 ligases.
In response to ABA, PYR/PYLs bind ABA, which promotes their interaction
with PP2Cs and the release of SnRK2s from sequestration by PP2Cs.
Activated SnRK2 kinases phosphorylate target transcription factors that
induce the expression of ABA responsive genes. On the right side, E3 ligases
are shown which have been shown to promote the degradation of ABA
signaling core proteins.
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drought stress, indicating the importance of HOS15 as a negative
regulator (Ali et al., 2019). Moreover, ABA- and dehydration
stress-responsive genes were highly induced in hos15-2 plants
under dehydration stress (Ali et al., 2019). Since HOS15 plays
a major role in ABA-signaling network, we were interested to
place HOS15 in the current model of ABA-signaling pathway.
Under normal condition ABI1/2 inhibits OST1 activity by
dephosphorylating it (Yoshida et al., 2006; Park et al., 2009).
In the presence of ABA, PYR1 inhibits ABI1, releasing OST1
that auto-phosphorylates itself and then trans-phosphorylate the
target TFs (Antoni et al., 2012). Furthermore, ABA also impairs
HOS15 and OST1 interaction (Ali et al., 2019), indicating that in
the presence of ABA, inhibitory components are kept stay-away
from OST1 (and other SnRK2s) that phosphorylate and activates
ABA responsive components. By contrast, ABA has no clear effect
on HOS15 interaction with ABI1 and ABI2 (Ali et al., 2019),
demonstrating that once the ABA pathway is activated, OST1
is released from the HOS15-ABI1/2 complex. However, when
ABA-pathway is about to turn-off, ABI1/2 promotes HOS15 and
OST1 interaction, which leads to OST1 degradation (Figure 1).
Importantly, we found that under sustained ABA stimulus,
activated OST1 promoted de novo synthesis and accumulation
of ABI1/2, which in turn dephosphorylated and promoted the
degradation of OST1 (Figure 1). Accordingly, de-phosphorylated
OST1 was the preferred substrate for HOS15 (Ali et al., 2019).
Together, these functional and physical interactions depict the
activity of a biological rheostat that through quantitative and
mutual regulation of both positive and negative effectors achieves
the adaptive modulation of signal amplitude and duration. In
summary, HOS15 plays a crucial role in regulating ABA-signaling
by degradation of OST1 and thus keeping a balance between
active and inactive state.

ABFs/ABI5

Activation of ABFs/ABI5 transcription factors (TFs) by
SnRK2s completes the signal relay and links ABA signaling
with ABA-dependent gene activation. Like their activation
by phosphorylation, degradation of ABFs/ABI5 TFs by 26S
proteasome has also been studied in detail (Table 1 and Figure 2).
The first evidence regarding degradation of ABFs/ABI5 TFs was
the identification of ABI FIVE BINDING PROTEIN1 (AFP1), a
member of a small plant-specific protein family. AFP1 directly
binds to ABI5 and facilitates ubiquitin-mediated proteolysis
of ABI5 (Lopez-Molina et al., 2003). More recently, a number

of E3 ligases and WD40-repeat proteins have been identified
as negative regulators of both ABFs and ABI5 (Table 1). KEG
(KEEP ON GOING), a RING-ANK E3 ligase, is required for the
regulation of ABI5/ABF1/ABF3 abundance (Chen et al., 2013; Liu
and Stone, 2013). In vivo studies have shown that in the absence
of ABA, KEG ubiquitinate ABF1/ABF3/ABI5, and promotes
proteasomal degradation of them (Liu and Stone, 2013). In
addition, DWA1 and DWA2 (DWD hypersensitive to ABA1/2)
are substrate receptors for the DDBI CULLIN4-based E3 ligases
that directly interact with ABI5 and mediate the degradation
of ABI5 by ubiquitination (Lee et al., 2010). More recently, Seo
et al. (2014) found that ABD1, a WD40-repeat protein, directly
interacts with and degrades ABI5. These reports indicate that
activation and degradation of ABA-signaling components are
critical processes that regulate ABA signaling pathway in a very
fine way and that both processes are important alike.

CONCLUSION

The plant hormone abscisic acid (ABA) controls a number
of developmental processes including seed maturation,
germination, embryogenesis, plant growth and development,
and senescence (Zabadal, 1974; Lee et al., 2006; Finkelstein, 2013;
Murata et al., 2015; Zhao et al., 2016). Several proteins were
identified that work together to regulate ABA signaling including
ABA-receptors and co-receptors, kinases and TFs (Fujii et al.,
2009; Fujita et al., 2009; Park et al., 2009; Brandt et al., 2012).
Activation and de-activation (degradation) of these proteins got
huge attention in the recent past (Figure 2); however, compared
to activation, little is known about degradation of these proteins.
This review sheds light on the recent studies that focused on
the degradation of ABA-signaling core components. Further
investigations on how different E3 ligases are activated to degrade
ABA core proteins, are the future goals.
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