1	Can calcium aluminates activate ternesite hydration?
2	
3	M. Montes, E. Pato, P. Carmona-Quiroga, M.T. Blanco-Varela [*]
4	Instituto de ciencias de la construcción Eduardo Torroja (IETcc) (CSIC), Serrano
5	Galvache 4, 28033 Madrid, Spain
6	*corresponding author: blancomt@ietcc.csic.es
7	Abstract
8	
9	Aluminium hydroxide (AH ₃) has recently been shown to be able to activate hydration in
10	ternesite, a phase found in some calcium sulfoaluminate (CSA) cements.
11	This study explored the capacity of a number of calcium aluminates (C ₃ A, C ₁₂ A ₇ , CA
12	and $C_4A_3\overline{S}$) to activate ternesite hydraulic reactivity. After laboratory synthesis, the
13	aluminates were blended with ternesite at a ratio of 1:2 and their hydration was
14	monitored with isothermal conduction calorimetry for 7 days at 25 °C. The resulting
15	pastes were analysed with XRD, FTIR and DTA. The presence of ternesite in the pastes
16	altered the aluminate heat flow curves, shortening the induction period and bringing the
17	reaction peak forward, an indication of hastened hydration. Ternesite also altered the
18	reaction products, which included calcium monosulfoaluminate hydrate and strätlingite.
19	
20	Keywords:
21	
22	Ternesite, Calcium Aluminates, Hydration Products, Hydration Heat
23	
24	
25	1. Introduction

27 The mass production of portland cement (OPC) entails the consumption of vast amounts 28 of raw materials and accounts for 4 % to 6 % of worldwide anthropogenic CO₂ 29 emissions (0.8-0.9 t CO₂/t clinker) [1]. 30 The cement industry is currently seeking to develop less energy-intensive, lower 31 Greenhouse gases (GHG) emission cements. Calcium sulfoaluminate (CSA) cements, 32 one of the most promising alternatives, are characterised by lower energy costs (at 33 1250 °C, the clinkering temperature is 200 °C lower than in OPC clinker) and GHG. 34 These products emit from 25 % to 40 % less CO₂ during manufacture than OPC, 35 depending on the composition [2]. Whilst not presently used for structural purposes due 36 to the lack of the necessary regulation, they are commercialised as components for 37 special mortars and concretes (such as repair or self-levelling concrete, sealing mortar 38 or shotcrete). 39 The composition of the clinker in these cements may differ, although all lie in the CaO-40 Al_2O_3 -SiO₂-Fe₂O₃-CaSO₄ system and have lower calcium and silicon and higher 41 aluminate and sulfate phase contents than portland cements. The minerals present in the clinker include $C_4A_3\overline{S}$, C_2S , $C_{12}A_7$, CA, Cs and C_4AF^* , although the aluminates 42 43 predominate [3,4]. 44 Ternesite, $C_5S_2\overline{S}$, which also lies within this system, is a phase compatible with 45 ye'elemite ($C_4A_3\overline{S}$) and C_2S . It is found primarily in the crust covering the areas of 46 portland cement kilns where the temperature is no higher than 1250 °C and as a minority component in some CSA cements [5, 6, 10]. A calcium sulfosilicate, ternesite 47 48 is formed in the reaction between anhydrite and belite. Bullerjahn et al. [6, 7] proposed 49 a two-stage method for ternesite formation, in which clinker is synthesised at a

26

50 temperature of 1250 °C and then cooled by gradually ramping the temperature down to

51 800 °C. Further to recent thermodynamic predictions and empirical observation, if 52 atmosphere (partial pressure of SO_2 and O_2) and temperature are controlled, belite- and 53 ternesite-high sulfoaluminate clinkers can be readily produced in a single-stage process 54 at temperatures of over 1200 °C [8].

55 Although ternesite has traditionally been regarded as hydraulically inactive and of no

technological interest [9], recent studies have shown that it is activated by amorphous

57 AH₃. It hydrates, then, in their presence, yielding ettringite and C-S-H respectively the

58 main hydration products in CSA and portland cements and the phases to which they

owe their mechanical strength and durability. Strätlingite may also form with or insteadof C-S-H [11].

Solubility of amorphous aluminum hydroxide in water at 25°C is very low ([Al] \approx 1,607x10⁻⁷ M/l and pH 6,789; database used: concrete_3T_V07_02 and calculated with Phreeqc), it depends on the pH of medium and it rises both when pH increases or decreases from neutrality, being Al(OH)₄⁻ the only ionic specie present at pH higher than \approx 8,5 [11]. Solubility of ternesite is not known, but it seems that its dissolution produces hydrolysis and a pH near to 12 [12].

67

68 The solution in contact with ternesite and AH₃, contains Al(OH)₄, Ca²⁺, SO₄²⁻, SiO₃H⁻,

69 OH⁻ ions that will react when the solubility products of ettringite or strätlingite or

70 calcium monosulfoaluminate hydrate or or C-S-H etc, are achieved; the precipitation of

71 the said phases will consume ions in solution stimulating then new ternesite

72 solubilisations.

Given the low water solubility of AH_3 , other, more soluble aluminates might be thought

to act as activators and stimulate ternesite hydration more efficiently.

76	Such aluminates and ternesite might be the main phases in a future CSA cement with a
77	composition lying within the CaO-Al ₂ O ₃ -SiO ₂ -Fe ₂ O ₃ -CaSO ₄ system.
78	The purpose of this study is to explore the capacity of a series of calcium aluminates
79	(C ₃ A, C ₁₂ A ₇ , C ₄ A ₃ \overline{S} and CA) to activate ternesite hydration, establishing the reactions
80	involved and identifying the reaction products.
81	
82	
83	2. Experimental
84	
85	Ternesite ($C_5S_2\overline{S}$), ye'elemite ($C_4A_3\overline{S}$), C_3A , $C_{12}A_7$ and CA were synthesised from
86	stoichiometric blends of laboratory-grade CaCO ₃ , SiO ₂ , Al ₂ O ₃ and gypsum
87	(CaSO ₄ \cdot 2H ₂ O). The samples were weighed, ground in a ceramic mortar, homogenised
88	in an ethanol medium and dried at 100 °C. A pressure of 300 kp/cm^2 was applied to the
89	powder obtained to prepare 2 cm diameter cylindrical pellets weighing approximately
90	4 g. The pellets were calcined at 1200 °C ($C_5S_2\bar{S}$), 1250 °C ($C_4A_3\bar{S}$), 1350 °C ($C_{12}A_7$
91	and CA) or 1400 °C (C ₃ A) for 2 h. They were subsequently ground, homogenised, dried
92	and new pellets were prepared and calcined at the same temperatures, ternesite and
93	ye'elemite for 6 h and the other calcium aluminates for 5 h. This process was repeated
94	through conclusion of the synthetic reactions.
95	Particle size distribution in the synthesised phases was determined and recorded on a
96	Malvern Mastersizer S particle size analyser with 632.8 nm He-Ne laser optics after
97	subjecting samples suspended in ethanol with 5 drops of dispersant (DOLAPIX CE64
98	1/100) to ultrasonic dispersion for 5 min. The findings are given in Figure 1 and
99	Table 1.

100 Phase purity was determined by applying Rietveld refinement to the X-ray diffraction101 (XRD) patterns (Table 2).

102 Aluminates and ternesite blend hydration (aluminate:ternesite=1:2 by mass) were

- 103 monitored for 7 d at 25 °C on a Thermometric TAM Air isothermal conduction
- 104 calorimeter. Three g of sample were stirred manually with 2.1 g of water (liquid/solid
- 105 ratio = 0.7) for 3 min prior to insertion in the calorimeter. Upon finalisation of the
- 106 calorimetric tests, the samples were submerged in acetone to detain hydration and
- 107 vacuum drying was used to remove water. The products were characterised with X-ray
- 108 diffraction (XRD), IR spectroscopy (FTIR) and differential thermal analysis-
- 109 thermogravimetry (DTA-TG).
- 110 The mineralogy of the synthetic phases and hydrated samples was determined on a
- 111 Bruker D8 Advance X-ray diffractometer, fitted with a high voltage, 3 kW generator
- and a 1.54 Å CuKa anode X-ray tube operating at 40 kV and 50 mA. This instrument
- 113 was coupled to a Lynxeye detector with a 3 mm anti-scatter slit and a 0.5 % Ni K-beta
- 114 filter, with no monochromator.
- 115 XRD patterns of synthesized aluminates and ternesite were recorded at 5° -70° 20
- angles, with a step size of 0.01973°, and a 2 s step time. Rietveld quantitative analysis
- 117 [13] was conducted on the XRD findings using GSAS software [14].
- 118 XRD patterns were recorded for the ternesite-bearing hydrated aluminates, likewise at
- 119 $5^{\circ}-70^{\circ} 2\theta$ angles with a step size of 0.01973°, while varying the step time to 6 s-10 s.
- 120 Corundum (Al₂O₃) was added to these samples at a rate of 25 % to quantify the
- 121 amorphous phase [15].
- 122 XRD scans were taken of the aluminate hydrated samples 5°-60° 2 θ at a step size of
- 123 0.019746° and a 0.5 s step time.

124	$C_{12}A_7$ +ternesite hydration was also XRD-monitored for 20 h: 5°-30° 2 θ angles, step	
125	size 0.019746° and step time 0.5 s. Scans were recorded every 10 min during the first	
126	10 h, and every 30 min from the 11 th through the 20 th hours. The paste was introduced	
127	in an air-tight sample holder to prevent carbonation and drying.	
128	For FTIR analysis of the 7 d pastes, vacuum pressure of 10 atm was applied for 3 min to	
129	pellets prepared with approximately 1 mg of sample in 300 mg of KBr. FTIR scans	
130	were performed at frequencies of 4000 cm ⁻¹ -400 cm ⁻¹ on a Thermo Scientific Nicolet	
131	600 FTIR spectrometer with a spectral resolution of 4 cm ⁻¹ . The CA and $C_{12}A_7$ pastes	
132	were also scanned after heating to 188 °C at 10 °C/min in an N_2 atmosphere.	
133	Thermogravimetric (TG) and differential thermal (DTA) analyses were conducted on a	
134	TA Instruments Q600 TGA-DCS-DTA analyser. The samples were heated from	
135	ambient temperature to 1000 °C in a nitrogen atmosphere (100 mL/min) at a rate of	
136	10°C/min.	
137		
138		
139	3. Results	
140		
141	3.1. Isothermal conduction calorimetry	
142		
143	The heat flow curve for ternesite alone contained only the first exothermal peak, which	
144	after 1 h had declined to 31 μ W/g, given its scarce reactivity with water [6], the total	
145	heat of this reaction was very low (Figure 2 and Table 3). During hydration at 25 °C, the	
146	heat flow curves for both the synthesised aluminates (C ₃ A, C ₁₂ A ₇ , CA, C ₄ A ₃ \overline{S}) and their	
147	blends with ternesite (Figure 3 and Table 3) showed an early exothermal reaction after	
148	mixing followed by a decline in the heat production rate and, in the $C_{12}A_7$, CA and	

149 $C_4A_3\overline{s}$ samples, a second exothermal reaction that appeared earlier in the presence of 150 ternesite.

151 The intensity of the initial exothermal signal in the C_3A heat flow curve tended 152 downward for the first 7.5 h (6.6 mW/g), steadied until 10 h, continued downward until 153 t=24 h (0.75 mW/g) and then remained flat through the rest of the test. Gismera-Diez et 154 al. [16] reported the same pattern. In the presence of ternesite the decline was steeper 155 and uninterrupted through 13.5 h (0.08 mW/g), after which no thermal signals were 156 recorded. 157 The heat flow curves for pastes $C_{12}A_7$ and $C_{12}A_7$ +ternesite contained two exothermal 158 peaks following the very intense initial peak and an intermediate induction period. The 159 first appeared after 1 h in both whereas the second was recorded 2.5 h earlier in the 160 sample with than in the one without ternesite. A new, low intensity but long-lasting (9 h 161 to 20 h) exothermal signal appeared in the sample containing ternesite. Raab et al. [17] 162 regarded C_2AH_8 as the first product of $C_{12}A_7$ hydration, giving rise to the first visible 163 peak on calorimetric graphs. The second peak would denote a further hydration 164 reaction. 165 Induction began very quickly on the CA and CA+ternesite paste flow curves, after 166 approximately 2 h (the second peak observed in the $C_{12}A_7$ pastes was not found here), 167 and ended much earlier in the sample with ternesite (2.5 h and 15 h), whilst the highest

reaction peak for the blended sample was recorded at 4.5 h, compared to 21 h for the

169 sample with CA only. In addition to the aforementioned signals, the curve for paste CA

170 showed a slight rise in heat flow between 11 h and 13 h (1 mW/g), while the slope on

171 the CA+ternesite curve changed twice on the descending leg of the second heat flow

172 peak, at around 11 h (1.8 mW/g) and 17 h (0.8 mW/g).

173

174	Similar behaviour was observed for the paste $C_4A_3\overline{S}$ heat flow curves. The presence of
175	ternesite barely altered the beginning of the induction period (1.5 h) but changed the end
176	time: the second signal peaked at 4 h, 3 h earlier than in the unblended sulfoaluminate
177	paste. The C ₄ A ₃ \overline{S} curve exhibited a slight rise in heat flow between 4 h (0.39 mW/g)
178	and 6 h (2 W/g), in addition to the aforementioned signals. This pattern was also
179	observed by Sánchez-Herrero et al. [18], who reported a first peak at around 4 h and a
180	second and more intense peak at 6.5-7 h. The graph for the ternesite-bearing paste
181	contained a low intensity exothermal signal with a peak at 1 h after the very intense
182	initial dissolution peak, as well as a change in the slope on the descending leg of the
183	second heat flow peak at around 9.5 h.
184	In the absence of ternesite, the total heat released by the 7 d, 25 °C samples was as
185	follows: $C_3A > CA \approx C_{12}A_7 > C_4A_3\overline{S}$. In the presence of the said mineral, the order was
186	$CA > C_{12}A_7 > C_3A > C_4A_3\overline{S}$ (Figure 4 and Table 4). Although the samples containing
187	ternesite exhibited much lower heat of hydration than the unblended aluminate pastes,
188	the total heat per gramm of aluminate increases between 19 and 91%.
189 190	
191	3.2. XRD study
192	
193	CA, $C_{12}A_7$ and C_3A hydration yields C_3AH_6 , the sole stable calcium aluminate hydrate
194	in the CaO-Al ₂ O ₃ -H ₂ O system, as well as a number of metastable phases (CAH ₁₀ ,
195	C_2AH_8 , $C_4A \cdot xH$ (x=7, 11, 13 or 19), $C_2A \cdot xH$ (x= 4, 5, 7.5 or 8)) depending on the
196	temperature and composition of the aluminate hydrated.
197	The diffractograms for the 7 d (25 °C) C ₃ A and C ₃ A/ C ₅ S ₂ \overline{S} (1:2 by mass) blended

199 katoite (C₃AH₆) [14, 16, 19]. Calcium hemicarboaluminate hydrate, ternesite, katoite,

200	larnite, $C_3A \cdot C\overline{S} \cdot 12H$ (AFm) and portlandite traces, were identified on XRD pattern of
201	C ₃ A+tenesite paste. The larnite was sourced from the original synthetic ternesite
202	(6% C_2S). The presence of portlandite traces denoted some minor larnite hydration
203	during the test.
204 205	The diffractogram for 7 d (25 °C) $C_{12}A_7$ paste contained reflections attributed to C_2AH_8 ,
206	CAH_{10} , gibbsite (very low intensity), and katoite, as well as the anhydrous phase. Two
207	unidentified, low intensity lines at d=3.48 Å and d=2.61 Å were also visible on the
208	pattern. The presence of ternesite altered $C_{12}A_7$ hydration products. Instead of the
209	reflections observed on the pattern for $C_{12}A_7$ paste, the respective diffractogram
210	contained lines generated by strätlingite, larnite, calcium monosulfoaluminate hydrate
211	and ternesite (Figure 6).
212 213	The diffractogram for the 7 d (25 °C) CA paste exhibited reflections attributed to CAH_{10}
214	and C ₂ AH ₈ , gibbsite and katoite (low intensity), as well as to anhydrous CA. These
215	findings were consistent with observations reported by Lothenbach et al. [21, 22]. As
216	the most intense diffraction lines for the metastable phases C_2AH_8 and C_4AH_{19} concur
217	at d=10.7 Å and 5.36 Å, they cannot be readily differentiated with XRD, even though
218	the relative intensities vary somewhat. These phases are generated by dissolved ions,
219	whereas the metastable hydrates in the $C_2A \cdot xH$ and $C_4A \cdot xH$ series are obtained by
220	dehydration of the ions carrying the most water.
221	The shift observed here in the main reflections for C_2AH_8 (d=10.7 Å and 5.36 Å) to
222	slightly lower values (d=10.4 Å and 5.2 Å) on the diffractograms for pastes $C_{12}A_7$ and
223	CA may denote slight sample dehydration due to their exposure to acetone and vacuum
224	drying to detain hydration and remove water [23].

225	As in $C_{12}A_7$, the presence of ternesite altered CA hydration products. The diffractogram
226	for the blended paste contained none of the reflections observed on the pattern for CA
227	paste, although lines indicative of strätlingite, calcium monosulfoaluminate hydrate,
228	larnite and ternesite were identified (Figure 7).
229 230	The C ₄ A ₃ \overline{S} hydration products identified by XRD were AFm and gibbsite (Figure 8), a
231	finding consistent with prior reports [24]. The hemicarboaluminate identified was
232	deemed to be due to sample weathering. Part of the $C_4A_3\overline{S}$ was still anhydrous after
233	7 days of hydration at 25 °C. The presence of ternesite appeared to stimulate $C_4A_3\overline{S}$
234	dissolution, inasmuch as no reflections for this phase were observed on the
235	diffractogram. Here AFm was the reaction product, while no reflections from crystalline
236	aluminium hydroxide was observed.
237	The mineralogical analysis of the hydrated ternesite-containing aluminates based on
238	quantitative XRD is given in Table 5.
238 239	quantitative XRD is given in Table 5.
	quantitative XRD is given in Table 5.<i>3.3. In-situ XRD</i>
239	
239 240	
239 240 241	3.3. In-situ XRD
239 240 241 242	3.3. In-situ XRD The reactions taking place over time in paste $C_{12}A_7$ +ternesite generated a heat flow
 239 240 241 242 243 	3.3. In-situ XRD The reactions taking place over time in paste $C_{12}A_7$ +ternesite generated a heat flow curve with a number of signals. These reactions were identified by continuous XRD
 239 240 241 242 243 244 	<i>3.3. In-situ XRD</i> The reactions taking place over time in paste C ₁₂ A ₇ +ternesite generated a heat flow curve with a number of signals. These reactions were identified by continuous XRD scanning during the first 20 h of hydration (Figure 9). The intensity of the reflections
 239 240 241 242 243 244 245 	<i>3.3. In-situ XRD</i> The reactions taking place over time in paste $C_{12}A_7$ +ternesite generated a heat flow curve with a number of signals. These reactions were identified by continuous XRD scanning during the first 20 h of hydration (Figure 9). The intensity of the reflections attributed to C_2AH_8 rose over time, whilst the intensity of the lines for $C_{12}A_7$ and
 239 240 241 242 243 244 245 246 	3.3. In-situ XRD The reactions taking place over time in paste $C_{12}A_7$ +ternesite generated a heat flow curve with a number of signals. These reactions were identified by continuous XRD scanning during the first 20 h of hydration (Figure 9). The intensity of the reflections attributed to C_2AH_8 rose over time, whilst the intensity of the lines for $C_{12}A_7$ and ternesite declined.

250 generated at 10 min, along with φ -AH₃ (Equation 1). After 1 h (small exothermal peak

251	on the calorimetric curve), the intensity of the diffraction lines for $C_{12}A_7$ and ternesite
252	declined again, while that of the C_2AH_8 reflections continued to rise. The two reagents
253	declined throughout the induction period. A new phase, $CaAl_2Si_7O_{18} \cdot 3.5H_2O$, appeared
254	after 4.5 h through the end of the test (20 h) as a product of the reaction between
255	ternesite and φ -AH ₃ . Phase φ -AH ₃ , which was identified from the outset, began to
256	gradually decline after 2 h and disappeared entirely after 5 h, as strätlingite and
257	$CaAl_2Si_7O_{18} \cdot 3.5H_2O$ formed.

$$C_{12}A_7 + 51 H_2O \rightarrow 6C_2AH_8 + AH_3 \tag{1}$$

259

The strätlingite reflections (Equation 2) were identified after 5 h, as C_2AH_8 continued to rise and ternesite and $C_{12}A_7$ to decline as a result. The absence of reflections for new crystalline sulfates may be explained either by their low crystallinity (with the probable formation of AFm nuclei) or the fact that the sulfate ion resulting from ternesite decomposition remains in solution after strätlingite crystallisation.

$$2AH_3 + 2C_2S \cdot CS + 10H \rightarrow 2C_2SA \cdot 8H_2O + 2CS$$
⁽²⁾

266

267 Calcium monosulfoaluminate hydrate (Equation 3) appeared at around 9 h-10 h,

however, concurring with the low intensity, long-lasting exothermal shoulder on thecalorimetric curve.

270

$$3C_2A \cdot 8H_2O + 2C\overline{S} + 3H_2O \rightarrow 2C_3A \cdot C\overline{S} \cdot 12H + AH_3$$
(3)

272 The same sample was scanned after storage for 7 d in a moist environment at 25 °C. The 273 diffractogram showed higher intensity strätlingite reflections and AFm phases, whilst no 274 lines for the intermediate phase, CaAl₂Si₇O₁₈·3.5H₂O, were observed. The intensity of 275 the ternesite and C₂AH₈ reflections was low, although the latter was still visible. These 276 findings differed in some respects from the 7 d (25 °C) calorimetric results, where large 277 amounts of unreacted ternesite were observed and no C₂AH₈ was identified. 278 The explanation for the differences between the XRD findings for the sample hydrated 279 for 7 d in the calorimeter and the one hydrated for 20 h in the diffractometer and 280 subsequently stored at 25 °C for 6 d more, might be that in the latter, the incidence of 281 the X-rays on the sample may have induced a temperature substantially higher than 25 282 °C. That may have given rise to different phases than obtained at a constant 25 °C and 283 would also explain why the ternesite was largely consumed in 20 h in the diffractometer 284 whereas a large fraction of the mineral had not reacted after 7 d at 25 °C in the 285 calorimeter.

286

287 *3.4. FTIR study*

The FTIR analyses (Table 6) confirmed the XRD results. The infrared spectrum for paste C₃A exhibited the absorption lines characteristic of katoite, some (in the 790 cm⁻¹-820 cm⁻¹ and 520 cm⁻¹-530 cm⁻¹ ranges) overlapping with the signals for the remaining anhydrous C₃A [16]. Slight carboaluminate contamination was likewise observed. The most intense bands on the FTIR for paste C₄A₃ \overline{s} , in the O-H stretching zone (4000 cm⁻¹-3000 cm⁻¹) were generated by overlapping AFm and gibbsite signals [18]. On the rest of the spectrum the bands for these two hydrates were observed to overlap with those of anhydrous $C_4A_3\overline{s}$ and, to a lesser extent, calcium hemicarboaluminate hydrate (Hc).

297 The spectra for pastes CA and $C_{12}A_7$ exhibited similar bands in the 4000 cm⁻¹-2500 cm⁻¹ range, although they were sharper in the former, where they were attributed 298 299 to gibbsite overlapping with katoite, CAH_{10} and C_2AH_8 . Overlapped bands generated by 300 CAH_{10} , C_2AH_8 (more intense in $C_{12}A_7$) and gibbsite (much more intense in CA) 301 appeared in the 1300 cm^{-1} 400 cm^{-1} zone. Some of the bands on these spectra were 302 identified by Fernández-Carrasco et al. [25]. In order to identify more clearly the phases 303 present, these samples were thermally treated at 188°C, temperature at which CAH₁₀ 304 phase is decomposed and C₂AH₈ partially lose the water. 305 After the two pastes were heated to 188 °C, the FTIR spectra changed radically: the 306 CAH_{10} bands disappeared and the C_2AH_8 bands were altered due to a partial water loss. 307 The gibbsite bands intensified on the paste CA spectrum and nearly disappeared in 308 $C_{12}A_7$, where the signals for katoite and partially dehydrated C_2AH_8 intensified. These 309 findings infer that the two pastes contained the same hydrates, albeit in different 310 proportions. CA had more gibbsite and less katoite and C_2AH_8 than $C_{12}A_7$. 311 The bands attributable to ternesite stood out on the spectra for the four aluminate pastes containing the mineral. They appeared in all the samples at 1153 cm^{-1} , 1121 cm^{-1} , 312 947 cm⁻¹, 878 cm⁻¹, 837 cm⁻¹, 660 cm⁻¹, 630 cm⁻¹, 602 cm⁻¹, 541 cm⁻¹ and 517 cm⁻¹ [26], 313 i.e., in the 1300 cm^{-1} -400 cm^{-1} range, where no other anhydrous phase absorptions were 314 observed. All four spectra exhibited a narrow, intense absorption signal at 424 cm⁻¹ and 315 316 other wider, overlapping signals at around 520 cm⁻¹ and 540 cm⁻¹, characteristic of a 317 number of calcium aluminate hydrates. The ternesite spectrum (multiplied by a factor of 318 0.4-0.8) was subtracted from the original paste spectra to better identify the hydrates.

The spectra for paste C₃A+ternesite (Figure 10) exhibited bands in the O-H stretching vibrations zone mainly generated by the presence of Hc overlapped with bands from AFm and portlandite while the O-H stretching band from katoite was not clearly ditinguisted, After subtracting ternesite spectra, the most prominent bands in the 1300-400 cm⁻¹ range were attributed to AFm (at \approx 1110, 784, 539, 424 cm⁻¹) and Hc.

324 The spectrum for paste $C_{12}A_7$ +ternesite (Figure 11) exhibited O-H stretching vibrations

325 generated by water and hydrates, attributed to AFm (3670 cm⁻¹), as well as a wide band

326 with two peaks, at 3615 cm^{-1} and 3530 cm^{-1} (possibly indicative of a weathering-

327 induced hemicarboaluminate). The bands remaining after the ternesite spectrum was

328 subtracted, all in the 1300 cm⁻¹-400 cm⁻¹ range, were attributable to C_2ASH_8

329 (1013 cm⁻¹, 964 cm⁻¹, 710 cm⁻¹) or AFm (780 cm⁻¹, 572 cm⁻¹, 539 cm⁻¹). A band

overlapping generously with ternesite attributable to AFm was observed in the sulfate v_3 zone.

332 The spectra for paste CA+ternesite (Figure 12) were very similar to the ones for

 $C_{12}A_7$ +ternesite, with O-H stretching vibrations from water and hydrates attributed to

AFm (3670 cm⁻¹), although an intense band appeared at 3622 cm⁻¹, along with a wide

band at 3559 cm^{-1} -3487 cm^{-1} , which overlapped with another at 3550 cm^{-1} , which could

be assigned to AH₃. The bands observed in the 1300 cm^{-1} -400 cm^{-1} range on the post-

subtraction spectrum at around 1013 cm⁻¹, 964 cm⁻¹ and 710 cm⁻¹, attributable to

338 C_2ASH_8 , were much more intense than on the $C_{12}A_7$ spectrum. Less intense bands

339 generated by AFm were found at 780 cm^{-1} , 572 cm^{-1} and 539 cm^{-1} .

340 The spectra for paste $C_4A_3\bar{S}$ +ternesite (Figure 13) also contained O-H stretching

341 vibrations from water and hydrates that concurred with the signals for gibbsite, although

their relative intensities differed. The most prominent band in the 1300 cm⁻¹-400 cm⁻¹
range on the spectrum resulting from subtracting the ternesite bands, at 1020 cm⁻¹, was
characteristic of gibbsite, which had not been identified by XRD. Signals attributed to
AFm were observed at 780 cm⁻¹, 582 cm⁻¹ and 539 cm⁻¹.

346

347 *3.5. DTA-TG study*

348

The water content in 7 d aluminate pastes was: $CA > C_{12}A_7 > C_4A_3\overline{S} > C_3A$. The order for the pastes containing ternesite (normalised per g of dry aluminate), which held less water, was $CA > C_{12}A_7 > C_3A > C_4A_3\overline{S}$ (Figure 14).

352

Assigning thermal signals to calcium aluminate hydrate dehydration/dehydroxylation in poly-phase samples is a complex task, for each phase holds various forms of bound water, which may be gradually released with rising heat. As a result, each phase generates several endothermal signals in the same temperature ranges, which explains the lack of uniformity in the literature cited in Table 7.

358

359 The most prominent, i.e., most intense and sharpest, of the endothermal dehydration and

360 dehydroxylation peaks for the hydrates in the pastes studied was attributed to katoite, at

361 300 °C on the DTA curve for paste C_3A . This peak was also observed, vaguely and

362 overlapping with gibbsite, on the curves for pastes CA and $C_{12}A_7$.

363 Further to the TG findings, hydrated paste C₃A contained 79 wt% katoite and 21 wt%

anhydrous C_3A . In other words, the hydration rate in C_3A was 0.73.

365 The DTA curves for pastes CA and $C_{12}A_7$ (Figure 15) exhibited several thermal signals

366 at temperatures of under 200 °C and in the 200 °C-600 °C range, all associated with

367 weight loss on the TG/DTG curves (Figure 14). In the first range of temperatures the

368	intense endothermal peaks at around 80 °C-88 °C were attributed to amorphous AH_3
369	[33]. They overlapped with a peak at around 100 °C-110 °C, generated by water loss
370	from CAH_{10} and the water physically adsorbed on the C_2AH_8 interlayer. Another
371	endothermal signal at around 145 °C-160 °C could be attributed to further partial water
372	loss from C_2AH_8 [35]. In the second temperature range, the DTA curves for both pastes
373	exhibited endothermal signals of varying intensity at around 260 °C, 280 °C and 320 °C,
374	attributed to water loss from C_2AH_8 , AH_3 and C_3AH_6 . Two much less intense signals at
375	421 °C and 524 °C were also attributed to those phases.
376 377	The DTA curves for sample C ₄ A ₃ \overline{S} (Figure 16) contained very intense <200 °C signals:
378	at 120 and 180 °C for AFm and 120 °C overlapped with hemicarboaluminate, the latter
379	due to sample weathering. Three peaks were observed at 200 °C-300 °C, the most
380	intense at 264 °C and the others at 224 °C and 286, which might be due to AFm, Hc and
381	gibbsite overlapping. The peak at 286 °C was associated with gibbsite water loss.
382 383	C_3A +ternesite curve (Figure 17) contained an intense broad (120-180°C) endothermal
	C3AT ternesite curve (11gure 17) contained an intense broad (120-100 C) endothermat
384	signal, peaking at around 154 °C and other broad one at 240 °C, denoting water loss
384 385	
	signal, peaking at around 154 °C and other broad one at 240 °C, denoting water loss
385	signal, peaking at around 154 °C and other broad one at 240 °C, denoting water loss from Hc and AFm. The signal at 285 °C was generated by Katoite and the final one at
385 386	signal, peaking at around 154 °C and other broad one at 240 °C, denoting water loss from Hc and AFm. The signal at 285 °C was generated by Katoite and the final one at 412°C by portlandite, as per Torréns-Martín et al. [39].
385 386 387	signal, peaking at around 154 °C and other broad one at 240 °C, denoting water loss from Hc and AFm. The signal at 285 °C was generated by Katoite and the final one at 412°C by portlandite, as per Torréns-Martín et al. [39]. Curves for CA, C ₁₂ A ₇ and C ₄ A ₃ S with ternesite pastes exhibited a very intense
 385 386 387 388 389 	signal, peaking at around 154 °C and other broad one at 240 °C, denoting water loss from Hc and AFm. The signal at 285 °C was generated by Katoite and the final one at 412 °C by portlandite, as per Torréns-Martín et al. [39]. Curves for CA, C ₁₂ A ₇ and C ₄ A ₃ S with ternesite pastes exhibited a very intense endothermal signal at around 170 °C-180 °C generated by water loss from AFm phases.
 385 386 387 388 389 390 	signal, peaking at around 154 °C and other broad one at 240 °C, denoting water loss from Hc and AFm. The signal at 285 °C was generated by Katoite and the final one at 412°C by portlandite, as per Torréns-Martín et al. [39]. Curves for CA, C ₁₂ A ₇ and C ₄ A ₃ S with ternesite pastes exhibited a very intense endothermal signal at around 170 °C-180 °C generated by water loss from AFm phases. The curves for samples CA+ternesite and C ₁₂ A ₇ +ternesite (Figure 18) had endothermal

394	intensity of these signals is that CA+ternesite had a higher proportion of strätlingite and
395	paste $C_{12}A_7$ +ternesite a higher proportion of AFm. That finding is consistent with the
396	FTIR and XRD results. These two pastes also exhibited a much lower intensity
397	endothermal signal at 285 °C that might be associated with AH_3 water loss, although the
398	XRD analyses failed to identify that phase.
399 400	In addition to the aforementioned AFm and hemicarboaluminate signals at 170 °C,
401	210 °C and 110 °C, the C ₄ A ₃ \overline{S} +ternesite sample exhibited others attributable to gibbsite
402	overlapped with AFm, which generated two peaks, at 250 °C and 290 °C (Figure 19).
403 404	4. Discussion
405	
406	The calorimetric curves for the hydrated aluminate pastes contained a first dissolution
407	peak, followed by an induction period and an intense reaction peak in pastes CA, $C_{12}A_7$
408	and $C_4A_3\overline{S}$ [17, 18, 21] The presence of ternesite in the pastes altered the calorimetric
409	curves in all cases, shortening the induction period and bringing the reaction peak
410	forward.
411	The pastes containing $C_{12}A_7$ had a much more active induction period than any of the
412	others, with a heat flow a full order or magnitude higher. C_2AH_8 and ϕ -AH ₃ formed
413	from the onset of hydration in pastes with ternesite, which reacted with $\phi\text{-}AH_3$ in the
414	induction period, giving rise to an intermediate phase, $CaAl_2Si_7O_{18}$ ·3.5H ₂ O. In the main
415	exothermal peak concurred the consumption of all the ϕ -AH ₃ and the first strätlingite
416	crystallization, while C_2AH_8 precipitation as well as reagents dissolution (ternesite and
417	$C_{12}A_7$) continued. The main reaction peak was followed by calcium
418	monosulfoaluminate hydrate precipitation. $C_{12}A_7$ can therefore be regarded to
419	powerfully activate ternesite, which dissolved from the outset, giving rise to calcium

420 silicoaluminate hydrate precipitation even prior to calcium monosulfoaluminate

421 precipitation.

422 Whilst the 7 d aluminate+ternesite (1:2) pastes released less total heat than the

423 analogous unblended aluminate pastes, however when total heat was expressed per unit

424 of mass of aluminate, the four samples containing ternesite exhibited higher values than

425 their unblended aluminate counterparts. The inference is that ternesite participate in the

426 hydration reactions and not only hastened but activated aluminate hydration. In the

427 presence of ternesite, the amount of heat per aluminate mass unit rose by 91 % in CA,

428 87 % in $C_{12}A_7$, 19 % in C_3A and 36 % in $C_4A_3\bar{S}$ (Table 4).

429 Ternesite is activated when hydrated in the presence of C₃A, C₁₂A₇ and CA, accounting

430 for 43 wt% to 22 wt% of the respective pastes, according to XRD data. On the grounds

431 of the quantitative XRD findings in conjunction with the total mass loss at 1000 °C

432 determined with TG, 16 wt% of the ternesite reacted in C₃A, 50 wt% in CA and 53 wt%

433 in $C_{12}A_7$. Those results denote scant (2 %) ternesite reaction in the ternesite-ye'elemite 434 blended paste.

435 C_3A hydration, which was incomplete after 7 d (hydration degree = 0, 73), yielded

436 katoite (Equation 4). Further to the XRD findings, C₃A hydration in the presence of

437 ternesite produces a small amounts of katoite (5.36 wt%) calcium monosulfoaluminate

438 hydrate (1.76 wt%) and calcium hemicarboaluminate hydrate (6.91 wt%) as well as

439 larnite (1.71 wt%), ternesite (43.11 wt%), C₃A (0.72 wt%) as the main crystalline

- 440 phases and amorphous phases (40.42 wt%).
- 441

 $C_3A + 6H_2O \rightarrow C_3AH_6 \tag{4}$

443	Calculus derivated from DRX an TG data reveal a scant reaction of ternesite (16,3 wt%)
444	while C_3A reacted almost completely (97 wt%). These data fit very well with the
445	increment of the total heat released per aluminate mass unit in this paste (Table 4).
446	
447	Taken into account the loss of mass recorded by TG, it can be concluded that C ₃ A plus
448	ternesite paste contains 28,7 wt % of AFm+Hc; 11,5 wt% of C_3AH_6 and 1,6 wt% de
449	portlandita; these values are very much more higher than those determined by XRD,
450	which would be an indication of the poor crystallinity of the hydrates obtained.
451	Pastes $C_{12}A_7$ and CA gave rise to the same hydration products, CAH_{10} , C_2AH_8 and AH_3 ,
452	although in different proportions, in addition to the respective anhydrous aluminates. In
453	the presence of ternesite the anhydrous aluminates reacted fully, generating AFm and
454	C ₂ ASH ₈ in both cases. No other calcium aluminate hydrate appeared as a crystalline
455	phase.
456	Combining TG and XRD data the amount of ternesite consumed in samples $C_{12}A_7$ +
457	ternesite and CA + ternesite, is respectively 53% and 50%; assuming that all the sulfate
458	of the dissolved ternesite forms AFm and all the remaining aluminum forms strätlingite,
459	the proportions of these phases was calculated which are shown in Table 8. Both
460	hydrates would be in much higher proportion than that shown by XRD, however the
461	results are consistent with the mass loss observed by TG, which would account for the
462	poor crystallinity of AFm and strätlingite in said pastes.
463	The hydration products for paste $C_4A_3\overline{S}$ included AFm (33 %) and AH ₃ (43 %) (small
464	signal of hemicarboaluminate was also observed) (Eq.5).
465	
466	$C_4 A_3 \overline{S} + 12 H_2 O \rightarrow C_4 A \overline{S} H_{12} + 2 A H_3 (+ C_4 A c H_{11}) $ (5)
467	The XRD and TG findings showed that in the presence of ternesite around 3 wt % of

467 The XRD and TG findings showed that in the presence of ternesite, around 3 wt % of468 the ye'elemite remained unreacted. AFm appeared and AH₃ was identified by FTIR and

469 DTA, although not on the X-ray diffractograms, an indication of its amorphous nature. 470 These findings do not infer that ye'elemite acted as a ternesite activator, for no 471 strätlingite was identified. As noted earlier, further to calculations based on the ternesite 472 content (50.5 wt%), the total TG-determined mass loss (17.6 wt%) and the 473 ye'elemite:ternesite ratio, the sample contained 97.8 % of the ternesite initially added. 474 That was very likely due to the common sulfate ion effect, which delayed ternesite 475 dissolution. Under such circumstances, ternesite would affect the crystallinity of the 476 AH₃ formed (gibbsite in the ye'elemite paste and amorphous aluminium hydroxide in 477 yeelemite+ ternesite paste) and the ye'elemite hydration rate (shortening the induction 478 period), but the amount of ternesite consumed along the reaction time was very low. 479 The calorimetric data nonetheless revealed a 36 % rise in the total heat per unit of 480 aluminate released, perhaps due to the filler effect. 481 The crystalline AFm of ternesite plus ye'elemite paste content was also very low, 482 inasmuch as 96 wt % of the ye'elemite reacted. The hydrate content determined with 483 XRD and the calculated using the degree of reaction for ternesite and ye'elemite is 484 given in Table 8. The table also lists the mass loss in the four pastes at 1000 °C 485 calculated from those data and from the TG findings. 486 As XRD identified crystalline AH_3 in the ternesite-free paste but not in the paste

487 bearing ye'elemite + TER, the presence of ternesite may be deduced to have affected

488 both AFm and AH₃ crystallinity.

489

490 The XRD-determined crystalline AFm content in the pastes was much lower than would

491 be expected on the grounds of the reaction degree of ternesite and aluminates. The

492 calculated loss of evaporable matter in the hydrates was much higher than calculated

493 with the XRD data and very close to the TG findings. A substantial portion of the AFm

494	may consequently be assumed to be scantly crystalline and included in the amorphous
495	phase determined in XRD patterns.

497	
498	5. Conclusions

499

500	This study	explored the	possible activ	ation of terne	esite hydration	by a series of

sol aluminates by recording heat of hydration and analysing the 7 d hydration products with

502 XRD, FTIR and DTA. The ultimate aim was to pave the way for the future development

503 of a new eco-clinker, in which one of the main minerals would be ternesite blended with

504 aluminates that would activate its hydration. The major conclusions are listed below.

505

506 - Ternesite was activated in all the blends, although with varying intensity depending on

507 the aluminate added. Aluminate efficacy was, in descending order, $C_{12}A_7 \approx CA$

508 $>C_3A>>>C_4A_3\overline{\mathbf{S}}$.

509

510 - The presence of ternesite in the pastes altered the aluminate heat flow curves,

511 shortening the induction period and bringing the reaction peak forward, an indication of

512 hastened hydration. The calorimetric findings revealed rises of 19 % to 91% in total

513 heat release per unit of aluminate mass, attesting to the activation of aluminate

514	hydration	in the presenc	e of ternesite.
-----	-----------	----------------	-----------------

515

- Hydration of C₃A produces Katoite as the only hydration product but in presence of
ternesite the katoite amount is hardly reduced while AFm and Hemicarboaluminate
were found.

519 - $C_{12}A_7$ and CA were analysed jointly, for they yielded the same hydration products.

520 These aluminates activated ternesite hydration and their pastes contained the same

521 phases (AFm and stratlingite), albeit in different proportions..

522

523 - Due to the common sulfate ion effect, much less ternesite (2 wt%) was consumed in 524 paste C₄A₃ \overline{s} than in any of the other samples. However ternesite alter the cristallinity of 525 the obtained hydrates; scantly crystalline AFm and amorphous AH₃ were the main 526 hydration products in this paste. As no strätlingite was obtained, ternesite could not be 527 regarded as having been clearly activated by ye'elemite, despite some calorimetric 528 evidence to that effect.

529 Acknowledgements.

530

This paper has been funded from BIA2016-76466-R project as well as the Regional Government of Madrid Community and European Social Fund (Geomaterials Programme2 S2013/MIT-2914). Authors thank to Ministerio de Economía y Competitividad the young resercher contract given to Myriam Montes. Financial support for Dr. Paula M. Carmona-Quiroga's participation was provided by the Spanish Ministry of the Economy and Competitiveness under project BIA2015-73237-JIN.

537

538 **References**

539 [1] O. Edenhofer, et al. IPCC, 2014: Climate Change 2014: Mitigation of Climate

540 Change. Contribution of Working Group III to the Fifth Assessment Report of the

541 Intergovernmental Panel on Climate Change (2014)

542 [2] Marta García Maté. Processing and Characterisation of calcium sulphoaluminate

543 (CSA) eco-cement with taylored performances. (2014) PhD University of Málaga

- 544 [3] M. Carmen Martín-Sedeño, Antonio J.M. Cuberos, Ángeles G. De la Torrea, Gema
- 545 Álvarez-Pinazo, Luis M. Ordónez; Milen Gateshkic, Miguel A.G. Aranda. Aluminum-
- 546 rich belite sulfoaluminate cements: Clinkering and early age hydration. Cement and
- 547 Concrete Research Volume 40, Issue 3, March (2010) 359–369
- 548 [4] K. Morsli, A.G. de la Torre, M. Zahir, M.A.G. Aranda. Mineralogical phase analysis
- of alkali and sulfate bearing belite rich laboratory clinkers. Cem. Concr. Res., 37 (2007)
- 550 639–646
- 551 [5] M.Marroccoli, F.Montagnaro, M.L. Pace, A. Telesca, G.L. Valenti, Synthesis of
- 552 calcium sulfoaluminate cements from blends of coal combustion ashes with flue gas
- desulfurization gypsum, PTSE, Ischia, Italy, 2010.
- [6] Bullerjahn, F., Zajac, M. & Ben Haha, M. CSA raw mix design: effect on clinker
- formation and reactivity. Materials and Structures, Volume 48, (2015) 3895-3911.
- 556 [7] Bullerjahn, F., Schmitt, D. & Ben Haha, M. Effect of raw mix design and of
- 557 clinkering process on the formation and mineralogical composition of (ternesite) belite
- 558 calcium sulphoaluminate ferrite clinker.Cement and Concrete Research, Volume 59,
- 559 (2014) 87-95.
- 560 [8] T. Hanein, I. Galan, F. P. Glasser, S.Skalamprinos, A. Elhoweris, M.S. Imbabi, M.N.
- 561 Bannerman, Stability of ternesite and the production at scale of ternesite-based clinkers
- 562 Cement and Concrete Research 98 (2017) 91–100
- 563 [9] Sherman, N., Beretka, J., Santoro, L. & Valenti, G. L. Long-term behaviour of
- 564 hydraulic binders based on calcium sulfoaluminate and calcium sulfosilicate. Cement
- 565 and Concrete Research (CCR), Volume 25, (1995)113-126.
- 566 [10] .B. Pliego-Cuervo, F.P. Glasser, The role of sulphates in cement clinkering:
- 567 subsolidus phase relations in the system CaO-Al2O3-SiO2-SO3. Cem. Concr. Res., 9
- 568 (1979) 51–56

- 569 [11] Mohsen Ben Haha, Frank Bullerjahn, Maciej Zajac "On the reactivity of
- 570 ternesite" XIV ICCC, Pekín 2015
- 571 [12] Peter K. Holt, Geoffrey W. Barton, Mary Wark, Cynthia A. Mitchell. A
- 572 quantitative comparison between chemical dosing and Electrocoagulation.Colloids and
- 573 Surfaces A: Physicochem. Eng. Aspects 211 (2002) 233-248.
- 574 [13] H.M. Rietveld, A profile refinement method for nuclear and magnetic structures, J.
- 575 Appl. Crystallogr. 2 (1969) 65–71.
- 576 [14] A.C. Larson, R.B. Von Dreele, General Structure Analysis System (GSAS)
- 577 program, Rep. No. LA-UR-86748, Los Alamos National Laboratory, Los Alamos, CA,
- 578 1994.
- 579 [15] M. A. G. Aranda, A. G. De la Torre. Rietveld Quantitative Phase Analysis of OPC
- 580 Clinkers, Cements and Hydration Products. Reviews in Mineralogy & Geochemistry
- 581 Vol. 74 pp. 169-209 (2012)
- 582 [16] S. Gismera-Diez, B. Manchobas-Pantoja, P.M. Carmona-Quiroga, M.T. Blanco-
- 583 Varela, Effect of BaCO3 on C3A hydration Cement and Concrete Research, 73 (2015)
- 584 70-78.
- 585 [17] B. Raab, H. Poellmann, Heat flow calorimetry and SEM investigations to
- 586 characterize the hydration at different temperatures of different 12CaO·Al2O3 (C12A7)
- 587 samples synthesized by solid state reaction, polymer precursor process and glycine
- nitrate process Thermochimica Acta 513 (2011) 106–111
- 589 [18] M.J. Sánchez-Herrero, A. Fernández-Jiménez, A. Palomo, C₄A₃**S** hydration in
- 590 different alkaline media, Cement and Concrete Research 46 (2013) 41-49
- 591 [19] E. Breval, C3A Hydration, Cement and Concrete Research, 6 (1976)129-138
- 592 [20] J.I. Bhatty, A review of the application of thermal analysis to cement-admixture,
- 593 Systems Thermochimica Acta 189 (1991) 313-350

- 594 [21] S.R. Klaus, J. Neubauer, F. Goetz-Neunhoeffer, Hydration kinetics of CA2 and
- 595 CA—Investigations performed on synthetic calcium aluminate cement, Cement and
- 596 Concrete Research 43 (2013) 62–69
- 597 [22] B. Lothenbach, L. Pelletier-Chaignat, F. Winnefeld, Stability in the system CaO-
- 598 Al2O3–H2O, Cement and Concrete Research 42 (2012) 1621-1634
- 599 [23] T.R. Jensena, A. Nbrlund Christensenb, J.C. Hansonc, Hydrothermal
- 600 transformation of the calcium aluminum oxide hydrates CaAl2O4d · 10H2O and
- 601 Ca2Al2O5d·8H2O to Ca3Al2(OH)12 investigated by in situ synchrotron X-ray powder
- diffraction, Cement and Concrete Research 35 (2005) 2300-2309
- 603 [24] F.P. Glasser, L. Zhang, High-performance cement matrices based on calcium
- sulfoaluminate-belite compositions, Cement and Concrete Research 31 (2001) 1881-
- 605 1886
- 606 [25] L. Fernández-Carrasco, D. Torrens-Martín, L.M. Morales, S. Martínez- Ramírez,
- 607 Infrared Spectroscopy in the Analysis of Building and Construction Materials, Infrared
- 608 Spectroscopy, Materials Science, Engineering and Technology (2012) 369-382
- 609 [26] N.V. Chukanov, Infrared spectra of mineral species (2014) Ed Springer
- 610 [27] S.M. Bushnell-Watson, J.H. Sharp, The application of thermal analysis to the
- 611 hydration and conversión Reactions of calcium aluminate Cements, Materiales de
- 612 construcción 42 (1998) 13-32
- 613 [28] C.M.George, Industrial alumina cement, Structure and Performance of Cement614 (1983) 415
- 615 [29] L. Fernandez Carrasco, Procesos de hidratación y carbonatación del cemento de
- 616 aluminatos de calcio; influencia de los álcalis. Alteraciones microestructurales y
- 617 relación con sus propiedades mecánicas. Thesis Instituto de la Construcción Eduardo
- 618 Torroja, Madrid, Spain, 2000

- 619 [30] N. Ukrainczyk, T. Matusinovic, S. Kurajica, B. Zimmermann, J. Sipusic,
- 620 Dehydration of a layered double hydroxide—C2AH8N, Thermodinamic Acta 464
 621 (2007) 7-15
- 622 [31] V.S. Ramachandran, Thermal analysis of cement components hydrated in the
- 623 presence of calcium carbonate, Thermodinamic Acta 127 (1988) 385-394
- 624 [32] P.A. Barnes, D.J. Baxter, A critical analysis of the application of derivative
- 625 thermogravimetry to the determination of the degree of conversion of high alumina
- 626 cement, Thermochimica Acta 24 (1978) 427-431
- 627 [33] J. Szczerba, D. Madej, E. Sniezek, R. Prorok, The application of DTA and TG
- 628 methods to investigate the non-crystalline hydration products of CaAl2O4 and
- 629 Ca7ZrAl6O18 compounds, Thermochimica Acta 567 (2013) 40–45
- 630 [34] C. Gosselin, Microstructural Development of Calcium Aluminate Cement Based
- 631 Systems with and without Supplementary Cementious Materials, Thesis École
- 632 Polytechnique Fédérale de Lausanne, Lausanne, Switzerland (2009)
- 633 [35] V.S. Ramachandran, R.M. Paroli, J.J. Beaudoin, A.H. Delgado, Handbook of
- 634 Thermal Analysis of Construction Materials, ed.W.A.Publishing.2003, Norwich, New
- 635 York, U.S.A
- [36] H.J. Kuzel, Crystallographic data and thermal decomposition of synthetic gehlenite
- 637 hydrate 2CaO·Al2O3·SiO2·8H2O, Neues Jahrbuch fuer Mineralogie Monatshefte 148
- 638 (1976) 319-325
- 639 [37] T. Danner, H. Justnes, M. Geiker, R.A. Lauten, Early hydration of C3A-gypsum
- pastes with Ca- and Na-lignosulfonate, Cement and Concrete Research 79 (2016) 333-
- 641 343

- 642 [38] F. Sáez del Bosque I. Modificaciones nanoestructurales en pastas de cemento.
- 643 Thesis Instituto de Ciencias de la Construcción Eduardo Torroja (CSIC) and
- 644 Universidad Autonoma de Madrid, Madrid, Spain (2012).
- 645 [39] D. Torréns-Martín, L. Fernandez-Carrasco, M.T. Blanco-Varela, Thermal analysis
- of blended cements, Journal of Thermal Analysis calorimetric 121 (3) (2015)
- 647 [40] T. Matschei. Thermodynamic properties of Portland cement hydrates in the system
- 648 CaO–Al2O3–SiO2–CaSO4–CaCO3–H2O, Cement and Concrete Research 37 (2007)
- 649 1379-1410
- 650

Table 1. Particle size distribution parameters determined by laser diffraction

μm/%	C ₃ A	CA	C ₁₂ A ₇	$C_4A_3\overline{S}$	$C_5S_2\overline{S}$
d ₉₀	100	100	76.5	78	89.5
d ₅₀	93.5	99.3	66.4	46	85
d ₁₀	31	57	34	14	43.5
D _{4.3}	21.17	11.52	59	59.14	35.13
Span	2.41	3.17	8.25	1.99	8.29
RRSB	0.74	0.97	2.36	0.62	2.48

Table 2. Quantitative mineralogical analysis of the phases synthesised

wt%	$C_5S_2\overline{S}$	C_2S	C ₃ A	$C_{12}A_{7}$	CaO	CA	$C_4A_3\overline{S}$	CS	Rwp
$C_5S_2\overline{S}$	94	6							10
C ₃ A			100						16.52
C ₁₂ A ₇				99.82	0.18				16.99
CA				2.52		97.48			14.12
$C_4A_3\overline{S}$				1.30			97.98	0.70	15.63
ICSD card	85123	81096	1841	241243	52783	260	80361	16382	

Table 3. Data for the heat flow curves shown in Figure 3

	Initial peak 1	Peak 2 maximum			induction period	_	eak 3 ximum	Maximum exothermal signal	
	Heat flow (mW/g)	t (h)	Heat fl. (mW/g)	t (h)	Heat fl. (mW/g)	t(h)	Heat fl. (mW/g)	t(h)	Heat fl. (mW/g)
C ₃ A	180	-	-	-	-	-	-	-	-
C ₃ A+ter	120	-	-	-	-	-	-	-	-
$C_{12}A_{7}$	159	1	20	5.5	9.0	8.5	13	-	-
C ₁₂ A ₇ +ter	134	1	8.9	3	6.3	5	10	13.5	1.8
CA	99	-	-	2.5	0.39	21	27	12	1
CA+ter	121	-	-	2	0.39	4.5	24	17	0.8
C ₄ A ₃ 5	71	-	-	2.8	0.33	7	114	-	-
$C_4A_3\overline{S}$ +ter	23	1	1.3	2	1	4	28	9.5	1.1
Ternesite	117	-	-	-	-	-	-	-	-

Table 4. Experimental total heat (J/g aluminate) in 7 day pastes hydration (25°C)

	Experimental total heat	ΔQ
Ternesite	43 J/g	
CA	563 J/g	
CA+Ternesite	1076 J/g	91%
$C_{12}A_{7}$	557 J/g	
C ₁₂ A ₇ +Ternesite	1043 J/g	87%
$C_4A_3\overline{S}$	464 J/g	
$C_4A_3\overline{S}$ +Ternesite	630 J/g	36%
C ₃ A	744 J/g	
C ₃ A+Ternesite	885 J/g	19%

Table 5. Quantitative mineralogical analysis of blended aluminate + ternesite pastes

668				e	5			I		
wt%	$C_5S_2\overline{S}$	C_2S	C ₃ A	$C_4A_3\overline{S}$	C ₂ ASH ₈	AFm	C ₃ AH ₆	Нс	% amorphous	Rwp
$C_3A+C_5S_2\overline{S}$	43,11	1.71	0.72			1.76	5.36	6.91	40.42	11.31
$C_{12}A_{7+}C_5S_2\overline{\textbf{S}}$	22.62	2.70			24.84	11.61			38.23	11.20
$C_4A_3\overline{S}+C_5S_2\overline{S}$	50.51	1.66		0.99		10.63		1.11	35.1	8.80
$CA+C_5S_2\overline{S}$	23.29	2.21			35.95	5.84			32.71	11.62
ICSD card	85123	81096	1841	80361	69413	100138	202316	263124		

	strong	g, w=weak, v	vw=very weak	
Paste C ₃ A	Paste C ₄ A ₃ 5	Paste CA	Paste C ₁₂ A ₇	Attributed to
		3682	3682	
	3676 vw			AFm/Hc
3660 s				C ₃ AH ₆
	3620 w	3620	3620	AH ₃
3543 vw				C ₃ AH ₆
	3526 w	3526	3526	AH ₃
3523 vw				
	3467 w	3467	3467	AH_3/C_2AH_8
	1167 w			AFm
	1115-1108 s			AFm
	1024 s	1024	1024	AH ₃
	968 w	968		AH ₃
899 w				C ₃ A
865 w		865	865	C ₃ A/CAH ₁₀ /C ₂ AH ₈
809 s				C ₃ AH ₆ /C ₃ A
	786 s			AFm
		777	777	
		710	710	C ₂ AH ₈
		636		
	617 w			
		578	578	CAH ₁₀
521 s	528 vs	528	528	CAH ₁₀ / C ₃ A C ₂ AH ₈ /AFm
	422 s	422	422	CAH ₁₀ / C ₂ AH ₈ /AFm

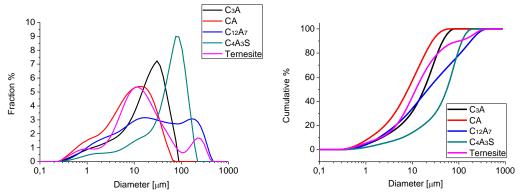

671Table 6. Absorption bands on FTIR spectra for 7 d (25 °C) pastes. s=Strong, vs=very672strong, w=weak, vw=very weak

Table 7. Temperatures and temperature ranges on DTA curves for phases obtained during hydration (°C)

677	7			0	,			
Reference	Year	CAH ₁₀	C ₂ AH ₈	C ₃ AH ₆	AH ₃	C ₂ ASH ₈	AFm	Нс у Мс
[27]	1992	100-160	140-200	290-350	230 , 300	190-230		
[28]	1983	~140	~170	~300	~280			
[29]	2000	110-160	170, 270	289,450	181,3			86, 155,220
[30]	2007		88, 110 , 175 , 295					
[31]	1988		145-150,265-280	300				160
[32]	1978	~125		~330	~290			
[33]	2013	165	285	285-451	~260-290			
[34]	2009	~100-170	~110-290	330	~300-470	120-185		
[35]	2003		240-285	290-300	260-270		180-200	
[36]	1976					120,165, 220,430		
[37]	2016						190-200,270-290	
[38]	2012			273 ,400			120-170	150
This work	2017		92 ,150, 311	303 ,425	239, 300,515		120,180,295	
(7)		1		1	1	1	1	1

- Table 8. Amount of hydrates determined by XRD and under hypothesis of all sulphate
 in solution giving AFm and all aluminium in excess forming strätlingite. Their
 corresponding lost of water. TG lost of mass

wt(%)	AFm	CASH	AH_3	Lost of mass	Р
wt(70)	APIII	C_2ASH_8	AII3	(water)	(1000°C)
	DRX/hip	DRX/hip	DRX/hip	DRX/hip	TG
$C_{12}A_7 + C_5S_2\overline{S}$	11.6 / 34	24.8 / 17.1		11.5 / 17.7	22
$CA+C_5S_2\overline{S}$	5.8 / 30.4	36 / 40.9		12.8 / 21.1	25.3
$C_4A_3\overline{S}+C_5S_2\overline{S}$	10.6 / 29.3		- / 14	4.1 / 15.3	17.6

 $\begin{array}{ccc}
687 & & & & & & \\
688 & Figure 1. Particle size distribution (PSD) and the derivative of the PSD of samples C_3A, \\
689 & & & & CA, C_{12}A_7, C_4A_3\overline{S}, and ternesite.
\end{array}$

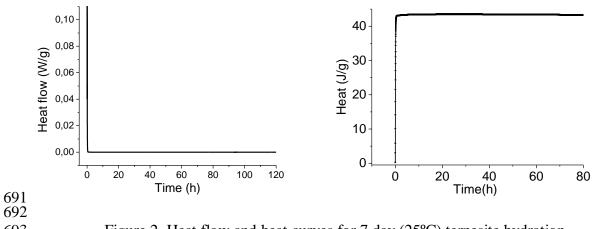


Figure 2. Heat flow and heat curves for 7 day (25°C) ternesite hydration

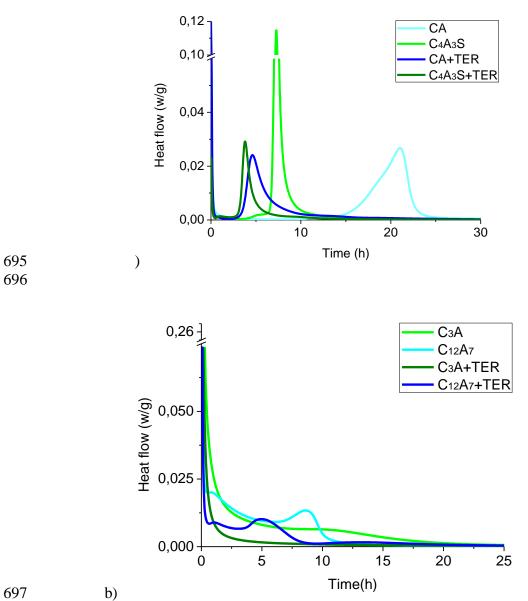
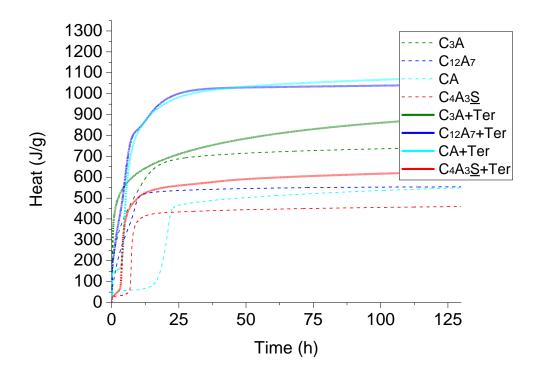
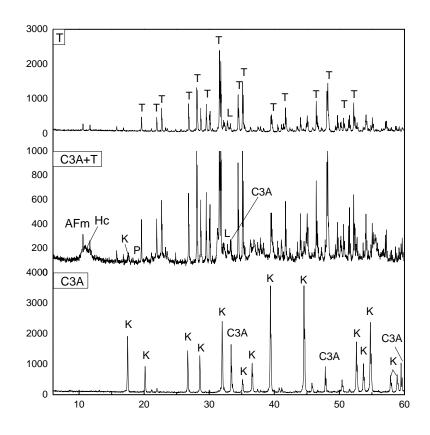
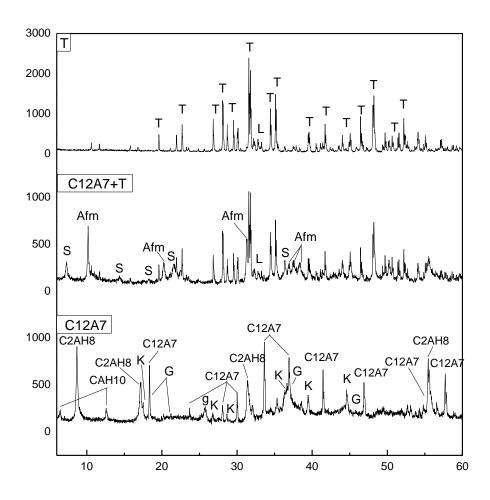
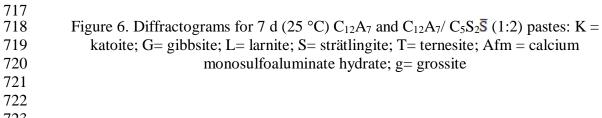
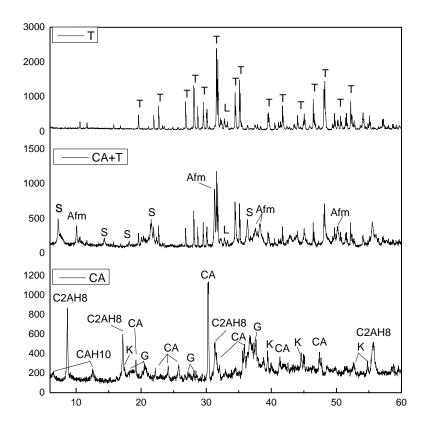


Figure 3. Heat flow curves for synthesised aluminates and their ternesite blends pastes at 25 °C

- 701


Figure 4. Heat of hydration curves for 7 d (25 °C) hydrated aluminates and their ternesite blends (per unit of mass of aluminate)



712Figure 5. Diffractograms for 7 d (25 °C) C_3A and $C_3A/C_5S_2\overline{S}$ (1:2) pastes: K = katoite;713AFm= Calcium sulfoaluminate.L= larnite; T= ternesite; Hc = calcium

hemicarboaluminate; P= portlandite

724

Figure 7. Diffractograms for 7 d (25 °C) CA and CA/C₅S₂ \hat{s} (1:2) pastes: K = katoite; G= gibbsite; L= larnite; T= ternesite; Afm = calcium monosulfoaluminate hydrate; S= strätlingite

- 728
- 729

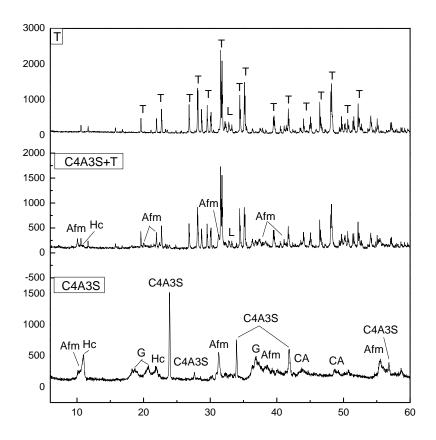
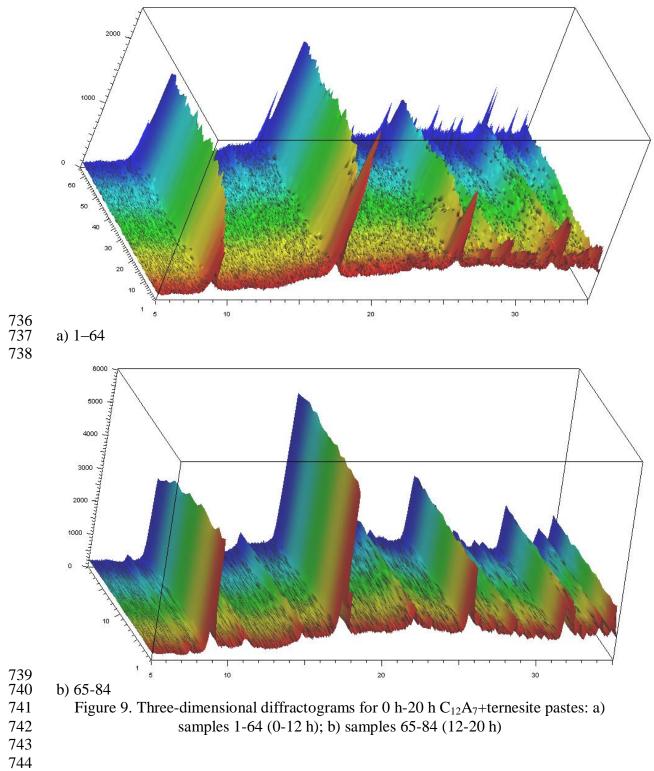



Figure 8. Diffractograms for 7 d (25 °C) $C_4A_3\overline{S}$ and $C_4A_3\overline{S}/C_5S_2\overline{S}$ (1:2) pastes: = gibbsite; L= larnite; T= ternesite; Afm = calcium monosulfoaluminate hydrate; Hc= calcium monocarboaluminate hydrate

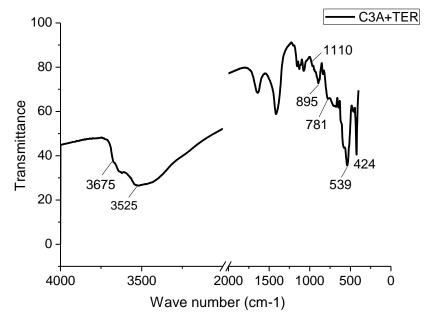


Figure 10. FTIR spectra for 7 d (25°C) C₃A+ternesite paste after subtracting the ternesite spectrum

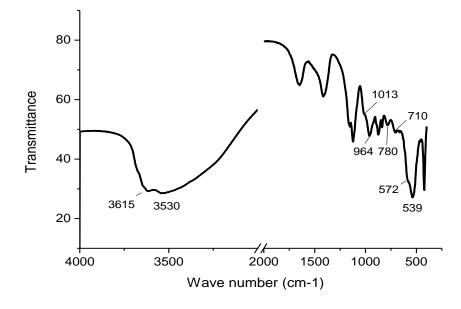


Figure 11. FTIR spectra for 7 d (25° C) C₁₂A₇+ternesite paste after subtracting the ternesite spectrum

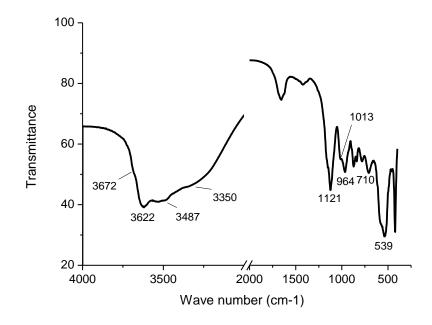
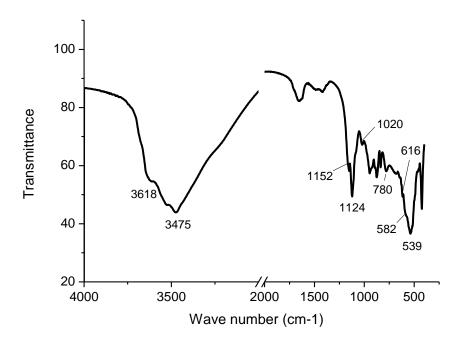



Figure 12. FTIR spectra for 7 d (25°C) CA+ternesite paste after subtracting the ternesite spectrum

ternesite spectrum

760

Figure 13. FTIR spectra for 7 d (25°C) $C_4A_3\overline{S}$ +ternesite paste after subtracting the

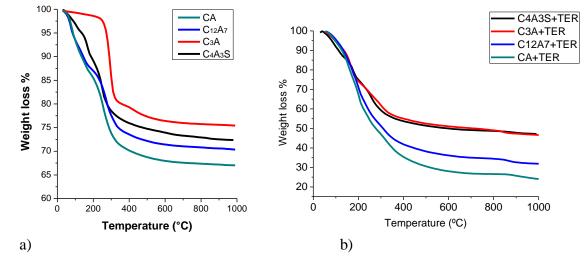


Figure 14. a) Weight loss in aluminate pastes; b) weight loss in aluminate+ternesite pastes (per g of aluminate)

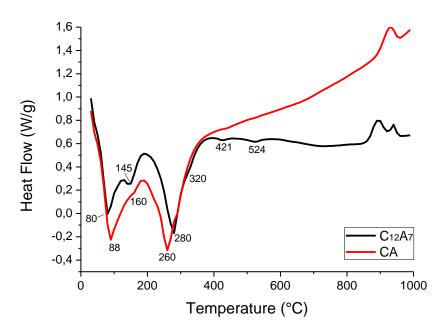
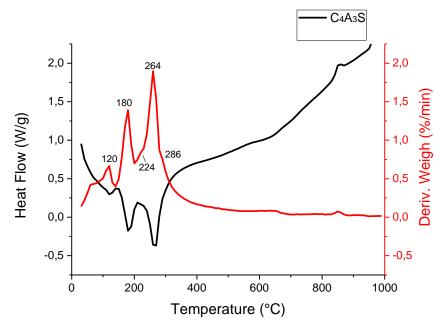
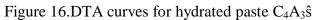
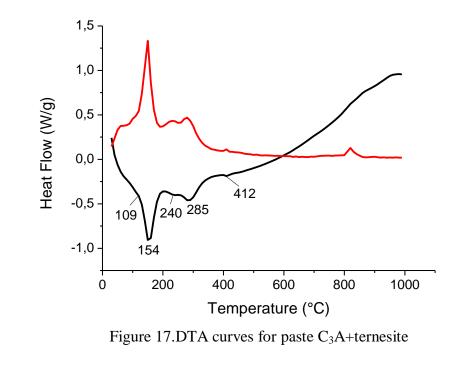





Figure 15. DTA curves for pastes CA and C₁₂A₇

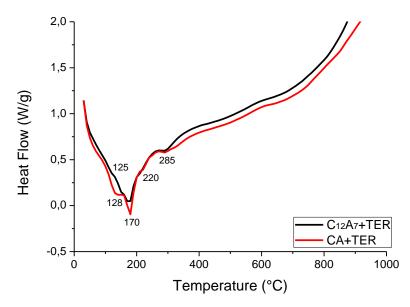
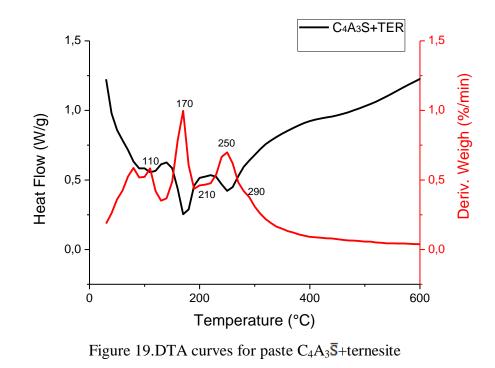



Figure 18.DTA curves for pastes CA+ternesite and $C_{12}A_7$ +ternesite

