Magnetic-field controlled radiative heat transfer

A. García-Martín\(^1\), R. M. Abraham Ekeroth\(^{1,2}\), P. Ben-Abdallah\(^3\), J.C. Cuevas\(^4\)

\(^{1}\)IMN-Instituto de Micro y Nanotecnología (CNM-CSIC), Isaac Newton 8, PTM, E-28760 Tres Cantos, Madrid, Spain
\(^{2}\)Instituto de Física Arroyo Seco, Universidad Nacional del Centro de la Provincia de Buenos Aires, Pinto 399, 7000 Tandil, Argentina
\(^{3}\)Laboratoire Charles Fabry, UMR 8501, Institut d’Optique, CNRS, Université Paris-Saclay, 2 Avenue Augustin Fresnel, 91127 Palaiseau Cedex, France
\(^{4}\)Departamento de Física de Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Madrid E-28049, Spain

\(^{a}\)a.garcia.martin@csic.es

The combination of magneto-optically active and resonant materials (e.g. plasmonic modes), makes it feasible to control optical properties using magnetic fields in connection to the excitation of resonances [1] (magnetoplasmonics). It has been shown that these nanostructures can be employed to modulate the propagation wavevector of SPPs [2], which allows the development of label free sensors with enhanced capabilities [3] or to enhance the magneto-optical response in isolated entities as well as films, in connection with a strong localization of the electromagnetic field [4,5].

Here we will show that they also play a crucial role in the active control thermal emission and the radiative heat transfer between objects in the near and far field regime [6-8].

References