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Abstract. The α-attractor inflationary models are nowadays favored by CMB Planck ob-
servations. Their similarity with canonical quintessence models motivates the exploration
of a common framework that explains both inflation and dark energy. We study the ex-
pected constraints that next-generation cosmological experiments will be able to impose for
the dark energy α-attractor model. We systematically account for the constraining power of
SNIa from WFIRST, BAO from DESI and WFIRST, galaxy clustering and shear from LSST
and Stage-4 CMB experiments. We assume a tensor-to-scalar ratio, 10−3 < r < 10−2, which
permits to explore the wide regime sufficiently close, but distinct, to a cosmological constant,
without need of fine tunning the initial value of the field. We find that the combination
S4CMB + LSST + SNIa will achieve the best results, improving the FoM by almost an order
of magnitude; respect to the S4CMB + BAO + SNIa case. We find this is also true for the
FoM of the w0 − wa parameters. Therefore, future surveys will be uniquely able to probe
models connecting early and late cosmic acceleration.

ar
X

iv
:1

90
5.

03
75

3v
2 

 [
as

tr
o-

ph
.C

O
] 

 2
7 

Ju
n 

20
19

mailto:carlosgarcia@iff.csic.es
mailto:pilar@icc.ub.edu
mailto:david.alonso@physics.ox.ac.uk
mailto:miguelzuma@berkeley.edu


Contents

1 Introduction 1

2 The generalized α-attractor model 3

3 Observational probes 4
3.1 CMB Stage 4 4
3.2 The Large Synoptic Survey Telescope 5
3.3 Spectroscopic Surveys: DESI and WFIRST 7

4 Fisher formalism 9

5 Results 10
5.1 Case without maximum: p > n 11
5.2 Case with maximum: p < n 14

6 Comparison with previous results 16

7 Conclusions 17

1 Introduction

The standard model of cosmology relies on two epochs of accelerated expansion. A first
inflationary phase in the very early universe leading to a very homogeneous, isotropic and
spatially flat with a near scale invariant spectrum of curvature perturbations [1, 2]. The
second acceleration era, when dark energy (DE) dominates the energy density in the late
universe, is necessary to explain observations of type Ia supernovae (e.g. Refs. [3–5]), the
cosmic microwave background (CMB) (e.g. Refs. [6, 7]) and the large-scale structure (LSS)
in the matter distribution (e.g. Ref. [8]). An ambitious observational program aims at
elucidating the physics behind inflation and DE.

In this context, the dark-energy α-attractor model [9] is one of the models that try to
describe both accelerated expansions in a common framework. These models typically have
a scalar field in a potential with two plateaus that allow for a slow roll at early times, which
produces inflation, and a freezing behavior at late times, that yields a cosmological constant-
like expansion [10–13]. In addition, there are models that would produce dark energy from a
symmetry breaking mechanism [14–16]. However, there are other studies that try to study the
connection of the late and early Universe, but focus only on the late time cosmology. Among
them there are those describing dark energy as quintessence, which base their Lagrangian on
an α-attractor model [9, 17–20], or those which study the relation between them and f(R)
gravity, from extensions of the Starobinsky R2 gravity [21], as in Refs. [22, 23]. Others,
instead, use the α-attractors as source of dark matter [24].

During inflation, the α-attractors class of models shines as a group of models able to
reproduce the observations, which strongly support concave potential models. CMB Planck
sets tight constraints on the tensor-to-scalar ratio, r, with r < 0.11 (at 95% CL) and the
spectral index, ns, with ns = 0.9649± 0.0042 (at 95% CL), favoring slow-roll models with a
concave potential (V (φ)′′ < 0) [2], as was already anticipated by WMAP results [25]. In this
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context, the α-attractor models are able to give the correct predictions thanks to the fact
that, for N e-folds [26],

ns = 1− 2N−1 and r = 12αN−2 , (1.1)

where α is a parameter shared by all models in this class and is present in their Lagrangian,
whose canonical expression is given by

L =
√
−g

[
1

2
M2
PR−

1

2
(∂φ)2 − αf2(x)

]
, (1.2)

where x = tanh(φ/
√

6α). The fact that their Lagrangian is the same as the one for canonical
quintessence dark energy models is exploited to connect both inflation and dark energy with
the same scalar field.

The α-attractor models are connected with fundamental theories with various fields
with local conformal (i.e. rescaling) invariance. This symmetry allows to rewrite the original
Lagrangian as a single-field one [26, 27],

L =
√
−g

[
1

2
M2
PR−

α

(1− ϕ2/6)2

1

2
(∂ϕ)2 − αf2

(
ϕ√
6

)]
. (1.3)

Here, g is the metric and R the Ricci scalar, MP is the Planck mass, and αf2 is the potential
function dependent on the field ϕ which is measured in MP units. The second order pole in
the kinetic term is the reason behind the common predictions for ns and r (Eq. 1.1). Finally,
in order to obtain its canonical version, one needs to define φ =

√
6α arctanh(ϕ/

√
6). In

this way, one also pushes the boundaries of the connected region (ϕ ∈ (−
√

6,
√

6)) to infinity
(φ ∈ (−∞,∞)).

In this paper, we will extend the previous work of Ref. [19] that studied the phe-
nomenology and the observational constraints of a generalized α-attractor dark energy model,
based on Starobinsky R2 inflationary Lagrangian [21]. It was shown that the generalized
Starobinsky-model had an infinite ΛCDM-like region which made that, imposing only late
time observational constraints (and a true model close to ΛCDM), one could only have lower
bounds on the initial position of the field and α and the requirement on the exponents of
being of the same order, so that the field slow rolls.

We will systematically study how future observations will affect the constraints on the
model’s parameters. Next spectroscopic experiments generation will reduce the relative error
on the angular diameter distance and the Hubble parameter to order of a few percents, while
deepening up to z ∼ 3 [28, 29]. Baryonic Acoustic Oscillations (BAO) measurements will also
significantly improve their accuracy, what will be reflected on the parameter constraints [19].
On the other hand, Stage 4-CMB experiments are expected to measure the tensor-to-scalar
ratio to order σ(r) ∼ 0.001 [30]. Lowering the r upper-bound below ∼ 0.01 might be able to
constrain α through Eq. 1.1 and, in turn, the initial value of the field. Finally, from the Large
Synoptic Survey Telescope [31], a photometric experiment, we will take into account their
predictions for galaxy clustering and shear measurements, which will effectively constrain
cosmological parameters by means of precise measurements of the matter power spectrum at
different redshifts.

It is important to note that some of these next-generation experiments will overlap,
allowing to beat cosmic variance when cross-correlations are taken into account [32]. In
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order to take advantage of this piece of information, we will use the multi-tracer formalism
as described in Ref. [33], which is reviewed in Section 4.

In Section 2, we will introduce the α-attractor dark energy model and summarize its
properties. In Section 3, we will briefly summarize the models used to describe each observa-
tional probe that enter our forecast: Stage-4 CMB experiments, the Large Synoptic Survey
Telescope [31], DESI [28] and WFIRST [6]. In Section 4, we will review the multi-tracer
Fisher formalism and the computational tools that carry out the computations. In Section 5,
the forecasted constraints will be shown and analyzed. Finally, in section 7, we will conclude.

2 The generalized α-attractor model

The generalized α-attractor model was first proposed in Ref. [9] and further studied in
Refs. [17, 19]. It generalizes the Starobinsky inflationary model [21], freeing the potential’s
exponents and amplitude:

V (x) = αc2 xp

(1 + x)2n
= αc22−2n(1− y)p(1 + y)2n−p , (2.1)

where c, p, n are constant parameters, x = tanh(φ/
√

6α) and y ≡ e−2φ/
√

6α. The Starobinsky
model is obtained with α = 1, p = 2, n = 1 [34–36], in natural units, i.e. reduced Planck
mass MP = 1 and speed of light, c = 1. We assume a flat Universe as a consequence of
inflation.

In this section, we will summarize the properties of this model, already studied in Ref.
[9, 19]. We will use the scaled field variable, ψ ≡ φ/

√
6, introduced in Ref. [19], as it better

reflects what is the determining quantity in V (x). Let us list them bellow:

• The potential Eq. 2.1 has two limits – it has a power law regime at low ψ and a plateau
at large ψ [9]:

V (|ψ| �
√

6) ≈ αc26−p/2 ψp , (2.2)

V (ψ �
√

6) ≈ αc2 2−2n
[
1− 2(p− n) e−2ψ/

√
6
]

(2.3)

−−−−→
ψ→∞

αc2

22n
. (2.4)

• Viable models are of the thawing class and ∆ψ ≡ ψ0 − ψi (the field excursion, i.e.
the difference between its initial, ψi and today’s, ψ0, values), can be approximated as
∆ψ ∼

√
1 + w0/

√
α. In addition, it can be shown that 1+w0 ∼ 1/α, yielding ∆ψ ∼ 1/α

[19].

• If n < p, the field always decreases [9] and its velocity is inversely related to its initial
value (ψini). Also, p determine the transition regime slope [19].

• If n > p, it has a maximum located at xmax = p/(2n − p) [9], whose height for viable
models is controlled by n and the transition regime slope by p−n. Around the inflection
points the field evolution is fast [19].

The observational constraints obtained with Planck 2015 [37], BAO from BOSS DR12
[8] and supernovae (through an E(z) estimate with Pantheon compressed sample) [38] show
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that large α and ψini are favored as they make the field move slowly. For the same reason,
p ∼ n is also preferred. Finally, despite of having viable tachyonic solutions, this model
would not cause dark energy to cluster significantly, since dark energy perturbation do not
have enough time to grow appreciably [19].

Note that the lower boundary of ψini depends on the maximum value accessible for α,
since the total evolution of the field is inversely related to α (second item of previous list). As
a consequence, constraining α through Eq. 1.1 and ns and r measurements could significantly
improve the previous result of Ref. [19], cutting out a big portion of the available space for
ψini. Quantitatively,

α =
r

3(1− ns)2
, (2.5)

so that if Stage 4-CMB experiments measured r < 0.01, α . 3.5, which would highly con-
strain the initial position of the field, restricting its values to positions close to the plateau
or the maximum, where the field slow-rolls. It would be even more dramatic if r ∼ 10−3

(exhausting the intended minimum uncertainty [30]), as α ∼ 0.35. However, if r remained
close to its upper bound value of Planck 2018 results (r ∼ 0.1) [2], α ∼ 38. Then, the
available space for ψini would expand towards values closer to the potential minimum and
the inflection points, thanks to the friction α causes.

In this work, we will study the case with r . 0.01, which will allow to explore the
regimes in which the model is both close and different to a cosmological constant. The mild
upper bound in α (α . 3.5) will restrict ψini to values where the field does not roll down fast,
but far enough to the plateau and maximum, allowing a mild evolution. A tighter constraint,
as that set by the most precise expected measurement of r, r ∼ 10−3 [30], fixes α ∼ 0.35,
pushing the equation of state towards w ∼ −1 to avoid the parts of the potential where the
field would move fast and yield inviable models, letting alone the maximum (instable), the
plateau and their closest points. In addition, we choose to avoid the high α regime (i.e. high
r) as it was shown to be unbounded by current data [19]. The only hope of constraining the
parameter space relies on finding new data that favors a model sufficiently distinct to ΛCDM
and, in that case, our choice of r . 0.01 (α . 3.5) is broad enough to account for a wide
range of cosmologies that deviate from ΛCDM.

3 Observational probes

A cohort of next-generation cosmology experiments will collect an unprecedented amount
of data during the next decade, which will allow us to vastly improve our understanding
of cosmology. Our forecasts will include two experiments modelled after two of the most
promising facilities: CMB Stage-4 and the Large Synoptic Survey Telescope (LSST). The
assumptions made to describe these datasets will be described here.

3.1 CMB Stage 4

Third-generation CMB experiments, such as ACTPol [39], SPT-3G [40], BICEP2/Keck [41]
or Simons Array [42] will be progressively upgraded to an Stage 4 experiment, increasing the
number of detectors, frequency channels, and sky coverage, allowing us to cover around 40%
of the sky, with a white-noise level σT ∼ 1µK-arcmin in temperature [30].

S4 will measure primordial CMB temperature and polarization anisotropies as well as
the reconstructed CMB lensing convergence, among other secondary anisotropies. These
measurements will be limited in resolution by the beam size. We assume a Gaussian beam
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with a full width at half maximum θFWHM = 3 arcmin. The corresponding noise power
spectrum, assuming white noise, is given by

Nx
` = σ2

x exp
[
`(`+ 1)θ2

FWHM/8 log 2
]
, (3.1)

where x stands for temperature (T ) or polarization maps (E) and σ2
x is in units of [µK2sr] (we

assume σE = σT
√

2). At large scales, statistical and systematic uncertainties, associated to
ground-based facilities such as atmospheric contamination dominate, and therefore we discard
multipoles l < 30 and use the Planck noise levels in this regime [43] (corresponding to σT '
30µK-arcmin. Furthermore, given the contamination in the temperature power spectrum by
astrophysical foregrounds, we choose different scale cuts for polarization (`max = 5000) and
temperature (`max = 3000) multipoles.

Lensing noise is obtained by quadratic combinations of the CMB maps [44] and esti-
mating the reconstruction noise with the minimum variance weighting, by combinations of
the TT , TE , TB ,EB and EE individual estimators. This technique significantly reduces
the noise of individual estimators which are noise limited at high-` [45]. We include CMB
lensing information in the range 30 < ` < 3000.

3.2 The Large Synoptic Survey Telescope

The Large Synoptic Survey Telescope (LSST) is a photometric Stage 4 experiment that will
cover around 20, 000 deg2 and reach a limit magnitude r ∼ 27 [31]. Photometric catalogs
are dense and deep, which make them excellent for weak lensing studies and multi-probe
analyses, where one does not need high accuracy on the spatial distribution of the tracers or
clustering statistics at small scales.

Photometric surveys infer the individual galaxies redshifts from their fluxes in a few
broad frequency bands and, as a consequence, have large uncertainties in the radial clustering
pattern. This procedure, will allow LSST to obtain constraints from different sources: tomo-
graphic galaxy clustering and cosmic shear, galaxy cluster counts, SN Ia and strong lenses.
Among these, the combination of galaxy clustering and cosmic shear is the most promising
source of information for LSST when combined with measurements of the distance-redshift
relation (through e.g. supernovae or baryon acoustic oscillations). We will follow Ref. [46]
in the modelling of both tracers.

• Galaxy clustering. For galaxy clustering, the most relevant observable is the shape
of the angular power spectrum or the two-point correlation function of the galaxy
distribution. In tomographic clustering, we divide the galaxy sample in redshift bins
and compute the auto- and cross-correlation functions between them. In order to
simplify the analysis, we assume that galaxies can be grouped in two different categories
– red galaxies (early-type, elliptical and high-bias) and blue galaxies (late-type, spiral
and low-bias). This is just an approximation, since red spiral galaxies exist, for example,
but it is based on the strong bimodality of the galaxy color space [47]. For instance,
red galaxies are less abundant, but show strong features in their spectra that allow
to extract more accurate photo-z distributions. Furthermore, they also show a higher
clustering amplitude (i.e. they have a larger galaxy bias) than their blue counterparts.
In addition tho these two classes of galaxies, we group together all galaxies whose
magnitude is above r ' 25.3, which correspond to the so-called ‘gold sample’ of LSST
[31], and will be used as the galaxy shear sample for weak lensing. In galaxy clustering,
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the main source of statistical noise is shot noise and, following Ref. [46], the noise
power spectra is given by

N ij
l =

δij
ni

(3.2)

where ni is the angular number density of galaxies in the i-th tomographic bin, char-
acterized by its window function wi(z),

ni =

∫ ∞
0

dz N̄(z)wi(z) . (3.3)

We assume, Gaussian photo-z distributions (p(zp|z)), for which the window function is

wi(z) =

∫ zif

zi0

dzp p(zp|z) (3.4)

=
1

2

[
erf

(
z − zi0√

2σz

)
− erf

(
z − zif√

2σz

)]
. (3.5)

Here σz is the Gaussian photo-z standard deviation, which we parametrize as σz(z) =
σ0(1 + z). We use σ0 = 0.02 for red galaxies and σ0 = 0.05 for the blue and gold
samples (red galaxies have usually more precise photo-z due to their stronger spectral
features). Finally, the list of initial and final redshifts for each redshift bin can be found
in Table 1, and the galaxy distributions in Fig. 1. Note that the redshift spacing was
chosen such that the width of each bin is equal to 3 times the photo-z uncertainty at
the center of the bin. This is a compromise between the need to sample the redshift
range sufficiently well, and avoiding strong correlations between different bins due to
their overlap.

Figure 1. Galaxy density distributions for red, blue and gold samples of LSST. Dashed lines show
the windows functions (W i ∝ N̄(z)wi(z)) for each redshift bin.

The main source of uncertainty for galaxy clustering is the relation between the galaxy
and matter overdensities. On sufficiently large scales, this relation is assumed to be

– 6 –



Sample Redshift bin edges

Blue (cl) [0, 0.16, 0.35, 0.57, 0.82, 1.12, 1.46, 1.86, 2.33]

Red (cl) & [0, 0.06, 0.13, 0.20, 0.27, 0.35, 0.43,
Gold (sh) [0.52, 0.62, 0.72, 0.82, 0.94, 1.1, 1.2, 1.3]

Table 1. Redshift bin edges for the angular galaxy density distribution of each sample. cl≡ clustering;
sh ≡ shear. Refer to appendix B.4.2 in Ref [46] for details on the distributions.

linear, and the proportionality constant is the so-called galaxy bias b [48]. We use a
model for the bias of red and blue galaxies as

bred(z) = 1 + z, bblue = 1 + 0.84z . (3.6)

This is motivated by simulations [49] and observations [50], and takes into account the
stronger clustering properties of red galaxies.

Given that the linear bias parametrization breaks on small scales, our scale cuts for
galaxy clustering need to be more conservative. We will define it in a redshift dependent
manner as `max(z) = χ(z)kmax, where z is the mean redshift of the redshift bin, χ is the
radial comoving distance and kmax is the threshold comoving scale, which we choose to
be kmax = 0.2hMpc−1. This is the scale up to which a good estimate of the covariance
matrix of the matter power spectrum in the quasi-linear regime can be made at z = 0
[51].

As a final remark, we will neglect the effect of magnification bias, given the small effect
it has on the final constraints [52].

• Galaxy shear. Weak lensing is an unbiased estimator of the projected matter perturba-
tions, and is quantified by correlating the projected ellipticities of galaxies. The noise
power spectrum is directly proportional to the variance of the intrinsic galaxy elliptici-
ties, and inversely to the angular projected galaxy number density; i.e. N ij

l = δijσ
2
γ/n

i.
Here, σγ includes both the dispersion of the intrinsic galaxy ellipticities and the mea-
surements uncertainties, and is set to σγ = 0.28 [31]. We marginalize over shape
measurement systematics in the form of a free multiplicative bias parameter for each
reshift bin. Other sources of systematic uncertainty, such as intrinsic alignment, shape-
measurement systematics or baryonic uncertainties will be neglected. We expect their
effect on the constraints on the parameter space of the α-attractor dark energy model
to be negligible compared to other sources of systematic uncertainties, particularly the
multiplicative bias. We will however impose a scale cut ` ≤ 2000 to avoid uncertainties
associated with the modelling of baryonic effects in the matter power spectrum [53–59].
The redshift bins for the gold sample used for weak lensing are given in Table 1

3.3 Spectroscopic Surveys: DESI and WFIRST

Spectroscopic surveys are especially aimed to study phenomena at smaller scales, like BAO
and redshift-space distortions. The high redshift resolution of spectroscopic surveys makes
a tomographic analysis as described in the previous section computationally intractable and
inefficient. The standard analysis studying the multipoles of the 3D galaxy power spectrum is
however not easy to incorporate into our forecasting formalism, in terms of fully characterizing
the correlations with overlapping tomographic data.
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Tracer Noise contribution

S4CMB Nx
l = σ2

x exp
[
l(l + 1)θ2

FWHM/8 log 2
]

,

gal. cl. N ij
l = δij/n

inj

gal. sh. N i
l = σ2

γ/N
i
Ω

Table 2. Noise contribution to the power spectra for LSST measurements. For S4CMB experiments,
the noise level σx = σT , σE , where σE/

√
2 = σT ∼ 1µK-arcmin and ΘFWHM = 3[arcmin]. For

galaxy clustering (gal. cl.), δij is the identity matrix and ni is the galaxy number in the z-bin i, given
by Eq. 3.3. For galaxy shear (gal. sh.), the variance of the intrinsic galaxy ellipticities, σγ = 0.28 and
N i

Ω is the angular galaxy number density of z-bin i.

BAO error predictions

DESI WFIRST

z
σDA/s

DA/s
(%) σHs

Hs (%) z
σDA/s

DA/s
(%) σHs

Hs (%)

0.05 6.12 12.10 1.05 1.51 2.72
0.15 2.35 4.66 1.15 1.43 2.56
0.25 1.51 2.97 1.25 1.35 2.42
0.35 1.32 2.44 1.35 1.29 2.30
0.45 2.39 3.69 1.45 1.24 2.21
0.65 0.82 1.50 1.55 1.23 2.16
0.75 0.69 1.27 1.65 1.25 2.15
0.85 0.69 1.22 1.75 1.28 2.16
0.95 0.73 1.22 1.85 1.33 2.19
1.05 0.89 1.37 1.95 1.41 2.27
1.15 0.94 1.39 2.05 2.51 3.52
1.25 0.96 1.39 2.15 2.60 3.62
1.35 1.50 2.02 2.25 2.74 3.78
1.45 1.59 2.13 2.35 3.02 4.09
1.55 1.90 2.52 2.45 3.38 4.52
1.65 2.88 3.80 2.55 3.87 5.11
1.75 4.64 6.30 2.65 4.52 5.90
1.85 4.71 6.39 2.75 5.41 6.99

Table 3. WFIRST and DESI BAO errors. Respectively, they have been taken from Table VII in
Ref. [29] and Tables 2.3 and 2.5 of Ref. [28]. The early-time BAO error predictions from Ly-α and
quasars (QSO) have been omitted as they are above the H and DA partial derivatives (see Fig. 3)
values, having little contribution to the total Fisher matrix.

Instead, we will directly incorporate the BAO forecasts for DESI [28] and WFIRST
[6, 29], using the error estimates summarized in Table 3. The errors are given on the angular
diameter distance (DA = (1 + z)−1

∫ z
0 dz

′H−1(z′)) and Hubble parameter (H(z)).
DESI [28] will cover ∼ 14000 deg2 from the North Hemisphere and target Luminous Red

Galaxies (LRGs), Emission Line Galaxies (ELGs) and quasars. Their BAO DA and H error
estimations cover 18 redshifts, uniformly distributed in the redshift range 0.05 ≤ z ≤ 1.85.
The details of their forecast analysis can be found in Ref. [28]. On the other hand, WFIRST
will measure redshifts for ∼ 2.6× 107 galaxies over ∼ 2000 deg2. Their forecast assumed the
galaxy number densities from from Ref. [6]. We use forecast errors on the BAO parameters
over 18 redshift bins, uniformly distributed in 1.05 ≤ z ≤ 2.75. Additionally, WFIRST
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WFIRST SN Ia
E(z) predictions

z σ(E(z))(%)

0.07 1.3
0.2 1.1
0.35 1.5
0.6 1.5
0.8 2.0
1.0 2.3
1.3 2.6
1.7 3.4
2.5 8.9

Table 4. E(z) = H(z)/H(0) estimated relative errors from WFIRST SN Ia. Values have been taken
from Table 7 of Ref. [38], based on Ref. [60] simulations plus an external sample at z < 0.1.

will also be able to measure the expansion of the Universe through type Ia supernovae.
We will include this probe through the forecast for E(z) = H(z)/H(0) from Ref. [38] (see
Table 4), the same way this was done in Ref. [19]. We will neglect correlations between
different redshifts as this effect is negligible in comparison with the constraining power of
the other experiments. The predictions for E(z) were obtained from a simulation based on
Ref. [60], plus an external sample at z < 0.1. The predictions for E(z) for WFIRST are based
in simulations done by Ref. [60] for WFIRST, where the systematic errors in the adopted
model fall below the statistical errors. The number of supernovae in each redshift bin is
shown in Table 5.

z ∈ SN

[0, 0.1] 800
[0.1, 0.4] 557
[0.4, 0.8] 4807
[0.8, 1.7] 5892

Table 5. Redshift bins and number of supernovae obtained in a realistic simulation of the Imaging
All-z observational strategy [60], used in Ref [38] to forecast the uncertainties on E(z). The first 800
SN are assumed to be obtained from a different experiment.

4 Fisher formalism

This section summarizes the Fisher formalism introduced in Ref. [33]. Each projected probe
(CMB primary and lensing, photometric galaxy clustering and cosmic shear) labelled as a is
composed of a number of sky maps Na

maps, which can be fully described by their harmonic

coefficients (aa ,i`m, i ∈ [0, Na
maps]). They can be grouped into a vector a`m, the covariance

matrix of which is the power spectrum::

〈a`ma†`′m′〉 = δ``′δmm′Cl . (4.1)

– 9 –



Under the assumption of being Gaussian distributed, the likelihood is given by

− 2 logL =

`max∑
`min

m=∑̀
m=−`

[
a†`mC

−1
` a`m + log(det(2πC`))

]
, (4.2)

which can be expanded around the maximum in order to find the Fisher matrix

Fµν =

`max∑
`=`min

fsky
2`+ 1

2
tr
(
∂µC`C

−1
` ∂νC`C

−1
`

)
. (4.3)

The covariance matrix of the parameters θ can then be obtained by inverting F . In the
previous equation, ∂µ is the partial derivative respect to the parameter θµ and fsky is the sky
fraction covered by the considered probes.

Furthermore, we will assume that noise and cosmological signal are uncorrelated in the
observed anisotropies, i.e. given a`m = s`m + n`m, C` = CS` + CN` = 〈s`ms†`m〉 + 〈n`mn†`m〉,
where CS` and CN` are the signal and noise power spectra.

The Fisher matrix with DESI and WFIRST probes will be computed as

Fµν =
∑
i

∂µqi∂νqi
σ2
i

, (4.4)

where qi is the measurement of a given quantity q (which stands for DA(z), or E(z)) in the i-
th redshift bin, and σ2

i is the forecasted error on that quantity. This Fisher matrix is added to
the one computed for CMB and photometric survey data. This ignores possible correlations
between both sets of observables. We do not expect our results to be very sensitive to this
assumption.

Finally, all partial derivatives with respect to θµ will be computed via finite central
differences,

∂µf =
f(θµ + δθµ)− f(θµ − δθµ)

2δθµ
+O(δθ3). (4.5)

In addition, the power spectra, CS` , will be obtained using hi class [61], a modified version
of CLASS [62] that incorporates Horndeski models [63] without assuming the quasi-static
approximation, which ensures results are valid at scales larger than the sound horizon [64].
Finally, we will use the Limber approximation [65] in the full range of scales. The software
used to combine all these ingredients is available online1.

5 Results

The next generation of data, despite its increase on accuracy, will fail to fully constrain
the generalized α-attractor model, as present observations did, if they continue preferring a
ΛCDM background evolution. One must recall that this model has an infinite region of the
parameter space that is indistinguishable from ΛCDM, corresponding to large α (acts as a
friction to the field motion) or having ψini on the plateau (or, with more fine tunning, close
to a maximum) [19].

1https://gitlab.com/ardok-m/GoFish_aatt-forecast/tree/aatt, a modified version of https://

github.com/damonge/GoFish (the master branch of the former repository)
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Pars. ψini α p n FoM FoMCPL

Fid (no max). 1.5 2 2 1 − −
σ . 1 0.5 . 1 . 1 ∼ 10 103

Fid (ψini < ψmax). 0.8 2 2 3.5 − −
σ 0.2 ∼ 0.5 0.4 1 ∼ 100 102

Fid (ψini > ψmax). 1.4 2 2 3.5 − −
σ 2 ∼ 1 2 2 ∼ 1 104

Table 6. Fiducial values and predicted constraints using all probes. Recall that ψmax = 1.04. The
results with a ’∼’ sign mean that little changes on the numerical derivative yield changes on the
first significant digit. This is consequence of the strong correlations between the model parameters.
FoM ≡ FoM(ψini, α, p, n) and FoMCPL ≡ FoM(w0, wa). The potential shape when ψini < ψmax
allows for a larger variety of evolutions and, therefore, of w0 − wa values. This causes a greater
FoMCPL than in the other cases.

We will investigate the parameter space that lies 1σ off the best fit result of Ref. [19],
which is able to differentiate from a cosmological constant. Current observations prefer
the cosmological constant-like regime, which correspond to an unbounded region on the
parameter space [19]. Therefore, as we said before, if future observations were to continue
favoring ΛCDM, they would not be able to constrain the parameter space. At best, they will
be able to rise the lower bounds for α and ψini. As a consequence, the only hope of finding
tight constraints relies on new data that favors models slightly different (they still have to
be compatible with current observations, at their level of accuracy) to ΛCDM. This regime
correspond to the parameters 1σ off the best-fit of Ref. [19].

The cosmological parameters have been chosen as in Table 3 of Ref. [19], i.e. Ωcdmh
2 =

0.1183, Ωbh
2 = 0.02221, h = 0.682, 109As = 2.14, ns = 0.9649, τreio = = 0.067. For

the α-attractor parameters, we study two distinct cases, corresponding to models with and
without a maximum (p ≥ n and p < n, respectively). In the first case, the 1σ-off parameters
are {ψini, α, p, n} = {1.5, 2, 2, 1}. In the second case, we choose {α, p, n} = {2, 2, 3.5}
and we study two further options for ψini: 0.8 and 1.4. This corresponds to the cases with
ψini smaller and larger than ψmax = 1.04 (see Fig. 2). A summary of the fiducial models
and constraints can be found in Table 6. In next sections, we will discuss them in detail.
The c parameter, which fixes the potential amplitude, is fixed via the Friedman equation
(1 =

∑
i Ωi).

5.1 Case without maximum: p > n

The fiducial model parameters are {ψini, α, p, n} = {1.5, 2, 2, 1}. In Tab. 7 the Figures of
Merit (FoM) for different combinations of the experiments are shown. Recall that the FoM
is defined by [66]

FoM = (detC)−1/2. (5.1)

In our case, the covariance matrix (C) is obtained inverting the full Fisher matrix and
marginalizing over the nuisance and cosmological parameters, so that we describe just the
constraining power of the next generation experiments on the parameter space of the α-
attractor model.

Table 7 shows that LSST galaxy clustering is necessary to be able to constrain the
parameter space of the dark energy α-attractor model. The galaxy power spectrum is the
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Figure 2. Fiducial potentials (V ) and equations of state (w). The dots mark the initial position of
the field.

FoM(ψini, α, p, n)

Experiments w/o max. ψini < ψmax ψini > ψmax
SN Ia, BAO, gal. sh – – –

S4CMB – 2× 10−1 –
S4CMB + BAO 6× 10−2 7× 10−1 –
S4CMB + SN Ia 1× 10−1 1 –

S4CMB + BAO + SN Ia 1× 10−1 2 –
gal. cl 2× 10 1× 102 3× 10−1

S4CMB + gal.∗ + SNIa 4× 10 3× 102 2
All 4× 10 3× 102 2

Table 7. Figures of Merit for different combinations of future experiment measurements on the
parameter space of the α-attractor model. BAO combines DESI and WFIRST predictions, SN Ia
comes from constraints on E(z) using WFIRST forecasts [38] and galaxy clustering (gal. cl) and shear
(gal. sh) are those from LSST. The combination of galaxy clustering and shear has been written as
gal∗. We have omitted FoM< 10−1, considering those as unable to constraint the parameter space.

observable that is most sensitive to changes on the model parameters, as shown in Fig. 3.
Furthermore, the combination of galaxy clustering and the other probes is able to increase
the FoM almost by a factor 2; exhausting the constraining power of future observations. In
Fig. 4 we show the predicted 2σ-regions for the cases with all probes, with S4-CMB + BAO
+ SNIa and S4-CMB + LSST + SNIa. Galaxy clustering would be able to alleviate the
degeneracy between α and ψini that made it difficult to find good constraints in Ref. [19].
The strong degeneracy between ψini and the exponents is such that slight variations of one
can be compensated with any of the other in order to prevent the field from rolling down the
potential too fast.

These constraints in the parameter space can also be seen in the CPL parametrization
of dark energy (w0 − wa) [67, 68]. In fact, one can see a similar improvement on the FoM
(Table 8) of w0−wa as in the model parameters (Table 7). The FoM for the CPL parameters
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Figure 3. Numerical derivatives of the Hubble parameter, angular diameter distance and matter
correlation. The computation was done for the case without maximum.

Figure 4. 2σ-regions for the model parameters when the potential has no maximum. Note that the
maximum constraints are already found for S4CMB + LSST + SNIa.

has been defines as

FoM(w0, wa) =
1

area1σ(w0, wa)
, (5.2)

which generalizes Eq. 5.1 for a non elliptical shape. It must be noted, however, that the
main reason behind the large FoM is due to the fact that this model belongs to the thawing
quintessence class, which is known to have little freedom in the w0−wa plane [69]. Interest-
ingly, it could be expected to detect a 2σ deviation from a cosmological constant (w0 = −1,
wa = 0), provided that the fiducial model were the true one and one included LSST galaxy
clustering observations (Fig. 5). This would not be the case if galaxy clustering were not
taken into account. In fact, the weak constraints from the other cosmological probes would
shift the w0 − wa 1σ region towards w ∼ −1.

The w0-wa contours were obtained: first, we diagonalize the covariance matrix (i.e.
F−1). We then take samples of the uncorrelated Gaussian distribution and transform-back
to the original basis. In doing so, we reject any model with p < n (i.e. models with maximum)
and with negative model parameters. Once selected, we used hi class [61] to compute the
corresponding w0-wa parameters, with wa computed as wa = −dw/d ln(a)|a=1). Finally, we
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FoM(w0, wa)

Experiments w/o max. ψini < ψmax ψini > ψmax
S4CMB + BAO + SN Ia 6× 102 5× 101 6× 102

S4CMB + gal.∗ + SNIa 2× 103 2× 102 8× 103

All 2× 103 2× 102 8× 103

Table 8. Figures of Merit (Eq. 5.1) for different combinations of future experiment on the w0-wa
parameters. BAO combines DESI and WFIRST predictions, SN Ia comes from constraints on E(z)
using WFIRST forecasts [38] and galaxy clustering (gal. cl) and shear (gal. sh) are those from LSST.
The combination of galaxy clustering and shear has been written as gal.∗.

Figure 5. 2σ-regions of the w0 − wa parameters parting from a fiducial model 1σ-off the ΛCDM
regime and no maximum. Note that the maximum constraints are already found for S4CMB + LSST
+ SNIa.

used GetDist 2 to produce contours of the corresponding samples.

5.2 Case with maximum: p < n

The fiducial model with maximum is given by {α, p, n} = {2, 2, 3.5}. Given that the
potential is not symmetric around the maximum, we will study the forecast potential of the
next generation experiments with two fiducial models with initial value of the field so that it
is at both sides of the maximum. It is located at ψmax = 1.04, and we will consider the cases
with ψini = 0.8, 1.4. The results are shown in Table 6, and the quantitative measurement of
the constraining power of each probe is shown in Table 7. The found contours are shown in
Fig. 6. As before, galaxy clustering will be the most constraining probe. In comparison, the
case with ψini < ψmax is better constrained, with S4-CMB experiments having a FoM ∼ 10−1

and, in combination with BAO and/or SNIa, FoM ∼ 1. Using all probes, one can achieve a
FoM ∼ 102. However, for the case with ψini > ψmax, we only reach FoM ∼ 1, when using
all probes. The asymmetry around the maximum is such that at lower values, the potential
slope is much more pronounced (see Fig. 2), making the model more sensitive to parameters
changes. On the contrary, at values of the field greater than the maximum, the potential is

2https://github.com/cmbant/getdist
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(a) ψini < ψmax (b) ψini > ψmax

Figure 6. 2σ-regions for the model parameters when the potential has a maximum. Note that the
maximum constraints are already found for S4CMB + LSST + SNIa.

(a) ψini < ψmax (b) ψini > ψmax

Figure 7. 2σ-regions of the w0 − wa parameters parting from a fiducial model 1σ-off the ΛCDM
regime. Note that the maximum constraints are already found for S4CMB + LSST + SNIa.

softer and asymptotically flat, allowing for greater changes on the parameters that do not
impact the final observables. The greater steepness of the potential is also the reason why
the case with ψini < ψmax is more constrained than the case without maximum (see Fig. 2),
even though the dark energy equation of state of the fiducial model with maximum is closer
to w = −1 (see Fig. 7), as a slightly lower ψini would make the field end up oscillating fast
around 0. It must be noted, however, that it is still 2σ-off the exact w = −1.

As in the previous section, the main restriction on the dark energy CPL parameters
comes from being a thawing model. In particular, when ψini < ψmax, the field cannot start
at much lower values than the fiducial ψini = 0.8, as the field would roll fast towards ψ = 0.
On the other hand, the constraints allow values of ψini that are closer to the maximum and
the plateau, in the case with ψini > ψmax. As a consequence, the most likely parameter
combinations that produce a correct late-time acceleration would be those with w ∼ −1.
Finally, the broader 2σ-contours in the ψini < ψmax case, despite of having a FoM ∼ 100,
over the model parameters, are a consequence of the larger range of accessible values of
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V ′ (see the potential shape in Fig. 2), which allows a richer variety of field evolutions. In
addition, in all three cases, galaxy clustering is able to increase the FoM(w0, wa) by almost
an order of magnitude (see Table 8). The found contours have been plotted in Fig. 7

The FoM of the model and CPL parameters reflect the fact that the phenomenology of
this model is mainly determined by its thawing nature and the initial position of the field,
which determines what part of the potential is going to control the field evolution, and not
all its parameters. In particular, the case with largest FoM on the model parameters is that
with ψini < ψmax, while it is the one with lowest FoM(w0, wa). Similarly, the configuration
with ψini > ψmax has the lowest FoM on the model parameters, but the greatest for the
CPL parametrization. Finally, although the case without maximum has a FoM(w0, wa) of
same order as the former, its FoM(ψini, α, p, n) is an order of magnitude larger. Therefore,
this shows the actual degrees of freedom, those that affect the phenomenology, are less than
the number of free parameters; which we already know are degenerated. As a consequence,
the FoM(ψini, α, p, n) is not a good quantity to inform us about how well constrained is the
phenomenology of this model.

6 Comparison with previous results

Future observations will be able to greatly constrain the α-attractor model, provided that
the true dark energy model were different from a cosmological constant and α could not be
arbitrarily large (i.e. r . 0.01). In this case, we have shown that a combination of S4CMB
+ LSST + SNIa, will greatily improve present results. In fact, they increase by almost an
order of magnitude the FoM of both the parameter space and the w0−wa parameters, when
compared with S4CMB + BAO + SNIa.

A special comment is required for the results in the w0 − wa plane. In Figure 8 we
have plotted the w0 −wa best 2σ-contours, together with the results found in Ref. [19]. The
available space for w0 − wa greatly depends on the fiducial cosmology used. For instance,
if ψini < ψmax, the parameters are much less constrained. As we discussed in the previous
section, this is caused by the fact that V ′ can have a broader range of values that will modify
the acceleration of the field and, in turn, the evolution of the equation of state. In addition,
it also shows that the w0 − wa CPL parametrization is not sufficient to describe the full
evolution of the equation of state. In fact, viable and equivalent cosmologies can be obtained
if the equation of state remains w = −1 for most of its evolution but grows fast close to the
present or in case the equation of state diverged from w = −1 at early times but had a more
monotonically growth along time. The other two cases are more restricted as the shape of
the potential is softer and allows slower evolutions.

The case without maximum is 3σ-off a cosmological constant solution; while the ψini <
ψmax is 2σ-off. The case with ψini > ψmax is concordant with w = −1 and is caused by
the fact that a mild evolution of the field is allowed given the steepness at that side of
the maximum (see Fig. 2) and the possibility of having ψini on the plateau by the loose
constraints in the parameter space. It is important to note that the case with ψini > ψmax is
the only for which the constraints beat those imposed by current observations, which have a
FoM ∼ 5× 103; although, given the mild constraints we have found in the parameter space,
comparing the order of magnitude is a more conservative approach. This would be the case
for the model without maximum. The reason why our result do not reduce the uncertainty in
the w0−wa CPL parameters is caused by the fact that the constraints that come from current
observations (in blue in Fig. 8) are showing the preference of current data for a cosmological
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constant solution as this can be easily recovered thanks to the degeneracies of this model
(see Section 2). In comparison with our current approach, the constraints from Ref. [19] were
obtained by random sampling in the full parameter space, with non-informative priors. On
the contrary, the constraints found in this work assume a fiducial model 1σ-off a cosmological
constant, and do not allow the parameters to change the case of study (e.g. p < n when
studying the case without maximum), limiting the possibility of going to the cosmological
constant-like regime.

Figure 8. w0 − wa 2σ predicted regions when using all probes, compared with the result found
in Ref. [19]. The case without maximum is 3σ-off a cosmological constant; while the case with
ψini < ψmax is 2σ-off. Forecast constraints are broader than those imposed by current observations
[19] for various reasons. First, we are performing the forecasts around a specific fiducial cosmology,
in contrast to the random sampling done in Ref. [19], where they explored all the parameter space
without restriction. This shows that current observations favored ΛCDM, which is easily recovered
in this model (Section 2). In addition, a fiducial model 1σ-off a cosmological constant is being used
for the forecast analysis. Finally, for the particular case with ψini < ψmax, the w0 − wa parameters
are not accurate descriptors of the equation of state, as equivalent cosmological evolutions can be
obtained if w slowly varies since early times than in the case it remains close to w = −1, but close
to the present greatly diverges. Nevertheless, the resulting FoM for the ψini > ψmax case (8 × 103)
is larger than that with current data (∼ 5× 103) and for the case without maximum it is still of the
same order of magnitude (2× 103).

7 Conclusions

In this work, we analyze the α-attractor dark energy model [9] in the context of near-future
cosmological experiments. This model was already studied with current observations in
Ref. [19] and seen to be unbounded, as a consequence of the existing parameter degeneracies;
in particular, between α− ψini and p− n, the potential exponents.

Next-generation experiments will be able to measure the cosmological observables with
percent-level precision. For the specific case with a maximum (p < n) and ψini < ψmax, we
have found an important improvement on the constraints with respect to current bounds.
However, this improvement does not translate into a significant reduction of uncertainties
in the equation of state parameters under the CPL parametrization. This is due to the
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restrictions of the model in this space of parameters. On the other hand, the case with
ψini > ψmax is almost insensitive to the additional constraining power of next-generation
datasets. Interestingly, in case that true underlying model were that without maximum, and
sufficiently distinct from ΛCDM, one could detect a 3σ deviation from a pure cosmological
constant; and a 2σ deviation if ψini < ψmax.

The use of CMB-S4 and other future CMB experiments to place constraints on the
tensor-to-scalar ratio, r, and the spectral index, ns, to constrain α (see Eq. 2.5), is unlikely
to provide any significant improvement over the results shown here, since those constraints
will still allow for too much freedom, leaving the results shown in Ref. [19] almost untouched.

Finally, the use of tomographic galaxy clustering would be particularly important in
order to achieve this. From the analysis of individual probes (see the Figures of Merit in
Table 7), we have shown that galaxy clustering will be the probe with the most constraining
capability, since the galaxy power spectrum is the most sensitive observable (Fig. 3) to
changes in the α-attractor parameters. We find this statement to be true across the different
fiducial models studied. In particular, the combination S4CMB + LSST + SNIa will improve
the FoM of both the parameter space and w0 − wa by almost an order of magnitude with
respect to the case with S4CMB + BAO + SNIa.

Next-generation experiments will lead us to an unprecedented level of precision in cos-
mology, allowing us to test our knowledge about the Universe, its origin and dynamical
evolution. In this work we have shown how these observations, in particular a combination
of CMB, galaxy and SNIa measurements will be able to set constraints on the dark energy
α-attractor model and, as a consequence, we would expect that, in general, future surveys
will be able to probe whether the late accelerated expansion of the Universe is connected
with the one the Universe started with – inflation.
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