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In this Supplementary Material, we provide more details on: i) Asymptotic expansions of the

single QE self-energy; ii) Analytical continuation of the single quantum emitter (QE) self-energy

to perform the exact integration of the excited state dynamics, Ce(t); iii) Asymptotic scaling of

the spatial decay of the extra bound state appearing in the middle band-gap; iv) Calculation of

the fidelity of the four-qubit entangling protocol; v) the path to find the desired band-structure

configuration in photonic-crystal implementations.
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SM1 Self-energy expansions and analytical approximation of

middle bound state energies.

The analytical formula for the self-energy for a QE coupled to the A sublattice reads:

Σe(z) =
2g2(z+δ )

π(z2−δ 2)
K
[

16J2

z2−δ 2

]
. (SM1)

From here, it can be shown that around the middle band-edges:

Σe(δ + x+ i0+)≈ g2
√

8

√
δ

x

[
1+

i
π

log
(

δx
128J2

)]
, (SM2)

Σe(−δ − x+ i0+)≈ g2
√

32

√
x
δ

[
−1+

i
π

log
(

δx
128J2

)]
. (SM3)

for 0 < x� J. Thus, one middle band edge diverges as 1/
√

x, as in 1D reservoirs, while the other

one goes to zero as
√

x as is the case in isotropic 3D reservoirs.

We can use these expansions, for example, to obtain an analytical approximation to the ex-

istence conditions of the middle-bound state (MBS), which is the main focus of the manuscript.

On the lower band-edge Σe(−δ ) = 0, such that the critical detuning where the MBS disappears in

the lower band-edge is just ∆c = −δ . On the other band-edge, we can expand the self-energy for

energies below the gap, finding:

Σe(δ − x+ i0+)≈− g2
√

8πJ

√
δ

x
log
(

128J2

δx

)
, (SM4)

for x� J. Using this expansion, we can solve the pole equation analytically to obtain the energy

of the MBS when ∆ = δ , yielding to:

EMBS = δ − 3

√
g4δ

2(3π)2J3

(
W
(

6144πJ4

g2δ 2

))2

, (SM5)

which agrees very well with the results of numerically solving the pole equation, as shown in
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Figure SM1: (a) EMBS as a function of g/J for a QE coupled to the A sublattice with ∆ = δ = 10J.
In markers the numerical results obtained by solving the exact pole equation, while in solid line
the analytical result of Eq. SM5 obtained by expanding the solution of the self-energy close to the
upper middle edge.

Fig. SM1.

SM2 Analytical continuation of the single QE self-energy

To fully characterize the different dynamical regimes one must integrate Eq. 6 of the main text

exactly. To do the exact integration, we transform the integral above the real axis into a complex

one by closing the contour of integration to apply Residue Theorem. Since the self-energy Σe(z)

is not analytical in certain regions, one can not simply close the contour with a semiarc in the

lower half-plane. One possible choice of the detours to avoid the non-analytical regions is to take

EBC±0±− iy for four values of EBC =−
√

16J2 +δ 2,−δ ,δ ,
√

16J2 +δ 2. This divides the lower

complex plane in five regions, where the definition of Σe(z) must be adapted. To guarantee that we

go to the correct Riemann surface of Σe(z):

• In regions I, III, and V, defined by Re(z)∈ (−∞,−
√

16J2 +δ 2), (−δ ,δ ) and (
√

16J2 +δ 2,∞),

respectively, one must use the definition of Σe(z) as written in Eq. 7 of the main text.

• In regions II and IV, defined by Re(z)∈ (−
√

16J2 +δ 2,−δ ), and (δ ,
√

16J2 +δ 2), one must

adapt the definition of the self-energy as follows:

Σe(z) =
2g2(z+δ )

π2(z2−δ 2)

(
K
[

16J2

z2−δ 2

]
±2iK

[
1− 16J2

z2−δ 2

])
, (SM6)
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With these changes in the definition, one can now perform the exact integration of the dynamics

separating the different contributions, as we did in Fig. 2 of the main text.

SM3 Asymptotic scaling of the BS wavefunction

The bound state wavefunction of a single QE in the single excitation subspace for our type of bath

generally has the form:

|Ψ〉BS =

[
Ceσeg +∑

k

(
Ca(k)a†

k +Cb(k)b†
k

)]
|vac〉 , (SM7)

where |vac〉 is the global vacuum of the combined QE-bath system. By solving H |Ψ〉BS =EBS |Ψ〉BS,

one arrives to:

CA(k) ∝
EBS + cos(2θk)ω(k)

E2
BS−ω(k)2 e−ikne , (SM8)

CB(k) ∝−ω(k)sin(2θk)

E2
BS−ω(k)2 e−i(kne+φ(k)) . , (SM9)

for a QE coupled to the A lattice site at position ne. To make a more quantitative estimation of

the decay of the wavefunction, we can consider that the larger contribution to the integrand of

CA/B(k) will come from the points closer to the band edge, ω(k)≈ δ . At these points cos(θk)≈ 1,

sin(θk)≈ 0, and the energy dispersion is expanded, e.g.,

ω(π−q1,π−q2)≈ δ

(
1+

q2
1q2

2
2δ 2

)
, (SM10)
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for q1,2 � 1. Focusing on CA(n), the sum of the contribution around the band-edge frequencies

can be rewritten:

CA(n)≈
2

(2π)2δ

[
(−1)(n1+n2)

∫∫ 2π

0
d2q

Re
[
ei(q1n1+q2n2)

]
1+ q2

1q2
2

2δ 2

+

(−1)(n1−n2)
∫∫ 2π

0
d2q

Re
[
ei(q1n1−q2n2)

]
1+ q2

1q2
2

2δ 2

]
. (SM11)

To continue the derivation, let us restrict to a particular direction, e.g., n1 ≡ n and n2 = 0.

Notice, that since we have made the expansion for qi� 1, the upper limit of the integral should

not matter since the main contribution will be coming from qi → 0. Then, we can in principle

extend the integral to infinite. Using this, and the fact that:

∫
∞

0
dq1

cos(q1n)

1+ q2
1q2

2
2δ 2

=
e−
√

2nδ/q2πδ√
2q2

, (SM12)

we arrive to:

CA(n,0)≈
(−1)n

π
√

2

[∫
∞

0
dq2

e−
√

2nδ/q2

q2

]
. (SM13)

The problem of the previous integral is that it does not converge because the integrand scales

as 1/q2 when q2→∞. However, we know there should be a natural cut-off given by discretization.

Thus, we replace ∞ by qc and find that:

CA(n,0)≈
(−1)n

π
√

2
Γ(0,
√

2nδ/qc) . (SM14)

where Γ(a,z) being the incomplete Γ-function. We can use the analytical expansions of the Γ to
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obtain the approximated analytical scaling in the small/large band-gap limit, that is:

Γ(0,x� 1)≈−γ + log(1/x) , (SM15)

Γ(0,x� 1)≈ e−x

x
, (SM16)

where γ ≈ 0.577 is the Euler constant. Thus, the wavefunction shows a very slow logarithmic

decay when
√

2nδ/qc� 1, while having a Yukawa-type decay when
√

2nδ/qc� 1.

SM4 Four-qubit entangling protocol

Let us study in detail how the entangling protocol works in the simplest configuration, that is,

when all the Raman lasers act equally in all the atoms and without considering other decoherence

sources. We assume that all the atoms are initially in the ground state, |Ψ0〉= |g〉a⊗|g〉
⊗4, while

the bath is also in the vacuum state. Next, with a microwave field we switch the auxiliary atom to

the e state with a π-pulse, such that |Ψ1〉= |e〉a⊗|g〉
⊗4. Then, we switch on all the Raman lasers,

Ω, such that the QEs can interact between themselves by exchanging/absorbing bath excitation

with the assistance of the Raman laser. Since, we start effectively with a single excitation in the

five QEs, the effective dynamics can be written in a subspace: B = {|e〉a⊗|g〉
⊗4 , |g〉a⊗σ i

eg |g〉
⊗4},

with i = 1,2,3,4. In this basis, the effective Hamiltonian governing the interaction:

Heff =



∆ Ja Ja Ja Ja

Ja ∆ J1 J2 J1

Ja J1 ∆ J1 J2

Ja J2 J1 ∆ J1

Ja J1 J2 J1 ∆


(SM17)

It is instructive to rewrite this effective Hamiltonian in a basis, B′ = {|αi〉}5
i=1, that contains the

state we want to obtain, that is: |Ψ〉goal = |g〉a⊗ 1
2 ∑i σ i

eg |g〉
⊗4. This is achieved with the following
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unitary transformation:

U =



1 0 0 0 0

0 1
2

1
2

1
2

1
2

0 1
2

1
2 −1

2 −1
2

0 1√
2
− 1√

2
0 0

0 0 0 1√
2
− 1√

2


(SM18)

where |α1〉= |Ψ1〉 and |α2〉= |Ψ〉goal. In this new basis, the effective Hamiltonian reads:

Heff = ∆1+



0 2Ja 0 0 0

2Ja 2J1 + J2 0 0 0

0 0 −J2 0 0

0 0 0 −J1 J2− J1

0 0 0 J2− J1 −J1


. (SM19)

One immediately realizes that our initial state is indeed only coupled to the desired state,

|Ψ〉goal, due to the spatial symmetry of our initial state. Then, the fidelity of the protocol can

be obtained by solving the dynamics in the restricted 2×2 subspace, yielding:

F = |
〈
Ψgoal

∣∣e−iHefft |Ψ1〉 |2 =
16J2

a
R2 sin2(Rt/2) , (SM20)

with R =
√

(2J1 + J2)2 +16J2
a . Thus, choosing the time duration of the operation RT = π , we

maximize the excitation transfer and the fidelity, yielding:

Fmax = |
〈
Ψgoal

∣∣e−iHefft |Ψ1〉 |2 =
16J2

a
(2J1 + J2)2 +16J2

a
. (SM21)
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SM5 Photonic crystal implementation

The quest for a photonic crystal structure which can mediate such directional interactions requires

two ingredients: (i) two bands separated by a photonic band-gap, (ii) with (at least one of the) band-

edges with the square-like shape in momentum space required to obtain the directional character.

While (ii) appears pretty naturally in square geometries with a dimer-like structure, the combina-

tion of (i-ii) seems not to be so straightforward. In Fig. SM2, we plot the dielectric structure and

the projected band-diagrams of several structures we analyzed before arriving to the one shown in

figure 7 of the main manuscript:

• In Figs. SM2(a-b), we start considering one of the simplest dimerized geometries deforming

a simple square lattice geometry in a GaAs slab (εr = 13) by making the holes of different

sizes. We see that even though independently the bands satisfy the (ii) condition, there is

no band-gap between two bands, irrespective of the size of the holes. Similar configurations

(not shown) with different hole geometries did not give provide any clear advantage either.

• Another way of dimerizing the simple square geometry is by filling one of two holes by

another material. In Fig. SM2(c) we show the case of a diamond slab (εr = 6) and GaAs

‘holes’ in addition to normal air holes. We observe that this approach allows to open the gap,

even though a very small one.

• Finally, in Fig. SM2(d) we show how by combining both approaches: different hole sizes

and different materials, one can open a more robust band-gap with the desired behaviour, as

we explain in the main manuscript.

Though this provides a path on how to design structures with the desired band-structure be-

haviour, we acknowledge it may not be the only one. Further optimization procedures, e.g., based

on inverse design methods1,2, might provide alternative and better paths.
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Figure SM2: Sequential quest for a gapped dispersion. In the top/bottom panel, we plot the di-
electric structure/corresponding projected band-diagram. Configurations with only one dielectric
material (a,b) were not found to give a workable gap, irrespective of the size and relative position
of holes in a slab. A second dielectric material was required to open the gap (c), which gives the
optimal solution (d) in the main article. The parameters are a) GaAs (εr = 13) slab with r1 = 0.1a,
r2 = 0.2a air holes, b)GaAs slab with r1 = 0.05a, r2 = 0.25a air holes, c) Diamond (εr = 6) slab
with r1 = 0.2a (GaAs) and r2 = 0.2a (air) holes, d) Diamond slab with r1 = 0.15a (GaAs) and
r2 = 0.35a (air) holes. The three bands are for z-odd modes in the 3rd (black), 4th (orange) and
5th (purple) bands.
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