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Abstract. When a robot has to interact with a person in a dynamic
environment, it has to navigate to reach a close distance and to be in
front of the person. This navigation has to be smooth and take care of the
person’s movements, the static obstacles and the motion of other people.
In this paper, we present a new method to approach a person, that
combines G2-Splines (G2S) paths with the Extended Social Force Model
(ESFM) to allow the robot to move in dynamic environments avoiding
static obstacles and other people. Moreover, we use the Bayesian human
motion intentionally prediction (BMP) in combination with the Social
Force Model (SFM) to be able to approach a moving person and also to
avoid moving people in the environment. The method computes several
paths using the G2S and taking into account the person’s position and
orientation. Then, the method selects the best path using several costs
that consider distance, orientation, and interaction forces with static
obstacles and moving people. Finally, the robot is controlled with the
ESFM to follow the best path. The method was validated by a set of
simulations and also by real-life experiments with a humanoid robot in
a dynamic environment.

Keywords: Human-Robot approaching, Robot Navigation, Human-Robot
Interaction, Human-Robot Collaboration.

1 Introduction

Our society is evolving to include intelligent robots in daily live, which have to
interact and collaborate with humans. These robots have to develop several skill
and behaviors, among them social or collaborative navigation [8, 14], learning
how to approach people and develop original ways of reaching them [4, 18], or
understanding and predicting human intentions [22, 12, 6].
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Fig. 1: The robot uses the implemented method to approach a static and moving
person, while avoiding several static obstacles of the environment.

Social navigation and approach a person are common tasks for people. We
tend to approach other people when: we need help to arrive at a specific place,
we want to buy something in a shop, we meet someone somewhere or we know
someone in the street, and so on.

For humans moving around people and obstacles while approaching one per-
son socially and predictably is very natural, but for robots is a challenging be-
havior, that implies develop different skills to be able to do different things at
the same time. In particular, robots have to navigate autonomously towards
humans, predict people movement, recognize the person to be approached and
know its position and orientation, deal with uncertainties like momentary oc-
clusions of the approached person by other people, approach in a human-like
way and initiate interactions following social rules and patterns. Furthermore,
the difficulty increases if the person to be approached is moving. Fig. 1 shows
two real experiments, firstly the robot approaches a static person (the two fist
images at left) and secondly approaches a dynamic person (the two last images
at right), while it has to avoid several static obstacles of the environment.

Some researches like Carton et al. [3, 4] try to use appropriate human-like
features, such as smooth trajectory shapes, specified approach speed, appropri-
ate human-robot distance, etc. With these characteristics the approaching of the
robot appears significantly more natural, enhancing non-verbal interaction ini-
tiation with humans, mutual collision avoidance and reduction of interference.
Also, Takayama et al. [20] do a user study to know the influence of several fac-
tors in the preferences of the personal spaces in the approaching behavior for
Japanese people. Furthermore, Joosee et al. [13], study the appropriateness of the
robot’s approach behavior in different cultures, where they found that Chinese
participants prefer closer approaches compared to participants from the U.S. or
Argentina. In our work, we also try to use most of these human-like features.

Other methods to approach people are based on learning algorithms like
in [1], where they use learning methods to find the personal comfort field, with-
out invading the personal space. That work is based on an online learning al-
gorithm where the robot learns the user’s specific personal comfort space from
the user’s reactions, by exploring regions nearby the user to search for a more
comfortable approaching trajectory. Another method is based on the collection
of real data to obtain human-like approaching behaviors like in [2], where they
collect navigation trajectories in which a person approaches another human, to
create a model that can be used by a robot’s path planner to get more socially
acceptable paths.
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In our institute, we started to develop methods to approach a person in [16],
where the robot tries to approach a person while accompanying another person.
The model includes a framework to calculate a moving goal taken into account
the movement of the approached person, the movement of the group and the best
path to go throw the obstacles of the environment. After that in [17] we enhanced
the previous approach by computing the best encounter point using a gradient
descent method, taking into account all people’s predictions. In the encounter
point, the robot performs a triangle formation to achieve an engagement with
both people.

Now in this paper, we go a step further from the previous approaching meth-
ods realizing a path planning algorithm that allows us to have a more human-like
robot navigation to approach a person. First, we obtain some smoothed paths
using G2-Splines computation; then, we formulate a new cost function, to select
the best path to go to the goal while avoiding collisions with the entities in the
environment, which uses the social forces presented in the ESFM [8]. Further-
more, we use the ESFM to control the robot to deal with real-time navigation
in dynamic environments. The computation is done online and in real-time, to
keep the environment constantly updated and to have always a feasible path for
the robot.

In the remainder of the paper, we start by introducing the implemented
approach, that combines the G2-Splines (G2S) with the Extended Social Force
Model (ESFM) in Sec. 2. Then, we show the developed metrics of performance
to evaluate the task in Sec 3. In Sec. 4 we include the simulation results. The
real-life experiments with our robot are shown in Sec. 5. Finally, Sec. 6 presents
the conclusions.

2 Extended Social Force G2-Spline navigation method to
approach a person.

In this section, we present a robot navigation method to approach a person
that combines the G2-Splines [15] (G2S) path planning with the Extended Social
Force Model (ESFM) [8]. The path planning algorithm for the robot behavior is
summarized in Alg.1. In Fig. 1 you can see two different instants of time of two
approaching situations and in Fig. 2, you can see a simulation example of the
path planning generation. In this article, we have used a similar notation of [8].

The basic idea is to start approaching a person when the robot is close to
he/she (around 15 m), using a combination ofG2S path planning and ESFM. The
method assumes that the robot has to move from its location up to a surrounding
circle around the person that has 1.5 m of radius, and we suggest a 5 good final
goal locations over this circle to approach that person, covering and angle view
of 80◦ around the point to face directly the person (their computation is better
explained, next in the algorithm). We use only 5 final destinations around the
person to allow the robot to do not approach directly facing the person if it is
necessary, but neither allow the robot to approach the person very laterally using
a difference of orientations between them smaller than 45◦. You can see how these
5 final locations are distributed around the person in the upper images of Fig. 2.
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Algorithm 1 AKP approaching(sini, ∆t)

1: Initialize T (V, E)← {∅}
2: V ← sini
3: {Dgoal

pj ,n} = scene prediction

4: {Dgoal
r,n } = final destinations(sini, N)

5: for n = 1 to N do
6: {x1, ..., xk} = splines generation(sini, D

goal
r,n ) . x1 = sini and xk = Dgoal

r,n

7: for i = 1 to K do
8: uri = calculate edge(xi, xi+1, i, distcol)
9: end for

10: Jn = path cost computation({x1, ...,xk},{ur1 , ...,urk})
11: end for
12: [Dgoal

r,best, Jbest] = best path selection({J1, . . . JN})
13: urf = calculate edge(sini, stepgoal, index, distcol)
14: snew = robot propagation(sini, urf )
15: snew = orientation adjusting(snew)
16: V ← {snew, Jbest}
17: E ← {urf }
18: return branch(T )

The distance between the person and the robot was based on a previous work
of our institute [9]. At each cycle time, the robot computes G2-Splines paths
to go from its current position to each one of the 5 possible final destinations.
For each one of the paths, the algorithm uses the ESFM to evaluate the paths
(and selects the best one) and to control the robot approaching behavior, while
avoiding static and moving obstacles (moving people). As the environment is
dynamic (has other people around), the robot has to generate new paths in each
iteration (every 0.2 seconds) in order to adapt to it.

In the following, we will present the entire procedure to obtain the approach-
ing behavior of the robot. At each iteration a robot plan is computed, and the
linear and angular velocities of the robot state, included in snew, are executed
by the robot controller to move it. The input of the algorithm is the sini ∈ S,
where S = Sr×∪Spi is the state that contains the information of the robot state
plus all people’s states considered on the scene, included the approached person
(see [8]). This state includes position, velocity and orientation for the robot and
people. Moreover, the cycle time is set to ∆t = 0.2 sec (It is the maximum time
allowed by the controller to work in real time). Furthermore, all the laser scans
are processed to obtain the static and dynamic obstacles of the environment.

In the function scene prediction(), the robot infers all the final destina-
tions for all the people of the environment, Dgoal

pj ,n, by using the people’s direction
of movement, and using these destinations and SFM [11] to predict the people
paths inside a window of time of 5 seconds, using the BHMIP [6].

Then, the algorithm computes N = 5 candidate paths using the G2-Splines
function [15], in splines generation(). Moreover, the needed information to
generate a path is only related to the initial and final states. For details we
refer to [15]. Then, these paths start in the robot position and finish around the
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position of the approached person. To find the final destinations of all the paths
we use the function in Alg. 1-line 4. This function computes 5 final destinations at
1.5 meters around the position of the approached person, taking into account the
person orientation and computing the possible final states starting from the one
facing directly the person in front of it and using an increment of ±20◦ or ±40◦

from the starting goal, where the robot face directly the person in front of it, to
both sides (left and right) to compute the other four approaching positions. We
use this type of geometric splines, because they present very nice properties: the
quintic G2-Splines offers flexibility and, since they are geometric polynomials
of 5th order with second order geometric continuity (G2), the curvature κ is
continuous. Furthermore, to obtain the robot iterative and dynamic behavior we
need to split these paths of the G2-Splines in K steps with length of 0.2 m. This
length is the maximum distance that can cover the robot during one iteration
time of the algorithm, due to the maximum robot’s velocity that is 1m/s and the
maximum iteration time of the robot’s controller that is 0.2 seconds (this not
mean that the robot always cover this path distance, it depends of the resultant
force of this step of the path, this distance is only the maximum one to allow the
robot to navigate at its maximum speed if does not have any obstacles around).
Then, we obtain the robot steps {x1, ..., xk} inside the path.

After that for each path we need to know the forces in each step of the path,
because the robot navigates using the ESFM. These forces follow the Helbing
definition [11] and are computed in function calculate edge(), where distcol
defines the radius of the circular area were the interactions with obstacles and
other people are considered. The ESFM to control the robot uses as local goals
the steps of the path computed by the G2-Splines and includes repulsive forces
between the robot and static and dynamic obstacles, like people. According to
the model, both humans and robots are free particles in a 2D space, following
the laws of Newtonian mechanics, and the resulting force F e that governs the
trajectory of the movement of each entity ( e = {r, p}, where the entity e can
be robot (r) or person (p)) is described in Eq. 1. This force is used to control
the robot in a dynamical environment where people or other robots are moving
around, and also to predict the people movement.

F e = αfgoale,d (Dgoal
e,n ) + γ

(∑
j∈P

f inte,j +
∑
b∈R

f inte,b

)
+ δ

∑
o∈O

f inte,o , (1)

where, P , O and R are the sets of people, obstacles and robots of the en-
vironment, respectively. The resultant force, F e, is composed by the attractive
force until the destination and the repulsive forces respect other people, robots
or obstacles. Furthermore, the {α, γ, δ} parameters were used in [7], to imple-
ment three different robot behaviors (aware, balanced and unaware) and here
we select different robot behaviors respect to the final goal, and the people and
obstacles interactions, that face better our approaching case. We set these pa-
rameters equal to {α = 1.2, γ = 1.4, δ = 1.0}, to allow a balanced robot behavior
respect obstacles, an aware behavior respect people and an intermediate behav-
ior between unaware and balanced respect to the final goal. The aware robot’s
behavior respect people allows the robot to hinder less the people’s path.
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The first force of Eq. 1 is the attraction force to reach the goal Eq. 2. This
force assumes that the entity tries to adapt its velocity within a relaxation time
k−1 to arrive to the destination and is given by:

fgoale,d (Dgoal
e,n ) = k(v0

e(D
goal
e,n )− ve) (2)

where k = 1/τ , and τ is the time for a human to take a step, 0.5 seconds
approximately. ve is the current velocity of the entity, Dgoal

e,n is any of the possible

final destinations for the robot or people and v0
e(D

goal
e,n ) is the desired velocity

to reach the goal. Moreover, each repulsive interaction forces are modeled using
the Helbing [11] social force model, as:

f inte,z = Aeze
(dez−de,z)/Bez d̂e,zw(ϕe,z, λez) (3)

where z ∈ P ∪ O ∪ R is either a person or a static obstacle or a robot, of
the environment. Aez and Bez denote respectively the strength and range of
the repulsive interaction force, between e and z. de,z is the distance between
the centers of the two entities, and dez ≡ re + rz, is a parameter that de-
pends only from the interaction between each type of entities. Moreover, given
the limited field of view, influences might not be isotropic, requiring then a
scaling anisotropic factor, w(ϕe,z, λez), further details in [5]. Finally, all the pa-
rameters {k,Aez, Bez, λez, dez} are defined depending on the interaction type,
where we use the parameters learned in [21] for the interaction force between
robot-obstacle, and we use the parameters learned in [5] for the interaction force
between human-robot.

Now, we need to calculate the final cost of each path, Alg. 1-line 10, to
be able to finally select the best path, Jbest, until the best final destination,
Dgoal
r,best, using the cost, Alg. 1-line 12. The best path has the minimum cost and

the cost for each path requires three steps calculation. First, each individual
cost function of J(S,U) = [Jd(S), Jor(S), Jp(U), Jo(U)] is computed. There are
multiple objectives to be minimized in dynamic planning, and we use different
and independent criteria, where each single cost is related to the considered
criteria: distance of all the steps of the path (path length), change of the robot
orientation during all the steps of the path (path curvature) and repulsive forces
respect to people and obstacles during all the steps of the path according to the
ESFM (interactions between people and obstacles). Each different cost computed
for all the steps along the path is defined by:

Jd(S) =

tend∑
tini

||xr(t+ 1)− xr(t)||2, Jor(S) =

tend∑
tini

||θr(t+ 1)− θr(t)||2,

Jp(U) =

tend∑
tini

P∑
i=1

||upi(t)||2, Jo(U) =

tend∑
tini

O∑
i=1

||uoi(t)||2

where, xr = (xr, yr) is the robot position, θr is the robot orientation upi(t)
and uoi(t) are the repulsive forces respect to people and obstacles. Second, in
order to avoid the scaling effect of a weighted-sum method, each cost function
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Algorithm 2 Robot propagation

1: function Robot propagation(sini, urf ,∆t)

2: sini = [xti , yti , θti , vti , ωti , ti]
T

3: avti = fx cos(θti) + fy sin(θti)
4: aωti

= −fx sin(θti) + fy cos(θti)
5: vti+1 = vti + avti ·∆t
6: ωti+1 = ωti + aωti

·∆t
7: xti+1 = xti + vti cos(θti) ·∆t+ avti cos(θti) ·∆t2/2
8: yti+1 = yti + vti sin(θti) ·∆t+ avti sin(θti) ·∆t2/2
9: θti+1 = θti + ωti ·∆t+ aωti

·∆t2/2
10: return snew = [xtn , ytn , θtn , vtn , ωtn , tn]T

11: end function

is normalized to (−1, 1), with Eq. 4-left. Third, a projection via weighted sum is
obtained with Eq. 4-right to convert the multi-cost function in a single cost for
each path.

J̄i(X) = erf

(
x− µx
σx

)
, J(S,U) = wi

∑
i

J̄i(S,U) (4)

Finally, the algorithm selects the best path that has the minimum cost,
which represents minimum distance and minimum orientation changes, as well
as avoiding interactions between people and obstacles. Then, we use the func-
tion calculate edge() to obtain the resultant force Eq. 1, urf = (ax, ay) =
(Fxr, Fyr)/mr, to move the robot following the best path, where mr = 1. Now,
the entity means robot. Next, with function robot propagation() of Alg. 2,
we convert the forces into linear and angular accelerations to propagate the robot
position and to obtain the angular and linear velocities that needs our robot con-
troller to move the robot. It is to say that we obtain snew for the robot. Finally,
the function orientation adjusting() is used to adjust the robot orientation
until obtain a small difference, less than 20◦, between its orientation and the
desired orientation of the best path, only if the robot reaches the final goal with
a big difference of orientation.

3 Metrics of Performance for Positioning the robot
respect to the approached person

In this section, the performance metrics used to evaluate the robot behavior are
described. These metrics are based on previous studies on humans [19] and the
proxemic rules, proposed by Hall [10]. Furthermore, the limits of the interaction
distances used were based on a previous work of our institute [9], and a similar
version of these performances is included in [17].

The final position of the robot respect to the approached person was eval-
uated using three types of performance metrics. One related with proxemics,
based on several areas of performance, to obtain if the robot arrives to the best
approached area to face the person. Other two metrics that serves to differenti-
ate if the robot arrives inside a desired margin of distances with respect to the
approached person and if also the robot is oriented to face the person.
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The first performance takes into account the spatial relationship in 2D be-
tween the robot and the approached person and it is defined by three areas: (i)
Human’s personal space C, is the area where the robot can not be in order to
avoid invading any human’s personal space and it takes into account the space
delimited by the radius of the person, that includes some free space, correspon-
dent to Ri; (ii) Social distance area A, is the area where the robot should be
to be socially accepted; and (iii) Human’s best approaching area B, is the area
where the robot must be placed so that the person perceives a socially accepted
approach behavior. This area is a dynamic area inside the social distance that
depends on the final path destinations and the best path selection from the 5
possible planned paths of the robot, Alg. 1-line 4 and 12. The description of
these areas was included in [17]. Here only change in the A the Pc correspondent
to the companion person to Pa for the approaching person, and also the phys-
ical position of the area B changes because here we have only the approached
person and this area is defined by the final goal of the best path. Furthermore,
the formulation of how the performance was extracted from these areas and the
description of the robot area is detailed in [17], next we only explain the general
idea to understand it. The Area metric has the maximum performance of 1 when
the robot is in the area described by B, since it is the best position to approach
the human. Additionally, if the robot is in the area A, but not in area B, is a
partial success, since the robot is inside the social distance of the human, but
not in the best approaching position. Then the performance has a value of 0.5.
Finally, if the robot is further than 3 meters from the human’s position, then
we consider that there is not approaching interaction between robot and per-
son, and therefore its performance is 0. Also, if the robot invades any human’s
personal space is penalized with 0 performance.

Regarding the distance and angle performances, we consider that the robot
achieves a good distance performance if it keeps its central position inside the
interval of distances [1.25 − 2] m, respect to the position of the approached
person. This margin is around the ideal value of 1.5 m. Then, between 2 meters
until 3 meters the performance decreases from 1 until 0, and also between 0.75
until 1.25 the performance increases from 0 to 1. The reader is referred to [17]
for further explanation and see the equation of the metric of performance in
distance. In terms of angle, the best angle performance is, at most, a difference
of 20◦ from the ideal orientation to face the approached person (performance
value of 1). Then, if the difference of the angle increases, we penalized it until
we obtain a 0 value of performance, when the robot has an error of 90◦ with
respect to the ideal value of orientation. The equation of the angle performance
metric is shown in Eq. 5, where Pθdiff

means angle performance and is the
difference of orientations between the robot and the approached person, θdiff =
(180◦−θr)−θt, and θt means the orientation of the approached person and θr is
the real orientation of the robot. For a better understanding of the performance
metrics, the reader can find an image that graphically shows the performances
in this link: http://www.iri.upc.edu/people/erepiso/ROBOT2019.html
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Pθdiff
=


1 if 0◦ ≤ θdiff ≤ 20◦

− 1
70 (θdiff ) + 9

7 if 20◦ < θdiff ≤ 90◦

0 otherwise

(5)

4 Simulation experiments
The actual section describes our simulation environment and all the possible sit-
uations that we used to test and validate our implemented approach. To be able
to test these situations we used a complex simulation environment, used in all
our previous works [16, 17] and also a Gazebo simulator. All is coded using C++
and ROS. This environment includes random people moving trough different des-
tinations, represented by green cylinders, and several obstacles, represented by
dark grey cylinders, that we can put in any place. The people movement follows
the Social Force Model [11] and their desired velocities were randomly selected
inside the interval of [0-1] m/s. Furthermore, our simulated robot follows the
laws of a non-holonomic vehicle and uses the presented algorithm to approach a
person. The robot has a maximum velocity of 1 m/s. Between the robot and the
target person we have used a final social distance of 1.5 m as minimum distance
to approximate. We have selected this distance to prevent the robot to go too
close to the person and we are based in one previous work [9].

To test and validate a large field of situations we perform more than 7200
simulations. These simulations include different approaching situations, where
the robot has to approach one person (static or moving towards any possible
destination) while avoiding several static and dynamic obstacles. A representa-
tive number of the simulation cases is shown in Fig. 2, where the simulation
environment contains the robot model, the approached person in red. The pos-
sible paths for the robot are drawn in orange and in red the best path. The time
window to compute the paths and take into account the people and obstacle in-
teractions, which is a black dashed circle around the robot. The resultant force
for the robot is represented with a red arrow over the robot, the blue arrow is
the force until the goal, the green arrows are repulsive forces respect to people,
the black arrows are repulsive forces respect to static obstacles and the purple
arrows are repulsive forces for people with respect to the robot.

The first group of simulations were carried out in an empty environment,
where we tested the approaching behavior of the robot with a static person
that has 4 different approaching orientations (0◦, 90◦, 180◦ and 270◦). We used
only 4 cases because with these 4 selected orientations we covered a huge range
of approaching behaviors of the robot. The second group of simulations were
also in the empty space, but now the approached person was moving using
three different approaching directions (right, center and left), that also represent
well most of the possible real interactions with a moving approaching person.
The third ones included the before approaching behaviors of the person, but
with other people moving around. In the fourth ones the robot had to avoid
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Fig. 2: Synthetic experiments: Simulation environment to test and evaluate the new

method to approach a person. Up: Three images that show different approaching angles

respect to a static person. Down-left : Shows the robot approaching one person, using

the fourth approximation angle, while avoids static and dynamic obstacles. Down-right :

Shows the robot approaching a moving person while avoids dynamic obstacles.

several static obstacles while approaching to the person with the same behaviors
described before (static and dynamic). The fifth group of simulations included
people and obstacles at the same time.

The performance of the robot was evaluated in all of these simulations using
the metrics described in Sec. 3. Where the performance is inside the interval of
[0−1] and the best value of performance corresponds to 1. Table 1 shows all the
performances for all the cases.

5 Real-life experiments

The implemented method was tested also in a real-life environment. The experi-
ments were developed in the FME (Facultat de Matemàtiques i Estad́ıstica) lab,
an outdoor urban environment located at the South Campus of the Universitat
Politècnica de Catalunya (UPC). There, we have a controlled environment where
we can test the algorithm without any obstacles and with an approached person
situated at different points of the environment and with different orientations
(static or moving), with static or dynamic obstacles and the same configurations
for the approached person as the case without obstacles. The mean and stan-
dard deviation of the approaching performance of the 82 real-life experiments
are shown in Table 2 and Fig. 1 shows several interesting moments of these ex-
periments. In addition, the reader can find some videos of the real experiments
in this link: http://www.iri.upc.edu/people/erepiso/ROBOT2019.html
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Approaching Performance simulations mean(P2Ri) mean(Pθdiff ) mean(P(r, pa))
Person stop, without obst 0.98 (± 0.04) 1 (± 0) 0.98 (± 0.07)

Person stop, with dynamic obst 0.97 (± 0.07) 0.66 (± 0.19) 0.99 (± 0.05)

Person stop, with static obst 0.96 (± 0.06) 0.85 (± 0.13) 0.97 (± 0.08)

Person moving, without obst 0.96 (± 0.05) 1 (± 0) 0.99 (± 0.02)

Person moving, with dynamic obst 0.97 (± 0.1) 0.73 (± 0.03) 0.99 (± 0.05)

Person moving, with static obst 0.84 (± 0.13) 0.92 (± 0.16) 0.94 (± 0.13)

Person stop, static & dynamic obst 0.86 (± 0.12) 0.55 (± 0.21) 0.96 (± 0.095)

Person moving, static & dynamic obst 0.84 (± 0.13) 0.79 (± 0.15) 0.96 (± 0.08)

Table 1: Performance results for the approaching task of all the simulations. The
performance value equal to 1 is considered the best value and the values between
brackets are the standard errors of each mean value.

Approaching Performance real-life mean(P2Ri) mean(Pθdiff ) mean(P(r, pa))
Person stop, without obst 0.86 (± 0.14) 0.77 (± 0.2) 0.98 (± 0.02)

Person stop, with dynamic obst 0.8 (± 0.13) 0.82 (± 0.23) 0.97 (± 0.04)

Person stop, with static obst 0.96 (± 0.07) 0.62 (± 0.25) 0.97 (± 0.04)

Person moving, without obst 0.87 (± 0.14) 0.8 (± 0.23) 0.93 (± 0.11)

Person moving, with dynamic obst 0.86 (± 0.19) 0.67 (± 0.37) 0.98 (± 0.03)

Person moving, with static obst 0.93 (± 0.12) 0.64 (± 0.3) 0.92 (± 0.14)

Table 2: Performance results for the approaching task of all the real-life exper-
iments. The performance value equal to 1 is considered the best value and the
values between brackets are the standard errors of each mean value.

6 Conclusions
We have presented a method that combines the G2-Splines with the Extended
Social Force Model to allow the robot to approach a person as much natural
human-like as possible. The major contribution of this work is how we combine
both methods, G2S and ESFM, to obtain a more smooth and natural approach-
ing behavior for the robot, while the robot navigates well inside dynamic envi-
ronments and at the same time facilitate the walking behavior of other people.
Furthermore, the robot’s final path will be free of obstacles by using the ESFM
applied to the G2S path generation. The computation is done in real time. The
new method has been tested and validated over simulations and good results
have been obtained. Furthermore, we validated the algorithm in real-life exper-
iments on the FME, where the robot achieved a good approaching behavior.
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