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We address the stability issue of Ricci-flat and maximally symmetric spacetimes in nonlocal gravity to
all perturbative orders in the gravitational perturbation. Assuming a potential at least cubic in curvature
tensors but quadratic in the Ricci tensor, our proof consists on a mapping of the stability analysis in
nonlocal gravity to the same problem in Einstein-Hilbert theory. One of the consequences is that only the
graviton field can propagate and the theory is ghost-free at all perturbative orders. All the results known in
Einstein gravity in vacuum with or without a cosmological constant can be exported to the case of nonlocal
gravity: if a spacetime is stable at all perturbative orders in Einstein gravity, it is stable also in nonlocal
gravity. Minkowski and de Sitter spacetimes are particular examples. We also study how the theory affects
the propagation of gravitational waves in a cosmological background.
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I. INTRODUCTION

The golden age of gravitational-wave (GW) observa-
tions, from those emitted by small-redshift astrophysical
compact objects [1,2] to the inflationary tensor spectrum
generated in the early universe [3], has consecrated some
among the most notable achievements of Einstein’s general
relativity. To date, its predictions on those small ripples of
spacetime known as GWs have been confirmed and no
evidence for new physics has been found. While with the
available LIGO data we are closing in on many models
beyond general relativity, new astrophysical and cosmo-
logical constraints are devised to be tested in near-future
experiments such as Euclid and LISA, just to mention two.
Among the things that could happen “beyond general

relativity,” the classical dynamics of spacetime and matter
may be modified, or gravity may go quantum and the laws
of quantum mechanics affect the texture of spacetime.
Among the many candidates for quantum gravity, nonlocal
quantum gravity (NLG) has been developing at a fast pace
[4–10]. Motivations about this theory and a description of
its main features were already given in past literature, but
we recapitulate them here for the unfamiliar reader.
“Quantum gravity” is a family of proposals expected not
only to unify quantum mechanics and the gravitational
force in a consistent theory, but also to address some
pending issues of general relativity, in particular, the
presence of singularities. The main reason of interest in
the nonlocal quantum theory considered in this paper is that
it is renormalizable (or finite, in some of its incarnations)

and unitary, two requisites that any candidate of quantum
gravity should possess to be theoretically viable. These
properties are not found in the quantization of many
modified gravity models, where the dynamics of classical
Einstein gravity is deformed ad hoc for the purpose of
generating interesting phenomenology. Quantizing gravity
may result in intricate formalisms, but this theory in
particular is not especially complicated. Recall that the
very well known local Stelle gravity (quadratic gravity
[11,12]) is renormalizable but plagued by ghost instabil-
ities, due to the presence of fourth-order derivatives. The
fact that introducing an entire nonlocal operator in the same
action guarantees unitarity makes the nonlocal approach
parsimonious and, to some of us, attractive.
This field theory, unitary and finite at the quantum

perturbative level, stems from early proposals by
Krasnikov [13] and Kuz’min [14] (see also [15–17]). In
particular, there is a finite completion of the theory which
does not show ultraviolet divergences at any order in the
loop expansion [7,8], while perturbative unitarity based on
the Cutkosky cutting rules has been proved at any pertur-
bative order in the loop expansion [18–20]. Another
promising theory that deserves to be mentioned is Lee-
Wick quantum gravity [21,22], a special case of [23]. This
theory has complex conjugate poles beside the graviton
field, but such poles can be consistently removed from the
physical spectrum and never go on shell.
For the nonlocal models considered here, the classical

solutions of Einstein gravity in vacuum are also solutions of
NLG [24] and the linear stability analysis in NLG is the
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same as in Einstein gravity [25,26]. Indeed, Ricci-flat
spacetimes in NLG are stable under linear perturbations if
they are stable in Einstein gravity [26]. Just as in general
relativity [27], Schwarzschild spacetime is a stable solution
in NLG at the linear level. Whether this solution also
represents an actual, astrophysical black hole remains to
be seen, since approximated solutions of the linearized
equations of motion (EOM) look regular [28–33]. More
recently, in [34] it was found that the NLG dynamics of
small perturbations of Minkowski metric is the same as in
Einstein gravity. The stability of Minkowski spacetime in
NLG was thus inferred from its stability in general relativity
at the nonlinear level, i.e., to all perturbative orders in the
gravitational perturbation (see [35–39] for the stability of
small perturbations of the Minkowski metric in general
relativity).
In this paper, we will address the stability issue in NLG

for a larger class of spacetimes, including all Ricci-flat and
maximally symmetric ones. Following the same line of
reasoning outlined in [34], we will show that small
perturbations of Ricci-flat and maximally symmetric met-
rics in NLG satisfy the same equations of motion as in
Einstein theory. The conclusion, which will have a deep
impact on the original question about the phenomenologi-
cal applications of quantum gravity, is that Ricci-flat and
maximally symmetric spacetimes are stable in NLG to all
perturbative orders if they are stable in Einstein gravity.
Also to all orders, no new degrees of freedom (d.o.f.)
propagate. These results include backgrounds important for
cosmology such as (anti–)de Sitter, for which stability and
the absence of extra propagating d.o.f. was known at the
linear order [40,41].
In Sec. II, we will prove our result for Ricci-flat space-

times, while the case of maximally symmetric metrics will
be addressed in Sec. III. Section IV summarizes the main
results and outlines their present and future physical
applications. For an easier reading, most of the calculations
have been confined into Appendixes A and B.
Our conventions are that the metric tensor gμν has

signature ð−þ � � �þÞ and the curvature tensors are defined
as Rμ

νρσ ¼ −∂σΓ
μ
νρ þ � � �, Rμν ¼ Rρ

μρν and R ¼ gμνRμν.
Terms quadratic in the Ricci tensor or scalar but not in
the Riemann tensor will be denoted as OðRic2Þ.

II. NONLOCAL GRAVITY WITHOUT
COSMOLOGICAL CONSTANT

A general class of theories compatible with unitarity and
superrenormalizability or finiteness is, inD dimensions [26],

S ¼ 1

2κ2

Z
dDx

ffiffiffiffiffi
jgj

p
× ½Rþ Rγ0ðΔLÞRþ Rμνγ2ðΔLÞRμν þ Vg�; ð1Þ

where the “potential” term Vg is built with the curvature
tensor and it is at least quadratic in the Ricci tensor, as

required for superrenormalizability or finiteness. However,
in what follows we will consider potentials at least cubic
in curvature tensors but quadratic in the Ricci tensor,
e.g., Vg¼RαβRβγRα

γþRαρRβγRαβργþOðRicn×RiemmÞ,
with n ≥ 2 and nþm ≥ 3, and we will show that under
this restriction we can prove the stability of Ricci-flat
solutions. The reader interested in the form and role of
cubic potentials can consult Ref. [7]. The γ0;2ðΔLÞ in Eq. (1)
are the nonlocal form factors, which are functions of the
Lichnerowicz operator ΔL. When acting on a rank-2
symmetric tensor, ΔL is defined as

ΔLXμν ¼ 2Rσ
μντXτ

σ þ RμσXσ
ν þ RσνXσ

μ −□Xμν:

On the trace Xμ
μ or on a scalar X, ΔLX ¼ −□X.

The EOM in vacuum for the action (1) in a compact and
short notation read [42]

0 ¼ Gμν −
1

2
gμνRγ0ðΔLÞR −

1

2
gμνRαβγ2ðΔLÞRαβ

þ 2
δR
δgμν

γ0ðΔLÞRþ δRαβ

δgμν
γ2ðΔLÞRαβ

þ δRαβ

δgμν
γ2ðΔLÞRαβ þ

δΔr
L

δgμν

�
γ0ðΔl

LÞ − γ0ðΔr
LÞ

Δr
L − Δl

L

RR

�

þ δΔr
L

δgμν

�
γ2ðΔl

LÞ − γ2ðΔr
LÞ

Δr
L − Δl

L

RαβRαβ

�
þ δVg

δgμν
; ð2Þ

where Δl;r
L act, respectively, on the left and right arguments

inside the brackets.
In order to have a ghost-free theory (tree-level unitarity

when we expand the action around the Minkowski vacuum)
without the Starobinsky curvaton mode [43,44], we are
forced to select [17,45]

γ0 ¼ −
γ2
2
; ð3Þ

where γ2 ¼ γ and

γðΔLÞ ¼
eHðσΔLÞ − 1

−ΔL
: ð4Þ

Here H is an analytic entire function whose properties are
dictated by the superrenormalizability of the theory [4,7]
and σ is a parameter that fixes the length scale of non-
locality l≡ ffiffiffi

σ
p

. Moreover, we note that, since Vg is at least
cubic in the Ricci curvature, its variation with respect to the
metric tensor will be at least quadratic, so we can write
δVg

δgμν ∝ Ric2. Therefore, Eq. (2) can be recast in the
following form [26]:

Gμν þ 2
δRαβ

δgμν
γðΔLÞGαβ þOðRic2Þμν ¼ 0; ð5Þ

where the variation of the Ricci tensor is given in Eq. (B1)
and OðRic2Þ stands for operators at least quadratic in the
Ricci tensor.
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From the cumbersome computation developed in [26], it
turns out that the functional dependence of the form factor
(4) on the Lichnerowicz operator leads to a simplified form
of the EOM (5),

Eμν ≔ eHðσΔLÞGμν þQðRicÞμν ¼ 0; ð6Þ

whereQμν is the sum of terms at least quadratic in the Ricci
tensor, e.g., σ½ðσ□ÞnRμα�½ðσ□ÞmRα

ν � or σ2½ðσ□ÞnRμα�×
½ðσ□ÞmRα

ν�½ðσ□ÞlR�, for integer n, m, l.
It is straightforward to show that Eq. (6) is satisfied if

Rμν ¼ 0, so that all Ricci-flat spacetimes are solutions of
the EOM. In particular, the Schwarzschild metric, the Kerr
metric, and all the known Ricci-flat metrics in Einstein
gravity without matter are exact solutions of the nonlocal
theory too.
Finally, we can move the exponential operator in Eq. (6),

from the left-hand to the right-hand side of the EOM and
replace the Ricci tensor with the Einstein tensor, so that
we find the following structure for the final, but implicit,
EOM (2):

G ¼ e−HðσΔLÞQðGÞ ¼ e−HðσΔLÞðGQ2Gþ � � �Þ; ð7Þ

where G is the Einstein tensor Gμν and the term GQ2G is
quadratic inGμν. In our notation,Q2 is the sum of operators
acting on the left and rightG, while the indices in the twoG
are contracted to form a rank-2 covariant tensor. The
ellipsis in Eq. (7) includes all the terms in QðGÞ at least
cubic in G, which can be neglected in our discussion of the
stability, as explained in detail below. All the operators
QðGÞ can be explicitly and easily derived from the EOM
(2). However, in order to address the stability problem we
only need to know that such operators are at least quadratic
in the Einstein tensor.
Now we are ready to present the following theorem.
Theorem 1.—In nonlocal gravity (1)–(3)–(4) and in

vacuum (T ¼ 0, where T is the matter energy-momentum
tensor), the gravitational perturbations of Ricci-flat space-
times satisfy the same EOM of the perturbations in Einstein
gravity in vacuum.
Two different proofs are given in Appendix A. In the

first, we consider a Ricci-flat metric gð0Þμν , that is, a metric

such that Rμνðgð0ÞÞ ¼ 0. As discussed before, gð0Þμν is also a
solution of the EOM (7) for nonlocal gravity. Small

perturbations around the background gð0Þμν are written as
an expansion of the full metric tensor gμν in powers of a
small parameter ϵ ≪ 1 as

gμν ¼
X∞
n¼0

ϵnhðnÞμν ; hð0Þμν ≡ gð0Þμν : ð8Þ

Then, it is showed (see Proof 1 in Appendix A) that at any
perturbative order n > 0 in ε

EðnÞ ¼ 0 ⇒ GðnÞ ¼ 0; ð9Þ

where EðnÞ (GðnÞ) are the nonlocal (respectively, local)
EOM (6) (respectively, Einstein EOM) at the order ϵn, so
that

EμνðgμνÞ ¼
X∞
n¼0

ϵnEðnÞ
μν ¼ 0; Eð0Þ

μν ≡ Eμνðgð0ÞÞ ¼ 0;

GμνðgμνÞ ¼
X∞
n¼0

ϵnGðnÞ
μν ¼ 0; Gð0Þ

μν ≡Gμνðgð0ÞÞ ¼ 0:

ð10Þ

In other words, the dynamics of small perturbations in NLG
is the same as in Einstein gravity. The second proof
(see Proof 2 in Appendix A) starts from a different but
equivalent Lagrangian that involves an auxiliary rank-2
traceless tensorial field ϕμν and a scalar field χ. We are
interested in this other demonstration because it clearly
shows that these new d.o.f. encoded in NLG do not
propagate at any perturbative order in vacuum. This power-
ful conclusion extends, both to more general backgrounds
and to all perturbative orders, the well-known result that
the only propagating d.o.f. of this theory in Minkowski is
the graviton. It also explains why the theory is exactly
unitary, contrary to Stelle gravity where the spin-2 ghost
field propagates already at the first-order perturbative
level [11,12].
The stability of Ricci-flat spacetimes follows from our

theorem:
Corollary 1.—If a Ricci-flat solution is stable in Einstein

gravity, it is also stable in NLG (1)–(3)–(4).
This result stems directly from the fact that the evolution

of small perturbations of Ricci-flat solutions is the same in
the two theories. For instance, Minkowski spacetime is
stable, since it is stable in general relativity [34], and the
same will be true for other Ricci-flat spacetimes, e.g., for
Schwarzschild black holes, provided they are stable in
Einstein gravity.

III. NONLOCAL GRAVITY WITH
COSMOLOGICAL CONSTANT

We now introduce the cosmological constant Λ in the
theory (1) in such a way that maximally symmetric
solutions of Einstein’s gravity are still solutions in NLG.
The action reads

S ¼ 1

2κ2

Z
dDx

ffiffiffiffiffi
jgj

p
½R − 2Λþ ðR − 4ΛÞγ0ðΔΛÞðR − 4ΛÞ

þðRαβ − ΛgαβÞγ2ðΔΛÞðRαβ − ΛgαβÞ þ VE�; ð11Þ

where Λ is the cosmological constant and VE is a potential
at least cubic in the tensor
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Eμν ≔ Gμν þ Λgμν: ð12Þ

One can equivalently rewrite the theory (11) in terms
Eμν. Finally, the operator ΔΛ is a generalization of the
Lichnerowicz operator ΔL. When acting on a rank-2
symmetric tensor,

ΔΛXμν ¼ 2Rσ
μντXτ

σ þ ðRμσ − ΛgμσÞXσ
ν

þ ðRσν − ΛgσνÞXσ
μ −□Xμν: ð13Þ

The EOM resulting from the variation of the action (11) up
to quadratic orders in Eμν, which we rename E, and
assuming again the relation (3), are

ENL
μν ≔ Eμν þ 2

δðRαβ − ΛgαβÞ
δgμν

γ2ðΔΛÞEαβ þOðE2Þ ¼ 0:

ð14Þ

Clearly, all maximally symmetric spacetimes are exact
solutions of the theory:

Eμν ¼ 0 ⇒ ENL
μν ¼ 0: ð15Þ

In Appendix B, we show that assuming Eq. (3) the EOM
(14) can be written explicitly as

½1 − ðΔΛ þ 4ΛÞγðΔΛÞ�Eμν þOðE2Þ ¼ 0: ð16Þ

To secure the stability of the theory we define an H such
that γ is entire:

γðΔΛÞ ¼
eH½σðΔΛþ4ΛÞ� − 1

−ðΔΛ þ 4ΛÞ ; ð17Þ

and the EOM (16) simplify to

E ¼ e−H½σðΔΛþ4ΛÞ�QðEÞ
¼ e−H½σðΔΛþ4ΛÞ�ðEQ2Eþ � � �Þ ¼ 0: ð18Þ

We see that Eq. (18) is the same as (7) with the replace-
ments G → E and ΔL → ΔΛ þ 4Λ. Therefore, we can
enunciate the following
Theorem 2.—In the nonlocal gravity (11)–(3)–(17) in

vacuum (T ¼ 0), the gravitational perturbations of max-
imally symmetric spacetimes satisfy the same EOM of the
perturbations in Einstein gravity with a cosmological
constant in vacuum.
The proof of Theorem 2 proceeds as that of Theorem 1

in Sec. II. The difference is that now we expand the
metric around a maximally symmetric solution gð0Þμν of
Eμνðgð0ÞÞ ¼ 0, i.e., around a solution of Einstein equations
in vacuum with a cosmological constant. By means of the
expansion (8), we expand EμνðgμνÞ in powers of ϵ as

EμνðgμνÞ ¼
X∞
n¼0

ϵnEðnÞ
μν ; ð19Þ

where Eð0Þ
μν ¼ Eμνðg0μνÞ ¼ 0. Expanding the right-hand

side of (18) in powers of ϵ, one obtains a recursive
relation identical to Eq. (A3), which can be used to show

that Eð0Þ
μν ¼ 0 implies EðnÞ

μν ¼ 0 for any n > 0. Thus,

ENL ðnÞ ¼ 0 ⇒ EðnÞ ¼ 0; ð20Þ

where ENL ðnÞ is the perturbative expansion of the nonlocal
EOM (14), namely,

ENL
μν ðgμνÞ ¼

X∞
n¼0

ϵnENL ðnÞ
μν : ð21Þ

The stability of maximally symmetric spacetimes fol-
lows from Theorem 2. Therefore,
Corollary 2.—If a maximally symmetric spacetime is

stable in Einstein gravity, it is also stable in NLG (11)–
(3)–(17).
All maximally symmetric spacetimes are stable at all

perturbative orders in nonlocal gravity if they are stable in
Einstein gravity in the presence of a cosmological constant.

IV. SUMMARY AND APPLICATIONS

We have proved that, in order to show the nonlinear
stability of a Ricci-flat or a maximally symmetric spacetime
at any perturbative order in nonlocal gravity, one needs to
address the same issue in Einstein gravity. The stability
equations of the Ricci-flat solutions of the nonlocal theory
have shown to be exactly the same of general relativity.
Therefore, if spacetime is stable in Einstein gravity, then it
is stable in nonlocal gravity as well. The major advantage of
this result is that we already know the stability properties
of Ricci-flat solutions in general relativity and we do not
need to repeat calculations such as those of Ref. [27].
One of the consequences is that Minkowski spacetime is
stable in nonlocal gravity to all perturbative orders in the
gravitational perturbation, as found previously in [34].
Furthermore, the extra d.o.f. described by a symmetric
tensor field never propagate on the Minkowski background.
Finally, Ricci-flat and maximally symmetric spacetimes

are stable to all perturbative orders in the gravitational
perturbation if they are stable in Einstein local gravity. The
tensorial field describing the extra d.o.f. propagates neither
on Ricci-flat nor on maximally symmetric spacetimes. This
paper confirms and extends the perturbative results found
in [46,47].
An interesting application of these results could be in the

hot topic of gravitational-wave astronomy. In general
relativity (see, e.g., [48] for an overview), the generation
of GWs has been considered in models of astrophysical
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objects such as black-hole and neutron-star systems, while
the propagation of GWs has been considered both on
Minkowski spacetime (approximately representing the
space neither too far nor too near a compact object) and
on a Friedmann-Lemaître-Robertson-Walker (FLRW) cos-
mological background, where GWs propagate at large
distances and are eventually observed on Earth. Both the
production and propagation of GWs have not yet received
attention in the context of NLG. We suggest to direct the
effort to the study of the production of GWs, since, as we
are going to argue, nonlocality does not affect their
propagation appreciably.
Consider first general relativity in four dimensions. The

linearized propagation equation of GWs on a FLRW
background is □h ¼ 0, where hðt;xÞ is the amplitude of
either tensor polarization mode [49]. From the solution of
this equation, or from a fairly simple scaling argument,
one can recast the GW amplitude in terms of the redshift
1þ z ¼ 1=a (a is the FLRW scale factor) and a physical
observable, the luminosity distance dGWL ¼ ð1þ zÞ×R
z
0 dz=H of the source, whereH ¼ _a=a [not to be confused
with the H in the form factor (4)] is the Hubble parameter:
h ∝ ðdGWL Þ−1 [48]. This information is sufficient to see what
happens in NLG. At the linear level, the EOM (6) and (18)
are valid also when the Lichnerowicz operator is replaced
by the d’Alembertian □. Ignoring the small contribution
of Λ, one ends up with the linearized perturbation
equation [4,50]

□h̃ ¼ 0; h̃ ¼ eHh: ð22Þ

Using the same scaling argument as in general relativity
with h replaced by h̃, for entire form factors we have

h̃ ∝
1

dGWL
⇒ h ∝ e−H

1

dGWL
: ð23Þ

We can estimate the nonlocal correction in the right-hand
side for the string-related form factor H ¼ −l2�□ ¼
l2�ð∂2

t þ 3H∂tÞ in the homogeneous approximation and,
crudely, an approximately constant H ≃H0, so that
z ≃ e−H0ðt−t0Þ − 1 and dL ≃ ðzþ 1Þz=H0 ≃ ½e−2H0ðt−t0Þ −
e−H0ðt−t0Þ�=H0. Since e−HenH0t ¼ e−nðnþ3Þðl�H0Þ2enH0t, at
large redshift h ∼H0e−10ðl�H0Þ2e2H0ðt−t0Þ, while at small
redshift z ≃ −H0ðt − t0Þ ≪ 1 one has h ∼H0e−3ðl�H0Þ2×
e2H0ðt−t0Þ. Overall, h ∼ e−cðl�H0Þ2=dGWL , where c ¼
Oð1Þ–Oð10Þ.
Are these nonlocality effects measurable? To answer this

question, we may look into standard sirens, which are
sources both of GWs and light. The binary neutron star
merger GW170817 is the first known example [2]. If
propagation of electromagnetic waves were affected in
the same way by the form factor, then the ratio between the
luminosity distance dGWL measured by an interferometer

and the luminosity distance dEWL measured for the optical
counterpart would be equal to 1. However, if light is not
affected by nonlocality, we have

dGWL
dEWL

≃ 1þ cðl�H0Þ2; c ¼ Oð1Þ −Oð10Þ; ð24Þ

and for l� ¼ lPl, the right-hand side would be of the order
of 1þ 10−120, an effect completely unobservable compared
with the estimated error ΔdL=dL ∼ 0.001–0.1 of present
and future interferometers [51–54]. For a power-law
expansion a ¼ ðt=t0Þp, dL ∝ ðt0=tÞ2pðt0 − tÞ and one
can show that, again, the correction in the ratio (24) is
of the order of ðl�=t0Þ2 ∼ 10−120. Increasing l� to particle-
physics scales does not magnify this correction enough,
since it is governed by the cosmological scale H−1

0 ∼
t0 ∼ 1017 s.
The present paper sets a first step towards placing this

argument, as well as future studies on GW production, on a
rigorous ground. We have shown that metric perturbations
(in particular, GWs) are well defined to all perturbative
orders in Ricci-flat and maximally symmetric spacetimes
where they are stable in general relativity, such as
Minkowski and (anti–)de Sitter spacetime (see [55–58]
about anti–de Sitter (in)stability). These three situations
cover most of the ranges of interest for the physics of
astrophysical gravitational waves propagating at cosmo-
logical scales. Of course, de Sitter spacetime is not
equivalent to FLRW, except in the strong slow-roll regime
of inflation. However, it gets reasonably close to a
cosmological setting as to make one confident that also
cosmological backgrounds such as those already employed
in the nonlocal literature are stable, at least at first order.
The next step, which we leave for the future, will be to
study the stability of FLRW spacetimes in the presence of
matter. If stability depended on the absence of singularities
in the FLRW metric, this topic will also be relevant for
the big-bang problem, which may be resolved in the
theory [59–61].
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APPENDIX A: TWO PROOFS OF THEOREM 1

Proof 1.—Let gð0Þμν be a Ricci-flat metric, i.e., such that

Rμνðgð0ÞÞ ¼ 0. Consider small perturbations of gð0Þμν , by
expanding the perturbed metric tensor gμν in powers of a
small parameter ϵ ≪ 1 as in Eq. (8). We can expand the
Einstein tensor and all the other metric-dependent quan-
tities in Eq. (7) by means of Eq. (8):
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GðgμνÞ ¼
X∞
n¼0

ϵnGðnÞ; Gð0Þ ≡Gðgð0ÞÞ ¼ 0; ðA1Þ

and

e−HðΔLÞ ≡ S ¼
X∞
n¼0

ϵnSðnÞ; Q2 ¼
X∞
n¼0

ϵnQðnÞ
2 : ðA2Þ

Equation (A1) also implies that it must be G ∼ ϵm for some
integerm ≥ 1, sinceGðrÞ ¼ 0 for r < m and at least the first
termGð0Þ is zero. As a consequence of this fact, one has that
the dominant contribution in QðRicÞ in Eq. (6) will be

given by the quadratic terms included inGQ2G, and we are
allowed to neglect all the terms at least cubic in G, as we
have done in Eq. (7).
Substituting Eqs. (A1) and (A2) into the EOM (6) or (7),

one has

GðnÞ ¼
Xn
h¼0

Xh
k¼0

Xk
q¼0

Sðn−hÞGðh−kÞQðk−qÞ
2 GðqÞ: ðA3Þ

At this point, it is straightforward to show that the condition
Gð0Þ ¼ 0 implies that all the terms GðnÞ must be zero. For
instance, at first order in ϵ Eq. (A3) gives

Gð1Þ ¼ Sð0ÞðGð1ÞQð0Þ
2 Gð0Þ þGð0ÞQð1Þ

2 Gð0Þ þGð0ÞQð0Þ
2 Gð1ÞÞ þ Sð1ÞGð0ÞQð0Þ

2 Gð0Þ ¼ 0:

At second order, using Gð0Þ ¼ Gð1Þ ¼ 0, Eq. (A3) gives Gð2Þ ¼ 0, and proceeding by recursion one has that
GðnÞ ¼ 0 for any n. Therefore,

EðnÞ ¼ 0 ⇒ GðnÞ ¼ 0: ðA4Þ
Equation (10) tells us that the perturbed solution (8) must be a solution of the Einstein equations in vacuum, which
concludes the proof. ▪
Proof 2.—Consider the action

S½g;ϕ; χ� ¼ 1

2κ2

Z
dDx

ffiffiffiffiffiffi
−g

p �
Rþ 2GμνγðΔLÞϕμν − ϕμνγðΔLÞϕμν þ RγðΔLÞχ þ

1

D − 2
χγðΔLÞχ

�
: ðA5Þ

The EOM for the scalar χ and the tensor ϕμν are easy to
derive:

δS
δχ

¼ 0 ⇒ χ ¼ G ¼ −
D − 2

2
R; ðA6Þ

δS
δϕμν ¼ 0 ⇒ ϕμν ¼ Gμν: ðA7Þ

Eliminating the auxiliary fields from the action (A5), we
end up with (1) with the form factor (4). Notice that the
on-shell equation (A7) implies ∇μϕμν ¼ 0 and χ ¼ ϕμ

μ.
If the form factor γðΔLÞ ¼ constþOð□Þ has a non-

vanishing constant term in its analytic expansion, then the
solution (A7) is unique. Otherwise, if the form factor γðΔLÞ
has a vanishing constant term, then the action (A5) is
invariant under the symmetry

ϕ0
μνðxÞ ¼ ϕμνðxÞ þ fðϕÞμν ðxÞ; where □fðϕÞμν ðxÞ ¼ 0;

ðA8aÞ

χ0ðxÞ ¼ χðxÞ þ fðχÞðxÞ; where □fðχÞðxÞ ¼ 0: ðA8bÞ
Therefore, the most general solution will be

χ ¼ G ¼ −
D − 2

2
Rþ χ0; where □χ0 ¼ 0; ðA9Þ

ϕμν ¼ Gμν þ ϕ0;μν; where □ϕ0;μν ¼ 0: ðA10Þ
However, χ0 and ϕ0;μν can always be fixed to zero using the
gauge freedom (A8). Therefore, Eqs. (A6) and (A7) are the
most general gauge-invariant solutions.
Explicitly computing the variation of the action (A5)

with respect to the metric gμν, we get

δSðg;ϕ; χÞ ¼
Z

dDx
ffiffiffiffiffiffi
−g

p �
Gμνδgμν −

1

2
gμν½2GαβγðΔLÞϕαβ − ϕαβγðΔLÞϕαβ þ RγðΔLÞχ

þ 1

D − 2
χγðΔLÞχ�δgμν þ 2δGαβγðΔLÞϕαβ − δðgμαgνβÞϕαβγðΔLÞϕμν

þ δRγðΔLÞχ þ 2GαβδγðΔLÞϕαβ − ϕμνδγðΔLÞϕμν þ RδγðΔLÞχ þ
1

D − 2
χδγðΔLÞχ

�
: ðA11Þ
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Replacing (A6) and (A7) into (A11),1 we end up with the following equation of motion for the field ϕμν up to operators
quadratic in the same field:

Eϕ
μν ≔ ϕμν þ 2

δRαβ

δgμν
γðΔLÞϕαβ þQðϕ2Þ ¼ 0: ðA12Þ

The background Ricci-flat solution is now given by the pair ðgð0Þμν ;ϕð0ÞÞ solving the EOM (A7) and (A12):

ϕð0Þ
μν ¼ Gμνðgð0ÞÞ ¼ 0: ðA13Þ

Since ϕμν ¼ Gμν on shell, then ∇αϕ
αβ ¼ 0 (on shell) and we can use the results in [26] to simplify the EOM (A12) and

finally get

eHðσΔLÞϕ ¼ Qðϕ2Þ ¼ ϕQ2ϕþ � � � ⇒ ϕ ¼ e−HðσΔLÞQðϕ2Þ ¼ e−HðσΔLÞðϕQ2ϕþ � � �Þ; ðA14Þ

where the dots stand for terms at least cubic in ϕ. Using now the metric expansion (8) and a similar expansion for the tensor

field ϕμν around its vacuum ϕð0Þ
μν ¼ 0,

ϕμν ¼
X∞
n¼0

ϵnϕðnÞ
μν ; ðA15Þ

we can solve simultaneously Eqs. (A7) and (A14) to all perturbative orders, obtaining

ϕðnÞ ¼
Xn
h¼0

Xh
k¼0

Xk
q¼0

Sðn−hÞϕðh−kÞQðk−qÞ
2 ϕðqÞ: ðA16Þ

From Eq. (A16), it is straightforward to show that ϕð0Þ ¼ 0 implies ϕðnÞ ¼ 0 for all n ≥ 0. Therefore, the tensor field ϕ is
identically zero in vacuum, ϕμν ¼ Gμν ¼ 0, and all the solutions of the theory (A5) must satisfy the Einstein equations. In
other words, the tensor field ϕμν is not a dynamical field on any Ricci-flat background at any perturbative order. ▪

APPENDIX B: PROOF OF THE EOM (16)

The variation of the Ricci tensor acting on a rank-2 tensor is

δRαβ

δgμν
¼ 1

2
gαðμgνÞβ□þ 1

2
gμν∇α∇β − gαðμj∇β∇jνÞ; ðB1Þ

which allows us to write explicitly the EOM (14) as

Eμν þ
�
gαðμgνÞβ□þ gμν∇α∇β|fflfflfflfflffl{zfflfflfflfflffl}

①

− ðgαμ∇β∇ν þ gαν∇β∇μÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
②

− 2Λgμαgνβ
�
γðΔΛÞEαβ þOðE2Þ ¼ 0: ðB2Þ

The two terms ①; and ②; can be dealt with separately. We will show that

① ¼ OðE2Þ; ðB3Þ

② ¼ 2RμβνλγðΔΛÞEβλ − 2ΛγðΔΛÞEμν þOðE2Þ: ðB4Þ

1Since (A11) is a variation and not the EOM, the replacement mentioned in the text must be done carefully; namely, it cannot be done
in δG and δR. Moreover, in (A12), by Oðϕ2Þ we also mean products Rμνϕ

μν in which the EOM (A7) has been replaced.
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1. Proof of Eq. (B3)

Using the definition of the generalized Lichnerowicz operator (13), we get

∇μ½ΔΛðGμν þ ΛgμνÞ� ¼ −∇μ½□ðGμν þ ΛgμνÞ þ 2RμρνσðGρσ þ ΛgρσÞ� þOðE2Þ
¼ −½∇μ□ðGμν þ ΛgμνÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

○I

þ 2∇μðRμρνσðGρσ þ ΛgρσÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
○II

� þOðE2Þ; ðB5Þ

because the contributions of the second and third tensor in the definition (13) are quadratic in the EOM.
Let us start with ◯I :

◯I ¼ ∇μ∇α∇αðGμν þ ΛgμνÞ ¼ ∇α∇μ∇αðGμν þ ΛgμνÞ þ ½∇μ;∇α�∇αðGμν þ ΛgμνÞ
¼ ∇α∇α∇μðGμν þ ΛgμνÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

¼0ðBianchi id:Þ

þ∇α½∇μ;∇α�ðGμν þ ΛgμνÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ⓐ

þ ½∇μ;∇α�∇αðGμν þ ΛgμνÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ⓑ

: ðB6Þ

Using the short notation defined in (12) and the commutator of covariant derivatives on a symmetric tensor

½∇μ;∇α�Xμν ¼ RνλμαXλμ þ RλαXλ
ν; ðB7Þ

we can write ⓐ ; as

ⓐ ¼ ∇α½∇μ;∇α�Eμν ¼ ∇α½−Rλ
νμαEμ

λ þ RλαEλ
ν�

¼ ð∇αRλαÞEλ
ν þ Rλαð∇αEλ

νÞ − ð∇αRλ
νμαÞEμ

λ − Rλ
νμαð∇αEμ

λÞ: ðB8Þ

We can replace the Ricci tensor in the first term with Rλα − Λgλα thanks to the metric compatibility condition ∇αgλα ¼ 0.
Moreover, we can use the contracted Bianchi identities to simplify the third term. Starting from

−∇αRνσβα ¼ ∇νRσβ −∇σRνβ; ðB9Þ

and replacing again the Ricci tensor with Rλα − Λgλα in (B9), we end up with

−∇αRνσβα ¼ ∇νðRσβ − ΛbσβÞ −∇σðRνβ − ΛgνβÞ: ðB10Þ

Therefore, the third term in (B8) is OðE2Þ (quadratic in the EOM) and, going back to (B8), ⓐ; simplifies to

ⓐ ¼ ð∇αRλαÞEλ
ν|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

OðE2Þ

þ Rλαð∇αEλ
νÞ − ð∇αRλ

νμαÞEμ
λ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

OðE2Þ

− Rλ
νμαð∇αEμ

λÞ: ðB11Þ

Looking at the second term in (B11), it turns out to be equivalent to

Rλαð∇αEλ
νÞ ¼ ðRλα − ΛgλαÞð∇αEλ

νÞ ¼ OðE2Þ; ðB12Þ

since the term proportional to Λ vanishes as a consequence of ∇αEαν ¼ 0. Finally,

ⓐ ¼ ð∇αRλαÞEλ
ν|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

OðE2Þ

þ Rλαð∇αEλ
νÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

OðE2Þ

− ð∇αRλ
νμαÞEμ

λ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
OðE2Þ

− Rλ
νμαð∇αEμ

λÞ

¼ −Rλ
νμαð∇αEμ

λÞ þOðE2Þ: ðB13Þ

In order to simplify ⓑ , we need the commutator of two covariant derivatives acting on a rank-3 tensor,

½∇ρ;∇μ1 �Xμ1μ2μ3 ¼ Rμ1
λρμ1X

λμ2μ3 þ Rμ2
λρμ1X

μ1λμ3 þ Rμ3
λρμ1X

μ1μ2λ: ðB14Þ
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Using the EOM Eμν ¼ 0, the ⓑ;-term reads

ⓑ ¼ gδν½∇μ;∇α�∇αEμδ ¼ gδνRα
λμα∇λEμδ þ gδνRμ

λμα∇αEλδ þ gδνRδ
λμα∇αEμλ

¼ −gδνRλμ∇λEμδ þ gδνRλα∇αEλδ þ Rνλμα∇αEμλ ¼ −Rαμνλ∇αEμλ: ðB15Þ

Therefore, plugging (B13) and (B15) into (B6) we find

◯I ¼ −2Rαμνλ∇αEμλ: ðB16Þ

We now move on to calculate ◯II :

◯II ¼ 2∇μðRμρνσEρσÞ ¼ 2ð∇μRμρνσÞEρσ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
OðE2Þ; see ðB10Þ

þ 2Rμρνσð∇μEρσÞ ¼ 2Rμρνσð∇μEρσÞ þOðE2Þ: ðB17Þ

Replacing (B16) and (B17) into (B5), we get

∇μðΔΛEμνÞ ¼ OðE2Þ: ðB18Þ

Reiterating the procedure that led us to (B18) one can see that

∇μðΔΛΔΛ � � �ΔΛEμνÞ ¼ OðE2Þ; ðB19Þ

and for an analytic form factor γðΔΛÞ, we finally get the identity

∇μ½γðΔΛÞEμν� ¼ OðE2Þ; ðB20Þ

thanks to which we conclude that (B3) holds.

2. Proof of Eq. (B4)

The term ②; can be manipulated as follows:

② ¼ −ðgαμ∇β∇ν þ gαν∇β∇μÞγðΔΛÞEαβ

¼ −ðgαμ∇ν∇β þ gαμ½∇β;∇ν� þ gαν∇μ∇β þ gαν½∇β;∇μ�ÞγðΔΛÞEαβ: ðB21Þ

The first and the third term in (B21) are both zero because of (B20), and using

½∇β;∇μ�Xαβ ¼ Rα
λβμXλβ þ RλμXλα; ðB22Þ

we can replace the commutators in ②; with the Riemann and Ricci tensor,

② ¼ −ðgαμ½∇β;∇ν� þ gαν½∇β;∇μ�ÞγðΔΛÞEαβ þOðE2Þ
¼ −½gαμRα

λβνγðΔΛÞEλβ þ gαμRλνγðΔΛÞEλα þ gανλβμγðΔΛÞEλβ þ gανRλμγðΔΛÞEλα� þOðE2Þ: ðB23Þ

Up to a reshuffling of the indices, the two operators with the Riemann tensor in (B23) are identical, so that

② ¼ 2RμλνβγðΔΛÞEλβ − RλνγðΔΛÞEλ
μ − RλμγðΔΛÞEλ

ν þOðE2Þ: ðB24Þ

We now add and subtract ΛgλνγðΔΛÞEλ
μ and ΛgλμγðΔΛÞEλ

ν in order to replace the Ricci tensor with the tensor (12):
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② ¼ 2RμλνβγðΔΛÞEλβ − RλνγðΔΛÞEλ
μ − RλμγðΔΛÞEλ

ν

þ ΛgλνγðΔΛÞEλ
μ − ΛgλνγðΔΛÞEλ

μ þ ΛgλμγðΔΛÞEλ
ν − ΛgλμγðΔΛÞEλ

ν þOðE2Þ
¼ 2RμλνβγðΔΛÞEλβ − ΛgλνγðΔΛÞEλ

μ − ΛgλμγðΔΛÞEλ
ν þOðE2Þ; ðB25Þ

yielding (B4).

3. Equations of motion

Finally, from (B4) and the identity (B20), the EOM (B2) turn into

Eμν þ ð□ − 2ΛÞγðΔΛÞEμν þ 2RμανβγðΔΛÞEαβ − 2ΛγðΔΛÞEμν þOðE2Þ ¼ 0;

Eμν þ ð□ − 4ΛÞγðΔΛÞEμν þ 2RμανβγðΔΛÞEαβ þOðE2Þ ¼ 0: ðB26Þ

Now we add and subtract ðRμα − ΛgμαÞγðΔΛÞEα
ν and ðRνα − ΛgναÞγðΔΛÞEα

μ to the EOM (B26) in order to reconstruct the
generalized Lichnerowicz operator ΔΛ defined in (13):

Eμν þ ð□ − 4ΛÞγðΔΛÞEμν þ 2RμανβγðΔΛÞEαβ

þ ðRμα − ΛgμαÞγðΔΛÞEα
ν − ðRμα − ΛgμαÞγðΔΛÞEα

ν

þ ðRνα − ΛgναÞγðΔΛÞEα
μ − ðRνα − ΛgναÞγðΔΛÞEα

μ þOðE2Þ ¼ 0: ðB27Þ

Up to OðE2Þ terms, we get

Eμνþ□γðΔΛÞEμν − 4ΛγðΔΛÞEμνþ2RμανβγðΔΛÞEαβ

−ðRμα − ΛgμαÞγðΔΛÞEα
ν − ðRνα − ΛgναÞγðΔΛÞEα

μ þOðE2Þ ¼ 0: ðB28Þ

The underlined operators reconstruct the Lichnerowicz operator −ΔΛ and we end up with Eq. (16).
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