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Microscopic calculations of weak decays in superheavy nuclei
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Half-lives of β+ decay and electron capture are studied in some selected superheavy nuclei produced in hot-
fusion reactions, namely, 290Fl, 293Mc, 294Lv, and 295Ts. The nuclear structure is described microscopically from
deformed self-consistent Skyrme Hartree-Fock mean-field calculations that include pairing correlations. The
sensitivity of the half-lives to deformation and to the QEC energies, which are still not determined experimentally,
are studied. The results are compared with phenomenological α-decay half-lives, showing that the latter decay
mode is dominant in this mass region.
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I. INTRODUCTION

The search for new regions of nuclear stability in super-
heavy nuclei (SHN) is a very active and successful line of
research that has already led to the discovery of a large number
of new elements [1–8]. First calculations of binding energies
within macroscopic-microscopic models [8–14] predicted the
existence of “islands of stability” for spherical SHN Z = 114
and N = 184, as well as for deformed nuclei with Z = 108
and N = 162. In these models, a macroscopic term, usually
derived from a deformed liquid-drop model, is complemented
with a microscopic part that includes a shell correction de-
rived from a shell model calculation. Purely microscopic
calculations showed that the location of the shell closures in
SHN is not very robust, but model dependent. Different self-
consistent relativistic and nonrelativistic mean-field models
[15–20] predict closure of spherical shells at Z = 114, N =
184, Z = 120, N = 172, and Z = 126, N = 184, depend-
ing on the interactions and their parametrizations. Note that
the macroscopic-microscopic calculations performed with the
modified two-center shell model [21] reveal quite strong shell
effects at Z = 120–126 and N = 184, in agreement with the
self-consistent mean-field treatments.

In parallel, different experimental strategies were success-
fully carried out to reach the theoretically predicted islands
of stability for SHN. The cold-fusion approach was used to
synthesize SHN with Z = 107–112 in reactions with target
magic nuclei (208Pb and 209Bi) and massive projectiles, such
as 50Ti, 54Cr, 58Fe, 62,64Ni, and 70Zn [5]. These reactions are
cold in the sense that the compound nucleus has low excitation
energy and only one or two neutrons evaporate. However, the
method is not applicable for reaching heavier nuclei, in partic-
ular around Z = 114, N = 184, because of the fast decrease
of the production cross sections for increasing charge of the
projectile. To overcome this difficulty, a second strategy was
developed, using more asymmetric reactions (less Coulomb
repulsion) with both target and projectile having a large
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neutron excess. Following this strategy, long-lived actinide
nuclei from 238U to 249Cf were used as targets, whereas the
double magic nucleus 48Ca was used as a beam. These so-
called hot-fusion reactions result in the production of SHN
with Z = 112−118 in the neutron-evaporation channels (xn
channels) [4]. The main advantage of these reactions is that
the Coulomb force becomes weaker as compared to the cold-
fusion reactions and the probability of forming a compound
nucleus increases dramatically. However, in hot-fusion reac-
tions, the compound nucleus formed is highly excited and
more neutrons are evaporated. After evaporation of x neutrons
(x = 2–5), nearly all the new nuclei produced in the hot-
fusion reactions undergo a chain of α decays ending with a
spontaneous fission. Identification of the associated α-decay
chains is the link to establish the original SHN.

Further experimental extension of the SHN region in the
direction of the magic neutron number N = 184, where the
center of the island of stability is predicted, is limited in
the xn channels by the number of available stable projec-
tiles and targets and the small production cross sections.
One possible alternative would be to exploit reactions with
neutron-rich radioactive beams. Because the intensive ra-
dioactive beams are not available so far, new isotopes of
heaviest nuclei with Z = 111–117 can be synthesized in the
48Ca-induced actinide-based complete fusion-evaporation re-
actions with the emission of charged particles (pxn and αxn
channels) from the compound nucleus [6]. The evaporation
of proton or α particle from compound nucleus in these re-
actions, for example, 48Ca + 248Cm → 290Fl + α2n, 48Ca +
248Cm → 293Mc + p2n, 48Ca + 249Bk → 294Lv + p2n, and
48Ca + 251Cf → 295Ts + p3n, leads to the formation of nuclei
with smaller Z but with larger neutron excess. In addition, in
the nucleus formed the electron capture (EC) can occur by
converting a proton into a neutron to the daughter nucleus.
Therefore, it is of great interest to study the competition
between β+/EC and α decays in SHN produced in the pxn
and αxn evaporation channels of hot-fusion reactions.

In addition, the β+ decay and EC branches would open
the possibility to reach other SHN not belonging the original
α-decay chains. These new branches would be open if β+/EC
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and α-decay half-lives are comparable [22,23]. In Ref. [8], the
competition between β+/EC and α decays has been consid-
ered in 290Fl, arguing about the possibility of populating a new
α-decay chain started at 290Nh. So, the study of β+/EC decay
modes is also important for the unambiguous identification of
new SHN.

In this paper, the focus of attention is the β+/EC de-
cay mode in SHN that so far has been studied only at a
phenomenological level [22–25]. In this work, the β+/EC-
decay half-lives are calculated microscopically from an ef-
fective nucleon-nucleon interaction within a deformed self-
consistent mean-field Hartree-Fock calculation with Skyrme
forces and pairing correlations in the BCS approximation.
Four SHN are selected as representative of this mass region,
namely, the isotopes of flerovium (Z = 114, N = 176), 290Fl;
moscovium (Z = 115, N = 178), 293Mc; livermorium (Z =
116, N = 178), 294Lv; and tennessine (Z = 117, N = 178),
295Ts.

The structure of the paper is as follows. I first review briefly
in Sec. II the theoretical method used to calculate Gamow-
Teller (GT) strength distributions and β+/EC half-lives. Then,
I proceed to show the results in Sec. III. In Sec. III A, the
ability of the method to reproduce the half-lives of nuclei is
tested in the vicinity of Z = 100, where experimental data
are available. Section III B contains the results for the SHN
mentioned above. Finally, Sec. IV contains the summary and
conclusions.

II. THEORETICAL FRAMEWORK

The β+/EC-decay half-life, Tβ+/EC, is calculated by sum-
ming all the allowed GT transition strengths to states in the
daughter nucleus with excitation energies Eex, lying below the
corresponding Qi energy (i = β+, EC),

QEC = Qβ+ + 2me = M(A, Z ) − M(A, Z − 1) + me, (1)

written in terms of the nuclear masses M(A, Z ) and the elec-
tron mass (me). The GT strength is weighted with phase-space
factors f i(Z,W0), where the energy is W0 = Qi − Eex:

T −1
i = (gA/gV )2

eff

D

∑
Eex<Qi

f i(Z,W0)B(GT, Eex), (2)

with D = 6143 s and (gA/gV )eff = 0.77(gA/gV )free, where
0.77 is a standard quenching factor and (gA/gV )free = −1.270.
Forbidden transitions are in general much smaller and there-
fore they can be safely neglected, especially in nuclei with
small Qi energies, such as those studied here.

Therefore, in the calculations of the β+/EC half-lives there
are three main ingredients: (i) the Qi energies (maximum
energy available in the process), which are taken from ex-
periment when available or from different mass formulas or
microscopic calculations in other cases; (ii) the phase-space
factors for each transition, which are calculated in a similar
way in practically all the existing calculations of the half-
lives; and (iii) the nuclear structure that generates the energy
distribution of the GT strength. This distribution may differ
much among different approaches, such as simple constant
values [22], distributions calculated with phenomenological

potentials [25], or microscopic calculations based on effective
nucleon-nucleon interactions like the work presented in this
paper. I specify in what follows how these three pieces are
treated.

Some recent calculations of half-lives in SHN by Karpov
et al. [22] assume that the decay can be approximated by
considering allowed transitions from the ground state of the
parent nucleus to the ground state of the daughter. Qi energies
are taken from the masses of the finite-range droplet model
(FRDM) [26] and the nuclear matrix elements of the transi-
tions are assumed to be constant with log( f t ) = 4.7 for all
nuclei. The latter assumption might be very rough because
it neglects any nuclear structure effect. It could be a large
estimate of the average GT strength that finally would lead
to half-lives being underestimated. In an older paper [27],
the authors used the same approach, but with log( f t ) = 6.5.
Then, in those references, only the phase-space factors remain
to be calculated. β+/EC half-lives were also evaluated within
a proton-neutron quasiparticle random-phase approximation
(pnQRPA) approach, which is based on a phenomenolog-
ical folded-Yukawa single-particle Hamiltonian [25], using
masses from FRDM and similar phase factors. Unfortunately,
only β+/EC half-lives smaller than 100 s were published and
the isotopes studied here are not in this category.

In the calculations of this work, the nuclear structure
is described microscopically from self-consistent deformed
Hartree-Fock calculations with Skyrme forces and pairing
correlations. The Qi energies in the cases where the masses
are not measured are taken from different mass formulas
that include masses from FRDM also used in the above
references [22,25]. The calculation of the phase factors is
similar to those. Therefore, the current calculations represent
an improvement over the previous ones with respect to the
nuclear structure involved in the decay process.

A. Mean-field approach for nuclear structure

A brief summary of the theoretical formalism used in
this paper to describe the nuclear structure involved in the
β+/EC decay is presented here. Further details can be found
elsewhere [28–31]. The starting point is a self-consistent
calculation of the mean field in terms of a deformed Hartree-
Fock with Skyrme interactions and pairing correlations in
the BCS approximation. The Skyrme interaction SLy4 [32]
is selected because of its ability to account successfully for
a large variety of nuclear properties all along the nuclear
chart [33,34]. Single-particle energies, wave functions, and
occupation amplitudes are generated in this way. The solution
of the HF equations is found by using the formalism devel-
oped in Ref. [35], assuming time reversal and axial symmetry.
The single-particle wave functions are expanded into the
eigenstates of a harmonic oscillator with axial symmetry in
cylindrical coordinates, using 16 major shells. It is well known
that the harmonic oscillator basis used in the expansion of the
deformed Hartree-Fock wave functions exhibits a Gaussian
behavior at large distances that does not take properly into
account effects of the continuum. These effects may be impor-
tant in nuclei close to the drip lines. In mean-field approaches,
this problem is cured by using a coordinate representation
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or a transformed harmonic oscillator basis that allows one
to use a configuration space with the correct exponential
asymptotic behavior [36]. Nevertheless, continuum effects are
not expected to play any important role in the SHN studied in
this work, which are close to islands of stability, and therefore
they can be safely neglected here.

In the mean-field approach, the energy of the different
shape configurations can be evaluated with constrained cal-
culations, minimizing the Hartree-Fock energy under the con-
straint of keeping fixed the nuclear quadrupole deformation.
The resulting total energy plots versus deformation are called
in what follows deformation-energy curves (DEC). Deforma-
tion has been shown to be a key ingredient to understand the
decay properties of β-unstable nuclei [28–31] and this would
be of special importance in SHN.

In the next step, the GT strengths are calculated for the
equilibrium shapes of each nucleus, that is, for the minima
obtained in the DECs. Since decays connecting different
shapes are disfavored, similar shapes are assumed for the
ground state of the parent nucleus and for all populated states
in the daughter nucleus [37–39].

To describe GT transitions, a deformed pnQRPA [28–31,
37–40] formalism with spin-isospin residual interactions is
used. However, in SHN the coupling strengths of these in-
teractions are expected to be very small because they scale
with the inverse of the mass number and therefore pnQRPA
correlations are not expected to be especially relevant here, in
particular for the half-lives that are only sensitive to the low-
energy region below the Q window. Then, they are neglected
in this work. Anyhow, the inclusion of pnQRPA correlations
would result in a small reduction of the GT strength that would
translate into a small increase of the corresponding half-lives.

The GT transition amplitudes in the intrinsic frame con-
necting the ground state |0+〉 of an even-even nucleus to
one phonon states with energy ωK in the daughter nucleus
|ωK〉 (K = 0, 1) are found to be [28–31,37–40]

〈ωK |σKt+|0〉 =
∑
πν

(
q̃πνX ωK

πν + qπνY ωK
πν

)
, (3)

with

q̃πν = uνvπ�νπ
K , qπν = vνuπ�νπ

K , (4)

in terms of the occupation amplitudes for neutrons and protons
vν,π (u2

ν,π = 1 − v2
ν,π ) and the matrix elements of the spin

operator, �νπ
K = 〈ν|σK |π〉, connecting proton and neutron

single-particle states, as they come out from the HF + BCS
calculation. X ωK

πν and Y ωK
πν are the forward and backward

amplitudes of the pnQRPA phonon operator, respectively.
Once the intrinsic amplitudes in Eq. (3) are calculated, the

GT strength B(GT+) in the laboratory system for a transition
IiKi(0+0) → I f Kf (1+K ) can be evaluated. Using the Bohr-
Mottelson factorization [41] to express the initial and final
states in the laboratory system in terms of intrinsic states, one
arrives at

B(GT+, ω) =
∑
ωK

[〈ωK=0|σ0t+|0〉2δ(ωK=0 − ω)

+2〈ωK=1|σ1t+|0〉2δ(ωK=1 − ω)], (5)

in [g2
A/4π ] units. The strength distributions will be referred to

the excitation energy in the daughter nucleus, which are given
by

Eex = ω − Eπ0 − Eν0 , (6)

where Eπ0 and Eν0 are the lowest quasiparticle energies for
protons and neutrons, respectively.

To describe odd-A nuclei, I follow the usual strategy of
blocking the state corresponding to a given Jπ and using
the equal filling approximation to calculate its nuclear struc-
ture [31]. This approximation has been compared with other
more sophisticated approaches, showing that it is sufficiently
precise for most practical applications [42]. A microscopic
justification has been given in terms of standard procedures of
quantum statistical mechanics [43]. In principle, the blocked
state is selected to minimize the energy among the states
in the vicinity of the Fermi level. In cases where the Jπ of
the nucleus is experimentally known, the natural option is to
choose Jπ according to this value. In all the test cases studied
later, these states appear always close to the Fermi level, as
expected. In SHN, where there is no experimental information
on Jπ , the state Jπ that corresponds to the ground state is used,
but several choices for them among the states that are close to
the Fermi level are also used for comparison. Studying the
sensitivity of the half-lives to the choice of Jπ is interesting
because slight changes in the theoretical treatment may lead
to different Jπ for the ground states.

The GT strength distributions and β-decay half-lives have
been studied in the past within this model in various mass
regions that include neutron-deficient isotopes in the A ≈
70 mass region [44,45] and in the lead region [39,46,47];
neutron-rich isotopes in medium-mass [48–51] and rare-earth
nuclei [52]; and f p-shell nuclei [53–55]. The sensitivity of
the GT strength distributions to different ingredients of the
theoretical formalism were studied in those works with es-
pecial emphasis on the deformation dependence of the decay
properties. In particular, the sensitivity of the energy distribu-
tion of the GT strength to deformation has been exploited to
determine the nuclear shape by comparing theoretical results
with β-decay measurements using the total absorption spec-
troscopy technique [56].

B. Phase-space factors

In β+/EC decay, the phase-space factors f β+/EC (Z,W0)
contain two parts, positron emission and electron capture.
The former, f β+

, is computed numerically for each value
of the energy including screening and finite-size effects, as
explained in Ref. [57],

f β+
(Z,W0) =

∫ W0

1
pW (W0 − W )2λ+(Z,W )dW, (7)

with

λ+(Z,W ) = 2(1 + γ )(2pR)−2(1−γ )e−πy |�(γ + iy)|2
[�(2γ + 1)]2

, (8)

where γ =
√

1 − (αZ )2, y = αZW/p, α is the fine structure
constant, and R is the nuclear radius. W is the total energy of
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the β particle, W0 is the total energy available in mec2 units,
and p = √

W 2 − 1 is the momentum in mec units.
The electron-capture phase factors, f EC, have also been

included following Ref. [57]:

f EC = π

2

∑
x

q2
x g2

xBx, (9)

where x denotes the atomic subshell from which the electron is
captured that includes K and L orbits. q is the neutrino energy,
g is the radial component of the bound-state electron wave
function at the nucleus, and B stands for other exchange and
overlap corrections [57].

C. QEC energies

β+/EC half-lives depend critically on the Q energies that
determine the maximum energy of the transition and the
values of the phase factors that weight the GT strength;
see Eq. (2). In those cases where experimental masses are
available [58,59], the natural choice is to use these values
to evaluate Eq. (1). But in those cases where experimental
masses are still missing, one has to rely on theoretical predic-
tions for them. There are a large number of mass formulas in
the market obtained from different approaches. The strategy
followed in this work starts by comparing with experiments
the predictions of some representative mass formulas in the
mass region where data are available and use them later in
SHN where there is no experimental information.

Among the phenomenological approaches for the masses,
I take the FRDM [26] that belongs to a macroscopic-
microscopic type of calculation. It contains a finite-range
droplet model corrected by microscopic effects obtained from
a deformed single-particle model based on a folded-Yukawa
potential including pairing in the Lipkin-Nogami approach.
Then, I use the extended Thomas-Fermi plus Strutinsky in-
tegral (ETFSI) model [60], which adopts a semiclassical
approximation to the Hartree-Fock method including full
Strutinsky shell corrections and BCS pairing correlations. The
Duflo and Zuker (DZ) mass model [61] is used as well, which
is written as an effective Hamiltonian that contains monopole
and multipole terms. I also compare with fully microscopic
calculations based on effective two-body nucleon-nucleon
interactions. Among them, I consider the masses from the
HFB-21 model, which is one of the most recent versions of
the Skyrme HFB mass formulas introduced by the Brussels-
Montreal group [62]. I also use the masses calculated from the
Skyrme forces SkP and SLy4 with a zero-range pairing force
and Lipkin-Nogami obtained from the code HFBTHO [63]. All
the masses used here can be found in Ref. [64].

III. RESULTS FOR THE HALF-LIVES

In this section, I present the calculations for the half-lives
in SHN. I first show the results obtained for the DECs in the
isotopes studied. The energy distributions of the GT strength
corresponding to the local minima of the DECs are calculated
afterward. Finally, half-lives are computed.

Before starting with the calculations of the SHN mentioned
in the introduction, the quality of the calculations is checked
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FIG. 1. Deformation-energy curve for the 252Fm isotope ob-
tained from constrained HF + BCS calculations with the Skyrme
force SLy4.

in some isotopes around Z = 100, where both QEC and Tβ+/EC

have been measured. Namely, the isotopes of fermium (Z =
100) 246,247Fm; mendelevium (Z = 101) 253Md; and nobelium
(Z = 102) 254,255No are considered. After this test, the results
for the SHN studied in this work, 290Fl, 293Mc, 294Lv, and
295Ts, will be shown.

A. Testing case: Fm, Md, and No isotopes

Studying the deformation dependence of the energy by
constrained calculations shows that nuclei in this region
present three minima that correspond to oblate, prolate, and
large prolate shapes. In Fig. 1, the DEC for 252Fm with SLy4
is shown. The energies are relative to the ground-state energy,
as a function of the quadrupole deformation β2. These results
are very similar to the DECs for the other testing isotopes and I
discuss only this case as an example. The ground state is found
to have a prolate shape with a quadrupole deformation around
β2 ≈ 0.3, but there are also minima at oblate β2 ≈ −0.3 and
prolate β2 ≈ 0.7 configurations at typical excitation energies
around 8 and 4 MeV, respectively. These results agree quite
well with calculations performed with the finite-range Gogny
D1S interaction [65].

Experimental masses of parent and daughter nuclei in this
mass region are available and then one gets experimental QEC

energies. However, in the heavier nuclei considered in the next
section, this information is missing and one has to rely on the
predictions of mass formulas. I have considered some of the
most commonly used formulas (or microscopically calculated
masses) as they appear in the Nuclear Masses web page [64].
They are FRDM, ETFSI, DZ, HFB-21, SkP, and SLy4, in-
troduced in the previous section. Figure 2 shows the QEC

energies from experiment and from different mass formulas
and illustrates the spreading of the QEC energies. The cases for
which half-lives have been calculated appear within a frame in
Fig. 2. One can see that the results are scattered about 1 MeV
between the largest and smallest energies among the cases
considered. Experimental values appear within these extreme
values. This gives us a fair idea of the uncertainties expected.
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FIG. 2. QEC energies (MeV) corresponding to experimental and
different calculated masses (see text) for Fm, Md, and No isotopes.

Although the uncertainty is not very large, these Q values
determine the energy range of excitations that contribute to
the half-lives, as well as the magnitude of the phase factors
and as it will be seen in the next figures, the effect on the
half-lives is important.

Figures 3–5 show the ratios of the calculated half-lives to
the experimental ones for some Fm, Md, and No isotopes,
where there are experimental data. The experimental values
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A
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254 255
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FIG. 3. Ratios of calculated and experimental half-lives for Fm,
Md, and No isotopes. The results correspond to the ground state
configurations (prolate β2 = 0.3) using QEC energies from different
mass formulas or microscopic calculations.

have been extracted from the total half-lives measured to-
gether with the percentage that corresponds to the β+/EC
decay. Figure 3 shows the results for the ground states (prolate
with β2 ≈ 0.3) and using the experimental Jπ in the case of
odd-A nuclei. The various calculations correspond to the dif-
ferent QEC values either from experiment or from calculated
masses. The half-lives of Fm isotopes are underestimated,
whereas the half-lives of Md and No isotopes are somewhat
overestimated. One can see a clear correlation between the
QEC energies in Fig. 2 and the half-lives in Fig. 3, that is,
half-lives decrease with increasing values of QEC.

The decay would be in principle from the ground state
of the parent nucleus (that determines the shape and Jπ in
odd-A nuclei), but I also performed calculations of β+/EC
half-lives that correspond not only to the ground states but
also to other shapes and Jπ . This helps us to understand
the sensitivity of the results to different factors arising from
various uncertainties.

Figure 4 shows the sensitivity of the half-lives to the Jπ

assignments in odd-A nuclei. The results are for the ground
state shapes and experimental QEC values. The odd states are
chosen according to the experimental spin and parity, as well
as other possibilities for states that appear very close to the
Fermi level. In Fig. 5, one can see the results obtained with
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FIG. 4. Ratios of calculated and experimental half-lives for odd-
A Fm, Md, and No isotopes. The results correspond to the ground-
state prolate configurations (β2 = 0.3), using the experimental QEC

energies and different Jπ assignments for the odd nucleon.
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FIG. 5. Ratios of calculated and experimental half-lives for Fm,
Md, and No isotopes. The results are obtained with experimental QEC

energies for the three shapes that produce energy minima in Fig. 1.

experimental QEC values, but for different shapes that include
the ground state (β2 ≈ 0.3) as well as the oblate (β2 ≈ −0.3)
and superdeformed prolate (β2 ≈ 0.7), depicted in Fig. 1.
Finally, Fig. 6 compares the half-lives (seconds) measured
with the calculated ones using the ground-state deformations
and different prescriptions for the QEC energies. This figure is
similar to Fig. 3 but for the absolute values.

From the results for the half-lives, one can learn about the
uncertainties associated with different aspects of the calcula-
tions. The uncertainties on the half-lives related to the QEC

energies, Jπ assignments, and nuclear shapes are comparable,
spreading the results about one order of magnitude. The
agreement with experiment is roughly within this order.

B. Superheavy nuclei

In this section, the results for 290Fl, 293Mc, 294Lv, and 295Ts
are discussed. In Fig. 7, the plots of the DECs are shown,
relative to the ground-state energy, for 290Fl and 294Lv as a
function of the quadrupole deformation β2 obtained from the
Skyrme force SLy4. In both cases, the ground state is the
oblate solution (β2 ≈ −0.1), while two more prolate minima

appear at β2 ≈ 0.1 and β2 ≈ 0.5 at excitation energies of
about 1 and 4 MeV, respectively. These results agree with
those obtained from the Gogny-D1S interaction [65].

Figure 8 shows the QEC energies calculated with masses
obtained from three mass formulas (FRDM, FRDM-12, and
DZ) and two microscopic calculations (SkP and SLy4). The
masses from FRDM-12 [66] are a recent improved upgrade
of the FRDM masses. Although there are no experimental
values for these nuclei, I also add extrapolated values from
the systematics in this mass region extracted from Ref. [59]
that appear in the figure under the label “exp.” Similarly to
the QEC energies in Fig. 2, the results in Fig. 8 are distributed
within 1 MeV with the “exp” values lying inside this range.

As a general comment, it is worth noting that the typical
QEC energies in these nuclei are rather small and, as a conse-
quence, the half-lives are only sensitive to a very tiny part of
the whole GT response of the nucleus. This means also that
small changes in the nuclear structure description or in the
QEC energies may produce very large effects on the half-lives.
This is illustrated in Fig. 9 for 290Fl, where one can see the
energy distribution of the GT strength in the whole range of
energy (a) and below the 3 MeV window (b), where the
different mass models predict the QEC energy. The half-life
is only sensitive to the strength distribution in this small
window.

The results for the β+/EC-decay half-lives of the SHN are
shown in Fig. 10. Figure 10(a) summarizes the results. They
correspond to the half-lives for the ground-state configuration
(oblate β2 ≈ −0.1). The states Jπ in the odd-A nuclei are
those that minimize the energy. The spreading of the results
corresponds to the different QEC prescriptions and there is a
clear correlation between the QEC energies in Fig. 8 and the
half-lives obtained with them. Thus, the large values of QEC

with the masses from FRDM and SkP make the half-lives
shorter, whereas DZ and SLy4, having smaller QEC energies,
lead to larger half-lives. The half-lives obtained with the
QEC energies extrapolated from the experimental energies in
neighbor nuclei appear around the average values.
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FIG. 6. Calculated and experimental half-lives for Fm, Md, and No isotopes. The results correspond to ground state configurations (prolate
β2 = 0.3) using different QEC energies with the same code symbol of Fig. 3.
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In Fig. 10(b), one can see the different results for odd-A
nuclei, using other Jπ states, which are also close to the Fermi
level. The ground state of 293Mc (Z = 115) corresponds to a
1/2+ state that originates from the i13/2 spherical orbital and
there are two states very close in energy that correspond to
5/2− from f5/2 and 3/2− from p3/2. Similarly, the ground
state of 295Ts (Z = 117) corresponds to a 3/2− state whose
origin is at p3/2 spherical orbital, while two states very close in
energy appear at 1/2+ (i13/2) and 1/2− (p3/2). The sensitivity
of the results to the Jπ assumed in the parent nucleus can be
understood from the characteristics of the allowed transitions
considered in this work. Allowed transitions correspond to
π = 0 and J = 0,±1 transitions and because of the small
QEC energies involved, only the low-lying excitations con-
necting the odd proton in Z = 115, 117 nuclei with neutron
states in the vicinity of the Fermi level obeying the above
selection rules are relevant. In the case of Z = 115, it turns out
that in the energy region around the neutron Fermi level, most
of the states are positive-parity states and then transitions from
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FIG. 8. QEC energies (MeV) corresponding to different calcu-
lated masses for SHN.
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FIG. 9. (a) Gamow-Teller strength distribution in 290Fl in the
whole range of excitation energies of the daughter nucleus. (b) Mag-
nified region below 3 MeV that includes the QEC energy.

a proton 1/2+ states are favored, whereas transitions from
3/2− and 1/2− states are suppressed. In the case of Z = 117,
the situation is similar, but some 1/2− neutron states are
now present close to the neutron Fermi level. Then, although
transitions from 1/2+ states are still stronger, decays from
1/2− and 3/2− are not so different. This explains why the
half-lives of the positive-parity states (1/2+) are smaller than
those of the negative-parity states.

In Fig. 10(c), one can see the results corresponding to the
oblate (β2 ≈ −0.1) in the left vertical lines, prolate (β2 ≈
0.1) in the middle vertical lines, and superdeformed prolate
(β2 ≈ 0.5) configurations in the right vertical lines for each
nucleus. The deformations correspond to the minima of the
DECs in Fig. 7. The half-lives obtained from the prolate
shapes with β2 ≈ 0.1 are in general larger than the ground-
state oblate values and then, they will not play any role in
the decay. On the other hand, according to our calculations,
the half-lives of the superdeformed shape isomers (β2 ≈ 0.5)
are reduced by about one order of magnitude with respect to
those of the ground states. The ground states of the superde-
formed odd isotopes turn to be 9/2+ states (i13/2), which are
very different from the Jπ of the oblate ground states, thus

014309-7



P. SARRIGUREN PHYSICAL REVIEW C 100, 014309 (2019)

114 115 116 11710
1

10
2

10
3

10
4

10
5

10
6

T
β+

/E
C
 (

s)

115 11710
1

10
2

10
3

10
4

10
5

10
6

T
β+

/E
C
 (

s)

FRDM
FRDM-12
DZ
SkP
SLy4
’exp’

114 115 116 117
Z

10
0

10
1

10
2

10
3

10
4

10
5

10
6

T
β+

/E
C
 (

s)

290
Fl

293
Mc

294
Lv

295
Ts

1/2
+

3/2
-

5/2
-

1/2
-

1/2
+

3/2
-

β = −0.1
β = 0.1

β = −0.1

β = −0.1

(a)

(b)

(c)

β = 0.5 {{{{

{{

FIG. 10. Calculated half-lives, Tβ+/EC (s), for 290Fl, 293Mc, 294Lv,
and 295Ts. (a) Half-lives for ground-state configurations (oblate
β2 = −0.1) with various mass formulas to calculate QEC energies.
(b) Half-lives of odd-A nuclei for ground-state configurations (oblate
β2 = −0.1) and several choices of Jπ values with various mass
formulas to calculate QEC energies. (c) Half-lives for oblate β2 =
−0.1 (left vertical lines), prolate β2 = 0.1 (middle vertical lines), and
prolate β2 = 0.5 (right vertical lines) nuclear shapes obtained from
various mass formulas to calculate QEC.

favoring the shape isomeric possibility of these states. Using
the extrapolated experimental QEC energies, half-lives in the
range of 100–1000 s in 290Fl, 293Mc, and 294Lv and around
100 s in 295Ts are obtained for the superdeformed shapes. The
possible decays from these shape isomers might compete with
α decays, as will be seen in the next section. Because of the
rather small excitation energies of these states of about 4 MeV
according to Fig. 7, they could be populated in hot-fusion
reactions.

Summarizing these results, one can say that the β+/EC-
decay half-lives obtained for the SHN 290Fl, 293Mc, 294Lv,
and 295Ts vary from 500 s up to 105 s, depending on the
QEC energies used. The average values around 103–104 s are

TABLE I. Qα energies (MeV) obtained from different mass
models. The energies in the last column “Exp” correspond to an
extrapolation of the experimental values [59].

Nucleus FRDM FRDM-12 DZ SkP SLy4 [21] Exp

290Fl 8.50 8.84 10.76 9.72 9.84 8.90 9.9
293Mc 9.47 9.44 10.84 9.28 9.21 10.1
294Lv 10.97 10.91 11.13 9.48 9.41 10.44 10.6
295Ts 11.58 11.54 11.48 9.85 9.72 10.53 11.1

compatible with the values obtained from the experimental
extrapolated values for QEC. Decays from superdeformed
shapes reduce the half-lives, making them comparable to α

decays in some cases.

C. α-decay half-lives

As already mentioned in the introduction, the competition
between the different decay modes is important to determine
the pathways through stability and the SHN that can be
reached from a given hot-fusion reaction. Therefore, I calcu-
late in this section α-decay half-lives to be compared with
the corresponding β+/EC-decay half-lives of the previous
section.

Similarly to the case of the QEC energies discussed above,
the Qα energies can be obtained from the same mass evalua-
tions used for QEC, using the expression

Qα = M(A, Z ) − M(A − 4, Z − 2) − M(4, 2), (10)

written in terms of the nuclear masses M(A, Z ). In addition, I
also include the values calculated in Ref. [21], obtained from
a macroscopic-microscopic approach based on the two-center
shell model applied to superheavy elements. There are no
experimental measured values for these nuclei yet, but I quote
in the last column the values obtained from extrapolation
of the measured Qα energies in neighboring nuclei [59].
These values are shown in Table I. They are representative
of the most commonly used mass evaluations, but even more
calculations of Qα energies can be found in the review of
Ref. [24], where values from models based on Woods-Saxon,
SkM*, generator coordinate method, and relativistic Hartree-
Bogoliubov are given as well. The values in Table I are in
general agreement with those in Ref. [24].

The α-decay half-lives of these nuclei are not measured
yet, but there exist in the literature phenomenological formu-
las that have been fitted in different mass regions and that
can be very useful to see the systematics and to predict these
values in other regions not yet measured. I present here four
of these parametrizations, which are specifically designed to
account for the properties of SHN. These are the following:

(1) The formula by Parkhomenko and Sobiczewski [67]
(label 1 in the x axis of Fig. 11):

log10(Tα ) = aZ (Qα − Eμ)−1/2 + bZ + c, (11)

with a = 1.5372, b = −0.1607, c = −36.573,

Eμ(even-even) = 0, Eμ(odd-proton) = 0.113 MeV.
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(2) The formula by Royer [68] (label 2 in the x axis of
Fig. 11):

log10(Tα ) = aZ (Qα )−1/2 + bZ1/2A1/6 + c, (12)

with parameters from Ref. [67] for even-even nu-
clei, a = 1.5519, b = −0.9761, c = −28.688, and for
odd-proton nuclei, a = 1.6070, b = −0.9467, c =
−30.912.

(3) The Viola-Seaborg formula [69] (labels 3 and 4 in the
x axis of Fig. 11):

log10(Tα ) = (aZ + b)(Qα )−1/2 + (cZ + d ) + hi.

(13)

Two different sets of parameters are used for this
formula:
(label 3) [67], a = 1.3892, b = 13.862, c = −0.1086,

d = −41.458, hee = 0, hodd−proton = 0.437, and
(label 4) [22,70], a = 1.66175, b = −8.5166,

c = −0.20228, d = −33.9069, hee = 0, hodd−proton =
0.772.

Figure 11 shows the α-decay half-lives Tα (s) for 290Fl,
293Mc, 294Lv, and 295Ts. The results correspond to the seven
different choices for Qα given in Table I and four different
options for phenomenological formulas of Tα , labeled from 1
up to 4 in the x axis as explained above. These results agree
with similar calculations performed in Refs. [24,25].

From this figure, one can see that, whereas phenomeno-
logical formulas for Tα give quite similar results, a strong
dependence on the Qα energies is found. Tα can vary as much
as five orders of magnitude (even more in 290Fl) due to the
uncertainties in Qα .

Phenomenological mass formulas, such as DZ and FRDM,
have a tendency to predict short values of Tα , which is a con-
sequence of the large Qα values (see Table I). The exception
is FRDM in 290Fl that predicts the largest Tα value. On the
other hand, microscopic mean-field calculations with Skyrme
forces (SkP and SLy4) predict larger Tα values in these nuclei.
The Tα obtained from the macroscopic-microscopic approach
of Ref. [21] are close to the half-lives calculated from the
inferred experimental values. They represent a kind of average
value that can be taken as a reference value to compare with
the Tβ decays. Thus, Tα half-lives of the order of 10 s are
expected in 290Fl, from 1 to 10 s in 293Mc, from 0.1 to 1 s in
294Lv, and from 0.01 to 1 s in 295Ts. These values are always
lower than the corresponding Tβ+/EC half-lives, and therefore
β+/EC decay would be much slower than α decay in these
nuclei, not competing with them. Only the β+/EC decay from
superdeformed shapes with Tβ+/EC half-lives around 10–100 s
could have a chance to compete with α decay.

IV. SUMMARY AND CONCLUSIONS

In this paper, β+/EC-decay half-lives in 290Fl, 293Mc,
294Lv, and 295Ts, which are representative of SHN created
in hot-fusion reactions, have been calculated microscopically.
The calculations are based on a deformed Skyrme HF + BCS
approach.

The uncertainties in the β+/EC-decay half-lives that orig-
inate from poorly known Q energies and Jπ assignments,
as well as the influence of deformation, have been studied.
The results are compared with α-decay half-lives obtained
from phenomenological parametrizations using the same mass
formulas to determine the Qα values.

Taking into account all the uncertainties in the results from
both α and β+/EC decays, it is found that the latter are much
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larger than the former and therefore there is in general no
room for β+/EC decay to play a role in the decays of SHN
produced in these hot-fusion reactions. The only possibility
for a competition between both modes of decay would be
the decay from superdeformed shape isomers that might be
populated in the reactions.
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