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Abstract 34 

Here we used a method of morphological niche analysis, previously shown to be an effective 35 

predictor of invasion success, to investigate morphological relationships of sagittae otoliths of 36 

Lessepsian (Red sea species entering the Mediterranean through the Suez Canal) fishes within 37 

the morphospace of the corresponding receiving taxonomic groups. Overall, sagittae of 13 38 

Lessepsian species and 49 closely related native fishes/taxa, distributed in 9 different families 39 

or subfamilies were considered, for a total of 305 analysed otoliths. Based on wavelet 40 

functions of 512 Cartesian coordinates, we quantified the degree of morphological disparity 41 

produced by the introduction of these species in the hosting community. Lessepsian otoliths 42 

tended to be added outside or at the margins of the receiving morphospace, being 43 

morphologically divergent from the ones of native species. Considering that many ecological 44 

traits of fishes (especially feeding) are mirrored in the shape of otoliths, our findings agree 45 

with the idea that these successful invaders may count on novel sensory strategies to compete 46 

for available resources and to thrive in newly colonized habitats. Nevertheless, different 47 

measurements of morphological disparity did not show any variation before and after 48 

invasion and with the specific richness and further investigation is needed to understand to 49 

what extent these differentiated sensorial adaptations are linked to novel opportunities along 50 

the niche axes, such as in relation to feeding, predatory and anti-predatory behaviour and 51 

exploitation of the temporal niche.  52 
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1. Introduction 68 

Understanding biological invasions through predictive factors is an ideal achievement to 69 

prioritize management efforts in the preservation of biological native diversity (Mack et al., 70 

2000; Manchester and Bullock, 2000; Sih et al., 2010; Azzurro et al., 2014; Giakoumi et al., 71 

2016). Diverse ecological hypotheses with a broad theoretical framework (e.g., trophic 72 

position, niche replacement, biotic resistance, colonization pressure; see more detail in 73 

Ricciardi et al., 2013) have been set out in the attempt to distinguishing invaders with major 74 

impacts from unsuccessful introductions. Many of these theories, such as the phylogenetic 75 

distinctiveness which argues that the highest impact invaders mainly belong to genera 76 

absent in the native community (Ricciardi and Atkinson, 2004) and the limiting similarity 77 

hypotheses which predicts that invasive species are less likely to establish in communities 78 

of species holding similar functional traits (Elton, 1958; MacArthur and Levins, 1967) are 79 

intrinsically connected and explain the importance of functional traits differentiation in 80 

successful invasions (Cotê et al., 2013; Elleouet et al., 2014; Thomsen et al., 2014; Fanelli et 81 

al., 2015; Nagelkerke et al., 2018). Moreover, a link between morphological distinctness and 82 

success probabilities of exotic fishes was recently highlighted by Azzurro et al. (2014). These 83 

authors demonstrated that the success probabilities of a newly introduced fish are 84 

significantly higher when the species locates outside of the morphological space provided by 85 

the hosting community (the native convex hull). Following this methodology, Smith et al. 86 

(2016) presented a model for predicting the success of tropical vagrant fishes reaching the 87 

coast of Australia due to climate-induced range shifts. 88 

Novel traits may also concern novel sensory capabilities (Falk et al., 2015), such as the 89 

auditory and vestibular senses of marine fishes, which are linked to the anatomy and 90 

morphology of inner ear and its otolithic organs (sacculus, utriculus and lagena). Inside of 91 

these organs are located the otoliths (sagitta, lapillus and asteriscus, respectively) (Platt and 92 

Popper, 1981; Assis 2003, 2005), acellular concretions of calcium carbonate (ca. 97%) 93 

developing over a protein matrix and different elements and isotopes (Carlström, 1963; 94 

Blacker, 1969; Degens et al., 1969; Kerr and Campana, 2014), which are in close association 95 

with the sensory epithelium or macula (Platt and Popper, 1981; Lombarte and Fortuño, 1992; 96 

Schulz-Mirbach et al., 2018). In particular, the sagittae otolith (hereafter referred as sagittae) 97 

shape is an intrinsic feature of each fish species acquired during eco-evolutionary processes, 98 

and its morphology has been often linked to the ecological, taxonomical, phylogenetic and 99 

functional characteristics of species (e.g., Gaemers, 1984; Tuset et al., 2003, 2016a,b; 100 
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Lombarte et al., 2010; Vignon and Morat, 2010). In this context, Tuset et al. (2012) 101 

performed a first description the otolith morphological features of 22 Lessepsian species (18 102 

families and 8 orders) and Automated Taxon Identification (ATI) of otolith contour in 103 

comparison to species from the Mediterranean Sea using the AFORO database 104 

(http://www.cmima.csic.es/aforo/) (Lombarte et al., 2006). Although the number of otoliths 105 

collected to date was low, the main conclusion was the high morphological variability in the 106 

specificity of Lessepsian sagittae and may therefore help to thrive in the newly colonized 107 

habitat considering its sensory capability as a ‘trait’ not shared with native species. 108 

Here we analyzed the sagittae contour in both native and exotic coastal fishes in the 109 

Mediterranean Sea, the latter being represented by invasive species of Lessepsian (Red Sea) 110 

origin (Por, 1978), which have established successful populations in the Mediterranean Sea. 111 

Under the above-mentioned premises, our expectation is that position of successful species 112 

will be located at the margins or outside the native otolith morphospace. The advantage of the 113 

contour analysis in relation to other morphological options such as morphometry (e.g., area, 114 

perimeter, length), shape indices (e.g., circularity, rectangularity, ellipticity) and geometric 115 

morphometry (e.g., landmarks and semilandmarks) is the higher level of specific separation 116 

(Parisi-Baradad et al., 2010; Sadighzadeh et al., 2014). Moreover, we decided to use wavelets 117 

for the contour analysis versus Fourier series, because this multiscale analysis allow to 118 

identify single morphological points located on the x-axis along the contour (Parisi-Baradad 119 

et al., 2005; Piera et al., 2005), whereas Fourier analysis only give a global approximation of 120 

outline variability (Reig-Bolaños et al., 2010).  121 

We therefore employed the contour of fish otoliths to test if successful Lessepsian species 122 

were of ‘highly diversified nature’ (sensu Darwin, 1989; Pearson et al. 2012) compared to 123 

closely related indigenous ones in order to avoid the effect of phyletic distance. Our specific 124 

aims were to: (i) determine the position a new species when is added within the receiving 125 

morphospace; (ii) quantify the degree of morphological disparity produced by the 126 

introduction of a new species and; (iii) test a possible relation between the richness of hosting 127 

community and the degree of morphological disparity before and after invasion.  128 

 129 

2. Material and methods 130 

 131 

2.1. Database 132 

The contour of 58 otoliths belonging to 13 Lessepsian fishes considered as abundant 133 

(Azzurro et al., 2014) was analyzed: Atherinomorus forskali (Family Atherinidae), 134 
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Callionymus filamentosus (Family Callionymidae), Alepes djedaba, Decapterus russelli 135 

(Subfamily Caranginae), Etrumeus golanii, Herklotsichthys punctatus (Family Clupeidae), 136 

Oxyurichthys papuensis (Family Gobiidae), Parupeneus forsskali, Upeneus  moluccensis,  137 

Upeneus pori (Family Mullidae), Scomberomorus commerson (Subfamily Scombrinae). We 138 

also considered Liza carinata (Family Mugilidae) and Pterois miles (Family Scorpaenidae), 139 

which have currently developed abundant populations in the eastern sectors of the basin 140 

(Golani et al., 2017) (Fig. 1). Images were obtained from the AFORO database 141 

(http://aforo.cmima.csic.es/). Hence, the present study analyzed ca. 50% of the most abundant 142 

invader species. The morphology of their otoliths was compared with the ones of 49 native 143 

fishes belonging to same taxonomical groups, for a total of 247 native otoliths (Table 1). 144 

 145 

2.2. Otolith contour analysis 146 

The analysis of otolith shape was based on a mathematical descriptor named wavelet 147 

transformed (WT), which is related to the one-dimensional decomposition of the contour. This 148 

procedure is based on expanding the contour into a family of functions obtained as the 149 

dilations and translations of a unique function known as a mother wavelet (Mallat, 1991). The 150 

advantage of this procedure is the possibility to detect singularities of different sizes favoring 151 

the identification of specific zones among species (see details in Parisi-Baradad et al., 2005, 152 

2010). In particular, we considered the wavelet function at 5th scale because several studies 153 

have demonstrated that this scale describes better the specific characteristics of otolith contour 154 

(Sadighzadeh et al., 2012; Tuset et al., 2015, 2016: Lombarte et al., 2018). A total of 512 155 

equidistant Cartesian coordinates for each otolith were extracted using the rostrum (see 156 

otolith terminology in Tuset et al., 2008) as origin. Wavelets were obtained online using 157 

option AFORO website (http://isis.cmima.csic.es/aforo/upload_img_wav_en.jsp). 158 

 For each taxonomic group studied, a principal component analysis (PCA) based on the 159 

variance–covariance matrix was performed to reduce the dimensionality of the 512 data 160 

obtained for each individual without loss of information. Significant eigenvectors were 161 

identified plotting the percentage of total variation explained by the eigenvectors vs. the 162 

proportion of variance expected under the ‘broken-stick model’ (Gauldie and Crampton, 163 

2002). Since interspecific differences might be attributed to allometry, linear correlations 164 

were tested between otolith length and the principal components (Stransky and MacLellan, 165 

2005). The effect of otolith length was removed using the residuals of the common within-166 

group slopes of the linear regressions of each component on otolith length, building a new 167 

PCA matrix. 168 
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 169 

2.3. Statistical analysis  170 

Significant differences in the otolith morphospace occupation by the arrival of Lessepsian 171 

species was tested using nonparametric multivariate analysis of variance (NPMANOVA) 172 

(Anderson, 2001) on the PC-scores based on Euclidean distance (9,999 permutations). The 173 

first two principal axes of each fish group were used to display the morphospace of 174 

Mediterranean and Lessepsian species. In the case of fish groups with more than 1 Lessepsian 175 

species (Family Clupeidae and Mullidae, and Subfamily Caranginae), changes in the 176 

morphospace were computed sequentially according to the date of first record (Azzurro et al., 177 

2014). 178 

Three different metrics of morphological disparity were estimated from PC-scores: the 179 

average dissimilarity distance (PWD) among points within morphospace and the sum of 180 

variances (SV) have the desirable property of being relatively insensitive to variation in 181 

sample size (Foote, 1997; Ciampaglio et al., 2001; Goatley et al., 2010). Alternatively, the 182 

convex hull volume (CHV) is a computational geometry implementation (Cornwell et al., 183 

2006) resulting from niche hypothesis regarding the limit to the ecological similarity of 184 

coexisting species (MacArthur and Levins, 1967). To demonstrate the effect of fish invasion 185 

in these measurements, the averages of log-transformed data were compared using a paired t-186 

test before and after invasion. Finally, relationships were established between the specific 187 

richness (SD) and the measurements.  188 

The morphospace and tests were obtained from PAST (PAlaeontological STatistics, 189 

v.3.26) (Hammer et al., 2001), whereas the morphological measurements were obtained with 190 

the package dispRity and (Guillerme, 2018) in R (R Development Core Team, 2016). The 191 

significance level was set at 0.05 for all statistical tests used. 192 

 193 

3. Results 194 

The reconstruction of otolith shape with wavelets provided different PC components for 195 

each fish group. In most cases, they represented more than 70% of total variance (Appendix 196 

A, Table S1), although it attained lesser values (55.08% for Atherinidae and 63.95% for 197 

Mullidae) for Families were the native species were only composed by one genus. In general, 198 

otoliths of Lessepsian species were allocated outside of the native convex hull as resulting of 199 

highly differentiated morphologies with respect to native otoliths (Fig. 2), except for A. 200 

djedaba (SF. Caranginae) and S. commerson (SF. Scombrinae). Invader species did not 201 

induce always significant changes in the whole morphospace of receiving communities, 202 
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although 61.5% showed significant differences (NPMANOVA, Table 2). However, PWD (t-203 

test= -1.344, p= 0.216) and SV (t-test= -1.353, p= 0.213) were not significantly altered by the 204 

addition of a new invader species, whereas CHV (t-test= -3.203, p= 0.013) showed significant 205 

changes (Table 3). 206 

The log-SD did not show correlation with any metric variable before (r= 0.515, p= 0.156 207 

for log-PWD; r= 0.516, p= 0.155 for log-SV; r= -0.339, p= 0.373 for log-CHV) and after fish 208 

invasion (r= 0.600, p= 0.087; r= 0.603, p= 0.086; r= -0.243, p= 0.523; respectively). 209 

 210 

4. Discussion 211 

Our findings emphasize the peculiar otolith morphologies of Lessepsian fishes (Tuset et 212 

al., 2012) confirming theoretical expectations as the increase of the convex hull due to 213 

localization at the boundaries of the receiving morphospace of the most fish invaders. A large 214 

spatial morphological (and hence ecological) distribution within the native community should 215 

indicate either the use of different resources or the adoption of novel strategies that provide a 216 

different (e.g. Por, 1978; Lundberg and Golani, 1995) and often more efficient (Fanelli et al., 217 

2015) use of resources. Under the niche-based hypothesis which considers the resource 218 

partitioning as the main mechanism to enable coexistence of species (Mookerji et al., 2004; 219 

Silvertown, 2004), novel ‘niche opportunities’ have been invoked to explain the success of 220 

these immigrants (e.g. Oliverio and Taviani, 2003; Azzurro et al., 2014). In this sense, it is 221 

highlighted that the less distinct otoliths (see AFORO website http://aforo.cmima.csic.es/; 222 

Lombarte et al., 2006) belong to low-success species and to families such as Serranidae, 223 

Sparidae or Labridae (Por, 1978, 2010; Galil, 2009; Golani et al., 2013; Azzurro et al., 2014), 224 

which are well represented in the native assemblages of the Mediterranean coasts (Quignard 225 

and Tomasini, 2000). 226 

According to the ‘sensory drive hypothesis’ (Endler, 1992), sensory traits may vary greatly 227 

depending on environment where they originate (Sivasundar and Palumbi, 2010; Tuset et al., 228 

2012, 2016a, 2018; Jacobs et al., 2017). It is thus predictable that Lessepsian species, evolved 229 

in the Indo-Pacific oceans, may bring sensory novelties favouring potential competitive 230 

interactions on native analogues. It is known that Lessepsian species display similar 231 

functional traits than native species (Elleouet et al., 2014), but they exploit the more energetic 232 

resources (Fanelli et al., 2015). As a matter of fact, novel feeding strategies (e.g., 233 

behaviorally) have been described for some invasive fishes such as example in Pterois 234 

volitans (Morris and Akins, 2009), and are likely to occur in others. The invasive E. golanii 235 

(Family Clupeidae) has the ability to feed throughout the water column from the bottom to the 236 
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surface layer (Osman et al., 2013), a behavior that to the best of our knowledge is unreported 237 

by native Mediterranean clupeids. These life-style differences are reflected in the otolith 238 

shape narrowing the excisura ostii, which are usually wider in shallow pelagic species with 239 

respect to deeper ones (Volpedo and Echevarría, 2003; Tuset et al., 2008). In other groups of 240 

fishes, otoliths with a larger rostrum and higher degree of ellipticity are interpreted as 241 

functional adaptations for better vestibular cues affecting the fish's swimming ability, rapidity 242 

of action, range of detectable accelerations, and acceleration resolving power (Schulz-243 

Mirbach et al., 2018). These peculiar traits, depicted in C. filamentosus, D. ruselli and A. 244 

djedaba, could be associated to substantial differences in the predatory behavior, with respect 245 

to native analogues. By contrary, wider otoliths entail short heads (Kéver et al., 2014; 246 

Schwarzhans, 2014; Tuset et al., 2018) and likely lesser fish’s swimming capability. This 247 

noticeable morphological variability may influence in the relation between sulcus acusticus 248 

and otolith areas (S:O ratio), which is linked to sensory capabilities of fish species (Gauldie, 249 

1988; Lombarte, 1992). In fact, otoliths of O. petersi have larger ratio morphological traits 250 

different to other native species of Family Gobiidae (Lombarte et al., 2018).  251 

The morphological disparity is often used as a surrogate measure of biological diversity in 252 

the study of biological communities (Neustupa et al., 2009; Farré et al., 2013). This diversity 253 

is historically generated by ecological and evolutionary factors varying across scales of space 254 

and time producing variability among different geographical regions (Ricklefs, 2004; Witman 255 

et al., 2004; García-Navas et al., 2018). However, these morphological gaps between regions 256 

are being increasingly homogenized by human assisted translocation of species to global scale 257 

(McKinney and Lockwood, 1999), and the morpho-functional differentiation of 258 

nonindigenous species can be the key to gain a competitive advantage and develop invasive 259 

populations (Smith and Knapp, 2001; Azzurro et al., 2014; Nagelkerke et al., 2018). This 260 

hypothesis is also confirmed by the present study, which illustrates the high morphological 261 

distinctness of Lessepsian otoliths, compared to the native background, even if these species 262 

are taxonomically close. The introduction of these new species to the receiving assemblage 263 

may generate an increase in morphological disparity, which will depend on the distribution of 264 

native species in the multidimensional space and on the proximity of the new shapes to them. 265 

In our study, only the convex hull provides information for explaining this success versus 266 

morphological disparity. In fact, taxonomic diversity and morphological disparity are 267 

commonly decoupled (Ricklefs and Miles, 1994; Hopkins, 2013; Price et al., 2015), as we 268 

have confirmed here. 269 

 270 
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5. Conclusion 271 

Our findings provide a further evidence of a possible concurrent variation of otoliths and 272 

fish body shape, a link that has been only seldom considered in the scientific literature (Kéver 273 

et al., 2014; Schwarzhans, 2014; Tuset et al., 2016a, 2018). Considering that the morphology 274 

of fish otoliths can mirror sensory adaptations (Gauldie and Crampton, 2002; Volpedo and 275 

Echeverria, 2003; Popper et al., 2005; Lombarte and Cruz, 2007; Tuset et al., 2016b), these 276 

traits are worth to be better considered in ecological research and further studies can help to 277 

better understand to what extent these differentiated sensory adaptations are linked to novel 278 

opportunities along the niche axes. 279 
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 507 
 508 
Legends 509 
 510 
Fig. 1. Sagittae of Lessepsian fish species studied in the present study. a) Atherinomorus 511 
forskali (Family Atherinidae); b) Callionymus filamentosus (Family Callionymidae); c) 512 
Alepes djedaba; d) Decapterus russelli (Subfamily Caranginae); e) Etrumeus golanii; f) 513 
Herklotsichthys punctatus (Family Clupeidae); g) Oxyurichthys papuensis (Family Gobiidae); 514 
h) Liza carinata (Family Mugilidae); i) Parupeneus forsskali; j) Upeneus  moluccensis; k) 515 
Upeneus pori (Family Mullidae); l) Scomberomorus commerson (Subfamily Scombrinae); m) 516 
Pterois miles (Family Scorpaenidae). Scale bar = 1 mm. 517 
 518 
Fig. 2. Sensory morphological position of native and Lessepsian fish species by taxonomic 519 
group. Black lines indicate the convex hull of native species and dashed red lines illustrate the 520 
increase of convex hull due to non-indigenous species invasion. All species are represented by 521 
different symbols and one representative otolith image is also provided. 522 
 523 



Table 1

Group Species n Otolith length (mm) Fish length (mm) Region
F. Atherinidae Atherina boyeri 6 2.32-2.67  69-  76 Tirrenian Sea

Atherina hepsetus 6 3.66-4.21 121- 132 NW Mediterranean
Atherina presbyter 3 2.58-4.76 NA Alboran Sea
Atherinomorus forskali  1902 6 3.50-4.31 130- 151 NW Mediterranean

F. Callionymidae Callionymus lyra 6 3.12-4.51 190- 285 Alboran Sea
Callionymus maculatus 6 1.85-2.33  75- 120 NW Mediterranean
Callionymus pusillus 2 0.90-0.94   65-  73 NW Mediterranean
Callionymus risso 6 1.05-1.67  47-  70 NW Mediterranean
Synchiropus phaeton 6 2.90-3.84 125- 205 NW Mediterranean
Callionymus filamentosus 1953 or before 4 2.06-3.31 113- 170 Eastern Mediterranean

SF. Caranginae Caranx crysos 3 3.99-7.53 160- 438 Alboran Sea
Caranx rhonchus 6 5.84-9.61 230- 385 NW Mediterranean
Pseudocaranx dentex 3 5.98-9.94 320- 572 Alboran Sea
Trachurus mediterraneus 6 5.42-9.67 160- 360 NW Mediterranean
Trachurus picturatus 6 4.16-7.26 137- 255 NW Mediterranean
Trachurus trachurus 6 3.37-11.43  95- 363 NW Mediterranean
Alepes djedaba 1927 or before 6 3.32-4.93 133- 211 Eastern Mediterranean
Decapterus russelli 2005 4 3.01-6.71 114- 121 Eastern Mediterranean

F. Clupeidae Sardina pilchardus 6 1.88-3.40 105- 185 NW Mediterranean
Sardinella aurita 6 1.78-4.01  83- 231 NW Mediterranean
Sardinella maderensis 6 2.21-4.61  94- 207 NW Mediterranean
Sprattus sprattus 6 0.97-1.57  65- 122 NW Mediterranean
Herklotsichthys punctatus 1943 4 2.43-9.36  90- 105 Eastern Mediterranean
Etrumeus  golanii 1961 6 2.61-3.45 120- 203 Eastern Mediterranean

F. Gobiidae Buenia affinis 6 0.88-1.06  20-  24 Adriatic Sea
Deltentosteus quadrimaculatus 6 2.82-3.74  70-  86 NW Mediterranean
Lesuerigobius friesii 6 2.35-2.92  52-  75 NW Mediterranean
Lesuerigobius sueri 6 1.89-2.48  45-  55 NW Mediterranean
Gobius niger 6 4.23-5.71  95- 151 NW Mediterranean
Pomatoschistus marmoratus 6 1.13-1.41  33-  42 Adriatic Sea
Odondebuenia balearica 6 1.06-1.47  27-  34 Adriatic Sea
Oxyurichthys papuensis 1982 5 4.46-5.81 135- 194 Eastern Mediterranean

F. Mugilidae Chelon auratus 6 6.95-10.75 225- 520 NW Mediterranean
Chelon labrosus 6 4.88-10.40 145- 460 NW Mediterranean
Chelon ramada 6 6.11-11.82 120- 441 NW Mediterranean
Chelon saliens 5 4.88-7.54 140- 321 Tirrenian Sea
Mugil dephalus 6 6.44-12.17 208- 490 NW Mediterranean
Liza carinata 1924 5 5.46-6.92 NA NW Mediterranean

F. Mullidae Mullus barbatus 6 1.85-3.35 108- 200 NW Mediterranean
Mullus surmuletus 6 3.26-4.51 145- 260 NW Mediterranean
Upeneus pori 1942 5 2.43-2.66 105- 115 Eastern Mediterranean
Upeneus  moluccensis 1946 or before 6 3.15-3.98 116- 178 Eastern Mediterranean
Parupeneus forsskali 2000 2 3.14-3.51 220- 230 Eastern Mediterranean

SF. Scombrinae Acanthocybium solandri 1 7.92 1204 Alboran Sea
Auxis rochei 2 3.42-4.04 406- 480 NW Mediterranean
Auxis thazard 1 5.00 630 Alboran Sea
Euthynnus  alletteratus 2 3.25-4.13 348- 440 NW Mediterranean
Katsuwonus pelamis 2 5.07-5.85 500- 610 Alboran Sea
Sarda sarda 6 4.97-8.70 360- 650 NW Mediterranean
Scomber colias 6 4.50-7.23 203- 405 NW Mediterranean
Scomber scombrus 6 3.55-5.94 210- 380 NW Mediterranean
Thunnus alalunga 3 8.87-13.37 730-1237* NW Mediterranean
Thunnus thynnus 5 4.29-13.11 238-1100* NW Mediterranean
Scomberomorus commerson 1935 or before 2 5.46-6.79 298- 430 Eastern Mediterranean

F. Scorpaenidae Pontinus kuhlii 3 10.24-15.0 220- 375 Alboran Sea
Scorpaena elongata 6 7.18-11.08 135- 234 NW Mediterranean
Scorpaena loppei 6 4.32-6.55  78- 119 NW Mediterranean
Scorpaena maderensis 2 2.50-4.61  60- 105 Alboran Sea

Species and taxonomic groups (Families or Subfamilies) of abundant Lessepsian fish invaders and native species from the
Mediterranean Sea with otolith and total fish size range and location. In bold, Lessepsian species, including year of first presence.
NA, data not available.



Scorpaena notata 6 6.73-10.52 120- 200 NW Mediterranean
Scorpaena porcus 6 6.46-9.89 194- 311 NW Mediterranean
Scorpaena scrofa 6 9.26-15.05 200- 360 NW Mediterranean
Pterois miles 1991 3 4.38-5.49 240- 345 Eastern Mediterranean

* fish length is expressed as fork length



Table 2

Groups Lessepsian species Pseudo-F df 1 df 2 P
F. Atherinidae Atherinomorus forskali 1902 48.749 1 19 0.001
F. Callionymidae Callionymus filamentosus 1953 or before 2.812 1 28 0.054
SF. Caranginae Alepes djedaba 1927 or before 2.167 1 35 0.099

Decapterus russelli 2005 3.422 1 38 0.032
F. Clupeidae Herklotsichthys punctatus 1943 2.985 1 26 0.073

Etrumeus golanii 1961 5.234 1 32 0.022
F. Gobiidae Oxyurichthys papuensis 1982 2.161 1 45 0.077
F. Mugilidae Liza carinata 1924 2.163 1 32 0.032
F. Mullidae Upeneus pori 1942 4.430 1 15 0.005

Upeneus  moluccensis 1946 or before 7.888 1 19 <0.001
Parupeneus forsskali 2000 4.715 1 23 0.005

SF. Scombrinae Scomberomorus commerson 1935 or before 0.306 1 34 0.887
F. Scorpaenidae Pterois miles 1991 5.697 1 36 0.006

Results of significance testing (NPMANOVA) by phylogenetic groups (Families or
Subfamilies) on the morphospace occupation of abundant Lessepsian fish invaders
using the PC components of otolith contour analysis. The invasion year is provided for
each Lessepsian species. In bold, the significant differences.



Table 3

PWD SV CHV
F. Atherinidae Atherina boyeri 6

Atherina hepsetus 6
Atherina presbyter 3

Natives 0.089 0.005 0.017
Atherinomorus forskali 1902 6 0.180 0.022 0.076

F. Callionymidae Callionymus lyra 6
Callionymus maculatus 6
Callionymus pusillus 2
Callionymus risso 6
Synchiropus phaeton 6

Natives 0.232 0.033 0.016
Callionymus filamentosus 1953 or before 4 0.249 0.038 0.023

SF. Caranginae Caranx crysos 3
Caranx rhonchus 6
Pseudocaranx dentex 3
Trachurus mediterraneus 6
Trachurus picturatus 6
Trachurus trachurus 6

Natives 0.214 0.030 0.017
Alepes djedaba 1927 or before 6 0.214 0.029 0.020
Decapterus russelli 2005 4 0.211 0.029 0.201

F. Clupeidae Sardina pilchardus 6
Sardinella aurita 6
Sardinellla maderensis 6
Sprattus sprattus 6

Natives 0.318 0.066 0.200
Herklotsichthys punctatus 1943 4 0.301 0.059 0.213
Etrumeus golanii 1961 6 0.306 0.061 0.238

F. Gobiidae Buenia affinis 6
Crystallogobius linearis 6
Deltentosteus quadrimaculatus 6
Lesueurigobius friesii 6
Lesueurigobius suerii 6
Gobius niger 6
Odondebuenia balearica 6

Natives 0.307 0.055 1.476*10-5

Oxyurichthys papuensis 1982 5 0.315 0.057 2.748*10-5

Morphological disparityGroups Species n

Changes in the morphological disparity by phylogentic groups (Families or Subfamilies) after the

invasion of abundant Lessepsian fishes. The morphological data are given from the otolith contour

analysis. CHV , convex hull volume; n, number of otoliths analyzed; PWD , average pairwise distance;

SV,  sum variances. In bold, Lessepsian species and invasion year. 



F. Mugilidae Chelon aurata 6
Chelon ramada 6
Chelon saliens 5
Chelon labrosus 6
Mugil cephalus 6

Natives 0.306 0.050 4.050*10-8

Liza carinata 1924 5 0.298 0.047 5.481*10-8

F. Mullidae Mullus barbatus 6
Mullus surmuletus 6

Natives 0.229 0.031 0.007
Upeneus pori 1942 5 0.231 0.032 0.012
Upeneus  moluccensis 1946 or before 6 0.232 0.032 0.016
Parupeneus forsskali 2000 2 0.257 0.040 0.026

SF. Scombrinae Acanthocybium solandri 1
Auxis rochei 2
Auxis thazard 1
Euthynnus  alletteratus 2
Katsuwonus pelamis 2
Sarda sarda 6
Scomber colias 6
Scomber scombrus 6
Thunnus alalunga 3
Thunnus thynnus 5

Natives 0.499 0.146 4.377*10-4

Scomberomorus commerson 1935 or before 2 0.486 0.139 4.413*10-4

F. Scorpaenidae Pontinus kuhlii 3
Scorpaena elongata 6
Scorpaena loppei 6
Scorpaena maderensis 2
Scorpaena notata 6
Scorpaena porcus 6
Scorpaena scrofa 6

Natives 0.178 0.019 4.894*10-4

Pterois miles 1991 3 0.203 0.026 0.002







Highlights 

 

• Otoliths of successful Lessepsian fishes are morphologically divergent from the 

ones of closely related native species. 

• Morphological disparity after invasion is uncorrelated to specific richness of 

native community. 

• Novel sensory strategies might contribute to explain the success of Lessepsian 

fishes. 
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