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Abstract

Systems neuroscience is still mainly a neuronal field, despite the plethora of evidence

supporting the fact that astrocytes modulate local neural circuits, networks, and com-

plex behaviors. In this article, we sought to identify which types of studies are neces-

sary to establish whether astrocytes, beyond their well-documented homeostatic and

metabolic functions, perform computations implementing mathematical algorithms

that sub-serve coding and higher-brain functions. First, we reviewed Systems-like

studies that include astrocytes in order to identify computational operations that

these cells may perform, using Ca2+ transients as their encoding language. The analy-

sis suggests that astrocytes may carry out canonical computations in a time scale of

subseconds to seconds in sensory processing, neuromodulation, brain state, memory

formation, fear, and complex homeostatic reflexes. Next, we propose a list of actions

to gain insight into the outstanding question of which variables are encoded by such

computations. The application of statistical analyses based on machine learning, such

as dimensionality reduction and decoding in the context of complex behaviors, com-

bined with connectomics of astrocyte–neuronal circuits, is, in our view, fundamental

undertakings. We also discuss technical and analytical approaches to study neuronal

and astrocytic populations simultaneously, and the inclusion of astrocytes in advanced

modeling of neural circuits, as well as in theories currently under exploration such as

predictive coding and energy-efficient coding. Clarifying the relationship between

astrocytic Ca2+ and brain coding may represent a leap forward toward novel

approaches in the study of astrocytes in health and disease.
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1 | SYSTEMS NEUROSCIENCE IS
PRIMARILY A NEURONAL FIELD

The study of the central nervous system (CNS) encompasses different

levels of analysis: Molecular, cellular, anatomical, behavioral, cognitive,

and systems. Systems Neuroscience aims at integrating these former

fields, which have mostly grown independently. For example, Molecular

Neuroscience has traditionally focused on the smallest functional level

without a connection to cognition, whereas Behavioral Psychology and

Psychophysics have typically studied cognition separately from its molec-

ular and neuronal underpinnings. The overarching goal of Systems

Neuroscience is to understand how neural circuits give rise to cognitive

functions, emotions, and behavior by simultaneously recording neuronal

activity and behavior at the highest spatiotemporal resolution possible.

Systems Neuroscience is arguably a field of neurons. A proof of this

can be found in recent editions (2015–2017) of the three international

conferences dedicated to Systems and Computational Neuroscience—

Here, we will not dwell on what is “Systems” and what “Computational”

since the two fields are highly overlapping and complementary. The

conferences are the “Conference and Workshop on Neural Information

Processing Systems” (NIPS), the “Organization for Computational Neu-

rosciences” (OCNS), and “Computational and Systems Neuroscience”

(COSYNE). Of approximately 3000 communications, fewer than 1%

included non-neuronal cells. The pervasive use of the phrase “neural

circuit” in the programs most of the time refers to computational inte-

gration of information embedded in neuronal biophysical substrates.

The scarce attention to non-neuronal cells is puzzling, at least from the

perspective of the astrocyte field, given the evidence that astrocytes

contribute to circuit-based phenomena at the synaptic (Araque et al.,

2014) and network (Poskanzer & Yuste, 2016) levels. Although efforts

are being made in the US Brain Initiative and the European Human

Brain Project to develop studies incorporating non-neuronal cells, it

seems as though progress in astrocyte biology has advanced in parallel

to Systems Neuroscience, and astrocytes have been excluded from uni-

fied theories of brain function, as previously noted (Poskanzer &

Molofsky, 2018). Although extensive modeling of astrocytic Ca2+ fluxes

exists (Manninen, Havela, & Linne, 2018), and sporadic studies have

explored the application of astrocyte-based computations to artifi-

cial intelligence (Alvarellos-Gonzalez, Pazos, & Porto-Pazos, 2012;

Porto-Pazos et al., 2011), astrocytes are characteristically missing

from advanced in silico modeling of neural circuits (Capone et al.,

2017; Deneve, Alemi, & Bourdoukan, 2017; Gjorgjieva, Drion, &

Marder, 2016; Markram et al., 2015).

Is this exclusion justified because the mechanisms underlying the

well-documented impact of astrocytes on neural circuits fall within

the realm of intercellular signaling, homeostasis, and metabolism,

which, although essential for the maintenance of neural circuits, may

not qualify as “computing” processes? Or, are astrocytes fundamental

to the computational foundations of the brain? Later we will elaborate

on what is and what is not computation, but rather than struggling to

define “computation” we ask, instead, whether processes that take

place in astrocytes participate in the implementation by neural circuits

of processes sub-serving coding, complex behaviors, and higher brain

functions. In other words, if computation is an emerging property of a

given neural network (Yuste, 2015), do astrocytes help to shape such

property beyond providing metabolic and homeostatic support? If

they do, specific questions are whether there are niche(s) in Systems

Neurosciences that would particularly profit from astrocyte idiosyn-

crasies and whether the impressive techniques and theoretical arma-

mentarium deployed by Systems Neuroscience could be used—and

are sufficient—to unravel possible astrocyte-based computations. In

an early article in Computational Neuroscience, it was argued that

anatomical features provide valuable insights about how the CNS

operates because the nervous system is a product of evolution, not

design. The computational solutions evolved by nature may be unlike

those that humans would invent, if only because evolutionary changes

are always made within the context of design and architecture that

already is in place (Sejnowski, Koch, & Churchland, 1988). It follows

that the unique anatomical arrangement between astrocytes and neu-

rons might be part of computational solutions refined by evolution

that has made the brain a highly efficient task-performing system. In

this article, we will explore the possible computations carried out by

astrocytes. First, we will succinctly describe the fundamentals

(Section 2) and current challenges (Sections 3 and 4) of Systems Neu-

roscience. We will continue by reviewing Systems-like studies involv-

ing astrocytes (Sections 5 and 6). We will then propose a to-do list to

further integrate astrocytes in Systems Neurosciences, thus helping to

dissipate the historical and perhaps no longer tenable gap between

astrocytes and neurons (Section 7). We do not touch upon other glial

cells because, as discussed earlier (Masgrau, Guaza, Ransohoff, &

Galea, 2017), the cells grouped under this name are molecularly and

morphologically distinct; hence, their contribution to higher-brain

functions deserves individual attention.

2 | COMPUTATIONAL FOUNDATIONS OF
THE CNS

2.1 | What is computation?

When we say that the brain computes we mean that it creates and

stores representations of physical and conceptual entities, and per-

forms operations on these representations in order to carry out dis-

crete tasks underlying behavior. The goal of Computational/Systems

Neuroscience is to describe these processes in mathematical and
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computational terms. In this framework, it is believed that the

mathematical treatment of the representations is possible precisely

because computation implies abstraction, thus permitting genera-

tion of internal models of the world using biophysical substrates

(Marr & Poggio, 1976). The action of generating representations is

known as encoding because the brain converts physical and conceptual

entities into a code, that is, a combination of symbols representing vari-

ables. Symbols can be discrete, continuous, and distributed among

numerous neurons and brain areas. A prime example of what is and is

not computation can be found in action potentials. Their generation is

caused by fine homeostatic adjustments of membrane voltage that per

se may not qualify as a computation (Stuart, Spruston, Sakmann, &

Hausser, 1997), but complex combinations of action potentials consti-

tute the “symbols” of the “alphabet” used by the brain to compute.

Examples of variables encoded by the brain are the position, color, and

shape features of a given object (Seymour, Clifford, Logothetis, & Bar-

tels, 2010), sound categories (Tsunada & Cohen, 2014), the distance

between the eyes in face recognition (Chang & Tsao, 2017), and the

reward value of a choice during decision making (Saez et al., 2018). The

information embedded in neural biophysical substrates can be decoded

and transferred (rerouted), possibly transformed into different formats

and neural substrates. Examples are the online holding of memory dur-

ing decision making (Hasson, Chen, & Honey, 2015), and memory

replay during memory consolidation (Foster, 2017). It is worth stressing

that the current computational view of the brain is not an established

truth, but a simplified framework highly influenced by information

theory, computer science, and linguistics to guide experimental testing.

2.2 | Computation takes place at several
hierarchically organized levels

Levels include brain areas, nuclei, maps, columns, circuits, single

neurons, and subneuronal compartments, such as dendrites, spines,

somas, and axons (Mesulam, 1998). Levels, moreover, interact in

specific temporal and topological patterns (Betzel & Bassett, 2017;

Vidaurre, Smith, & Woolrich, 2017). A hierarchical organization is,

in essence, a modular organization of computation (Meunier, Lambiotte,

Fornito, Ersche, & Bullmore, 2009), such that a successful general

theory of the brain will have to explain how tasks performed at

one module(s) give rise to tasks performed by the larger module(s).

Currently, a widely assumed premise is that most components of cogni-

tion emerge from the level of transiently active circuits—some authors

prefer to speak about ensembles of neurons or cell assemblies (Buzsaki,

2010)—whose dynamics arise, in turn, from complex interactions

involving the three classical building blocks: neuronal intrinsic excitabil-

ity, synaptic efficiency, and connectivity (Gjorgjieva et al., 2016). Simply

put, circuit dynamics within the range of millisecond to minutes control

fast behaviors such as perception and decision making (Khani & Rainer,

2016), whereas synaptic changes lasting hours and days control learn-

ing and memory (Sweatt, 2016). Connectivity includes two main pat-

terns: feed-forward, supporting a unidirectional flow of information,

and recurrent, composed of positive and negative feedbacks that lead

to self-sustained multiple activity patterns (Duarte, Seeholzer, Zilles, &

Morrison, 2017). Connections are mostly selective but they can be

random as well, giving rise to complex, slow dynamics that include cha-

otic interactions (Mastrogiuseppe & Ostojic, 2018). Another widely

assumed premise is that local circuits, however dynamic, are too

anatomically fixed to adapt their behavior to contexts that need to be

globally broadcast, for instance, sleep–wake cycles, mood, reward,

and attention during perception and decision making. To circumvent

this problem, neuromodulation has been suggested as a solution.

Neuromodulation refers to the relatively rapid (in the range of sec-

onds) functional reconfiguration of circuits throughout the brain by

acetylcholine, dopamine, noradrenaline, and serotonin, which are

released by subcortical and brainstem nuclei: The nucleus basalis of

Meynert (NBM), the striatum, the locus coeruleus, and the Raphe

nucleus (Avery & Krichmar, 2017). Neuromodulation participates in

working memory, attention, brain state, and plasticity (Meunier,

Chameau, & Fossier, 2017; Sara, 2009; Thiele & Bellgrove, 2018).

2.3 | Neural substrates of brain computations

The ultimate goal of Systems/Computational Neuroscience is to

explain how electrical and chemical signals are used in the brain to

represent and process information (Sejnowski et al., 1988). Currently,

a widely accepted assumption is, as noted, that external variables are

encoded into action potentials. Theories and empirical evidence point

to firing rates (average number of action potentials per unit of time;

Gerstner, Kreiter, Markram, & Herz, 1997), action-potential timing

(length of time between action potentials; Panzeri, Petersen, Schultz,

Lebedev, & Diamond, 2001), population coding (joint activity of

several neurons; Panzeri, Macke, Gross, & Kayser, 2015), and neural

dynamics (the way electrical activities evolve with time and space;

Shenoy, Sahani, & Churchland, 2013), as potential features of action

potentials that, an infinite amount of combinations, have enough

breadth to constitute the basis of the brain code(s). A key implication

of the multi-level organization of the brain is that code(s) are multi-

level, too. This means that external variables are encoded by the

collective activity of numerous simpler elements, which carry either

synergistic or complementary information (Panzeri et al., 2015). This

principle is the driving premise in population and dynamic coding, and

has informed the development of methods for recording from large

populations of neurons, including multi-electrode arrays, which can

record up to 103 neurons (Einevoll, Franke, Hagen, Pouzat, & Harris,

2012), Ca2+ imaging, which can simultaneously record over 104 neu-

rons (Pachitariu et al., 2016; Sofroniew, Flickinger, King, & Svoboda,

2016), and functional magnetic resonance imaging (fMRI), which

makes use of BOLD (blood-oxygen-level contrast imaging) to unravel

functional connectivity among regions encompassing over 105 neu-

rons (Fox & Raichle, 2007). It is worth stressing that the measurable

signals in the latter two approaches are not action potentials, but

single-cell Ca2+ rises and regional oxygen consumption, respectively.

Although the premise for using large-scale Ca2+ imaging in neurons is

that single-neuron Ca2+ signals represent slower nonlinear encoding of

the underlying action potentials (Lutcke, Gerhard, Zenke, Gerstner, &

Helmchen, 2013; Vogelstein et al., 2010), nonelectrical signals, as well
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as global voltage oscillations measured with field potentials and

electroencephalograms, plausibly carry additional information that

is computationally relevant. For example, it has been proposed that

synaptic facilitation mediated by neuronal Ca2+ signals sustains

working memory (Mongillo, Barak, & Tsodyks, 2008). All in all, bio-

physical substrates of brain computations other than the ones

directly or indirectly based on neuronal activity will plausibly arise

in the future, including, we posit, astrocyte-based computations.

2.4 | Contemporary brain theories

According to the number of publications, one of the most influential

brain frameworks is predictive coding, which aim to account for core

principles underlying adaptive circuit remodeling. The key tenets of

predictive coding are the following. First, representationalism, the

brain operates by building models of the outer world, conceptual cate-

gories, and expected outcomes of actions. Second, evaluation of new

information against embedded models is at the core of many brain

operations besides decision making, including perceptual discrimina-

tion, voluntary selective attention, and learning. Third, the nature of

such evaluations is probabilistic, since the underlying algorithms weigh

in pros and cons and similarity of the novel information with respect

to internal models. A central notion is that “organisms care less about

representing what is actually out there in the world than about how this

reality conflicts with their predictions about what should be there” (Fitch,

2014). An apparent virtue of this strategy is minimization of data stor-

age since it takes fewer bits to represent the mean and deviations

from it than to attempt de novo representations (Fitch, 2014). Fourth,

the brain tries to minimize its prediction errors such that internally

generated predictions are constantly optimized with external inputs

in an iterative process. In predictive coding, neuromodulation is pro-

posed as computing part of the statistics of errors made by predic-

tions (Lau, Monteiro, & Paton, 2017; Stephan, Iglesias, Heinzle, &

Diaconescu, 2015). The bulk of empirical support for predictive cod-

ing lies in the domains of perception, reward learning, and decision

making, as documented in humans, monkeys, and rodents (Diederen

et al., 2017; Kok & de Lange, 2014; Leinweber, Ward, Sobczak,

Attinger, & Keller, 2017; Markov et al., 2014; Nasser, Calu, Scho-

enbaum, & Sharpe, 2017; Summerfield, Trittschuh, Monti,

Mesulam, & Egner, 2008; Wacongne et al., 2011), whereas the

framework appears to be under exploration in memory consolidation

(Cross, Kohler, Schlesewsky, Gaskell, & Bornkessel-Schlesewsky,

2018) and emotion (Barrett, 2017). Other general CNS frameworks

worth mentioning are global workspace theory, which describes the

basic circuit from which consciousness emerges (Baars, 2005), and

liquid computing, which states that neural circuits have the capacity

to store information of previous perturbation(s), analogous to the

ripples generated on the surface of a pond when stones are thrown

into it (Maass, Natschlager, & Markram, 2002). Finally, influential

theoretical constructions about basic operative principles of the

brain—compatible with global frameworks—include brain oscillations

(Buzsaki & Draguhn, 2004), efficient coding (Chalk, Marre, & Tkacik,

2018), energy-efficient coding (Laughlin, 2001), neural integrators

(Mazurek, Roitman, Ditterich, & Shadlen, 2003), inhibitory/excitatory

balance (Brunel, 2000; Litwin-Kumar & Doiron, 2012), noise (Arieli,

Sterkin, Grinvald, & Aertsen, 1996), and circuit degeneracy

(Sporns, 2013).

3 | CHALLENGES, OBSTACLES, AND
GROWTH AREAS IN SYSTEMS
NEUROSCIENCE

Despite the progress in the last decade, understanding brain computa-

tions remains a central challenge of modern Neuroscience. The readily

observable behavioral variables that are used experimentally to study

brain encoding, for instance, rewards, choices, and stimulus features,

represent the tip of the iceberg, because the vast majority of variables

used by the brain in complex behaviors and higher-brain functions are

typically latent. However, this should not distract us from the impres-

sive predictive power that analytical tools are achieving in Systems

Neuroscience. Examples of success can be found in neuroprosthetics,

where the electrical activity of the brain of a human user is decoded

into motor commands (Cangelosi & Invitto, 2017); decision-making, in

which decision outputs can be predicted from action potentials with

80% accuracy in monkeys before a response is observed (Kiani,

Cueva, Reppas, & Newsome, 2014), and with 70% accuracy in rats,

even before stimulus onset (Nogueira et al., 2017), and face recogni-

tion. Here, the face seen by a Rhesus monkey can be reproduced with

90% accuracy by tracking neuronal activity in the inferior temporal

cortex (Chang & Tsao, 2017). Although the achievements are remark-

able, there is still room to improve these numbers. In the workflow of

Systems Neuroscience from signal capture to deciphering the brain

code, areas of improvement include signal recording, signal processing,

data analyses, and astrocyte-focused studies (Figure 1). Key issues are

briefly described next.

3.1 | Data load in large-scale recordings

The trend of improving predictions by simultaneously recording more

neurons has created a serious challenge: The ever-increasing size of

the data seriously hampers storage, processing, and analysis. In order

to simplify and reduce data size of recordings, several methods exist

to extract low-dimensional mathematical representations from multi-

neuronal electrical recordings (Aljadeff, Lansdell, Fairhall, & Kleinfeld,

2016; Cunningham & Yu, 2014). The obstacle is all the more complex

in Ca2+ imaging, which has become a dominant method for recording

from large populations of neurons, because special methods are nec-

essary to extract the coarse-grained and noisy Ca2+ data prior to data

analysis. Algorithms such as Suite2p (Pachitariu et al., 2016), and

CNMF (Constrained and/or non-negative matrix factorization;

Pnevmatikakis et al., 2016), represent advances in the simplification of

imaging data processing prior analysis. Caveats of current Ca2+ imag-

ing data processing are discussed in Stringer and Pachitariu (2018).

Alternatively, shot-gun statistics unravels network connectivity infor-

mation from recording at only 10% of the neurons at a given time,
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thus simplifying the experimental load of large-scale recordings

(Soudry et al., 2015). Data-sharing and collaborative solutions have

been proposed as well to manage the surge of data (Paninski &

Cunningham, 2018).

3.2 | Statistical tools for understanding data

The standard problem is to determine how behavioral variables are

encoded by neurons, and how this information is decoded, either by

downstream neurons or by an external observer. Different statistical

tools address encoding and decoding. For encoding, generalized linear

models (GLMs), a generalization of multiple linear regression, regress

neuronal activity against behavioral variables to determine the set of

variables that explain more neuronal activity (Aljadeff et al., 2016;

Nogueira et al., 2017). Decoding techniques, typically linear classifiers

(Arandia-Romero, Nogueira, Mochol, & Moreno-Bote, 2017; Quian

Quiroga & Panzeri, 2009), as well as more recent artificial neural net-

works (ANNs; Paninski & Cunningham, 2018) are used to predict,

trial-by-trial, values of behavioral variables from neuronal activity,

either using single neuronal activity or the individual activity of large

neuronal populations recorded from multielectrode-arrays or Ca2+

imaging. These methods are supervised machine learning tools

because both behavioral and neuronal variables are preselected and

labeled. Also, unsupervised tools such as dimensionality reduction

have been developed, and used in parallel, in order to reduce data

complexity by identifying low-dimensional latent factors, where

relevant behavioral variables could be represented (Cunningham &

Ghahramani, 2015). Of note, detection of relevant subspaces of

neuronal activity, and optimal selection of behavioral features to

regress against neuronal data will facilitate the discovery of com-

putational principles. An elegant example is the aforementioned

study by Chang and Tsao (2017), in which successful face identification

in nonhuman primates was possible with 50-dimensional data, and

recordings of 200 neurons. Likewise, feature selection can be adap-

tively improved with artificial intelligence (Yamins & DiCarlo, 2016). As

with signal processing, data load is a challenge in signal analysis, for the

number of observations per condition does not necessarily grow in par-

allel with the growth of complexity and number of dimensions of the

data. For example, recording 20 neurons for 30 min produces the same

number of observations per neuron than recording 1,000 neurons dur-

ing the same amount of time, but the number of dimensions increases

50-fold with the larger neuronal population. This means that encoding,

decoding, and dimensionality reduction techniques need to be con-

strained by specific structural and anatomical knowledge of the neural

substrates to be operationally useful.

3.3 | Optogenetics and chemogenetics

These anatomically precise and reversible tools allow establishing

cause–effect relationships between the electrical activity of single

F IGURE 1 Workflow in Systems Neuroscience. A central problem in Neuroscience is to explain how electrical and chemical signals are used
in the brain to represent and process information. The workflow depicts the stages and tools currently used to decipher neuronal codes. In red
squares, we highlight the elements that are relevant to the study the role of astrocytic Ca2+ in neuronal coding
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neurons, or neuronal populations, and behavioral parameters.

Optogenetics is based on the expression of light-sensitive regulators

of transmembrane conductance (ion channels and chloride pumps)

coupled with fiber optic- and laser diode-based light delivery (Boyden,

Zhang, Bamberg, Nagel, & Deisseroth, 2005; Li et al., 2005). Cell type

specificity is accomplished by targeting the light-sensitive channels

with cell-type specific promoters. Light-activation of neurons

expressing channels like channelrhodopsins (ChR1, ChR2) result in

neuronal depolarizations due to import of cations such as Na+, K+, and

Ca2+—the latter at trace levels. In contrast, optical stimulations of

archaerhodopsin (Arch) and halorhodopsins (NpHR) pumps cause

hyperpolarization of neurons by exporting H+, or by importing chlo-

ride ions, respectively. An alternative approach to classic opsins is the

light-sensitive G-coupled receptor, also called OptoGq/Gs, which

modulates receptor-initiated biochemical signaling pathways (Airan

et al., 2009). Chemogenetics is based on the use of designer receptors

exclusively activated by designer drugs (DREADDs), a family of G

protein-coupled receptors (GPCRs) that are solely activated by a phar-

macologically inert drug, clozapine N-oxide (CNO; Alexander et al.,

2009). DREADDs can also be targeted to neurons with viral or trans-

genic delivery systems using neuron-specific promoters. Relevant

insights into behavior, cognition, and basic brain homeostasis have

been gained with neuron-targeted optogenetic and chemogenetic

approaches (Deisseroth, 2015; Roth, 2016).

3.4 | Subcellular computations

Increasing the number of recorded neurons may not be the only solu-

tion for obtaining better data. Insofar each and every neuron must

integrate and convert thousands of synaptic inputs into a single out-

put (London & Hausser, 2005), concerns have been raised about the

oversimplification of neurons as “integrate-and-fire” nodes in large-

scale recordings and in silico simulations, and a plea exists to pay ren-

ewed attention to the great computational potency of single neurons

(Fitch, 2014). Spine computations and biophysical substrates are

reviewed in (Yuste, 2013), and a recent example of the computational

relevance of dendritic shafts is the finding that nonlinear dynamics

based on dendritic conductance can help sharpen time and rate codes

in grid cells, thereby improving the accuracy of space representation

(Schmidt-Hieber et al., 2017). In the context of imaging, voltage dyes

represent a growth area allowing for recording at subcellular resolution

at multiple points along dendrites and axons (Xu, Zou, & Cohen, 2017).

The data, combined with whole-cell reconstructions with electron

microscopy (Vishwanathan et al., 2017), will arguably improve the

understanding of dendritic computations and network connectivity.

3.5 | A need for theoretical frameworks and
modeling

The wealth of descriptive data will not advance knowledge unless

analyses are guided by hypotheses and complemented with modeling.

Computational/Systems Neuroscience is thus engaged in a virtuous

cycle whereby data generate models, and models make predictions

that can be tested ad infinitum against new proposed experiments.

The trade-offs of increasing the realism of models by incorporating

more biophysical variables versus developing simplifying models, as

discussed in (Sejnowski et al., 1988), are still debated (Marder, 2015).

Whatever the approach, in vivo models, and their in silico counter-

parts, need to be informed by large-scale hypotheses combined with

simpler questions, in order to advance on the outstanding question of

how the brain processes information with such energetic efficiency.

We discussed the remarkable production of studies informed by pre-

dictive coding and other theoretical constructions. Other theories will

plausibly arise in the future.

4 | ASTROCYTE-BASED COMPUTATIONS
AS A GROWTH AREA IN SYSTEMS
NEUROSCIENCE

We posit that variables used in brain coding may be partially embed-

ded in astrocyte biophysical substrates, such that the incorporation of

astrocytes as computational building blocks in neural circuits may help

advance Systems Neurosciences. Significant gaps of knowledge, how-

ever, exist. First, there is no evidence that astrocytes gate, transform,

store, and reroute information in the brain by carrying out processes

that can be described in abstract mathematical terms. Astrocytes do

participate in brain state (Poskanzer & Yuste, 2016), neuromodulation

(Magistretti & Morrison, 1988; Paukert et al., 2014; Srinivasan et al.,

2015), and in a wide variety of naturally occurring recurrent circuits,

where they have been proposed as carrying out spatiotemporal inte-

gration of multicellular inputs (Araque et al., 2014). Examples indeed

exist of discrimination and integration of synaptic information by

astrocytes (Perea & Araque, 2005), but the underlying algorithms and

their behavioral correlates remain undetermined. Second, if astrocytes

compute, are Ca2+ transients a biophysical substrate of astrocyte-

based computations? The intuition that they are already exists in the

field, resting on a wealth of studies that, since the 1990s, have used

Ca2+ imaging to assess astrocyte activation at increasing spatiotempo-

ral resolution, thanks to the unremitting refinement of fluorescent

indicators and optical imaging [reviewed in Kastanenka et al., 2016

and Bazargani & Attwell, 2016]. However, although in silico modeling

documents that astrocytes can encode extracellular cues into vari-

ables in Ca2+ transients (De Pitta et al., 2008), the statistical methods

currently used to encode and decode neuronal action potentials

(Section 3) have not been applied to astrocyte data obtained in vivo.

Third, it is not known whether the subcellular Ca2+ microdomains in

astrocytes would carry out different functions within distinct circuits

associated with different complex behaviors, nor whether astrocytes

would perform similar computations throughout the brain, or are as func-

tionally heterogeneous as neurons. It is worth mentioning that in the last

decade controversies have arisen concerning the regulation and conse-

quences of Ca2+ signaling in astrocytes. Specifically, whether Ca2+ comes

from endoplasmic reticulum and mitochondria, or from the extracellular

milieu, the very notion of Ca2+-dependent gliotransmission, the role of

astrocytes in long-term potentiation (LTP), and whether D-serine is a
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gliotransmitter have been debated—reviewed in Bazargani and Attwell

(2016) and Savtchouk and Volterra (2018). Currently, the prevailing

notion reconciling these discrepancies is that Ca2+ responses are highly

complex and context-dependent, such that the signaling leading to Ca2+

rises, the subcellular source of such Ca2+, the speed of transients, as well

as the downstream effects, are dependent on the subcellular astrocyte

compartment(s), and the neural circuit (Savtchouk & Volterra, 2018). In

this piece, we do not focus on mechanistic issues, but rather on whether

and how astrocytes may perform computations using Ca2+ transients.

5 | SYSTEMS-LIKE STUDIES IN
ASTROCYTES

A prototypical study in Systems Neuroscience includes three com-

ponents: (a) recording of electrical activity in multiple neurons,

(b) computerized analysis to decode information embedded in action-

potential firings, and (c) simultaneous measurement of a cognitive or

behavioral function. The statistical analyses reveal correlations and,

increasingly often, causal relationships between changes in patterns

of neuronal-population firing and specific behavioral or cognitive

responses (Sections 2 and 3). There are no studies, to the best of

our knowledge, recording the Ca2+ activity of multiple astrocytes,

followed by analysis with GLM or decoders in the context of a behav-

ioral paradigm defined by distinct features that can be correlated with

patterns of astrocytic Ca2+ activity. Among studies linking astrocytes

and behavior [for reviews Oliveira, Sardinha, Guerra-Gomes, Araque, &

Sousa, 2015 and Santello, Toni, & Volterra, 2019], in Section 5.1, we

discuss the ones closer to the neuron-focused experimental design in

Systems Neuroscience, for they include recordings of Ca2+-based astro-

cyte excitability, as well as electrical or optical recordings of neuronal

activity, in the context of complex behaviors or neuromodulation. Con-

versely, in Section 5.2, we focus on studies showing modulation of local

brain circuits associated with complex behaviors, or brain state, by tran-

sient optogenetic or chemogenetic astrocyte activation. In Section 6,

we extract computational lessons from these studies, and identify gaps

of knowledge, taking into account, when appropriate, previous, and

recent studies that, although lacking any of the aforementioned compo-

nents, support our computational insights. Table 1 summarizes the anal-

ysis. In Figure 1, we highlight in red approaches within the general

workflow of Systems Neuroscience including signal capture, processing,

and analysis that could be used with astrocytic data.

5.1 | Activation of Ca2+ transients in astrocytes by
sensory stimulation and neuromodulation

Studies in the mouse barrel cortex have shown activation of Ca2+ in

astrocyte somata after whisker stimulation using fluorescent Ca2+

dyes (Takata et al., 2011; Wang et al., 2006) and genetically encoded

Ca2+ indicators (Stobart et al., 2018). Astrocytic Ca2+ increases are

delayed with respect to Ca2+ rises in neurons (Stobart et al., 2018).

Also, astrocytic Ca2+ rises are dependent on whisker stimulation fre-

quency, and they are blocked by inhibitors of metabotropic glutamate

receptors, indicating that they are caused by glutamate released from

neurons (Wang et al., 2006). Whisker stimulation-dependent Ca2+

rises in astrocytes are detected as early as at 2 s when dyes are used,

and at 120 ms in the case of faster, genetically encoded indicators,

although peak responses range between 3 and 12 s regardless of the

Ca2+ indicator. Likewise, visual stimulation triggers neuron-dependent

somatic Ca2+ transients in astrocytes in the visual cortex of ferret,

with a delay of 1–3 s and a peak at 6 s (Schummers et al., 2008).

Importantly, the latter study demonstrates that astrocyte activation

is highly tuned to orientation maps at a single-cell resolution, and

documents that astrocytes mediate hemodynamic signals in the

visual cortex, which was confirmed in another study in the barrel

cortex (Stobart et al., 2018). The study by Takata et al. (2011) is also

relevant because it demonstrates the following. First, cholinergic

neuromodulation originating in the NBM potentiates the activation

of local field potentials elicited by whisker stimulation. Second,

neuromodulation is strictly dependent on Ca2+ rises in astrocytes, as

shown by the disappearance of neuronal-activity potentiation in

mice lacking IP3R2-dependent signaling. Crucially, abrogation of Ca2+

signaling in astrocytes in these mice shifts brain state to a desynchronized

mode, as assessed with local field potentials in cortex. The impact of

cholinergic neuromodulation on astrocyte Ca2+ responses is also

documented in hippocampus. Specifically, the increase in Ca2+ rises

triggered by somatosensory stimulation in rat hippocampal astro-

cytes is mediated by cholinergic neurotransmission, since it is

blocked by the cholinergic inhibitor atropine (Navarrete et al., 2012).

Astrocyte activation, in turn, induces the long-term potentiation

(LTP) of field EPSPs in CA3–CA1 synapses (Navarrete et al., 2012).

These data support the notion that, in addition to setting circuit dynam-

ics for attention in sensory processing, cholinergic neuromodulation

participates in the encoding of new information during memory

formation (Hasselmo & McGaughy, 2004). The importance of

neuromodulation via astrocytic Ca2+ in sensory cortical processing

has also been reported for the locus coeruleus (Ding et al., 2013;

Paukert et al., 2014; Srinivasan et al., 2015). This brain-stem nucleus

amplifies as well the effect of locomotion on Ca2+ rises in Bergman glia

in the cerebellum (Paukert et al., 2014). Timewise, neuromodulation-

elicited Ca2+ rises in astrocytes occur in the range of a few seconds,

with regards to both onset and peak after sensory stimulation (Ding

et al., 2013; Srinivasan et al., 2015).

5.2 | Modulation of behavior and brain state by
optogenetic and chemogenetic stimulation of
astrocytes

As in neurons, important insights into causal relationships between

astrocytic Ca2+ signals and behavioral outcomes are emerging from

optogenetics and chemogenetic studies. These technologies allow

temporally precise and reversible modulation of astrocyte activity, in

contrast to permanent loss- or gain-of-function genetic manipulations.

In mice, optogenetic stimulation of astrocytes using ChR1/2, Arch

and OptoGq has been reported to modulate breathing according to

pH changes in the respiratory system (Gourine et al., 2010), induce
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long-term depression in Purkinje cells and motor behavior (Sasaki

et al., 2012), modulate response selectivity of the visual cortex

(Perea et al., 2016), inhibit food intake (Sweeney et al., 2016), induce

sleep (Pelluru et al., 2016), promote a switch to the slow-oscillation

state by triggering the UP state of slow waves (Poskanzer & Yuste,

2016), and enhance memory acquisition (Adamsky et al., 2018).

A key issue is that the downstream consequences of optogenetic

activation of astrocytes are not well understood. In the case of neu-

rons, since they are excitable cells that can operate via all-or-nothing

changes in membrane voltage driven by fast-acting voltage-gated

channels (although they also have subthreshold voltage fluctuations),

the probability of neuronal firing is decreased by activation of NpHR

and Arch, and increased upon activation of ChR2 (Yizhar, Fenno,

Davidson, Mogri, & Deisseroth, 2011). However, astrocytes are not as

electrically excitable as neurons. In the first report of successful mod-

ulation of neuronal activation (with no behavioral consequences) upon

optogenetic manipulation of nearby ChR2-expressing astrocytes, it

was assumed, but not shown, that the response was mediated by Ca2+

fluxes through ChR2 (Gradinaru, Mogri, Thompson, Henderson, &

Deisseroth, 2009). Two subsequent studies confirmed Ca2+ rises using

Ca2+ indicator dyes (Pelluru et al., 2016; Perea, Yang, Boyden, & Sur,

2014), yet it is unclear how these rises can occur, considering that

ChR2 has a relatively low Ca2+ permeability, is only open during a few

milliseconds—decay constant is ~10 ms—and presents depolarization-

dependent slowing of deactivation (Nagel et al., 2003; Yizhar et al.,

2011). One possibility is that it is the entry of Na+ through ChR2 that

causes Ca2+ uptake by reverse activity of the Na+/Ca+ exchanger

(Yang, Yu, et al., 2015). Furthermore, the possibility exists that the

effects of ChR2 activation are due to undetected Ca2+ rises in astro-

cyte processes, of which somatic Ca2+ might be a consequence

(Bernardinelli et al., 2011). In this regard, the use of Arch combined

with genetically encoded Ca2+ indicators represents a technical

refinement because this opsin induces, after 5 s of photostimulation

in the mouse cortex, fast Ca2+ transients in astrocyte arbors reminis-

cent of spontaneous activity (Poskanzer & Yuste, 2016). Still, how

such a brief photo-stimulation of Arch, whose decay constant is

~9 ms (Yizhar et al., 2011), translates into ~20-s-long Ca2+ rises after

a delay of ~10 s is unclear (Poskanzer & Yuste, 2016). Plausibly,

Arch-elicited hyperpolarization engages voltage-sensitive elements

in astrocyte processes. All in all, optogenetics clearly activates astro-

cytes, although clarification of underlying mechanisms will help opti-

mize this approach for Systems-level basic and clinical studies.

A DREADD receptor that successfully triggers Ca2+ transients in

astrocytes is hM3Dq (Bonder & McCarthy, 2014; Chen et al., 2016).

Studies using hM3Dq in astrocytes have shown: (a) changes in neuro-

nal activity, either reduced or increased firing, in the mouse arcuate

nucleus with opposing effects on feeding behavior, perhaps stemming

from CNO dose differences, which, in turn, might launch complex

feedback loops leading to paradoxical data (Chen et al., 2016; Yang,

Qi, & Yang, 2015), (b) regulation of excitatory and inhibitory neuro-

transmission in the amygdala, with a net effect of reduced fear

expression in a fear-conditioning paradigm (Martin-Fernandez et al.,

2017); and (c) potentiation of the amplitude of evoked EPSC and,

when chemogenetic activation is carried out at specific stages during

learning paradigms, improvement of contextual and spatial memory

acquisition (Adamsky et al., 2018). As with optogenetics, caution has

to be exerted about the resemblance of the Ca2+ signaling elicited by

chemogenetics to physiological signaling. Also, the CNO metabolite

clozapine, and not CNO, might be the real activator of DREADD, as

shown with radioligand receptor occupancy measurement, and in vivo

positron emission tomography (Gomez et al., 2017). Since clozapine

has multiple targets, this recent evidence raises doubts about the

specificity of DREADD-based approaches (Gomez et al., 2017). That

said, these studies offer several computational insights, to be dis-

cussed below.

6 | COMPUTATIONAL LESSONS LEARNED
FROM SYSTEMS-LIKE STUDIES IN
ASTROCYTES

6.1 | Time scales of Ca2+ responses and filtering
effect

According to Ca2+-based dynamics, the time scale of astrocyte activa-

tion after a physiological input ranges from hundreds of milliseconds

to tens of seconds, while the earliest reported effect on nearby neu-

rons after optogenetic stimulation of astrocytes is at 500 ms

(Gradinaru et al., 2009). The onset of hemodynamic response is within

1–3 s from the onset of Ca2+ responses (Otsu et al., 2015). Upon sen-

sory stimulation, astrocytes are activated after neurons in cortex,

suggesting that neurons reroute information to astrocytes. The obser-

vation that Ca2+ response curves in astrocytes are qualitatively similar

but narrower than those in neurons, as shown by local field potentials

(Schummers et al., 2008; Wang et al., 2006), suggests that astrocytes

filter neuronal activity. Filtering can be either in terms of rectification

(high pass filtering), cut-off (low pass filtering), or both (band pass fil-

tering). The latter appears to be the case since astrocytes are not

responsive to the highest and lowest frequencies of neuronal input.

Interestingly, adaptive modulation of breathing by pH is the only con-

text in which astrocytes directly compute external stimuli, for astro-

cytes sense changes in pH, even if local neurons are inactivated with

tetrodotoxin (Gourine et al., 2010). In other paradigms, astrocyte acti-

vation is either secondary to neuronal activation (Section 5.1), or the

result of gain-of-function induced by optogenetics and chemogenetics

in the context of already active circuits (Section 5.2).

6.2 | Existence of short- and long-term modalities in
Ca2+ responses

The computational and homeostatic functions of astrocytes manifest

themselves in at least two broad modalities, depending on time range,

nature of inputs, and the intracellular location of Ca2+ rises. One

modality is the fast rising Ca2+ signals that originate within 0.2–5 s

from stimulus onset, are short-lived (up from 0.3–10 s), are usually

reported in peripheral processes and end-feet (Stobart et al., 2018),

and are sufficiently fast to locally mediate task-relevant regulation of
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blood flow (Otsu et al., 2015), metabolic coupling, and neurotransmitter

supply (Agarwal et al., 2017; Otsu et al., 2015; Tani et al., 2014), as well

as short-term modulation of synaptic efficacy (Perea et al., 2016). The

second modality corresponds to robust somatic Ca2+ transients that

can last tens of seconds, have a slow rise time, and have been reported

in the context of cholinergic (Navarrete et al., 2012; Takata et al., 2011)

and noradrenergic (Ding et al., 2013; Paukert et al., 2014; Srinivasan

et al., 2015) neuromodulation, as well as upon ChR2-based

optogenetics and by chemogenetics (Adamsky et al., 2018). In hippo-

campus, the functional consequences of this modality are long-lasting

effects on synaptic connections (Adamsky et al., 2018; Navarrete et al.,

2012), plausibly associated with memory formation. In cortex, we rea-

son that astrocytic Ca2+ rises, as reported by (Takata et al., 2011), par-

ticipate in a well-accepted role of neuromodulation: Control of arousal

and attention, which involves recruitment of large, spatially distributed

neuronal populations (Thiele & Bellgrove, 2018). Importantly, the two

modalities reveal the existence of threshold heterogeneity in Ca2+

responses in astrocytes, which might be of computational importance.

Consider, for example, the relative ease with which minimal synaptic

stimuli trigger Ca2+ transients in astrocytic processes (Haustein et al.,

2014; Panatier et al., 2011), which is consistent with a relatively low

threshold for activation. This suggests that, in microdomains, the num-

ber of synaptic inputs may be of little importance, so that a micro-

domain could invariantly get activated, either by individual synapses or

by an ensemble thereof, akin to the logical OR function. Conversely,

the phenomenon of coincidence detection in which activation of cortical

sensory neurons (Paukert et al., 2014; Takata et al., 2011) and postsyn-

aptic hippocampal neurons (Navarrete et al., 2012), needs to coincide

with neuromodulation to trigger somatic Ca2+ transients, and, similarly,

the requirement for high inter-neuronal activity to promote astrocytic

Ca2+-dependent facilitation of excitatory synaptic transmission in the

hippocampus (Perea et al., 2016), may be regarded as examples in

which the threshold for astrocytic activation is high, and astrocytes will

become activated only if multiple inputs impinge together on them, akin

to the logical AND function. Density of IP3R2 (De Pitta et al., 2008)

and baseline Ca2+ levels (Zheng et al., 2015) may be among the factors

setting thresholds of stimulation. Plausibly, the described modalities of

astrocytic Ca2+ responses are the extremes of a context-dependent

spectrum, encompassing mixed regimes in terms of number of astro-

cytic domains involved, and short versus long-term effects. Key

questions emerge: how are different astrocytic microdomains rec-

ruited, which neural circuits are activated as a consequence of differ-

ent response modalities, and, finally, do specific computations, other

than thresholding, operate in different modalities? In Section 7, we

propose gaining insight into these questions by treating single astro-

cytes as mini-circuits, and by identifying relevant patterns of Ca2+

responses with dynamical-systems statistics approaches such as

dimensionality reduction.

6.3 | Regulation of neuronal gain

This appears to be a computation carried out by astrocytes through-

out a variegated collection of circuits and behavioral contexts. Signal

coincidence detection of sensory stimulation and neuromodulation by

cortical astrocytes is one example that may have implications in atten-

tion (Paukert et al., 2014; Takata et al., 2011). Computationally, atten-

tion consists of a gain change (in amplitude of response or contrast)

that results in the prioritization of relevant inputs over irrelevant

information (Thiele & Bellgrove, 2018). Input prioritization is called

top-down (or inside-out) because the process is shaped by internal

models and goals conveyed to the sensory areas by neuromodulators

(Thiele & Bellgrove, 2018)—note the influence of predictive coding in

this assumption. The modulation of gain is facilitated by a normaliza-

tion mechanism whereby neurons' responses are reduced in propor-

tion to the activity of neighboring neurons by the joint activation of

inhibitory and excitatory neurons (Reynolds & Heeger, 2009).

Instructed by signal coincidence detection, astrocytes might help pri-

oritize information by regulation of gain via modulation of excitatory

synaptic drive by Ca2+-dependent glutamate uptake (Schummers

et al., 2008), gliotransmission (Takata et al., 2011), intrinsic neuronal

excitability (Sasaki et al., 2012), and comodulation of excitatory and

inhibitory neurotransmission (Perea et al., 2014).

In the case of brain state, a gain change might account for the

transition from an asynchronous to a synchronous mode through a

change in the network's ratio of excitation versus inhibition, according

to the general theory of neural networks (Brunel, 2000). Hence, a pos-

sible mechanism whereby astrocytes might synchronize brain state

through gain control is regulation of excitatory-synaptic strength,

either by reducing glutamate uptake (Poskanzer & Yuste, 2016),

releasing ATP/adenosine and glutamate in a Ca2+-dependent manner

(Fellin et al., 2009; Halassa et al., 2009), or taking up GABA via GAT-3

transporters (Shigetomi, Tong, Kwan, Corey, & Khakh, 2011).

Memory-related tasks in hippocampus can also be interpreted as a

phenomenon of gain control. Thus, chemogenetic and optogenetic

stimulations of hippocampal astrocytes result in increased fre-

quency and potency of mEPSCs in local neurons, leading to long-

term potentiation of excitatory synaptic connections (Adamsky

et al., 2018). Significantly, astrocyte-mediated NMDA-dependent

long-term potentiation appears to be: (a) task-specific insofar as

fear-conditioned mice, but not home-caged ones, show synaptic

potentiation and (b) stage-selective, for it very precisely affects dis-

tinct phases along the memory-formation continuum, such as mem-

ory allocation. Likewise, the interneuron-induced potentiation of

excitatory neurotransmission mediated by astrocytes might be one

example of neuronal gain (Perea et al., 2016). Intriguingly, a dual

mechanism in which astrocyte-mediated depression of excitatory

synapses combines with potentiation of inhibitory ones seems at

play in afferents to neurons in the medial central region of the

amygdala (Martin-Fernandez et al., 2017). The ensuing net increase

of inhibitory drive to these neurons (i.e., a case of negative gain)

was then shown to correlate with transient reduction of fear condi-

tioning and anxiety.

Finally, the role of astrocytes in reflex homeostatic behaviors

modulating feeding and breathing can be explained in terms of use of

gain modulation to adapt behavior to stimuli intensity. Thus, the pres-

ence of food modulates the synaptic efficacy of neurons in the
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hypothalamus (Chen et al., 2016; Yang, Qi, & Yang, 2015), whereas

pH acidification induces adaptive neuronal firing in the brain stem

which, in turn, activates breathing (Gourine et al., 2010).

6.4 | Decoding and rerouting of information

Coincidence detection of sensory cortical and neuromodulatory sub-

cortical neuronal inputs (Paukert et al., 2014; Takata et al., 2011),

transformation of inhibitory neurotransmission into synaptic facilita-

tion in hippocampus (Perea et al., 2016), and the transformation of

neuronal inputs into potentiation or inhibition, depending on the dura-

tion and frequency of the inputs (Covelo & Araque, 2018), might be

three examples of decoding of neuronal signals by astrocytes, and

rerouting of decoded information to other neurons. Plausibly, the

information rerouted by astrocytes is gliotransmitter-dependent

(Covelo & Araque, 2018). Since neuronal action potentials and astro-

cytic Ca2+ transients have utterly different temporal resolutions, it is

improbable that variables represented in trains of action potentials are

represented in astrocytic Ca2+ without significant loss of information.

Rather, we posit that what astrocytes “hear” from neurons are instruc-

tions to “tell” other neurons to modify their activity via canonical com-

putations. In computational science, canonical computations are

fundamental operations carried out in circuits in a variety of contexts.

We have hitherto identified a few: signal filtration, thresholding (impli-

cating AND/OR functions and coincidence detection), gain, and con-

trol of the balance between excitation and inhibition. It is not clear

whether synaptic scaling should be added because this function might

be performed by microglia rather than astrocytes (Stellwagen & Mal-

enka, 2006). In the roadmap, we propose to use decoding approaches

from machine learning to identify possible variables encoded by astro-

cyte computations.

6.5 | Astrocytes could act as switches in brain state
transitions

The causal implication of astrocytes in cortical slow oscillations

(<1 Hz; Takata et al., 2011; Poskanzer & Yuste, 2016) supports the

relevance of astrocytes in network activity beyond tripartite synapses.

Slow waves have been hypothesized to represent the default mode of

cortical network activity (Sanchez-Vives, Massimini, & Mattia, 2017).

During UP states, there is synchronization in beta and gamma fre-

quencies, synaptic gain modulation, modulation of replay and memory

formation, and some cortical features might inform about transitions

between unconsciousness and consciousness [reviewed in Sanchez-

Vives et al., 2017]. An intriguing paradox exists in that astrocytes

induce a synchronized state, but also mediate cholinergic and norad-

renergic neuromodulations, which are characteristically associated

with asynchronous, high-rate activity that facilitates sensory

processing (Lee & Dan, 2012). We posit that astrocytes might act as

switches whose default action is to sustain UP states, whereas

neuromodulation-driven attention renders astrocytes independent of

the cortical oscillator, and shifts their action toward short-term plas-

ticity related to sensory processing. Indeed, network theory predicts

that a key parameter in setting asynchronous versus synchronous

network activity, as well as the frequency of eventual oscillations, is

afferent synaptic activity (Brunel, 2000; Ledoux & Brunel, 2011).

Coincidence detection can be thus regarded as a scenario of afferent

stimulation—specifically mediated by neuromodulation—whereby

astrocytes induce the network's transition to the asynchronous state.

Finally, although astrocytes are particularly attuned to slow oscilla-

tions because of their internal dynamics, as judged by Ca2+ transients,

fall within a time scale of seconds, they are also involved in the gener-

ation of faster waves such as theta (4–12 Hz) and slow gamma

(30–50 Hz;Perea et al., 2016 ; Sardinha et al., 2017). The effect of

astrocytes on fast waves may be due to cross-frequency coupling, a

mechanism whereby global slow oscillations modulate local fast oscilla-

tions, usually their amplitude (Canolty & Knight, 2010), which happens

to be the predominant effect of astrocytes on fast waves (Perea et al.,

2016; Sardinha et al., 2017). By regulating fast waves, astrocytes will

have an impact on neuronal encoding, because fast rhythms provide

temporal reference frames for local and large-scale computations

(Hawellek, Wong, & Pesaran, 2016). Dimensionality reduction (below)

may reveal specific astrocytic Ca2+ regimes associated with coincidence

detection, oscillations, and brain state transitions.

7 | A ROADMAP TO ADVANCE THE
INTEGRATION OF ASTROCYTES INTO
SYSTEMS NEUROSCIENCE

7.1 | Theoretical and conceptual improvements

Is there a minimal astrocyte–neuronal circuit?

Anatomical, molecular, and functional factors matter when considering

astrocytes from a computational point of view. From an anatomical per-

spective, a single astrocyte can be regarded by itself as a “mini-circuit”,

in light of the subcellular compartmentalization of calcium signals

(Bazargani & Attwell, 2016), along with the consideration that one

astrocytic anatomical domain may comprise numerous neurons, den-

drites, and synapses. Estimations in the mouse hippocampus are: 1–20

neurons (Halassa, Fellin, Takano, Dong, & Haydon, 2007), 300–600

dendrites (Halassa et al., 2007), and 140,000 synapses in Bushong,

Martone, Jones, and Ellisman (2002), and 50,700–75,200 in Chai et al.

(2017). Recently, a FRET-based study reports dynamic interactions of

astrocytic distal processes with different types of synaptic inputs

(Octeau et al., 2018). Moreover, because astrocytes are characteristi-

cally territorial, they give rise to a tiled arrangement of the brain

space, which can be then seen as a patchwork of mini-circuits. The

function of tiling is an outstanding question. From a molecular per-

spective, according to single-cell gene profiling, and unbiased hierar-

chical clustering in mouse brains, astrocyte populations are not as

functionally heterogeneous as neuronal populations (Zeisel et al.,

2015). Thus, in the mouse somatosensory cortex and hippocampal

CA1 region, there are 29 types of neurons including pyramidal cells,

glutamatergic neurons, and interneurons, as opposed to just two

types of astrocytes (Zeisel et al., 2015). This suggests that, although

both neurons and astrocytes are molecularly specialized cells,
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additional and extensive sub-specialization exists among neurons

but not astrocytes. On the other hand, the lack of molecular defini-

tion may provide astrocytes with greater adaptive capacity to oper-

ate in a variety of circuits (Poskanzer & Molofsky, 2018), which may

explain phenotypical differences of astrocytes from region to region

(Chai et al., 2017; Martin et al., 2015). We thus argue that neurons

imprint functional signatures on networks by encoding, for example,

odors, position, images, words, abstract categories, and executive

functions, whereas the size, anatomical arrangement, and molecular

makeup of astrocytes suggest that they might be designed to oper-

ate canonical computations (Section 6, Table 1) in local mini-circuits

within larger-scale networks—as well as homeostatic and metabolic

support. Support for the hypothesis that astrocytes perform canonical

computations comes from studies showing that astrocyte-based com-

putations such as synaptic potentiation, a type of gain control, improve

the performance of ANNs (Alvarellos-Gonzalez et al., 2012; Porto-

Pazos et al., 2011). Additional support comes from recent theoretical

studies in computer science, and formal language theory, which showed

that canonical filtering of synaptic transmission by astrocytes (described

as “astrocyte-like control”) facilitates the generation of the so-called

logic gates (Song et al., 2016), which are basic building blocks in neural

circuits performing logic Boolean operations such as AND, OR, NOT,

XOR, and NAND (Binder et al., 2007). According to these studies, sim-

ple ensembles of astrocytes and synapses reminiscent of our mini-

circuits might account for all elementary logical functions and, properly

combined, allow, in principle, computation of any real-world function in

a scalable manner (Song et al., 2016). It should be kept in mind that

multiple strategies are likely at play across species in shaping astrocytic

mini-circuits, and their possible computational functions. For example,

although single-cell genomics is not yet available in humans, the fact

that human astrocytes are larger, more complex (including 270,000–2

million synapses), and present more morphological variants than mouse

astrocytes (Oberheim et al., 2009), together with the striking observa-

tion that engraftment of human astrocytes into mouse brains enhances

synaptic plasticity and learning (Han et al., 2013), suggests that more

complex astrocytic mini-circuits are present in humans, possibly under-

pinning a larger variety of canonical computations. All in all, it appears

that in order to reinforce the presence of astrocytes in Systems Neuro-

science, we must zoom out at astrocyte populations as well as zoom

into single-astrocyte mini-circuits. This is akin to neuron-focused stud-

ies that, as noted, should cover both systems-wide and sub-cellular

computations. Indeed, the latter should be considered as part of the

computations within astrocyte mini-circuits, for spines and dendrites

are inextricably embedded in an astrocyte “matrix.”

Where might the “slow” spatiotemporal dynamics of astrocytic Ca2+

enter Systems Neuroscience?

The question of which time scales are relevant for neuronal computa-

tions has long been debated. Action potentials of individual neurons

are characteristically fast and short-lived voltage depolarizations in

the range of 1–2 ms. The speed and all-or-nothing nature of these

responses, as well as their lack of attenuation due to axonal mye-

lination, makes them well suited to transmitting information throughout

the brain in milliseconds. Currently, the minimal temporal resolution of

the neuronal code appears to be on a millisecond time scale, as shown

in sensory processing in the auditory system of mammals (Butts et al.,

2007; Kayser, Logothetis, & Panzeri, 2010), and in basic human cogni-

tive capabilities, including semantic abstract categorization of images

(e.g., identifying an image as a “dog”; Vanmarcke, Calders, & Wagemans,

2016). This means that stimuli arriving within intervals of a few millisec-

onds are distinguished as individual entities by neurons that fire individ-

ual, millisecond-long spikes in response to each stimulus. Clearly, if

astrocyte Ca2+ transients are the astrocytic substrate of neural

computing—and they are the best candidate thus far—they are too slow

to encode ultrafast representations. However, the brain characteristi-

cally operates in parallel on a gradient of time scales that are nested

and hierarchically organized (Murray et al., 2014). Thus, attention and

decision making can last seconds, emotions can arise within seconds,

and mood changes in minutes. In prediction coding, the slow contextual

changes in the prefrontal brain under which fast sensory representa-

tions are interpreted require seconds (Kiebel, Daunizeau, & Friston,

2008). Also, there are circadian time scales affecting sleep and global

homeostasis, and very long time scales in the range of hours, weeks, or

years affecting learning and memory (Hari & Parkkonen, 2015). This

means that complex operations ought to exist prolonging the effect of

ultrafast (up to 10 ms) and fast (<100 ms) neuronal time scales up to

minutes, which precludes structural changes caused by gene expres-

sion. Working memory during decision making is a prototypical example

of the need for sustained activity in the short-term scale. The question

is how several discrete, millisecond-long events related are engaged in

a continuum of network activities that last up to hundreds of seconds

(Hasson et al., 2015). Since there is no external input during delays

(time between input and action), working memory must arise from the

intrinsic dynamics of neural circuits. Computational neuroscience iden-

tified this problem over 20 years ago (Seung, 1996), and has since

struggled to provide answers using realistic neuronal parameters

(Chaudhury and Fiete, 2016). Answers include: (a) biophysical proper-

ties of neurons such as the slow “membrane-time constant”, which

reflects the time during which information can be maintained by neuro-

nal voltage without a substantial leak, estimated to last between 5 and

20 ms, (b) intervention of NMDA receptors, which are ideally suited to

enlarge “memory” capabilities of neurons beyond their membrane time

constants because they are active around 100 ms after the synaptic

input (X. J. Wang, 1999), (c) short-term synaptic plasticity (Abbott &

Regehr, 2004), (d) an effective computational solution called long short-

term memory (Hochreiter & Schmidhuber, 1997), and (e) sustained fir-

ing rate of neurons, or “persistent activity,” achieved upon the exquisite

tuning of recurrent circuits such that an input re-entering a synapse

exactly matches the decay of the neuron, keeping its firing rate for a

prolonged time (Goldman-Rakic, 1995; Renart, Moreno-Bote, Wang, &

Parga, 2007). These solutions present limitations. Slow time constants

need to be reset, and, at present, slow time constants in neurons do

not seem to have that capability. The time constant of the NMDA

receptor is appropriate to maintain memories up to 1–5 s, but not

longer. Long short-term memory works very well in current machine

learning applications, but its application to natural circuits is unclear.
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Finally, it is also unclear how the exact timing of feedback loops in

persistent activity is achieved. Clearly, additional solutions are in order,

perhaps including astrocytes.

Inclusion of astrocytes in current theoretical frameworks and circuit-

operating principles

The temporal dynamics of Ca2+-based excitability make astrocytes

suitable to operate in circuit computations running in the subsecond

to a supra-second scale, including the ones already mentioned such as

short-term plasticity, neuromodulation, and slow rhythms. Interest-

ingly, computations such as signal-coincidence detection and oscilla-

tion control imply detection of the order and interval of arrival of

time-varying signals, suggesting that astrocytes might encode time.

Theoretical models of timing in the brain such as oscillators (Goel &

Buonomano, 2014) and liquid state (or liquid computing; Maass et al.,

2002) may be useful to explore this idea. Astrocytes might also have a

role in predictive coding. As shown in silico renditions (Deneve et al.,

2017), the core idea of the framework is that neural circuits are error-

driven, such that differences between predictions and new inputs are

computed as prediction errors, which might be transformed (i.e.,

“rerouted”) into changes in synaptic strength by short-term plasticity.

The greater the error, the more synaptic changes would be needed in

order to “update” circuit information. The quality of prediction errors is

computed by the variable “precision”, which is akin to the standard error

in the Student's t test, and is hypothesized to occur in a scale of seconds,

and to be encoded by neuromodulators (Friston, 2009; Stephan et al.,

2015). Since astrocytes participate in neuromodulation (Navarrete et al.,

2012; Takata et al., 2011; Ding et al., 2013; Paukert et al., 2014), the

possibility emerges that astrocytes might encode precision, perhaps by

temporally decoding prediction errors from multiple synapses in the

astrocyte mini-circuit, in order to ensure sufficient statistics. It is tempt-

ing to speculate that the aforementioned canonical computations carried

out by astrocytes are manifestations of computation of error-related sta-

tistics and/or time in different contexts. These computations would be

canonical, for they would occur throughout the brain. Decoding analyses

(below) may provide information about the specific computations carried

out by astrocytes in complex behaviors where issues like timing, tempo-

ral holding of information, and error between predictions and real out-

comes, are particularly prominent.

Astrocytes and energy-efficient coding

Circuit modeling and biophysical analyses support the idea that neuro-

nal circuits are designed to produce energy-efficient codes because

action potentials are energetically demanding; hence, energy supply

becomes a relevant constraint in information processing (Laughlin,

2001). Three reasons justify a revision of the adjustment of coding to

energy constraints from the perspective of astrocytes. First, astro-

cytes may lessen the metabolic constraint by facilitating lactate to

neurons during task-elicited glutamatergic neurotransmission

(Magistretti & Allaman, 2015). Of note, lactate qualifies as a

gliotransmitter, and hence may be harvested for computational signal-

ing tasks, because it instructs memory acquisition (Suzuki et al., 2011),

and stimulates neurons by a mechanism independent of its uptake,

perhaps receptor-mediated (Tang et al., 2014). Second, as noted in

(Magistretti & Allaman, 2015), the anatomical arrangement of local neu-

rons, projections from neuromodulatory nuclei and astrocytes within

cortical columns, points to optimized circuit design to facilitate ener-

getic coupling between neurons and astrocytes. Here we extend this

notion to astrocyte mini-circuits, and argue that they might represent a

coding strategy to optimize energy utilization, for example, by integrat-

ing sparse coding, which is coding distributed among many synapses to

reduce individual computational load, and has been described as a solu-

tion to energy limitations (Laughlin, 2001). Third, whether energy is also

a constraint in Ca2+based computations in astrocytes is an outstand-

ing question. There is currently no estimation of the energy demand

of Ca2+signaling in astrocytes. ATP-consuming steps are: (a) in the

context of IP3R2-mediated Ca2+-release, reuptake of cytosolic Ca2+

back into the endoplasmic reticulum via Ca2+/ATPase pumps, which

are crucial in dictating the period of Ca2+ fluctuations/oscillations, as

well as their shape and duration; (b) the plasmalemma Ca2+/ATPase

pump involved in capacitive Ca2+ entry/flux; (c) Na+/K+-ATPase

activity dependent on glutamate uptake (Pellerin & Magistretti,

1997), which appears to critically influence Ca2+ rises in sensory

processing (Schummers et al., 2008); (d) V-ATPase dependent uptake

of Ca2+ into acidic stores; and (e) neuronal-activity dependent Ca2+

rises in astrocytic microdomains in distal processes, as shown in mice

with membrane-anchored GCaMP3 (Agarwal et al., 2017). This study

documents a critical link between energy metabolism and Ca2+-based

excitability, because it shows that Ca2+ rises in microdomains are

the result of Ca2+ efflux from mitochondria, which, in turn, is trig-

gered by short events (mitoflashes) of superoxide production dur-

ing oxidative phosphorylation. Still, the need for ATP for several

critical processes is an open question, a prime example of which is

gliotransmission: The exact source of gliotransmitters such as ATP,

glutamate, and D-serine, and the energy expenditure involved in

their production, is unknown. All in all, it is worth stressing that

fatty acids are a fuel for oxidative metabolism in astrocytes (Eraso-

Pichot et al., 2018). Since fatty-acid oxidation yields over 50 times

more ATP molecules than glycolysis, astrocyte metabolism might

be optimized to undertake costly computations from the point of

view of energy requirements.

Ca2+-independent computations

Although productive, the adoption of Ca2+ signaling as a readout of

astrocyte excitability should not blind us to the possibility that similar

to Ca2+ transients in neurons following action potentials, the astro-

cytic Ca2+ response might be a late manifestation of yet undiscovered

signals. If we recover classic perspectives of biophysics (Barlow, 1996;

Destexhe, 1999), many components of the astrocytic response could

potentially encode stimulations and perform computations. This is the

case of second messenger molecules such as IP3 or cAMP that

are conventionally associated with GPCR-mediated astrocytic Ca2+

signaling (DePittà, Ben-Jacob, & Berry, 2019) but also of other ion-

based signals. Among the latter, Na+ is an emerging candidate because

it presents activity-dependent fluctuations, although advanced
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fluorescent probes are necessary to fully establish this ion as a novel

readout of astrocyte excitability (Rose & Verkhratsky, 2016).

7.2 | Technical and analytical improvements

7.2.1 | Zooming into astrocyte mini-circuits

Dimensionality reduction of Ca2+ data

We posit that single-astrocytes and astrocyte populations are dynami-

cal systems governed by function-specific regimes resulting from coor-

dinated changes in Ca2+ signaling. At the single-astrocyte level, the

local and global activation modalities described earlier might be the

extremes of a spectrum of possible regimes. Dimensionality reduction

is a statistical method developed in machine learning to facilitate analy-

sis of the characteristically multidimensional (i.e., multivariate) dynami-

cal systems. What dimensionality reduction does is to identify key

variables determining relationships within the data (the so-called latent

variables), thereby reducing input data to low-dimensional representa-

tions defined by such latent variables. In systems, dimensionality reduc-

tion has been applied to neuron-population recordings in decision

making, movement, odor perception, working memory, visual attention,

audition, rule learning, and speech [reviewed in Cunningham & Yu,

2014]. The complex spatiotemporal patterns of spontaneous and

evoked Ca2+ transients in single astrocytes, which now can be mea-

sured with three-dimensional Ca2+-imaging (Bindocci et al., 2017), rep-

resent a multidimensional data set that will benefit from dimensionality

reduction techniques. Thus far, Ca2+ transients in astrocytes have been

simplified for quantification purposes by using a single Ca2+ readout

(Perea et al., 2014), the average of calcium signals detected in multiple

ROIs pooled from a population of astrocytes (Poskanzer & Yuste,

2016), the categorization of these signals by spatial location and aver-

aging within subcellular compartments (Chai et al., 2017), and machine-

learning based identification of true signals (Agarwal et al., 2017).

Although these approaches have already yielded useful insights into

correlations between astrocytic and neuronal activities and behaviors—

as described in Section 6—they have not revealed possible canonical

spatiotemporal computations within and between astrocytes, in distinct

experimental paradigms. Dimensionality reduction will thus facilitate

detection of noise (stochastic Ca2+ transients), indicate whether some

of the manually selected ROIs based on visual inspection are not inde-

pendent, and hence can be considered as the same ROI, and reveal cor-

relations and anti-correlations of distant regions belonging to the same

ROI. The latter can occur when distant regions are synchronized due to

oscillations or synchronous inputs that regularly occur in those regions.

Thus, dimensionality reduction of single-astrocytes may help to reveal

and select dimensions, that is, the minimum number of ROIs (e.g., 5–10

from up to 200 original ones), in which fluctuations are more pro-

nounced and meaningful, thus paving the way for population analyses,

which will require the simplification of Ca2+ signals per astrocyte with

the minimal loss of relevant information. Linear methods for dimension-

ality reduction that can be used in astrocytes include simple principal

component analysis (PCA), the prime linear method (Cunningham & Yu,

2014), as well as factor analysis, as used with neuronal Ca2+ (Paninski &

Cunningham, 2018).

Machine learning

Nonlinear methods such as ANNs are increasingly being used to replace

stages in signal processing and analysis in neuronal populations, as well

as a method for dimensionality reduction (Paninski & Cunningham,

2018). Thus, ANNs could a priori uncover latent variables that best

account for Ca2+ data from astrocyte mini-circuits, and are nonlinearly

related. Current ANNs appear well-suited to extract latent variables

from Ca2+ imaging of large populations of neurons (Paninski & Cunning-

ham, 2018), and their application to multidimensional astrocytic Ca2+

data should be explored. Conversely, ANNs can be also used as genera-

tive models, that is, models that infer classes of inputs from a low

number of latent variables (Dosovitskiy, Springenberg, & Brox, 2015).

Another statistical tool of machine learning that holds promise is Bayes-

ian hierarchical modeling (Bishop, 2006). The general idea is to build a

graph that hierarchically and probabilistically relates relevant variables

related to Ca2+ and to other data from connectomics. Indeed, if the

graphs are well-informed about the connectome within mini-circuits,

they can be used as an inverted model to infer the values of the latent

variables accounting for Ca2+ signals. One advantage of these methods

is that the number of free parameters is typically lower than in standard

ANNs, which might require massive amounts of data for training.

Connectomics

Providing an accurate picture of the synaptic contacts within astrocyte

mini-circuits, in rodents and humans, and in different brain regions, is

necessary to help interpret and model in silico Ca2+-based regimes

defined by dimensionality reduction, and to identify constraints that

could be incorporated into machine-learning algorithms. Specific ques-

tions are the density of excitatory and inhibitory synapses (and sub-

types of the latter), their functional interplay in distinct astrocyte

regimes defined by Ca2+. For example, astrocyte mini-circuits might

adopt feed-forward, recurrent or mixed patterns, depending on the

behavioral task, and present hierarchical organizations between astro-

cytic and neuronal elements, as well as topological/functional “motifs”

and wiring rules—as shown in the analysis of small neuronal networks

(Schroter, Paulsen, & Bullmore, 2017). Tools for connectomics include

graph theory (Fornito, Zalesky, & Bullmore, 2016), Bayesian hierarchical

modeling (Bishop, 2006), and topological tools (Kanari et al., 2018;

Reimann et al., 2017). In all these approaches, both morphological and

functional readouts could serve as input data. Morphological readouts

of the synaptic architecture of astrocyte mini-circuits at mesoscale and

microscale can be obtained with array tomography, a form of light

microscopy based on the serial sectioning of ultrathin (hundreds of

microns) sections, which permits 3D reconstructions at a micro-

meter/nanometer resolution (Micheva et al., 2010). Array tomography

can be complemented with automated 3D electron microscopy tech-

niques, such as serial block-face ANNs electron microscopy (SBFSEM).

Crucially, fixation methods must not distort contacts within mini-

circuits (Korogod et al., 2015). Functional analyses are more challeng-

ing, for they will require the development of improved optical tools and

18 KASTANENKA ET AL.



probes to simultaneously monitor the activities of excitatory and inhibi-

tory neuronal populations, as well as those of astrocytes. The emerging

combination of two-photon calcium imaging with SBFSEM for examin-

ing neural circuits at cellular resolution may pave the way for subcellu-

lar analyses (Vishwanathan et al., 2017). Finally, recent multiplex Ca2+

imaging at a single synapse-astrocyte interface (J. P. Reynolds et al.,

2019), application of nanotechnology to voltage recording in neurons

(Jayant et al., 2017), and FRET-based analysis of contacts between syn-

apses and astrocytes (Octeau et al., 2018), are advances toward inte-

grating structure and function in astrocyte mini-circuits.

7.2.2 | Zooming out to astrocyte populations

Decoding astrocytes in complex behavioral tasks

The identification of an astrocytic Ca2+-based code is a prime objec-

tive that, importantly, can be started with current statistical tools

developed to study neuron-based encoding and decoding. Moreover,

we argue that the increased interest in neuronal Ca2+ as a tool to deci-

pher the brain code (the reason being that the number of neurons

recorded with optical tools is one order of magnitude higher than

with multi-electrode arrays, see Section 2) benefits the analysis of

Ca2+-based astrocyte computations. For simplicity, here we focus on

decoding approaches, which specifically seek to predict external vari-

ables from signal patterns, although tools to study encoding can be

also considered (Section 3). Decoding astrocyte signals entails measur-

ing Ca2+ activity populations in behavioral paradigms in which several

time scales, including those in the range of action defined for Ca2+-based

signaling in astrocytes (hundreds of milliseconds to tens of seconds),

are relevant for the task at hand. One such paradigm is reward-

associated decision making over variable contexts in which an animal

must associate stimuli with choices (responses) to obtain an immedi-

ate reward. The association can be abruptly reversed, as in the case

of reversal learning, where in a given Context 1, stimulus A leads to

reward and stimulus B does not lead to reward, whereas in another

Context 2, stimulus B predicts reward (Schoenbaum, Nugent,

Saddoris, & Setlow, 2002). The performance in such varying contexts

involves tracking variables at both fast and slow time scales. Vari-

ables such as “immediate reward,” “confidence,” “option values,” and

“choice” are fast, represented in the millisecond time scale, whereas

the deliberation occurring before a decision is taken lasts hundreds

of milliseconds to seconds, and even up to minutes, if this delibera-

tion involves inference about the current context. During this time,

the brain computes correlations between fast variables, and repre-

sents differences between the prediction based on previous experi-

ence and the real outcome as “error.” We argue that the precise

computation of prediction error is key in the identification of a true

association between stimulus and reward, such that varying contexts

plausibly require more complex computations. Frontal areas are

expected to track the mixture of relevant variables in the form of

“cognitive maps.” In rat, the orbitofrontal cortex encodes the

millisecond-long fast variables (Nogueira et al., 2017; Rolls, Critchley,

Mason, & Wakeman, 1996). It is unclear, however, how transitions

between contexts and associated deliberations are represented at

the much slower time scale of seconds. We posit that the network may

use astrocytes as a buffer to help represent the prior history of rewards

and choices, which is necessary to infer the true nature of the current

context. Specifically, astrocytes may temporally integrate error signals,

or somehow influence behavior based on accumulated information

through canonical computations such as gain modulation. Along these

lines, dopaminergic neuromodulation, which signals reward prediction

error (O'Doherty, Cockburn, & Pauli, 2017), might serve to gate infor-

mation from neurons to astrocytes, and vice versa.

Technical and analytical challenges associated with large-scale

recordings of Ca2+ rises in astrocytes and neurons

The specific experimental design we propose involves the simulta-

neous recording of Ca2+ activity in astrocytes with two-photon

microscopy in awake animals (Srinivasan et al., 2015), and Ca2+ or

electrophysiological responses in neurons (Poskanzer & Yuste, 2016).

From previous work indicating that with tens of neurons, it is possible

to predict animal choices with high accuracy (Kiani et al., 2014;

Nogueira et al., 2017), we reason that tens of astrocytes will suffice to

observe statistically significant trends that can be used to guide sub-

sequent recordings and analyses. At this time, optimal selection of

paradigms and analytical methods may be more helpful to make signif-

icant leaps toward understanding astrocyte-based computations than

massively increasing the number of astrocytes recorded. Data acquisi-

tion, signal processing and increased dimensionality of the data pre-

sent additional challenges when there is a need to perform recordings

of two cell types with different Ca2+ dynamics. As to data acquisition,

although recent advances have pushed the boundaries of multiphoton

imaging, with significant improvements that enable imaging in multiple

brain areas, across laminae, and in nonhead-fixed configurations

(Yang & Yuste, 2017), since these imaging methodologies have been

developed specifically to record the activity of neuronal populations,

they may not always be translatable to astrocyte populations. For

example, many of the technologies used to carry out 3D two-photon

imaging rely on source separation algorithms that assume the Ca2+

signals are nonpropagative and spatially static. While this is true for

Ca2+ imaging of neuronal somata, astrocyte Ca2+ imaging data obvi-

ously do not obey these rules. Thus, new two-photon imaging meth-

odologies born from an astrocytic perspective, particularly those that

allow imaging multiple laminae simultaneously, are necessary to

advance our understanding of these cells within larger, mesoscale

circuits. Another area of improvement for large-scale Ca2+ recording

in astrocytes and spike-recording in neurons is the development of

new electrophysiological approaches, including flexible polymer pro-

bes (Chung et al., 2019) and clear electrode arrays (Thunemann

et al., 2018), to solve the current problem posed by the large equip-

ment necessary to carry out single-neuron recordings, which pre-

cludes astrocyte imaging. Despite the advances in Ca2+ imaging,

single-neuron electrophysiological measurements are preferable, for

Ca2+ transients lack temporal resolution to reveal single-action

potentials. With regards to signal processing, we described earlier

the state-of-the-art in signal processing in large-scale recordings in neu-

rons, including methods to denoise, demix, and simplify Ca2+ data. As
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to astrocytes, readouts to be assessed per astrocyte are Ca2+ signals in

microdomains measured in dynamic ROIs (Agarwal et al., 2017; Wang

et al., 2006), and/or processed with dimensionality reduction tech-

niques as explained above. A priori, dimensionality reduction and

decoding techniques can be used with data from astrocyte and neu-

ronal populations. Possible experimental scenarios are paired Ca2+

imaging from both cell types (e.g., low-dimensional data per astro-

cyte could be paired with one optical or electrophysiological signal

per neuron). Dimensionality reduction may reveal pools of neurons

interacting with specific astrocytes. Similarly, linear and nonlinear

decoders could be trained to predict relevant behavioral variables

from neuron–astrocyte networks and to study which sets of neurons

and astrocytes are more relevant for that decoding. Linear decoding

techniques could be used even if the amount of behavioral data is

not massive, such that around 10 trials per stimulus-choice condition

might suffice to obtain a description of astrocyte–neuronal interac-

tions at behaviorally relevant time scales.

7.3 | Translation: Clinical Systems Neuroscience

When it comes to treatments for CNS diseases, molecular and cellular

approaches should not be abandoned, because they have successfully

led to current therapeutic venues. For example, in multiple sclerosis,

relapses are mitigated by immunotherapy against specific populations

of immune cells (Torkildsen, Myhr, & Bo, 2016), and in Alzheimer's dis-

ease, promising anti-β-amyloid treatments are being tested in clinical

trials (Kastanenka et al., 2016; Sevigny et al., 2016). However, there

are no effective preventive or disease-modifying treatments for neu-

rodegenerative and psychiatric disorders, suggesting that reductionist

approaches aimed at fighting disease one molecule or one cell at a time

might be insufficient. Moreover, degeneration of neuromodulatory

nuclei (Kelly et al., 2017; Liu, Chang, Pearce, & Gentleman, 2015), as

well as large-scale network disarrangement (Westerberg et al., 2012),

are hallmarks of psychiatric and neurodegenerative diseases. Clearly,

brain diseases are associated with dysfunction of neural systems.

Although the outstanding question persists of whether such dysfunc-

tion is cause, consequence, or epiphenomenon, the notion that

Systems-oriented research will prove more fruitful than traditional

approaches to discovering, and thus manipulating, the biological under-

pinnings of diseases, has already been voiced for autism (Rosenberg,

Patterson, & Angelaki, 2015), and motivates therapeutic approaches

such as deep brain stimulation in Parkinson's disease (Ashkan, Rogers,

Bergman, & Ughratdar, 2017). We anticipate that optogenetic and

chemogenetic stimulations will be the most productive avenues in the

emerging field of Clinical Systems Neuroscience (Kastanenka, Herlitze,

Boyden, Tsai, & Bacskai, 2017). First, these approaches offer the advan-

tage of selective actions at the network and cellular levels—critically all-

owing the assessment of neuronal versus astrocytic effects—since viral

vectors may be targeted at specific regions through stereotaxic surgery.

Second, they enable preclinical research in rodents and primates to

demonstrate causality between network dysfunction and disease

hallmarks (Kastanenka et al., 2017). Third, advances in viral vector

technology for gene transfer significantly reduce vector-associated

cytotoxicity and immune responses (Lundstrom, 2018), rendering

chemogenetics and optogenetics amenable for clinical use in human

patients.

8 | CONCLUDING REMARKS

We started this perspective article by posing several questions to

guide the analysis of the role of astrocytes within Systems Neurosci-

ences. We looked for initial answers in available studies that include

measurements of astrocyte Ca2+ activity, targeted optogenetic and

chemogenetic manipulations, and complex behaviors or neural net-

works. We asked whether astrocytes are as functionally heteroge-

neous as neurons. We contend that they are not. We put forth

anatomical, molecular, and computational arguments in support that

astrocytes may operate modules akin to mini-circuits in large scale

networks, performing canonical computations throughout the brain.

Mathematical analyses of in vivo data together with in silico modeling

will be necessary to firmly establish the existence, and nature, of

astrocytic computations, and whether they encode specific variables.

We may get closer to the answer using decoding approaches in

reward-associated decision making over variable contexts, a complex

behavioral paradigm in which the brain needs to perform difficult

computations within the slow time scale of astrocytic Ca2+ signals.

Another question was whether astrocytes use Ca2+ to carry out spa-

tiotemporal integration of multicellular signals. A first insight is that

there is behavior-dependent integration in a time scale of subseconds

to supra-seconds, perhaps driven by signal thresholding and timing

control. We propose to use dimensionality reduction, a tool devel-

oped in the context of machine learning, to identify the minimum

amount of ROIs that carry independent information in Ca2+ transients

in different contexts. This is a mandatory step toward finding struc-

ture in these transients, with the assumption that astrocytic Ca2+

responses behave like a dynamical system that can adopt multiple

regimes. Thus, the question of whether subcellular compartments in

astrocytes perform different functions ought to be reformulated to

whether there are function-specific Ca2+ regimes. Furthermore, we

identify technical and analytical shortages in joint astrocyte- and

neuron-population imaging, and ensuring data processing algorithms.

Finally, we point to theoretical frameworks used by Systems Neuro-

sciences that might benefit from the inclusion of astrocytes. Many

avenues of exploration remain. To cite two, we have the role of

astrocyte-based computations in long-term processes underlying

memory, perhaps by intervening in memory replay in the so-called

resting brain, and the failure of neural circuits including astrocytes in

neurodegenerative and psychiatric diseases. Decoding astrocytes may

represent a leap forward toward novel approaches in the study of

astrocytes in health and disease.
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