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Abstract
The present study aimed to investigate whether dietary choline can regulate lipid metabolism and suppress NFκB activation and, consequently, attenuate
inflammation induced by a high-fat diet in black sea bream (Acanthopagrus schlegelii). An 8-week feeding trial was conducted on fish with an initial weight of
8·16 ± 0·01 g. Five diets were formulated: control, low-fat diet (11 %); HFD, high-fat diet (17 %); and HFD supplemented with graded levels of choline (3,
6 or 12 g/kg) termed HFD+ C1, HFD + C2 and HFD+ C3, respectively. Dietary choline decreased lipid content in whole body and tissues. Highest TAG
and cholesterol concentrations in serum and liver were recorded in fish fed the HFD. Similarly, compared with fish fed the HFD, dietary choline reduced
vacuolar fat drops and ameliorated HFD-induced pathological changes in liver. Expression of genes of lipolysis pathways were up-regulated, and genes of
lipogenesis down-regulated, by dietary choline compared with fish fed the HFD. Expression of nfκb and pro-inflammatory cytokines in liver and intestine
was suppressed by choline supplementation, whereas expression of anti-inflammatory cytokines was promoted in fish fed choline-supplemented diets. In
fish that received lipopolysaccharide to stimulate inflammatory responses, the expression of nfκb and pro-inflammatory cytokines in liver, intestine and
kidney were all down-regulated by dietary choline compared with the HFD. Overall, the present study indicated that dietary choline had a lipid-lowering
effect, which could protect the liver by regulating intrahepatic lipid metabolism, reducing lipid droplet accumulation and suppressing NFκB activation,
consequently attenuating HFD-induced inflammation in A. schlegelii.
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Lipids are important energy-dense macronutrients that are effi-
ciently utilised by most fish species and, consequently, there is
a tendency to use high-fat diets (HFD) in intensive aquaculture
due to the protein-sparing and growth-promoting effects of
dietary lipid(1,2). However, HFD commonly cause excess fat
accumulation in liver or visceral fat tissue in farmed fish,

leading to liver injury and lipid metabolism disorders(3–8).
Similar results have been reported in mammals, indicating
that excess dietary fat can cause injury in the liver and various
other tissues and organs(9–13). HFD-induced obesity in rodents
has shown conclusively that hepatic steatosis is associated with
a state of chronic hepatic inflammation(14). Recently, studies
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demonstrated that HFD could impair lipid homoeostasis and
induce inflammatory responses in several marine fish species,
including black seabream (Acanthopagrus schlegelii), blunt snout
bream (Megalobrama amblycephala) and large yellow croaker
(Larimichthys crocea)(4,7,9,15). It is generally accepted that excess
fat deposition is associated with altered tissue lipid metabol-
ism, including lipogenesis and lipolysis. Previous studies
demonstrated that fat deposition could be decreased by down-
regulating the expression of lipogenesis pathway genes such as
sterol regulatory element-binding protein-1(srebp-1), acetyl-
CoA carboxylase α (accα) and fatty acid synthase ( fas), and/
or up-regulation of lipolysis pathway genes such as PPARα
( pparα), hormone-sensitive lipase (hsl) and carnitine palmitoyl-
transferase 1A (cpt1a)(16–19). In addition, adiponectin, a hor-
mone involved in the regulation of glucose metabolism and
fatty acid breakdown in mammals, could lower intracellular
lipid content(20). Therefore, dietary supplements that can regu-
late lipid metabolism or adiponectin and, consequently, reduce
excess lipid deposition, alleviate hepatic steatosis and attenuate
inflammation response would be highly beneficial.
Choline has been shown to be an essential vitamin for fish,

playing a vital role in maintaining cell structure and lipid trans-
port in and out of the cells(21,22). It is well known that choline
is a key component of both phosphatidylcholine and acetyl-
choline, a neurotransmitter(23). Recent studies reported that
dietary choline supplementation affected hepatic transport
and lipid deposition in various fish species, which suggested
that dietary choline could reduce hepatic lipid content and
influence expression of lipid metabolism genes(23–26).
Moreover, previous studies demonstrated that dietary choline
could modulate immune responses by reducing expression
of pro-inflammatory biomarkers such as TNF-α (tnfα),
IL-1β (il-1β) and NFκB (nfκb), and up-regulating mRNA
expression of anti-inflammatory cytokine IL-10 (il-10) and
transforming growth factor β-1 (tgfβ-1) in vertebrates including
fish(27–29). However, there are few studies investigating the
possible mechanisms whereby dietary choline affects lipid
metabolism and subsequently reduces inflammatory response.
Lipopolysaccharide (LPS) is a structural component of the

outer membrane of Gram-negative bacteria and one of the
most effective stimulators of the immune system, and has
been widely used as an experimental model for bacterial infec-
tion in animals(4,28,30–33). Furthermore, the LPS inflammation
model has been commonly used to evaluate acute-phase
responses and the release of pro-inflammatory cytokines
through the activation of nfκb(4,34). NFκB is a transcription
factor belonging to the ‘Rel’ family that represents a crucial
intracellular signal transduction system involved in several
inflammatory responses, through interaction with the inhibi-
tory κB (IκB) proteins(35). Activation of NFκB promotes
the expression of inflammatory molecules, such as IL-6,
IL-8 and TNFα(36). Hence, NFκB is a key nuclear transcrip-
tion factor tightly linked to the inflammatory response.
Black seabream (A. schlegelii) is a very popular and commer-

cially important marine fish species cultured in China, Japan,
Korea and other countries in Southeast Asia, and has been
regarded as an excellent aquaculture species for intensive cul-
ture since it exhibits rapid growth, high disease resistance, and

can tolerate a wide range of environmental conditions(7).
Besides, black seabream is a validated experimental model
for HFD-induced inflammation as confirmed previously(7).
The production of high-quality fish for human consumption
requires healthy fish and, therefore, improving fish health is
a priority in aquaculture. In the present study, we aimed to
investigate how HFD can affect lipid metabolism and cause
inflammation by exploring the impacts of dietary choline, sup-
plemented to HFD, as a mechanism to attenuate HFD-
induced inflammatory responses.

Materials and methods

Ethics statement

Animal experimentation within the present study was con-
ducted in accordance with the Animal Research Institute
Committee guidelines of Ningbo University, China and
approved by the Committee of the Animal Research
Institute, Ningbo University, China.

Experimental design and diet preparation

Five isonitrogenous (about 42 % crude protein) experimental
diets with two levels of lipid (about 11 % and about 17 %
crude lipid) were formulated with the diets containing the
higher lipid level supplemented with graded levels of choline
(Sinopharm Chemical Reagent Co., Ltd). The diets were
termed: control, low-fat diet; HFD, high-fat diet; HFD + C1,
HFD plus choline (3 g/kg dry diet); HFD + C2, HFD plus
choline (6 g/kg dry diet); HFD + C3, HFD plus choline (12
g/kg dry diet) (Table 1). Fishmeal, soyabean protein concen-
trate, soyabean meal and wheat flour were used as protein
sources, with fish oil, palmitic acid and soyabean lecithin

Table 1. Formulation and composition of the experimental diets (% DM)

Diets

Control HFD HFD +C1 HFD +C2 HFD +C3

Ingredients

Fish meal 26·000 26·000 26·000 26·000 26·000
Soyabean protein

concentrate

10·000 10·000 10·000 10·000 10·000

Soyabean meal 20·000 20·000 20·000 20·000 20·000
Wheat flour 24·300 24·300 24·300 24·300 24·300
Fish oil 8·000 8·000 8·000 8·000 8·000
Palmitic acid 0·000 6·000 6·000 6·000 6·000
Soyabean lecithin 1·000 1·000 1·000 1·000 1·000
Vitamin premix* 0·500 0·500 0·500 0·500 0·500
Mineral premix* 2·000 2·000 2·000 2·000 2·000
Choline chloride 0·000 0·000 0·300 0·600 1·200
Ca(H2PO4)2 1·000 1·000 1·000 1·000 1·000
Cellulose 7·200 1·200 0·900 0·600 0·000

Proximate composition (%)

DM 90·04 89·43 89·78 89·72 89·59
Crude protein 40·48 40·79 41·49 41·68 41·92
Crude lipid 10·82 16·75 16·42 16·37 16·39
Ash 9·30 9·45 9·44 9·41 9·40

HFD, high-fat diet; HFD +C1,HFD + choline (3 g/kg); HFD +C2, HFD + choline (6 g/kg);

HFD+C3, HFD + choline (12 g/kg).

* The vitamin premix and mineral mixture were purchased from Ningbo Tech-Bank

Feed Co. Ltd.
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used as the main lipid sources. All ingredients were purchased
from Ningbo Tech-Bank Feed Co. Ltd. The experimental
diets were produced according to the method described in
detail previously(7). Briefly, the ground ingredients were
mixed in a Hobart type mixer and cold-extruded pellets pro-
duced (F-26; Machine Factory of South China University of
Technology) with pellet strands cut into uniform sizes (2
and 4 mm diameter pellets) (G-250; Machine Factory of
South China University of Technology). Pellets were steamed
for 30 min at 90°C, and then air-dried to approximately 10
% moisture, sealed in vacuum-packed bags and stored at
−20°C until used in the feeding trial.

Feeding trial and experimental conditions

Juvenile black seabream (initial weight 8·16 ± 0·01 g) were
obtained from a local commercial hatchery at Xiangshan
Bay, Ningbo, China. Prior to the experiment, the black seab-
ream juveniles were acclimatised for 2 weeks and fed with a
commercial diet (45 % dietary protein, 12 % crude lipid;
Ningbo Tech-Bank Corp.). A completely randomised trial
design was implemented. Briefly, a total of 450 black seabream
juveniles were randomly allocated to fifteen floating net cages
(1·5 m × 1·5 m × 2·0 m) corresponding to triplicate cages of
the five dietary treatments. Fish were hand-fed to apparent
satiation twice daily at 07.00 and 17.00 hours over 8 weeks.
During the experimental period, physico-chemical conditions
including temperature (26·6–30·7°C), salinity (25·53–27·86
‰), dissolved O2 (4·7–6·8 mg/l) and pH (8·0–8·1 mg/l)
were monitored daily (YSI Proplus; YSI).

Sample collection

At the end of the feeding trial, fish were sampled 24 h after the
last feed, with all fish (other than six fish used for the LPS chal-
lenge test) anaesthetised with tricaine methane sulfonate
(MS-222). All fish in each cage were weighed and counted to
determine weight gain, specific growth rate, feed efficiency
and survival. Five fish from each cage (fifteen per treatment)
were pooled (n 3) and used for proximate composition of the
whole body. Liver samples were collected and pooled from a
further three fish per cage (n 3) and stored at −80°C prior to
analysis of adiponectin, TAG and cholesterol content. Liver
and intestine samples were also rapidly collected from five
fish in each cage and stored at −80°C prior to analysis of
gene expression (pools of five fish per cage, n 3). The liver
was collected from one fish per cage into 4 % paraformalde-
hyde for histological analysis. Blood samples were taken from
the caudal vein of eight fish per cage using 1·5 ml syringes.

Proximate composition analysis

Crude protein, crude lipid, moisture and ash contents of diets
as well as the lipid content of whole fish, muscle and liver were
determined according to the methods of the Association of
Official Analytical Chemists(37). Briefly, crude protein content
was determined via the Dumas combustion method with a
protein analyser (FP-528; Leco). Moisture was determined by

drying the samples to a constant weight at 105°C. Crude
lipid contents were determined by Soxhlet extraction using
diethyl ether (Soxtec System HT6; Tecator). Ash contents
were determined using a muffle furnace at 550°C for 8 h.

Assay of serum and hepatic biochemical indices

Blood was assayed within 24 h of collection after storage at 4°C,
with serum collected by centrifugation at 956 g for 10 min at 4°C.
Serum biochemical indices including total protein, albumin, TAG,
cholesterol, glucose contents and the activities of alkaline phos-
phatase, aspartate aminotransferase (AST) and alanine amino-
transferase (ALT) were measured by automatic biochemical
analyser (Selectra Pro-M 13-7476) according to the manufac-
turer’s instructions (Nanjing Jiancheng Bioengineering Institute).
Liver samples were homogenised in nine volumes (w/v) of

ice-cold physiological saline (0·89 %; w/v), and then centri-
fuged as above. The contents of adiponectin (Shanghai
Jiancheng Bioengineering Institute), TAG and cholesterol
(Nanjing Qiaodu Biotechnology Co., Ltd) were assayed using
commercial kits according to the manufacturer’s instructions
by Multiskan spectrum (Thermo).

Histological analysis of liver

Fresh liver tissue was fixed with 4 % paraformaldehyde before
paraffin sections were prepared (Servicebio). Briefly, after fix-
ation for at least 24 h, tissue samples were trimmed appropri-
ately in a fume hood before being dehydrated in ethanol with
concentration increasing incrementally from 75 % to 100 %.
Liver samples were then embedded in paraffin and sliced
into sections of 4 µm using a microtome. They were stained
with haematoxylin and eosin and images were acquired
under a microscope (Nikon Eclipse CI).

Total RNA extraction, reverse transcription and real-time PCR

Gene expression was determined by reverse-transcriptase
quantitative PCR (qPCR) as follows. Total RNA was extracted
from tissues (liver, intestine and kidney) of juvenile black seab-
ream using Trizol reagent (Takara) according to the manufac-
turer’s instructions. Quantity and quality of isolated RNA were
determined spectrophotometrically (Nanodrop 2000; Thermo
Fisher Scientific) and on a 1·2 % denaturing agarose gel,
respectively. The cDNA was prepared from 1000 ng of
DNAase-treated RNA and synthesised using a
PrimeScript™ RT Reagent Kit with gDNA Eraser (Perfect
Real Time; Takara). The housekeeping gene β-actin was used
as the reference gene after confirming its stability across the
experimental treatments. Specific primers for the candidate
genes nfκb, il-1β, tnfα, tgfβ-1, il-10, accα, fas, srebp-1, lpl, cpt1a,
hsl and pparα used for qPCR were designed by Primer
Premier 5.0 (Table 2). Amplification was performed using a
quantitative thermal cycler (Lightcycler 96; Roche). The
qPCR assays were performed in a total volume of 20 µl, con-
taining 1·0 µl of each primer, 10 µl of 2× conc. SYBR Green I
Master (Roche), 2 µl of 1/5 diluted cDNA and 6 µl diethyl
pyrocarbonate (DEPC)-water. The thermal-cycling conditions
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used for qPCR were as follows: 95°C for 2 min, followed by
forty-five cycles of 95°C for 10 s, 58°C for 10 s and 72°C
for 20 s. Standard curves were generated using six different
dilutions (in triplicate) of the cDNA samples, and the
amplification efficiency was analysed using the equation
E = 10(−1/slope)−1(40). The amplification efficiencies of all
genes were approximately equal and ranged from 87 to 109 %.
All gene expression data were presented relative to the expression
of the control group (reference group). The expression levels of
the target genes were calculated using the 2 method as described
by Livak & Schmittgen(41).

Lipopolysaccharide injection and sampling

After the 8-week feeding trial, six fish in each cage were ran-
domly collected for LPS challenge to intensify inflammatory
responses. LPS (Escherichia coli 055:B5; Sigma-Aldrich) was dis-
solved in sterile PBS (pH = 7·4) to a final concentration of 0·5
mg/ml. Fish from the HFD, HFD + C1, HFD + C2 and
HFD + C3 treatments were individually injected intraperitone-
ally with 0·2 ml LPS at a dose of 2·5 mg/kg body weight. As
control, fish were injected individually with the same volume
of sterile PBS. Liver, intestine and kidney were collected
from all fish 24 h after injection (samples were pooled per
cage; n 3 per dietary treatment), and snap-frozen in liquid
N2 and stored at −80°C for later gene expression analysis
of nfκb, il-1β, tnfα, tgfβ-1 and il-10(4,31,42,43).

Statistical analysis

Results are presented as means with their standard errors
(number of replicates as indicated). The relative gene

expression results (qPCR analyses) were expressed as mean
normalised ratios corresponding to the ratio between the
copy number of the target gene and the copy number of the
reference gene, β-actin. The homogeneity of variances
(Levene’s test) were checked prior to ANOVA followed by
Tukey’s honestly significant difference test at a significance
level of P≤ 0·05 (IBM SPSS Statistics 20).

Results

Growth performance, feed utilisation, survival and lipid
content

In the present study, no statistical differences were found in
final body weight, weight gain, specific growth rate, feed effi-
ciency or survival among the five groups (P> 0·05) (Table 3).
However, fish fed with the HFD had significantly higher lipid
content in whole body and muscle compared with the control
group (P < 0·05). Furthermore, compared with the HFD treat-
ment, the lipid content in muscle was significantly reduced by
dietary choline supplementation (P < 0·05), and significantly
lower lipid content in whole body was recorded in fish fed
HFD+ C1, but liver lipid content was not significantly
affected (P > 0·05) (Fig. 1).

Serum and hepatic biochemical indices

In serum, the activities of AST and ALT were significantly
higher in fish fed the HFD than in fish fed the other diets
(P < 0·05), and dietary choline supplementation significantly
decreased AST and ALT activities in fish fed the HFD (P <
0·05) (Fig. 2(A)). In contrast, no significant differences were
found in serum TAG and cholesterol contents among all

Table 2. Primers for real-time quantitative PCR for inflammation related genes and β-actin of black seabream (Acanthopagrus schlegelii)

Gene Nucleotide sequence (5′–3′) Size (bp) GenBank reference or publication Functions

il-1β Forward: CATCTGGAGGCGGTGAA 231 JQ973887 Pro-inflammation cytokine

Reverse: CGGTTTTGGTGGGAGGA

tnfα Forward: GTCCTGCTGTTTGCTTGG 154 AY335443 Pro-inflammation cytokine

Reverse: AATGGATGGCTGCCTTGG

nf-κb Forward: AGCCCAAGGCACTCTAGACA 154 MK922543 Nuclear transcription factor

Reverse: GTTCTGGGCAGCTGTAGAGG

tgfβ-1 Forward: GGGTTTCCAACTTCGGC 209 Xue et al.(39) Anti-inflammation cytokine

Reverse: TTGTGTCCGTGGAGCGT

il-10 Forward: TGTCAAACGGTTCCTTGCAG 172 MK922542 Anti-inflammation cytokine

Reverse: GGCATCCTGGGCTTCTATCT

accα Forward: AGTAGCCTGATTCGTTGGT 154 KX066238 Lipogenesis pathway

Reverse: AGTAGCCTGATTCGTTGGT

fas Forward: AAGAGCAGGGAGTGTTCGC 213 KX066240 Lipogenesis pathway

Reverse: TGACGTGGTATTCAGCCGA

srebp-1 Forward: TGGGGGTAGGAGTGAGTAG 247 KX066235 Lipogenesis pathway

Reverse: GTGAAGGGTCAGTGTTGGA

cptla Forward: TGCTCCTACACACTATTCCCA 203 KX078572 Lipolysis pathway

Reverse: CATCTGCTGCTCTATCTCCCG

hsl Forward: AGCAACTAAGCCCTCCCCATC 179 KX066236 Lipolysis pathway

Reverse: TCTTCACCCAGTCCGACACAC

pparα Forward: ACGACGCTTTCCTCTTCCC 183 KX066234 Lipolysis pathway

Reverse: GCCTCCCCCTGGTTTATTC

β-actin Forward: ACCCAGATCATGTTCGAGACC 212 Jiao et al.(38) Housekeeping gene

Reverse: ATGAGGTAGTCTGTGAGGTCG

tgfβ-1, Transforming growth factor β-1; accα, acetyl-CoA carboxylase α; fas, fatty acid synthase; srebp-1, sterol regulatory element-binding protein-1; cpt1a, carnitine palmitoyl-

transferase 1a; hsl, hormone-sensitive lipase.
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treatments (P > 0·05) (Fig. 2(B)). In liver, the cholesterol con-
centration was significantly higher in fish fed the HFD than in
the control group, but was reduced in fish fed diets HFD +
C1, HFD+ C2 and HFD+ C3 (P < 0·05). Contrasting results
were found for hepatic adiponectin, with significantly lower
concentration recorded in fish fed the HFD compared with
the control group (P < 0·05), and there was a clear trend for

dietary choline to increase adiponectin compared with the
HFD group, although no statistical differences were found
(P > 0·05) (Fig. 3).

Hepatic histological analysis

In fish fed the control diet, hepatocyte shape and structure
were regular and normal, the nucleus with nucleolus was
spherical, and basically in the middle of cells (Fig. 4(A)). In
fish fed the HFD, hepatocyte nucleoli were vacuolar and
had mostly disappeared, the nucleus and other organelles
had lysed and liquefied to form large cysts, and cells contained
many large vacuolar fat drops (Fig. 4(B)). In fish fed HFD +
C1, HFD + C2 and HFD + C3, the shapes of some cells were
regular and parts of the cell structure remained normal, some
of the nuclei with nucleoli were spherical, and vacuolar fat
drops fewer and smaller compared with the HFD group, sug-
gesting that dietary choline prevented or reduced the cell dam-
age caused by the HFD (Fig. 4(C)–(E)).

Lipogenesis and lipolysis pathway key markers

The hepatic expression of cpt1a was significantly up-regulated
in fish fed the diets supplemented with choline supplementa-
tion compared with fish fed the HFD (P< 0·05). Similarly, hsl

Fig. 1. Whole body, muscle and liver lipid content of the juvenile black seab-

ream (Acanthopagrus schlegelii) (% wet weight) fed the experimental diets

(▒, control; , high-fat diet (HFD); ≡, HFD + choline (3 g/kg); ‖‖, HFD + choline

(6 g/kg); ///, HFD + choline (12 g/kg)) for 8 weeks. Values are means (n 3), with

their standard errors represented by vertical bars. a,bMean values with unlike

letters within each tissue were significantly different (P < 0·05).

Table 3. Growth response, feed utilisation and survival of juvenile black seabream (Acanthopagrus schlegelii) fed the experimental diets for 8 weeks

(Mean values with their standard errors; n 3)

Diets

Control HFD HFD + C1 HFD +C2 HFD + C3

Parameter Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM ANOVA P

IBW (g) 8·14 0·01 8·16 0·01 8·16 0·01 8·16 0·01 8·16 0·01 0·933
FBW (g) 41·78 1·64 40·57 0·80 40·23 1·50 38·83 0·24 38·77 1·54 0·451
WG (%)* 412·91 19·50 397·39 9·22 393·25 17·69 376·14 2·61 375·34 18·37 0·406
SGR (%/d)† 2·92 0·07 2·86 0·03 2·85 0·07 2·79 0·01 2·78 0·07 0·410
FE (g/g)‡ 0·60 0·03 0·57 0·01 0·56 0·03 0·54 0·00 0·54 0·03 0·330
Survival (%)§ 95·56 1·11 98·89 1·11 96·67 1·92 95·56 2·94 95·56 2·22 0·716
HFD, high-fat diet; HFD + C1, HFD + choline (3 g/kg); HFD + C2, HFD + choline (6 g/kg); HFD +C3, HFD + choline (12 g/kg); IBW, initial body weight; FBW, final body weight; WG,

weight gain; SGR, specific growth ratio; FE, feed efficiency.

* WG (%) = 100 × ((final body weight− initial body weight)/initial body weight).

† SGR (%/d) = 100 × ((Ln final body weight (g)− Ln initial body weight) (g)/d).

‡ FE =weight gain (g, wet weight)/feed consumed (g, dry weight).

§ Survival (%) = 100 × (final fish number/initial fish number).

Fig. 2. Serum parameters of juvenile black seabream (Acanthopagrus schlegelii) fed the experimental diets (▒, control; , high-fat diet (HFD); ≡, HFD + choline (3 g/

kg); ‖‖, HFD + choline (6 g/kg); ///, HFD + choline (12 g/kg)) for 8 weeks. Values are means (n 3), with their standard errors represented by vertical bars. a,b,c,dMean

values with unlike letters within each serum parameter were significantly different (P < 0·05). AST, aspartate aminotransferase; ALT, alanine aminotransferase;

CHOL, cholesterol.
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expression was significantly up-regulated in fish fed HFD +
C3 compared with the HFD group (Fig. 5(A)). On the con-
trary, the hepatic expression levels of srebp-1 and accα were sig-
nificantly lower in fish fed the choline-supplemented diets
compared with fish fed the HFD (P < 0·05) (Fig. 5(B)).

Inflammatory markers after 8-week feeding trial

The expression levels of genes of the inflammatory response
including nuclear transcription factor nfκb, pro-inflammatory
cytokines il-1β and tnfα as well as anti-inflammatory cytokine
tgfβ-1 and il-10 in liver and intestine are shown in Figs 6 and
7, respectively. In liver and intestine, the expression levels of

nfκb and il-1β were significantly up-regulated in fish fed the
HFD, and down-regulated in fish fed the diets supplemented
with choline (P < 0·05). In contrast, no significant differences
were found in tnfα mRNA expression (P > 0·05). The expres-
sion levels of tgfβ-1 and il-10 in liver and intestine were gener-
ally significantly up-regulated in fish fed the HFD with choline
supplementation (P < 0·05), other than hepatic tgfβ-1 mRNA
expression, which was not statistically different (P > 0·05).

Inflammatory markers after lipopolysaccharide injection

The expression levels of genes of the inflammatory response
including nuclear transcription factor nfκb, pro-inflammatory
cytokines il-1β and tnfα as well as anti-inflammatory cytokine
tgfβ-1 and il-10 in liver, intestine and kidney of juvenile black
seabream after LPS injection are presented in Figs 8–10,
respectively. In all three tissues, the expression levels of nfκb
were significantly higher in fish fed the HFD compared with
fish fed the other diets, and down-regulated in fish fed the
diets supplemented with choline (P < 0·05). Similarly, the
pro-inflammatory cytokines il-1β and tnfα were decreased by
dietary choline supplementation compared with fish fed the
HFD (P < 0·05), although some differences were not statistic-
ally significant (P> 0·05). In contrast, expression levels of the
anti-inflammatory cytokine il-10 in liver and kidney were sig-
nificantly lower in fish fed the HFD, and significantly
up-regulated by choline supplementation (P < 0·05).
However, although there was a trend of increasing expression
of il-10 in intestine in diets supplemented with choline, this
was not significant (P > 0·05). Similar results were also

Fig. 3. Hepatic biochemical indices of juvenile black seabream

(Acanthopagrus schlegelii) fed the experimental diets (▒, control; , high-fat

diet (HFD); ≡, HFD + choline (3 g/kg); ‖‖, HFD + choline (6 g/kg); ///, HFD +

choline (12 g/kg)) for 8 weeks. Values are means (n 3), with their standard

errors represented by vertical bars. a,bMean values with unlike letters within

each hepatic index were significantly different (P < 0·05). CHOL, cholesterol;

ADP, adiponectin.

Fig. 5. Lipid metabolism gene expression in liver of juvenile black seabream (Acanthopagrus schlegelii) fed the experimental diets (▒, control; , high-fat diet (HFD);

≡, HFD + choline (3 g/kg); ‖‖, HFD + choline (6 g/kg); ///, HFD + choline (12 g/kg)) for 8 weeks. The control was used as the reference group, and the mRNA expres-

sion levels of target genes were normalised relative to the expression of β-actin. Values are means (n 3), with standard errors represented by vertical bars. a,b,cMean

values for each gene with unlike letters were significantly different (P < 0·05). cpt1a, Carnitine palmitoyltransferase 1a; hsl, hormone-sensitive lipase; srebp-1, sterol
regulatory element-binding protein-1; fas, fatty acid synthase; accα, acetyl-CoA carboxylase α.

Fig. 4. Paraffin section of liver in juvenile black seabream (Acanthopagrus schlegelii). The liver section was stained with haematoxylin and eosin to enhance the

contrast (400×). (A) Paraffin section of liver in the control group; (B) paraffin section of liver in the high-fat diet (HFD) group; (C) paraffin section of liver in the

HFD + choline (3 g/kg) group; (D) paraffin section of liver in the HFD + choline (6 g/kg) group; (E) paraffin section of liver in the HFD + choline (12 g/kg) group. C,

cell nucleus; F, fat drop.
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recorded for tgfβ-1 expression in liver, intestine and kidney,
with expressions tending to increase in fish fed the choline-
supplemented diets (HFD + C1, HFD + C2 and HFD +
C3), but not statistically significant (P > 0·05).

Discussion

Previous studies have demonstrated that choline is a vitamin
for young vertebrates, it is the most abundant vitamin con-
stituent in most fish feeds, and it can provide active methyl
groups, which can participate in the anabolism of important
physiological compounds such as methionine, phospholipids
and carnitine(22,24,25,28,29,44–46). Recent studies showed that
adequate dietary supplementation of choline could improve
growth performance and feed utilisation in various fish spe-
cies(24,25,45–47). In addition, weight gain increased significantly
with increasing dietary choline supplementation when dietary
lipid level was 11 %, and additional choline supplementation
improved growth performance of M. amblycephala fed a HFD
(15 % lipid)(23,24). However, in the present study, graded levels
of dietary choline (3, 6 or 12 g/kg) did not significantly affect
the growth performance or feed utilisation of black seabream
fed a HFD. The contrasting results could be explained by the

higher dietary lipid level (16·5%) used in the present study.
Additionally, it might be related to the duration of the trial,
which was only 8 weeks in the present study. The impact of
a HFD on growth was shown previously to be time-dependent
in M. amblycephala(4). Furthermore, few studies have been con-
ducted on the effects of dietary choline in fish fed HFD.
However, although growth performance and feed utilisation
in black seabream were not affected by HFD supplemented
with choline, the present study revealed that dietary choline
had impacts on lipid deposition, lipid metabolism and inflam-
mation response that gave insights to possible regulatory
mechanisms.
AST and ALT are two important aminotransferases in fish

that are often used as general indicators of vertebrate liver
function(23,48). General cellular damage occurring in hepatic
steatosis and injury in mammals is usually monitored by ana-
lysing leakage of cellular enzymes like AST and ALT into the
blood(49,50), and similar mechanisms have also been confirmed
in some fish species(23,51,52). Significantly increased AST and
ALT activities in serum were observed in fish fed diet HFD,
consistent with a previous study in M. amblycephala fed

Fig. 6. Inflammation gene expression in liver of juvenile black seabream

(Acanthopagrus schlegelii) fed the experimental diets (▒, control; , high-fat

diet (HFD); ≡, HFD + choline (3 g/kg); ‖‖, HFD + choline (6 g/kg); ///, HFD +

choline (12 g/kg)) for 8 weeks. The control was used as the reference

group, and the mRNA expression levels of target genes were normalised rela-

tive to the expression of β-actin. Values are means (n 3), with standard errors

represented by vertical bars. a,b,cMean values for each gene with unlike letters

were significantly different (P < 0·05). tgfβ-1, Transforming growth factor β-1.

Fig. 7. Inflammation gene expression in intestine of juvenile black seabream

(Acanthopagrus schlegelii) fed the experimental diets (▒, control; , high-fat

diet (HFD); ≡, HFD + choline (3 g/kg); ‖‖, HFD + choline (6 g/kg); ///, HFD +

choline (12 g/kg)) for 8 weeks. The control was used as the reference

group, and the mRNA expression levels of target genes were normalised rela-

tive to the expression of β-actin. Values are means (n 3), with standard errors

represented by vertical bars. a,b,cMean values for each gene with unlike letters

were significantly different (P < 0·05). tgfβ-1, Transforming growth factor β-1.

Fig. 8. Effects of lipopolysaccharide injection for 24 h on inflammation gene

expression in liver of juvenile black seabream (Acanthopagrus schlegelii)
after feeding the 8-week experimental diets (▒, control; , high-fat diet

(HFD); ≡, HFD + choline (3 g/kg); ‖‖, HFD + choline (6 g/kg); ///, HFD + choline

(12 g/kg)). The control was used as the reference group, and the mRNA

expression levels of target genes were normalised relative to the expression

of β-actin. Values are means (n 3), with standard errors represented by vertical

bars. a,b,cMean values for each gene with unlike letters were significantly

different (P < 0·05). tgfβ-1, Transforming growth factor β-1.

Fig. 9. Effects of lipopolysaccharide injection for 24 h on inflammation gene

expression in intestine of juvenile black seabream (Acanthopagrus schlegelii)
after feeding the 8-week experimental diets (▒, control; , high-fat diet (HFD);

≡, HFD + choline (3 g/kg); ‖‖, HFD + choline (6 g/kg); ///, HFD + choline (12 g/

kg)). The control was used as the reference group, and the mRNA expression

levels of target genes were normalised relative to the expression of β-actin.
Values are means (n 3), with standard errors represented by vertical bars.
a,b,c,dMean values for each gene with unlike letters were significantly different

(P < 0·05). tgfβ-1, Transforming growth factor β-1.
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HFD(23). This suggested that there was a release of intracellular
enzymes into the blood, indicating that possible damage to
hepatocytes was induced by feeding HFD to black seabream.
However, AST and ALT activities were reduced with increas-
ing dietary choline in fish fed the HFD in the present study,
demonstrating that dietary choline supplementation could
mitigate the damage induced by a HFD in black seabream.
Cholesterol and TAG levels in serum were unaffected by
diet, whereas hepatic cholesterol and TAG concentrations
were increased in fish fed the HFD, and decreased with cho-
line supplementation, which was similar to results obtained in
a previous study in Nile tilapia (Oreochromis niloticus)(6). In add-
ition, adiponectin plays a crucial role in hepatic lipid metabol-
ism, with the beneficial effects of adiponectin in mammals
being partially attributed to increased fatty acid oxidation in tis-
sues such as liver and muscle(53). In the present study, levels of
adiponectin in liver were lowest in fish fed the HFD, and its
level showed an increasing trend with dietary choline supple-
mentation. This may indicate that choline supplementation
to HFD treatments could reduce the risk of fat accumulation
and hepatic steatosis in black seabream by reducing hepatic
cholesterol and TAG, and restoring adiponectin concentration.
Choline has attracted attention as an important active sub-

stance in the body. Previous studies have confirmed that cho-
line can act as an ‘anti-fatty liver’ factor by preventing or
reducing lipid deposition in the liver. Subsequently, numerous
studies on choline have been carried out to further explore the
mechanism of choline’s anti-fatty liver effect, and provide
insight into its important role in nutrient metabolism and regu-
lation(23–26,44,45). In the present study, the highest lipid con-
tents in whole body and muscle were recorded in fish fed
the HFD compared with fish fed the other diets, and muscle
lipid contents were reduced in fish fed the HFD treatments
supplemented with choline. Similar results have been reported
previously in various fish species, confirming that dietary cho-
line could reduce lipid content of fish(23–26,45). The mechanism
of dietary choline supplementation on lipid deposition caused
by the HFD was further studied by investigating histopatho-
logical changes. The results indicated the damage that feeding
a HFD could cause in the liver of black seabream, with the

nucleus and other organelles lysed, forming large cysts, and
the presence of many large vacuolar fat drops in hepatocytes,
similar to results reported previously in mice(54,55). The present
study indicated that dietary choline could prevent this damage
to the liver and/or promote almost complete recovery. These
findings confirmed results from other fish species that demon-
strated inverse correlations between dietary choline levels and
hepatic lipid contents(23,24,46).
To further explore the lipid-lowering mechanism of dietary

choline, we herein analysed the relative expression of some
hepatic genes involved in lipolysis ( pparα, cpt1a and hsl) and
lipogenesis (srepb-1, fas, and accα) pathways. It is believed that
PPARα can promote fatty acid β-oxidation, and modulate
expression of genes encoding several mitochondrial fatty acid-
catabolising enzymes(56 ), CPT1 is regarded as the main regu-
latory enzyme in fatty acid oxidation catalysing the conversion
of cytosolic fatty acyl-CoA to fatty acyl-carnitine for entry into
mitochondria(57,58), and HSL is an important enzyme involved
in lipolysis(59). The present study indicated that, in fish fed
HFD supplemented with choline, cpt1a and hsl expression
levels were up-regulated compared with fish fed the HFD.
This demonstrated that dietary choline could promote lipolysis
and fatty acid β-oxidation by up-regulating key genes in these
pathways. Moreover, FAS can catalyse de novo fatty acid synthe-
sis(60), SREBP-1 is a major regulator of fatty acid and lipid bio-
synthesis(61), and ACCα is a cytosolic enzyme that controls the
production of malonyl-CoA and thus plays an important role
in the biosynthesis of long-chain fatty acids(62–64). In the pre-
sent study, the expression levels of srebp-1 and accα showed a
downward trend in the liver of fish fed the choline-
supplemented diets. These results were consistent with previ-
ous studies in A. schlegelii, Pseudosciaena crocea and O. niloti-
cus(6,7,15). Hence, we conclude that dietary choline
supplementation can reduce lipid deposition and alleviate hep-
atic steatosis through the regulation of lipid metabolism by
up-regulating lipolysis and down-regulating lipogenesis path-
way gene expression levels.
Previous studies revealed that HFD-induced lipid accumula-

tion in the liver probably causes endoplasmic reticulum stress
and accelerates the release of cytokines, thereby inducing
inflammation(54,65–67), which was confirmed in our previous
study(7). The nuclear transcription factor nfκb is a key upstream
signalling molecule and when NF-κB is activated, it transfers
into the nucleus and induces the expression of multiple inflam-
matory makers, including tnf-α and il-1β(55,68). In the present
study, the transcript expression levels of nuclear transcription
factor nfκb was up-regulated in fish fed the HFD both in the
liver and intestine compared with fish fed the control diet.
Consequently, the pro-inflammatory cytokines il-1β and tnfα
were also up-regulated in fish fed the HFD without choline
supplementation, confirming previous reports in M. amblyce-
phala(23). The relative expression levels of nfκb, il-1β and tnfα
were all decreased in fish fed the diets with choline supplemen-
tation. These results were generally consistent with recent stud-
ies, indicating that moderate levels of dietary choline could
alleviate inflammation by modulating NF-κB signalling mole-
cules(26,28,29). Moreover, tgfβ-1 and il-10 are two common anti-
inflammatory cytokines(28) and they were up-regulated in the

Fig. 10. Effects of lipopolysaccharide injection for 24 h on inflammation gene

expression in kidney of juvenile black seabream (Acanthopagrus schlegelii)
after feeding the 8-week experimental diets (▒, control; , high-fat diet

(HFD); ≡, HFD + choline (3 g/kg); ‖‖, HFD + choline (6 g/kg); ///, HFD + choline

(12 g/kg)). The control was used as the reference group, and the mRNA

expression levels of target genes were normalised relative to the expression

of β-actin. Values are means (n 3), with standard errors represented by vertical

bars. a,b,cMean values for each gene with unlike letters were significantly

different (P < 0·05). tgfβ-1, Transforming growth factor β-1.
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liver and intestine by choline supplementation in the present
study. Similar results were obtained in other fish spe-
cies(28,29). Combined, these results indicated that dietary
choline supplementation could reduce inflammatory
responses. Hence, the present study demonstrated that fish
fed the HFD caused lipid deposition, activated NFκB, and
pro-inflammatory cytokines were released, thereby causing
an inflammatory response. Dietary choline supplementation
could attenuate inflammation by modulating NF-κB sig-
nalling molecules and increasing expression of anti-
inflammation markers.
In order to further verify that dietary choline supplementa-

tion has the effect of relieving inflammation, the LPS challenge
experiment was conducted to promote a strong inflammation
response. In teleosts, it is well known that inflammatory chal-
lenges in vivo and in vitro are able to induce the expression of
genes of various pro-inflammatory factors with rapid
kinetics(69). Recently, it reported that the LPS effect varied
depending upon the cytokine, stimulating (il-1β), inhibiting
(tgfβ-1) or ineffective (tnf-α)(43). In the present study, the high-
est expression levels of nfκb, il-1β and tnfα in the liver, intestine
and kidney were all recorded in fish fed the HFD 24 h after
LPS injection, and all were lower in fish fed supplementary
dietary choline. On the contrary, after LPS the lowest
expression levels of il-10 in the liver and kidney were found
in fish fed the HFD, similar to results obtained in other
fish species(4,28,30–32). Likewise, il-10 expression levels were
up-regulated by dietary choline supplementation. However,
no significant differences were found in tgfβ-1 expression in
any tissue, although there was an upward trend. Therefore,
the LPS injection experiment generally confirmed that dietary

choline supplementation had an effect of relieving inflamma-
tion by regulating inflammatory cytokines expression.

Conclusion

In conclusion, the present study provided further insight to the
mechanism of the HFD-induced inflammatory response that
results in lipid accumulation, hepatic steatosis and NFκB acti-
vation (Fig. 11(A)). Furthermore, the present study revealed
that dietary choline supplementation attenuated the
HFD-induced inflammatory response (Fig. 11(B)). Dietary
choline supplementation could increase hepatic adiponectin
content and expression of lipolysis pathway genes, and reduce
expression of lipogenesis pathway genes, promoting a
lipid-lowering effect, and restoring lipid metabolism balance,
and reducing hepatic steatosis and, subsequently, attenuating
inflammation by modulating NF-κB signalling molecules to
suppress pro-inflammatory genes and increasing expression
of anti-inflammatory genes.
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