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Abstract.  Glucosinolates are plant defense compounds used in host plant recognition by 33 

insects specialized on Brassicaceae, such as the diamondback moth, Plutella xylostella L. 34 

(Lepidoptera: Plutellidae).  We tested whether there were differences in oviposition and 35 

larval survival among three strains of P. xylostella after more than 100 generations 36 

continuously reared on cabbage leaves, pea leaves, and wheat germ-casein artificial diet.  37 

Pea leaves and wheat germ-casein diet contain no glucosinolates.  Tests were conducted 38 

with a total of 30 different plant species and their glucosinolate contents were 39 

determined.  Two-choice oviposition tests (comparing each plant type to Arabidopsis 40 

thaliana L.) and no-choice oviposition tests showed that, regardless of diet, total 41 

glucosinolate content and chemical complexity index for glucosinolates were positively 42 

correlated with oviposition preference, total oviposition, and larval survival in P. 43 

xylostella across the wide range of plants tested.  Our research shows that long-term 44 

feeding on glucosinolate-free diet hardly affects oviposition preference and larval 45 

survival in P. xylostella.  Our study also suggests that, even when comparing different 46 

plant species, glucosinolate content is likely to be associated with host-plant preference 47 

and host-plant suitability in P. xylostella.  This indicates that crop varieties with high 48 

glucosinolate content are likely to be more susceptible to damage by P. xylostella than 49 

crop varieties with lower glucosinolate content.  Additional implications of these findings 50 

for management of this important pest are discussed.  This is the first time that a study 51 

includes oviposition preference, total oviposition, larval survival, and glucosinolate 52 

content across such a wide range of plant species.   53 
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Key message 63 

 We conducted this research to study how plant glucosinolate content and diet 64 

affect Plutella xylostella oviposition and larval survival. 65 

 Two P. xylostella strains reared on glucosinolate-free diet and one strain reared on 66 

cabbage were tested on 30 different plant species. 67 

 Regardless of diet, P. xylostella oviposition and larval survival were positively 68 

correlated with glucosinolate content across the plants tested. 69 

 Crop varieties high in glucosinolates are likely to be more susceptible to P. 70 

xylostella damage than varieties with lower glucosinolate content. 71 

 72 

Introduction 73 

Plant chemistry provides some of the most important cues affecting oviposition behavior 74 

in Lepidoptera (Renwick and Chew 1994).  Plants in the order Brassicales typically 75 

contain glucosinolates, which are used, among other functions, for plant defense (Fahey 76 

et al. 2001; Halkier and Gershenzon 2006; Mithen et al. 2010).  The main defense 77 

mechanism of glucosinolates occurs when they are hydrolyzed by myrosinases upon 78 

plant damage, producing compounds that can be toxic to insects, such as isothiocyanates 79 

(Bones and Rossiter 1996; Hopkins et al. 2009).  However, larvae of the diamondback 80 

moth, Plutella xylostella L. (Lepidoptera: Plutellidae), have sulfatases that allow them to 81 

desulphate glucosinolates and avoid glucosinolate hydrolysis (Ratzka et al. 2002).  For 82 

this specialist insect, glucosinolates act as host recognition cues (Badenes-Pérez et al. 83 

2011; Gupta and Thorsteinson 1960a; Møldrup et al. 2012; Sun et al. 2009).  Aliphatic, 84 

benzenic, and indolic glucosinolates have been shown to be active as oviposition 85 

stimulants for P. xylostella (Badenes-Pérez et al. 2011; Badenes-Pérez et al. 2010; 86 

Møldrup et al. 2012; Sun et al. 2009).  Isothiocyanates derived from glucosinolates with 87 

sulfur-containing side chains have also been shown to be active as oviposition stimulants 88 

for P. xylostella (Renwick et al. 2006).   89 
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When comparing plants of the same species with different glucosinolate content, 90 

experiments conducted with Arabidopsis thaliana L., Barbarea vulgaris R. Br., and 91 

Brassica napus L. (Brassicaceae), have shown that P. xylostella prefers to oviposit on 92 

plants and leaves with high glucosinolate content (Badenes-Pérez et al. 2014; Marazzi 93 

and Städler 2004; Sun et al. 2009).  Furthermore, in field experiments, larvae of P. 94 

xylostella were more abundant in lines of A. thaliana and Brassica oleracea L. with 95 

higher glucosinolate content (Bidart-Bouzat and Kliebenstein 2008; Kos et al. 2011).  96 

Other studies with A. thaliana and B. oleracea have found that performance of P. 97 

xylostella larvae could not be explained by plant glucosinolate content (Mosleh Arany et 98 

al. 2008; Müller et al. 2010; Poelman et al. 2008; Sarosh et al. 2010).  Another study 99 

conducted with Brassica rapa L. found that herbivory by P. xylostella larvae increased 100 

with glucosinolate content until reaching an intermediate maximum, decreasing thereafter 101 

(Siemens and Mitchell-Olds 1996). 102 

Plutella xylostella can also oviposit and survive on certain plants outside the order 103 

Brassicales that lack glucosinolates and are not its usual host-plants (Gupta and 104 

Thorsteinson 1960a; Gupta and Thorsteinson 1960b).  For example, in Kenya, P. 105 

xylostella was found feeding on pea, Pisum sativum L. (Fabaceae), next to a cabbage 106 

field heavily infested by this insect (Löhr and Gathu 2002).  Host-plant preference and 107 

host-plant use can also be affected by previous experience (Proffit et al. 2015; Ryan and 108 

Bidart-Bouzat 2014).  In P. xylostella, prior experience contributes to induce oviposition 109 

on non-host plants (Wang et al. 2008; Zhang and Liu 2006; Zhang et al. 2007). 110 

To our knowledge, studies addressing the association between host-plant 111 

glucosinolate content and preference by P. xylostella have been conducted comparing 112 

plants of the same or closely-related species.  Further research with a wide range of 113 

glucosinolate-containing plant species is necessary to study the overall importance of 114 

glucosinolates in determining host-plant preference and host-plant suitability in P. 115 

xylostella.  Here, using a wide range of plants, we compare three different P. xylostella 116 

strains, one reared on cabbage and two reared on glucosinolate-free diets (either artificial 117 

wheat-casein diet or pea leaves), to investigate the importance of glucosinolate content in 118 

oviposition behavior and larval survival, and to test whether P. xylostella loses its ability 119 
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to use glucosinolates in host-plant preference and host-plant use after many generations 120 

of feeding on glucosinolate-free diets. 121 

 122 

Materials and methods 123 

Culture of plants and Plutella xylostella strains 124 

Plants were selected from all different clades included in the Brassicaceae (Beilstein et al. 125 

2008; Huang et al. 2016).  Among the 30 plant species tested, 20 belonged to 11 different 126 

subfamilies within the family Brassicaceae (order Brassicales), and 7 belonged to the 127 

Brassicales order, but were in the families Caricaceae, Cleomaceae, Gyrostemonaceae, 128 

Limnanthaceae, Moringaceae, Resedaceae, and Tropaeolaceae (Bailey et al. 2006) (Table 129 

1).  Additionally, 3 plant species belonging to the families Fabaceae (order Fabales) and 130 

Phytolaccaceae (order Caryophyllales) were used as control plants without 131 

glucosinolates: Phytolacca americana L., Pisum sativum cultivar Oregon Sugar Pod, and 132 

Vicia faba L. cultivar Aguadulce.  Pisum sativum was used because one of the P. 133 

xylostella strains used was reared on this plant.  Vicia faba was used as a control without 134 

glucosinolates because it is known not to be a host for P. xylostella (Badenes-Pérez et al. 135 

2005).  Seeds of wild-type A. thaliana landrace Columbia-0 were obtained from the 136 

European Arabidopsis Stock Center in Nottingham University, Loughborough, UK.  137 

Seeds of Alyssum argenteum All. were purchased from Jelitto (Schwarmstedt, Germany).  138 

Brassica napus and Nasturtium officinale W. T. Aiton seeds were purchased from 139 

Rieger-Hofmann GmbH (Blaufelden-Raboldshausen, Germany).  Two different B. 140 

oleracea varieties were tested, var. capitata (i.e., cabbage), cultivar Gloria, and var. 141 

acephala (i.e., collards), cultivar Green Glaze.  Seeds of Green Glaze collards, purchased 142 

from Pennington Seed (Madison, GA, US), produce glossy and waxy phenotypes, both of 143 

which were tested in our experiments.  Seeds of Cardamine pratensis L. and Iberis 144 

amara L. were purchased from Rühlemann´s (Horstedt, Germany).  G-type Barbarea 145 

vulgaris seeds were donated to us by Dr. Niels Agerbirk.  All other seeds were purchased 146 

from B & T World Seeds (Aigues-Vives, France).  Among the plants tested, the Brassica 147 

spp., C. papaya, M. oleifera, P. sativum, and V. faba, were cultivated varieties, while the 148 

other plant species were wild.  Arabidopsis thaliana plants were grown in a climate 149 

chamber in short-day conditions to favor plant vegetative growth before bolting (10:14 h 150 
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light:dark, 21 ± 2º C and 55 ± 5 RH).  The rest of the plants used in the experiments were 151 

grown in the greenhouse (16:8 h light:dark, 25 ± 3º C).  Plants were grown in 7x7x8-cm 152 

pots using a peat moss substrate with clay and were fertilized fortnightly with an all-153 

purpose fertilizer (Ferty® 3, Planta Düngemittel GmbH, Regenstauff, Germany).  Plants 154 

were 5- to 6-wk old at the beginning of the experiments.   155 

Three different strains of P. xylostella were used in the experiments.  One strain 156 

(DBM-C) was collected in a cabbage field in Kenya in 2002 and since then was 157 

continually reared on cabbage.  Another strain (DBM-G88) was collected in 1988 in 158 

Geneva, NY, US, and since then was reared on a wheat germ-casein artificial diet 159 

(Shelton et al. 1991).  The third strain (DBM-P) was collected in a pea field in Kenya in 160 

2000 and was since then successively reared on pea plants (Löhr and Gathu 2002).  161 

Insects of the strains DBM-C and DBM-P were donated to us by Dr. Bernhard Löhr, 162 

while insects of the strain DBM-G88 were donated to us by Dr. Anthony Shelton.  Insects 163 

were reared in environmental growth chambers (16:8 h light:dark, 21 ± 2º C and 55 ± 5 164 

RH).  Throughout the experiments, the number of individuals of each strain were always 165 

> 250.  In the conditions in which they were reared, the three strains of P. xylostella 166 

completed at least 14 generations per year.  Before carrying out the experiments 167 

described here, insects reared on glucosinolate-free diet were continuously feeding 168 

exclusively on artificial diet for more than 275 generations in the case of DBM-G88, and 169 

on P. sativum Oregon Sugar Pod plants for more than 100 generations in the case of 170 

DBM-P. 171 

 172 

Analysis of glucosinolates in the plants tested 173 

Whole plants were harvested (only above-ground plant material was analyzed) and after 174 

freeze-drying, glucosinolate content was analyzed as in Badenes-Perez et al. (2010). The 175 

procedure included extraction of glucosinolates with room-temperature 80% aqueous 176 

methanol containing 4-hydroxybenzylglucosinolate as an internal standard, binding intact 177 

glucosinolates to diethylaminoethyl Sephadex columns, treatment with sulfatase, and 178 

elution of desulfoglucosinolates.  In plant species containing 4-179 

hydroxybenzylglucosinolate, allylglucosinolate was used as an internal standard.  180 

Desulfoglucosinolates were separated on reversed-phase chromatography and quantified 181 
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with a diode array detector at 229 nm (Agilent 1100 HPLC system, Agilent 182 

Technologies, Waldbronn, Germany), using a relative response factor of 2.0 and 0.5 for 183 

aliphatic and indolic glucosinolates, respectively.  We used a relative response factor of 184 

1.0 for the arabinobenzyl, hydroxybenzyl, and methoxybenzyl glucosinolates (the ones 185 

most similar to the internal standard), and a relative response factor of 2.0 for the other 186 

benzenic glucosinolates.  Although there is some error associated with the methodology 187 

to determine the relative response factors of glucosinolates, using rounded response 188 

factors based on previous studies (Brown et al. 2003; Buchner 1987) is often used as an 189 

estimation of the true glucosinolate content in plants (Clarke 2010; Grosser and van Dam 190 

2017).  Support in the elucidation of glucosinolate structures was provided by a LC-ESI-191 

IonTrap-MS using a Bruker Esquire 6000 ion trap mass spectrometer (Bruker Daltonics, 192 

Bremen, Germany).  Further structure confirmation with NMR was necessary in the case 193 

of three glucosinolates (3-methoxybenzyl, 3-(hydroxymethyl)pentyl, and 1-194 

methylpropylglucosinolate).  NMR spectra were recorded on a Bruker AV500 195 

spectrometer (Bruker Biospin, Rheinstetten, Germany) (Knill et al. 2009).  The identities 196 

of 3-methylpentylglucosinolate in C. pratensis, and of dimeric 4-197 

mercaptobutylglucosinolate and 4-(β-D-glucopyranosyldisulfanyl)butylglucosinolate in 198 

D. muralis and E. sativa were based on previous studies on the glucosinolate content of 199 

these plant species (Agerbirk et al. 2010; D'Antuono et al. 2008; Kim et al. 2004).  200 

Between 3 and 26 plants of each type were analyzed to determine their glucosinolate 201 

content.  The highest number of plants analysed (26) was in A. thaliana because this was 202 

the species most used given that it was the reference species in the two-choice oviposition 203 

experiments.  This minimum of 3 plants appeared reasonable based on the large amount 204 

of plant species included in the study.  Glucosinolates were grouped into four chemical 205 

classes: aliphatic with sulfur-containing side chains, other aliphatic, benzenic, and 206 

indolic.  As different glucosinolate types can have either similar or different effects on 207 

the oviposition and herbivory of insects specialized on glucosinolate-containing plants 208 

(De Vos et al. 2008; Müller 2009; Müller et al. 2010; Sun et al. 2009), we also took into 209 

account the effect of the diversity of glucosinolates in each plant species.  For this 210 

purpose we used the number of different glucosinolates per plant species (glucosinolate 211 

richness, S) and a chemical chemical complexity index for glucosinolates (CCI) (Becerra 212 
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et al. 2009; Cacho et al. 2015).  The CCI was calculated as the sum of the Shannon´s 213 

diversity index from the four chemical classes of glucosinolates (HA) and the Shannon´s 214 

diversity index from the relative concentrations of all individual glucosinolates (HB) 215 

(Becerra et al. 2009).  In those cases in which plants contained no glucosinolates and HA 216 

and HB could not be calculated, their CCI was given a zero value. 217 

 218 

Oviposition experiments 219 

Oviposition experiments were conducted in a two-choice fashion in comparison with A. 220 

thaliana (i.e., one plant of any of the tested types versus one plant of A. thaliana) to 221 

measure oviposition preference and in a no-choice fashion (i.e., one plant alone) to 222 

measure total oviposition (TO).  Arabidopsis thaliana was chosen as a reference in the 223 

two-choice tests because it is the most-widely used model plant, it is easily available, and 224 

it contains glucosinolates that have been well-studied.  The experimental arenas were 225 

32.5 x 32.5 x 32.5 cm polyester cages with 96 x 26 mesh (MegaView Science Education 226 

Services Co., Ltd., Taichung, Taiwan).  Multiple cages were used, each of which was 227 

considered a replicate.  Two pairs of moths (two females and two males, < 3 days old) 228 

were released in each cage.  To provide a food source for moths, a small plastic cup with 229 

a 10 % sugar solution on cotton was placed in the middle of each cage.  The experiment 230 

was replicated at least three times for each insect strain and plant comparison.  Two days 231 

after releasing the moths, the number of eggs on each plant was counted in the laboratory.  232 

In the two-choice tests, we used an oviposition preference index (OPI), which we 233 

calculated as the number of eggs laid on each individual plant divided by the number of 234 

eggs laid on the A. thaliana plant that it was compared with in the same cage.  An OPI = 235 

1 indicated no difference in oviposition preference between A. thaliana and the 236 

alternative plant species it was compared with; an OPI < 1 indicated that A. thaliana 237 

would tend to be preferred; and an OPI > 1 indicated that P. xylostella would tend to 238 

prefer the alternative plant species over A. thaliana. 239 

 240 

Larval survival experiments 241 

Larval survival experiments with whole plants were conducted with DBM-C and DBM-P 242 

larvae.  Since the DBM-G88 strain was reared on artificial diet and not on plants, we did 243 



 9 

not test larval survival in this strain to avoid possible confounding effects between the 244 

lack of adaptation to plants and the effect of plant glucosinolate content.  Five first-instar 245 

P. xylostella larvae (<2 d after hatching) were randomly placed on five fully-expanded 246 

leaves within each plant.  The same procedure was repeated on three plants (n=3) for 247 

each plant type.  When necessary, in case of extensive defoliation of a plant, larvae were 248 

transferred to a new plant of the same age.  To prevent larval movement between plants, 249 

plants were kept individually in either 32.5 x 32.5 x 32.5 cm cages with 96 x 26 mesh 250 

(MegaView Science Education Services Co., Ltd., Taichung, Taiwan) or in larger 61 x 61 251 

x 61 cm cages with 32 x 32 mesh (BioQuip Products, Rancho Dominguez, US).  Larval 252 

survival was recorded as percentage of individuals that reached pupation per plant.   253 

 254 

Statistical analyses 255 

For each plant species, oviposition preference index (OPI) and total oviposition (TO) 256 

differences among the three P. xylostella strains were analyzed using a Kruskal-Wallis 257 

test (P ≤ 0.05) with SPSS® version 24 (IBM 2017).  For each P. xylostella strain, data 258 

comparing oviposition preference between the different plant types and A. thaliana were 259 

analyzed using a one-tailed, two-sample test of proportions using STATA® version 14.2 260 

(StataCorp 2015) with significance at P ≤ 0.05.  Differences in larval survival among the 261 

three P. xylostella strains were also analyzed using a one-tailed, two-sample test of 262 

proportions with significance at P ≤ 0.05.  Kruskal-Wallis tests and tests of proportions 263 

were performed with untransformed data.  Correlations between oviposition, larval 264 

survival, and glucosinolate content were performed using one-tailed Spearman´s 265 

correlation with SPSS®.  Categorical Principal Component Analysis (CATPCA) was 266 

done with SPSS® to explore the relationships between glucosinolate content and 267 

oviposition and larval survival for each of the P. xylostella strains.  After the exploratory 268 

use of CATPCA, to confirm the effect of glucosinolate content, P. xylostella strain, and 269 

glucosinolate diversity, on OPI, TO, and larval survival, we used a generalized linear 270 

model with a Tweedie probability distribution with log link function by means of the 271 

GENLIN procedure SPSS®.  This model was chosen after plotting the data and checking 272 

that it was the model giving the lowest Akaike information criterion values compared to 273 

other models (Poisson and negative binomial).  The significance of the variables in the 274 
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model was assessed using Wald Chi-square tests.  Indolic glucosinolates, which were 275 

present in the lowest concentrations in the plants tested, were not included in the model 276 

because they were negatively correlated to benzenic glucosinolates, which were the 277 

glucosinolates present in the highest concentrations in the plants tested (Fig. S1).  Prior to 278 

performing Spearman´s correlations, CATPCA, and GENLIN analysis, aggregated means 279 

were calculated regarding glucosinolate content for each plant type, and regarding OPI, 280 

TO, and larval survival for each P. xylostella strain.  These data were transformed adding 281 

1.0 to all values of each of the variables in order to avoid zero values before GENLIN 282 

and CATPCA analysis.   283 

 284 

Results 285 

Analysis of glucosinolates in the plants tested 286 

The glucosinolates found in the plants analyzed are shown in Tables 2 and 3.  The 38 287 

glucosinolates that we found in these plants included 14 aliphatic glucosinolates with 288 

sulfur-containing side chains, 9 other aliphatic glucosinolates, 11 benzenic 289 

glucosinolates, and 4 indolic glucosinolates.  The indices of glucosinolate diversity in 290 

each plant type (S, HA, HB, and CCI) are shown in Table 4.  Overall, when analyzing the 291 

average glucosinolate content of all the plants combined, benzenic glucosinolates were 292 

the most abundant glucosinolates in the plants analyzed (12.27 ± 4.82, n=32), followed 293 

by other aliphatic glucosinolates (6.88 ± 3.28, n=32), and aliphatic glucosinolates with 294 

sulfur-containing side chains (6.55 ± 2.26, n=32) (Table 3, Fig. S2).  Benzenic 295 

glucosinolates were, thus, the most closely associated with total glucosinolate content 296 

(Fig. S2, Tables S1, S2).  Content of benzenic glucosinolates was, however, either 297 

negatively correlated or not correlated with S, CCI, indolic glucosinolate content, and 298 

content of aliphatic glucosinolates with sulfur-containing side chains (Figs. S1, S2, 299 

Tables S1, S2).  Thus, in the plants analyzed, presence of benzenic glucosinolates was 300 

associated with high total glucosinolate content, low content of indolic glucosinolates, 301 

low content of aliphatic glucosinolates with sulfur-containing side chains, and low values 302 

of S and CCI (low glucosinolate diversity).  Aliphatic glucosinolates with sulfur-303 

containing side chains were positively correlated with S and CCI, but their association 304 

with indolic and other aliphatic glucosinolates was not significant.  Indolic glucosinolates 305 
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were positively correlated with other aliphatic glucosinolates, and with S and CCI.  306 

Overall, when analyzing the average glucosinolate content of all the plants combined, 307 

indolic glucosinolates were the ones present in the smallest amounts, but the most 308 

widespread in the plant species analyzed.  The three most widespread glucosinolates in 309 

the plant species analyzed were 4-hydroxyindol-3-ylmethylglucosinolate (4-310 

hydroxyglucobrassicin), 4-methoxyindol-3-ylmethyl (4-methoxyglucobrassicin), and 311 

indol-3-ylmethylglucosinolate (glucobrassicin). 312 

 313 

Oviposition experiments 314 

Two-choice tests 315 

When comparing the three P. xylostella strains, there were no significant differences in 316 

oviposition preference indices (OPI) (P = 0.658) (Tables 5, S4).  When analyzing each 317 

strain separately in the comparisons with A. thaliana, if there were significant differences 318 

in oviposition preference, the preferred plant was A. thaliana, except in one case, in 319 

which S. officinale was preferred over A. thaliana by DBM-C (Table 5).  For the three P. 320 

xylostella strains, total glucosinolate content, content of benzenic glucosinolates, content 321 

of aliphatic glucosinolates without sulfur-containing side chains, and CCI, had a 322 

significant positive effect on OPI (Figs. 1, 2A, Tables S3, S4).  323 

 324 

No-choice tests  325 

When comparing the three P. xylostella strains, there were significant differences in total 326 

oviposition (TO) (P = 0.017) and across all the plants tested, TO was lowest for DBM-P 327 

(Tables 6, S4).  When comparing the three P. xylostella strains for each plant, there were 328 

significant differences in total oviposition (TO) for C. bursa-pastoris, E. cheiri, and L. 329 

sativum using Kruskal-Wallis tests (Table 6).  There was a significant positive correlation 330 

between TO and OPI (P ≤ 0.001) (Table S3).  For the three P. xylostella strains tested, 331 

there was a significant positive correlation between TO and total glucosinolate content, 332 

content of benzenic glucosinolates, content of aliphatic glucosinolates without sulfur-333 

containing side chains, and CCI (Figs. 1, 2B, Tables S3, S4). 334 

 335 

Larval survival experiments 336 
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When comparing the two P. xylostella strains tested for larval survival on the different 337 

plants, there were no significant differences in larval survival between them (P = 0.971) 338 

(Tables 7, S4).  For the two strains of P. xylostella in which larval survival was studied 339 

(DBM-C and DBM-P), there was a highly significant positive correlation between larval 340 

survival on the plants tested and both OPI and TO (P ≤ 0.001) (Fig. 2, Table S3).  In 341 

these two strains, there was also a significant positive correlation between larval survival 342 

and total glucosinolate content, content of benzenic glucosinolates, content of aliphatic 343 

glucosinolates without sulfur-containing side chains, and CCI (P ≤ 0.05) (Fig. 1, Tables 344 

S3, S4).   345 

 346 

Discussion 347 

The main purpose of this study was to study how plant glucosinolate content affected 348 

susceptibility to P. xylostella, measured as oviposition preference and larval survival, 349 

under three different diets, two of which lacked glucosinolates.  Our research shows that, 350 

overall, long-term absence of glucosinolates in the diet of P. xylostella, an insect 351 

specialized on glucosinolate-containing plants, hardly affects oviposition preference and 352 

larval survival.  Despite feeding on glucosinolate-free diet for more than 100 generations, 353 

DBM-G88 and DBM-P behaved similarly to DBM-C, and their oviposition and larval 354 

survival was positively correlated with total glucosinolate content and CCI.  This 355 

indicates that in P. xylostella there is a strong selection for ovipositing on plants with 356 

glucosinolates and that glucosinolate sulfatases in P. xylostella are not lost after so many 357 

generations unused.  This also indicates that in P. xylostella preimaginal conditioning 358 

does not seem to significantly affect adult host-plant choice, as it has also been shown in 359 

other insects as opposed to what would be expected from the Hopkins’ host-selection 360 

principle (Barron 2001).  Studies with the mustard leaf beetle, Phaedon cochleariae F. 361 

(Coleoptera: Chrysomelidae), an insect specialized in crucifers, also showed no changes 362 

in host-plant preference behavior after 10-40 generations being reared on less preferred 363 

plants (Kühnle and Müller 2011a; Kühnle and Müller 2011b).  The only difference that 364 

we could detect among strains is that, overall, total oviposition in DBM-P was lower than 365 

in DBM-C and DBM-G88. 366 
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The plants involved in this study showed a wide range of glucosinolates that 367 

included approximately one fourth of the 142 glucosinolates documented so far (Agerbirk 368 

and Olsen 2012; Fahey et al. 2001; Olsen et al. 2016).  We did not find any 369 

glucosinolates in two of the Brassicaceae species analyzed (C. bursa-pastoris and N. 370 

paniculata), although these species are reported to contain small amounts of 371 

glucosinolates (Kjær and Schuster 1972; Okamura et al. 2016).  In L. douglasii, previous 372 

studies reported only the presence of m-methoxybenzylglucosinolate (Ettlinger and 373 

Lundeen 1956).  We confirmed the identity of this glucosinolate based on NMR analysis 374 

of the intact glucosinolate, and our data were similar to the NMR data given for 3-375 

methoxybenzylglucosinolate (glucolimnanthin) in a study conducted with Limnanthes 376 

alba Benth. (Stevens et al. 2009).  Besides 3-methoxybenzylglucosinolate as the 377 

dominant glucosinolate in L. douglasii, we also found 3-hydroxybenzylglucosinolate 378 

(glucolepigramin), 4-hydroxyindol-3-ylmethylglucosinolate (4-hydroxyglucobrassicin), 379 

and 1-methoxyindol-3-ylmethylglucosinolate (neoglucobrassicin).  For C. cotinifolius, a 380 

previous report indicated only the presence of butylglucosinolate (Bottomley and White 381 

1950).  We instead found indol-3-yl-methylglucosinolate as the dominant glucosinolate, 382 

followed by 1-methylpropylglucosinolate, 4-hydroxyindol-3-ylmethylglucosinolate, and 383 

1-methoxyindol-3-ylmethylglucosinolate.  The benzenic glucosinolates found in some of 384 

the plants analyzed, such as 2-phenylethyl- and 2-hydroxy-2-phenylethylglucosinolate, 385 

can differ in their production of isothiocyanates and other glucosinolate hydrolysis 386 

products (Müller et al. 2018; Pagnotta et al. 2017).  However, since feeding by P. 387 

xylostella circumvents glucosinolate hydrolysis (Ratzka et al. 2002) and we used intact 388 

plants in the oviposition bioassays, glucosinolate hydrolysis products should not have 389 

played a significant role in the results.  Overall, benzenic and aliphatic glucosinolates 390 

without sulfur-containing side chains, the most abundant glucosinolates in the plants 391 

analyzed, were the most likely to have a significant effect on P. xylostella oviposition and 392 

larval survival. 393 

Glucosinolates are not the only factors affecting oviposition in P. xylostella 394 

(Renwick et al. 2006; Sarfraz et al. 2006).  Trichome density has also been shown to 395 

affect oviposition preference (Handley et al. 2005), while waxes act synergistically with 396 

glucosinolates, increasing P. xylostella oviposition (Spencer et al. 1999).  Glossy 397 
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cultivars with low amounts of wax on their leaves are preferred by ovipositing P. 398 

xylostella over waxy cultivars despite lower survival of its larvae (Badenes-Pérez et al. 399 

2004; Eigenbrode and Shelton 1992; Lin et al. 1984; Stoner 1990).  However, our study 400 

shows that the same type of glossy collards that were preferred by ovipositing P. 401 

xylostella over waxy plants in Badenes-Pérez et al. 2004 also contain higher 402 

glucosinolate content than the waxy collards.  Thus, although the oviposition preference 403 

of P. xylostella for glossy plants has been associated with low amounts of wax (Lin et al. 404 

1984), higher glucosinolate content is also likely to influence this preference.  For P. 405 

xylostella larvae, in addition to glucosinolates, flavonoids from Brassica oleracea have 406 

also been shown to act as feeding stimulants, while saponins in B. vulgaris are associated 407 

with feeding deterrence (Agerbirk et al. 2003; Shinoda et al. 2002; van Loon et al. 2002). 408 

Plutella xylostella is a synovigenic species, for which oogenesis can change 409 

depending on the host-plant to which females are exposed (Badenes-Pérez et al. 2006).  410 

In this study we also show that different host-plants with different glucosinolate content 411 

can affect not only oviposition preference, but also total oviposition.  In non-preferred 412 

plant types without glucosinolates, such as pea, oviposition was very low, even in the 413 

DBM-P strain and in a no-choice situation.  Even if the insect is able to survive on plants 414 

without glucosinolates, the low oviposition on them is likely to result in reduced 415 

population growth of the insect. 416 

In our study there was a positive correlation between oviposition preference and 417 

larval performance for both DBM-C and DBM-P.  This preference-performance 418 

correlation has been shown for P. xylostella based on studies with 23 different plant 419 

types, mainly Cardamine and Brassica spp. (Zhang et al. 2012).  This `mother knows 420 

best´ principle is considered to be particularly strong in oligophagous insects (Gripenberg 421 

et al. 2010), such as P. xylostella.  Limnanthes douglasii has not been reported as a host-422 

plant for P. xylostella, but it appears to be a very attractive and suitable host-plant for this 423 

insect.  Most of the other plants used in this study have already been reported as host-424 

plants for P. xylostella (Newman et al. 2016; Sarfraz et al. 2011; Sarfraz et al. 2010; 425 

Talekar and Shelton 1993). 426 

We used a wide range of plant species with different glucosinolate profiles in this 427 

study, and so could not compare the effect of individual glucosinolate variation on P. 428 
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xylostella oviposition and larval survival.  However, in studies of different lines of B. 429 

oleracea with different concentrations of individual glucosinolates, the content of certain 430 

individual glucosinolates has been associated with feeding suitability and abundance of 431 

P. xylostella larvae (Kos et al. 2011; Robin et al. 2017; Santolamazza-Carbone et al. 432 

2014).  As glucosinolates can be induced as a result of herbivory, including feeding by P. 433 

xylostella larvae (Badenes-Pérez et al. 2013; Gols et al. 2008; Textor and Gershenzon 434 

2009), glucosinolate content is likely to have changed during the larval survival 435 

experiments compared to the glucosinolate data presented here for intact plants.  Our 436 

glucosinolate results refer particularly to plants 5-6 weeks old.  Ontogenetical changes in 437 

glucosinolate content can vary among species, and in the case of annual species, these 438 

changes can be very drastic with the onset of reproduction (Boege et al. 2007; Brown et 439 

al. 2003). 440 

To our knowledge, this is the first time that a study combines oviposition 441 

preference, total oviposition, larval survival, and glucosinolate content across such a large 442 

number of plant species.  Although in particular comparisons plants with higher 443 

glucosinolate content were not necessarily the preferred hosts of P. xylostella, in general, 444 

glucosinolate content was correlated with oviposition preference, total oviposition, and 445 

larval survival.  This indicates that, even when comparing different plant species, 446 

glucosinolate content is likely to be associated with plant susceptibility to P. xylostella, at 447 

least with the plants tested here and possibly also with others.   448 

Plutella xylostella is considered one of the most damaging insect pests of 449 

cruciferous crops worldwide (Furlong et al. 2013; Zalucki et al. 2012).  Even though 450 

glucosinolates can provide resistance against generalist herbivores (Jeschke et al. 2017; 451 

Rohr et al. 2011; Santolamazza-Carbone et al. 2016), and are considered healthy 452 

compounds (Cartea and Velasco 2008; Verkerk et al. 2009), in areas of high incidence of 453 

P. xylostella, use of crop varieties with low glucosinolate content could reduce P. 454 

xylostella damage.  Even if P. xylostella develops on crops with low glucosinolate 455 

content, neighboring crops with higher glucosinolate content are likely to be more 456 

attractive and susceptible to P. xylostella damage.  Conversely, when searching for trap 457 

crops highly attractive for P. xylostella, trap crops with high glucosinolate content are 458 

likely to be more effective. 459 
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Table 1.  Taxonomy of the plants used in the experiments.  Except for V. faba and P. 752 

sativum, which belong to the order Fabales, and P. americana, which belongs to the order 753 

Caryophyllales, all plants tested belong to the order Brassicales (Bailey et al. 2006). 754 

 755 
Family Subfamily Species Common name 

Brassicaceae Aethionemeae Aethionema cordifolium DC. Lebanon stone cress 

Brassicaceae Alysseae Alyssum argenteum All. Yellow tuft 

Brassicaceae Camelineae Arabidopsis thaliana (L.) Heynh. Thale cress 

Brassicaceae Arabideae Arabis caucasica Willd. Mountain rock cress 

Brassicaceae Cardamineae Barbarea vulgaris R.Br. Wintercress 

Brassicaceae Biscutelleae Biscutella laevigata L. Buckler mustard 

Brassicaceae Brassiceae Brassica juncea (L.) Czern. Indian mustard 

Brassicaceae Brassiceae Brassica napus L. Canola 

Brassicaceae Brassiceae Brassica oleracea var. capitata L. Cabbage 

Brassicaceae Brassiceae Brassica oleracea var. acephala L. Glossy collard greens 

Brassicaceae Brassiceae Brassica oleracea var. acephala L. Waxy collard greens 

Brassicaceae Euclidieae Bunias orientalis L. Turkish rocket 

Brassicaceae Camelineae Capsella bursa-pastoris (L.) Medik. Shepherd´s purse 

Brassicaceae Cardamineae Cardamine pratensis L. Cuckoo flower 

Brassicaceae Brassiceae Diplotaxis muralis (L.) DC. Annual wall rocket 

Brassicaceae Brassiceae Eruca sativa Mill. Arugula, rucola 

Brassicaceae Camelineae Erysimum cheiri (L.) Crantz Wallflower 

Brassicaceae Iberideae Iberis amara L. Bitter candytuft 

Brassicaceae Lepidieae Lepidium sativum L. Garden cress 

Brassicaceae Camelineae Neslia paniculata (L.) Desv. Ball mustard 

Brassicaceae Cardamineae Nasturtium officinale W. T. Aiton Watercress 

Brassicaceae Sisymbrieae Sisymbrium officinale (L.) Scop. Hedge mustard 

Caricaceae - Carica papaya L. Papaya 

Cleomaceae - Cleome spinosa L.  Spider flower 

Fabaceae - Pisum sativum L. Pea 

Fabaceae - Vicia faba L. Faba bean 

Gyrostemonaceae - Codonocarpus cotinifolius (Desf.) F.Muell. Bell-fruit tree 

Limnanthaceae - Limnanthes douglasii R. Br. Douglas’ meadowfoam 

Moringaceae - Moringa oleifera Lam. Drumstick tree 

Phytolaccaceae - Phytolacca americana L. Pokeweed 

Resedaceae - Reseda odorata L. Common mignonette 

Tropaeolaceae - Tropaeolum majus L. Garden nasturtium 
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Table 2.  Glucosinolate side chains found in the plants analyzed, grouped into four 762 

chemical classes: aliphatic with sulfur-containing side chains (AS), other aliphatic (AO), 763 

benzenic (BEN), and indolic (IN).  764 

 765 
Abbreviation Glucosinolate Common Name Chemical Class 

A Allyl, 2-Propenyl Sinigrin AO 

2AB 2-Arabinobenzyl - BEN 

B Benzyl Glucotropaeolin BEN 

D4MB Dimeric 4-mercaptobutyl - AS 

4GDB 4-(β-D-Glucopyranosyldisulfanyl)butyl Diglucothiobeinin AS 

3OHB 3-Hydroxybenzyl Glucolepigramin BEN 

4OHB 4-Hydroxybenzyl Sinalbin BEN 

R2OH3B 2(R)-Hydroxy-3-butenyl Progoitrin AO 

3OHMP 3-(Hydroxymethyl)pentyl - AO 

4OHI3M 4-Hydroxyindol-3-ylmethyl 4-hydroxyglucobrassicin IN 

R2OH2PE 2(R)-Hydroxy-2-phenylethyl Glucosibarin BEN 

S2OH2PE 2(S)-Hydroxy-2-phenylethyl Glucobarbarin BEN 

I3M Indol-3-ylmethyl Glucobrassicin IN 

4MB 4-Mercaptobutyl Glucosativin AS 

3MOHB 3-Methoxybenzyl Glucolimnanthin BEN 

4MOHB 4-Methoxybenzyl Glucoaubrietin BEN 

1MOI3M 1-Methoxyindol-3-ylmethyl Neoglucobrassicin IN 

4MOI3M 4-Methoxyindol-3-ylmethyl 4-methoxyglucobrassicin IN 

M Methyl Glucocapparin AO 

1ME 1-Methylethyl Glucoputranjivin AO 

1MP 1-Methylpropyl Glucocochlearin AO 

2MP 2-Methylpropyl - AO 

3MP 3-Methylpentyl - AO 

4MSOB 4-(Methylsulfinyl)butyl Glucoraphanin AS 

10MSOD 10-(Methylsulfinyl)decyl Glucocamelinin AS 

7MSOH 7-(Methylsulfinyl)heptyl Glucoibarin AS 

9MSON 9-(Methylsulfinyl)nonyl Glucoarabin AS 

8MSOO 8-(Methylsulfinyl)octyl Glucohirsutin AS 

5MSOP 5-(Methylsulfinyl)pentyl Glucoalyssin AS 

3MSOP 3-(Methylsulfinyl)propyl Glucoiberin AS 

3MSOOP 3-(Methylsulfonyl)propyl Glucocheirolin AS 

4MTB 4-(Methylthio)butyl Glucoerucin AS 

8MTO 8-(Methylthio)octyl - AS 

3MTP 3-(Methylthio)propyl Glucoiberverin AS 

4P 4-Pentenyl Glucobrassicanapin AO 

2PE 2-Phenylethyl Gluconasturtiin BEN 

2RB 2-(α-L-Rhamnopyranosyloxy)benzyl - BEN 

4RB 4-(α-L-Rhamnopyranosyloxy)benzyl - BEN 

 766 
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Table 3.  Mean ± SE glucosinolate content (µmol g-1 plant dry weight) in the plants used in the experiments.  From the total 768 

glucosinolate content the percentage of individual glucosinolates and the percentage of glucosinolates according to chemical class is 769 

also shown.  Four glucosinolate classes were considered: aliphatic with sulfur-containing side chains (AS), other aliphatic (AO), 770 

benzenic (BEN), and indolic (IN).  771 

 772 
Plant species Replicates Total glucosinolates (% AO, BEN, IN, and AS)  Identity of glucosinolates identified (% of total glucosinolates) 

A. cordifolium  5 24.9 ± 5.2 (0%, 0%, 1.15%, 98.85%) 3MSOOP (63.85%), 3MSOP (26.72%), 8MSOO (6.70%), 3MTP (1.06%), 

4MOI3M (0.58%), 4OHI3M (0.57%), 7MSOH (0.29%), 4MSOB (0.22%) 

A. argenteum 5 1.4 ± 0.3 (0%, 0%, 75.32%, 24.68%) 5MSOP (75.32%), I3M (18.94%), 4OHI3M (4.33%), 4MOI3M (1.41%) 

A. thaliana 26 17.6 ± 0.4 (0%, 0%, 14.81%, 85.19%) 4MSOB (65.00%), I3M (11.10%), 3MSOP (9.56%), 8MSOO (5.15%), 4MTB 

(4.50%), 4MOI3M (2.22%), 1MOI3M (1.23%), 7MSOH (0.97%), 4OHI3M 

(0.26%) 

A. caucasica  3 20.8 ± 18.2 (60.03%, 0%, 0.78%, 39.19%) 1ME (53.43%), 9MSON (32.70%), 1MP (4.48%), 10MSOD (3.19%), 2MP 

(2.12%), 8MSOO (1.77%), 4MTB (1.53%), 4MOI3M (0.52%), 4OHI3M 

(0.26%) 

B. vulgaris 3 35.6 ± 4.2 (0%, 81.60%, 18.40%, 0%) S2OH2PE (80.88%), I3M (17.26%), 4MOI3M (0.80%), R2OH2PE (0.72%), 

4OHI3M (0.34%) 

B. laevigata 5 30.8 ± 3.4 (0%, 0%, 42.23%, 57.77%) 8MSOO (57.77%), I3M (42.23%) 

B. juncea 3 97.9 ± 1.9 (95.70%, 0%, 4.17%, 0.13%) A (95.70%), 1MOI3M (1.52%), 4MOI3M (1.16%), I3M (1.03%), 4OHI3M 

(0.46%), 3MSOP (0.13%) 

B. napus 5 6.1 ± 1.7 (28.38%, 0%, 71.62%, 0%) I3M (58.96%), 2OH3B (19.09%), 4P (9.28%), 1MOI3M (5.50%), 4MOI3M 

(4.71%), 4OHI3M (2.45%) 

B oleracea capitata 7 8.0 ± 1.5 (25.13%, 0%, 59.04%, 15.83%) I3M (52.66%), A (24.13%), 3MSOP (15.06%), 4MOI3M (3.88%), 1MOI3M 

(1.72%), 2OH3B (1.00%), 4OHI3M (0.78%), 4MSOB (0.77%) 

B. oleracea 

acephala (glossy) 

4 28.4 ± 4.1 (11.30%, 0%, 75.93%, 12.77%) I3M (65.61%), 3MSOP (10.02%), A (9.19%), 1MOI3M (7.27%), 4MSOB 

(2.43%), 4MOI3M (2.23%), 2OH3B (2.11%), 4OHI3M (0.82%), 5MSOP 

(0.31%), 3MSOOP (0.01%) 

B. oleracea 

acephala (waxy) 

7 14.6 ± 2.7 (47.60%, 0%, 32.97%, 19.43%) A (46.98%), I3M (24.39%), 3MSOP (18.88%), 4MOI3M (4.34%), 4OHI3M 

(2.69%), 1MOI3M (1.56%), 2OH3B (0.61%), 4MSOB (0.48%), 5MSOP 

(0.06%), 3MSOOP (0.01%) 

B. orientalis 3 33.3 ± 2.9 (0%, 99.66%, 0.34%, 0%) 4OHB (96.47%), 4MOHB (3.19%), 4MOI3M (0.23%), 4OHI3M (0.06%), I3M 

(0.05%) 

C. bursa-pastoris 3 0 ± 0 (0%, 0%, 0%, 0%) - 

C. pratensis  5 27.1 ± 7.6 (95.10%, 0%, 4.90%, 0%) 3OHMP (93.92%), I3M (4.51%), 3MP (1.18%), 4OHI3M (0.39%) 
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C. papaya 4 4.1 ± 1.3 (0%, 99.72%, 0.28%, 0%) B (99.72%), I3M (0.28%) 

C. spinosa 4 39.9 ± 6.1 (97.44%, 0%, 2.56%, 0%) M (97.44%), I3M (1.64%), 4OHI3M (0.84%), 4MOI3M (0.08%) 

C. cotinifolius 3 10.4 ± 1.6 (≥9.57%, ≥0%, ≥85.81%, ≥0%) I3M (72.15%), 4OHI3M (10.83%), 2MP (9.57%), 1MOI3M (2.83%), other 

(4.62%)* 

D. muralis 7 30.7 ± 4.9 (≥4.25%, ≥0%, ≥0.58%, ≥89.65%) D4MB (33.12%), 4GDB (28.13%), 4MTB (11.69%), 4MB (8.54%), 4MSOB 

(7.87%), R2OH3B (4.25%), 4OHI3M (0.46%), 5MSOP (0.30%), 4MOI3M 

(0.12%), other (5.52%)* 

E. sativa 7 37.4 ± 2.6 (≥4.18%, ≥0%, ≥0.46%, ≥90.29%) D4MB (32.39%), 4GDB (24.63%), 4MB (14.31%), 4MTB (11.25%), 4MSOB 

(7.32%), R2OH3B (4.18%), 5MSOP (0.35%), 4MOI3M (0.27%), 4OHI3M 

(0.19%), 3MTP (0.05%), other (5.06%)* 

E. cheiri 4 16.3 ± 6.5 (0%, 0%, 0%, 100.00%) 3MSOOP (59.35%), 3MTP (25.10%), 3MSOP (14.98%), 4MSOB (0.57%) 

I. amara 4 53.8 ± 9.8 (0%, 0%, 0.06%, 99.94%) 3MSOP (85.71%), 3MTP (13.85%), 4MSOB (0.37%), 4MOI3M (0.06%) 

L. sativum 3 120.5 ± 7.0 (0%, 99.95%, 0%, 0.05%) B (99.95%), 3MSOP (0.05%) 

L. douglasii 4 49.4 ± 10.2 (0%, 99.97%, 0.03%, 0%) 3MOHB (93.61%), 3OHB (6.36%), 4OHI3M (0.02%), 1MOI3M (0.01%) 

M. oleifera 5 28.0 ± 2.5 (0%, 100.00%, 0%, 0%) 4RB (87.94%), 4OHB (10.52%), B (1.54%) 

N. officinale 14 17.5 ± 1.5 (0%, 92.93%, 0%, 7.07%) 2PE (92.93%), 8MSOO (3.31%), 7MSOH (2.39%), 8MTO (1.37%) 

N. paniculata  3 0 ± 0 (0%, 0%, 0%, 0%) - 

P. americana 3 0 ± 0 (0%, 0%, 0%, 0%) - 

P. sativum 3 0 ± 0 (0%, 0%, 0%, 0%) - 

R. odorata 4 89.8 ± 18.0 (0%, 93.88%, 6.12%, 0%) 2RB (92.96%), I3M (6.12%), 2AB (0.91%) 

S. officinale 3 33.8 ± 2.8 (93.84%, 0%, 6.16%, 0%) 1ME (84.90%), 2MP (8.94%), I3M (5.19%), 4OHI3M (0.97%) 

T. majus 3 28.0 ± 12.4 (0%, 100.00%, 0%, 0%) B (99.66%), 4MOHB (0.34%) 

V. faba 3 0 ± 0 (0%, 0%, 0%, 0%) - 

Glucosinolate abbreviations were: Allyl (A), 2-Arabinobenzyl, (2AB), Benzyl (B), Dimeric 4-mercaptobutyl (D4MB), 4-(β-D-Glucopyranosyldisulfanyl)butyl 773 
(4GDB), 3-Hydroxybenzyl (3OHB), 4-Hydroxybenzyl (4OHB), 2(R)-Hydroxy-3-butenyl (R2OH3B), 3-(Hydroxymethyl)pentyl (3OHMP), 4-Hydroxyindol-3-774 
ylmethyl (4OHI3M), 2(R)-Hydroxy-2-phenylethyl (R2OH2PE), 2(S)-Hydroxy-2-phenylethyl (S2OH2PE), Indol-3-ylmethyl (I3M), 4-Mercaptobutyl (4MB), 3-775 
Methoxybenzyl (3MOHB), 4-Methoxybenzyl (4MOHB), 1-Methoxyindol-3-ylmethyl (1MOI3M), 4-Methoxyindol-3-ylmethyl (4MOI3M), Methyl (M), 1-776 
Methylethyl (1ME), 3Methylpentyl (3MP), 1-Methylpropyl (1MP), 2-Methylpropyl (2MP), 4-(Methylsulfinyl)butyl (4MSOB), 10-(Methylsulfinyl)decyl 777 
(10MSOD), 7-(Methylsulfinyl)heptyl (7MSOH), 9-(Methylsulfinyl)nonyl (9MSON), 8-(Methylsulfinyl)octyl (8MSOO), 5-(Methylsulfinyl)pentyl (5MSOP), 3-778 
(Methylsulfinyl)propyl (3MSOP), 3-(Methylsulfonyl)propyl (3MSOOP), 4-(Methylthio)butyl (4MTB), 8-(Methylthio)octyl (8MTO), 3-(Methylthio)propyl 779 
(3MTP), 4-Pentenyl (4P), 2-Phenylethyl (2PE), 2-(α-L-Rhamnopyranosyloxy)benzyl (2RB), 4-(α-L-Rhamnopyranosyloxy)benzyl (4RB). 780 
 781 
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Table 4.  Glucosinolate richness (S), Shannon´s diversity index for the four glucosinolate 782 

classes (HA), Shannon´s diversity index for the relative concentrations of all individual 783 

glucosinolates (HB), and chemical complexity index for glucosinolates (CCI) for each of 784 

the plant types tested.  Values based on means across replicates. 785 

 786 
 S HA HB CCI*=HA+HB 

A. cordifolium 8 0.693 0.958 1.651 

A. argenteum 4 0.693 0.724 1.417 

A. thaliana 9 0.693 1.240 1.933 

A. caucasica 9 1.099 1.209 2.308 

B. vulgaris 5 0.693 0.568 1.261 

B. laevigata 2 0.693 0.681 1.374 

B. juncea  6 1.099 0.238 1.337 

B. napus 6 0.693 1.243 1.936 

B. oleracea (cabba.) 8 1.099 1.283 2.382 

B. oleracea (g. co.) 10 1.099 1.232 2.331 

B. oleracea (w. co.) 10 1.099 1.370 2.469 

B. orientalis 5 0.693 0.167 0.860 

C. bursa-pastoris 0 n/a n/a 0 

C. pratensis 4 0.693 0.273 0.966 

C. papaya 2 0.693 0.019 0.712 

C. spinosa  4 0.693 0.139 0.832 

C. cotinifolius 14 0.693 0.802 1.495 

D. muralis 12 1.099 1.568 2.667 

E. sativa 12 1.099 1.610 2.709 

E. cheiri 4 0.000 0.970 0.970 

I. amara 4 0.693 0.431 1.124 

L. sativum 2 0.693 0.004 0.697 

L. douglasii 5 0.693 0.240 0.933 

M. oleifera 3 0.000 0.414 0.414 

N. officinale 4 0.693 0.329 1.022 

N. paniculata 0 n/a n/a 0 

P. americana 0 n/a n/a 0 

P. sativum 0 n/a n/a 0 

R. odorata 3 0.693 0.282 0.975 

S. officinale 4 0.693 0.553 1.246 

T. majus 2 0.000 0.023 0.023 

V. faba 0 n/a n/a 0 
*In plants without glucosinolates, in which the HA and HB indices could not be calculated, their 787 
CCI was given a zero value. 788 
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Table 5.  Two-choice oviposition preference index (OPI) in three P. xylostella strains 796 

reared on cabbage (DBM-C), artificial diet (DBM-G88), and pea (DBM-P).  Data were 797 

analyzed using a one-tailed, two-sample test of proportions comparing the relative 798 

percentages of all eggs laid on the plant being tested and on A. thaliana (P ≤ 0.05) (n = 799 

3).  OPI given as means found across replicates (mean ± SE).  Significant differences are 800 

shown in bold type.   801 

 802 
 OPI, test statistic, and P-value 

DBM-C DBM-G88 DBM-P 
A. cordifolium 0.69 ± 0.26, z=0.59, P=0.278 0.33 ± 0.18, z=1.37, P=0.085 0.20 ± 0.10, z=1.67, P=0.048* 

A. argenteum 0.08 ± 0.02, z=2.11, P=0.018* 0.59 ± 0.05, z=0.64, P=0.262 0.38 ± 0.15, z=1.18, P=0.120 

A. caucasica 0.43 ± 0.05, z=0.98, P=0.164 3.42 ± 0.85, z=1.27, P=0.101 1.55 ± 0.64, z=0.20, P=0.422 

B. vulgaris 2.70 ± 0.99, z=0.98, P=0.164 2.31 ± 0.39, z=0.93, P=0.176 1.60 ± 0.29, z=0.54, P=0.295 

B. laevigata 0.87 ± 0.06, z=0.20, P=0.422 1.27 ± 0.16, z=0.24, P=0.403 0.97 ± 0.36, z=0.20, P=0.422 

B. juncea  1.71 ± 0.25, z=0.59, P=0.278 2.17 ± 0.25, z=0.88, P=0.189 1.39 ± 0.21, z=0.34, P=0.366 

B. napus 1.46 ± 0.04, z=0.44, P=0.330 2.33 ± 0.59, z=0.83, P=0.202 2.48 ± 0.83, z=0.88, P=0.188 

B. oleracea (cabba.) 0.24 ± 0.06, z=1.52, P=0.064 0.16 ± 0.10, z=1.81, P=0.035* 0 ± 0, z=2.45, P=0.007* 

B. oleracea (g. co.) 0.51 ± 0.04, z=0.78, P=0.217 0.35 ± 0.09, z=1.22, P=0.110 0.54 ± 0.09, z=0.73, P=0.231 

B. oleracea (w. co.) 0.04 ± 0.01, z=2.25, P=0.012* 0.03 ± 0.01, z=2.30, P=0.011* 0.02 ± 0.02, z=2.35, P=0.009* 

B. orientalis 0.18 ± 0.10, z=1.76, P=0.039* 0.07 ± 0.04, z=2.11, P=0.018* 0.24 ± 0.02, z=1.52, P=0.064 

C. bursa-pastoris 0.03 ± 0.03, z=2.30, P=0.011* 0 ± 0, z=2.45, P=0.007* 0.51 ± 0.40, z=1.22, P=0.110 

C. pratensis 0.71 ± 0.16, z=0.49, P=0.312 0.29 ± 0.01, z=1.32, P=0.093 0.30 ± 0.08, z=1.32, P=0.093 

C. papaya 0.05 ± 0.05, z=2.25, P=0.012* 0.03 ± 0.03, z=2.35, P=0.009* 0 ± 0, z=2.45, P=0.007* 

C. spinosa  0.09 ± 0.05, z=2.06, P=0.020* 0.06 ± 0.03, z=2.16, P=0.016* 0.06 ± 0.03, z=2.20, P=0.014* 

C. cotinifolius 0.01 ± 0.01, z=2.40, P=0.008* 0.03 ± 0.03, z=2.30, P=0.011* 0.06 ± 0.03, z=2.16, P=0.016* 

D. muralis 1.51 ± 0.17, z=0.49, P=0.312 1.99 ± 0.65, z=0.64, P=0.262 8.20 ± 6.41, z=1.18, P=0.120 

E. sativa 1.35 ± 0.25, z=0.29, P=0.384 1.96 ± 0.39, z=0.73, P=0.231 1.55 ± 0.28, z=0.49, P=0.312 

E. cheiri 0.22 ± 0.18, z=1.71, P=0.043* 0.84 ± 0.25, z=0.34, P=0.366 0.79 ± 0.13, z=0.34, P=0.366 

I. amara 0.72 ± 0.46, z=0.78, P=0.217 1.82 ± 0.94, z=0.34, P=0.366 0.61 ± 0.13, z=0.64, P=0.262 

L. sativum 4.28 ± 1.74, z=1.18, P=0.120 2.45 ± 0.16, z=1.03, P=0.152 4.87 ± 2.38, z=1.32, P=0.093 

L. douglasii 3.84 ± 0.86, z=1.37, P=0.085 4.39 ± 1.16, z=1.42, P=0.078 3.58 ± 1.08, z=1.22, P=0.110 

M. oleifera 0 ± 0, z=2.45, P=0.007* 0 ± 0, z=2.45, P=0.007* 0 ± 0, z=2.45, P=0.007* 

N. officinale 0.72 ± 0.10, z=0.39, P=0.348 1.23 ± 0.39, z=0.15, P=0.442 2.48 ± 1.76, z=0.34, P=0.366 

N. paniculata 0 ± 0, z=2.45, P=0.007* 0 ± 0, z=2.45, P=0.007* 0 ± 0, z=2.45, P=0.007* 

P. americana 0 ± 0, z=2.45, P=0.007* 0 ± 0, z=2.45, P=0.007* 0 ± 0, z=2.45, P=0.007* 

P. sativum 0 ± 0, z=2.45, P=0.007* 0 ± 0, z=2.45, P=0.007* 0.01 ± 0.01, z=2.40, P=0.008* 

R. odorata 0.36 ± 0.30, z=1.47, P=0.071 0.04 ± 0.04, z=2.30, P=0.011* 0.23 ± 0.08, z=1.57, P=0.058 

S. officinale 6.67 ± 2.04, z=1.67, P=0.048** 4.04 ± 0.76, z=1.42, P=0.078 4.47 ± 1.43, z=1.42, P=0.078 

T. majus 0.04 ± 0.04, z=2.16, P=0.016* 0 ± 0, z=2.45, P=0.007* 0.35 ± 0.19, z=1.37, P=0.085 

V. faba 0 ± 0, z=2.45, P=0.007* 0 ± 0, z=2.45, P=0.007* 0 ± 0, z=2.45, P=0.007* 

*A. thaliana preferred 803 
**S. officinale preferred 804 
 805 
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Table 6.  Total oviposition (TO) in non-choice tests (mean ± SE) for each of the tested 811 

plants and for the three P. xylostella strains reared on cabbage (DBM-C), artificial diet 812 

(DBM-G88), and pea (DBM-P).  Differences in TO among P. xylostella strains were 813 

analyzed using a Kruskal-Wallis test (P ≤ 0.05) (n = 3).  Significant differences are 814 

shown in bold type.   815 

 816 
 Number of eggs mean ± SE 

 DBM-C DBM-G88 DBM-P 
A. cordifolium 22.33 ± 2.40 31.00 ± 6.43 13.67 ± 1.76 

A. argenteum 91.00 ± 23.69 70.67 ± 17.28 52.00 ± 24.70 

A. thaliana 52.67 ± 5.24 85.33 ± 11.46 54.67 ± 10.10 

A. caucasica 63.00 ± 11.27 74.33 ± 12.68 44.33 ± 15.01 

B. vulgaris 44.67 ± 10.68 67.00 ± 18.77 19.67 ± 6.67 

B. laevigata 50.00 ± 13.65 65.00 ± 19.35 45.00 ± 4.51 

B. juncea  37.33 ± 5.70 81.33 ± 14.84 63.00 ± 18.68 

B. napus 75.00 ± 3.05 62.33 ± 13.20 10.33 ± 3.28 

B. oleracea (cabbage) 34.33 ± 6.39 54.67 ± 5.24 21.33 ± 7.31 

B. oleracea (glossy collards) 55.00 ± 4.16 59.67 ± 12.35 14.33 ± 2.33 

B. oleracea (waxy collards) 27.33 ± 4.91 42.00 ± 12.00 26.33 ± 5.78 

B. orientalis 22.67 ± 7.17 22.00 ± 2.52 15.67 ± 8.25 

C. bursa-pastoris 15.33 ± 2.91 0.00 ± 0.00 1.33 ± 1.33 

C. pratensis 45.67 ± 3.53 28.67 ± 5.24 19.33 ± 2.33 

C. papaya 5.67 ± 5.67 74.00 ± 24.01 22.33 ± 16.37 

C. spinosa  55.33 ± 8.41 35.33 ± 0.88 20.00 ± 1.53 

C. cotinifolius 40.33 ± 12.20 39.67 ± 12.17 45.00 ± 14.11 

D. muralis 51.00 ± 5.51 65.33 ± 10.71 49.33 ± 24.39 

E. sativa 90.00 ± 16.56 95.33 ± 7.36 63.33 ± 17.49 

E. cheiri 58.67 ± 2.33 43.00 ± 3.79 21.00 ± 3.61 

I. amara 37.33 ± 8.21 53.00 ± 10.97 16.00 ± 9.64 

L. sativum 82.67 ± 8.41 122.67 ± 8.17 60.67 ± 9.53 

L. douglasii 60.33 ± 6.77 74.67 ± 10.68 71.00 ± 6.56 

M. oleifera 4.33 ± 2.19 2.67 ± 2.67 0.00 ± 0.00 

N. officinale 63.33 ± 5.90 61.33 ± 17.53 62.33 ± 7.36 

N. paniculata 3.00 ± 1.15 3.67 ± 2.03 0.33 ± 0.33 

P. americana 1.33 ± 0.67 0.00 ± 0.00 0.00 ± 0.00 

P. sativum 1.00 ± 1.00 0.00 ± 0.00 0.67 ± 0.67 

R. odorata 3.00 ± 3.00 2.67 ± 1.45 0.00 ± 0.00 

S. officinale 43.67 ± 1.45 77.33 ± 8.95 70.67 ± 3.84 

T. majus 16.33 ± 14.38 4.67 ± 4.67 10.67 ± 3.71 

V. faba 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 
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Table 7.  Survival of P. xylostella from first-instar larvae to pupae (mean ± SE) for insect 828 

strains reared on cabbage (DBM-C) and pea (DBM-P).  Data comparing survival of 829 

DBM-C and DBM-P larvae were analyzed using a one-tailed, two-sample test of 830 

proportions (P ≤ 0.05) (unless otherwise indicated n = 3-7). 831 

 832 
 Survival of larvae (%) per plant   

DBM-C DBM-P Test statistic and P-value 
A. cordifolium 13.3 ± 6.7 32.0 ± 4.9 z=0.59, P=0.277 

A. argenteum 20.0 ± 8.2 13.3 ± 6.7 z=0.24, P=0.404 

A. thaliana 46.7 ± 17.6 40.0 ± 11.5 z=0.17, P=0.431 

A. caucasica 25.0 ± 18.9 6.7 ± 6.7 z=0.62, P=0.267 

B. vulgaris 0.0 ± 0.0 0.0 ± 0.0 n/a 

B. laevigata 46.7 ± 6.7 33.3 ± 6.7 z=0.35, P=0.367 

B. juncea  66.7 ± 6.7 66.7 ± 6.7 z=0.00, P=0.500 

B. napus 73.3 ± 6.7 66.7 ± 6.7 z=0.16, P=0.436 

B. oleracea (cabba.) 33.3 ± 6.7 26.7 ± 6.7 z=0.16, P=0.436 

B. oleracea (g. co.) 6.7 ± 6.7 13.3 ± 6.7 z=0.24, P=0.403 

B. oleracea (w. co.) 46.7 ± 6.7 33.3 ± 6.7 z=0.35, P=0.363 

B. orientalis 13.3 ± 6.7 20.0 ± 11.5 z=0.23, P=0.409 

C. bursa-pastoris 20.0 ± 11.5 13.3 ± 6.7 z=0.23, P=0.409 

C. pratensis 66.7 ± 6.7 46.7 ± 6.7 z=0.49, P=0.310 

C. papaya 0.0 ± 0.0 0.0 ± 0.0 n/a 

C. spinosa  6.7 ± 6.7 13.3 ± 6.7 z=0.24, P=0.403 

C. cotinifolius 6.7 ± 6.7 6.7 ± 6.7 z=0.00, P=0.500 

D. muralis 53.3 ± 17.6 46.7 ± 17.6 z=0.15, P=0.442 

E. sativa 13.3 ± 6.7 26.7 ± 6.7 z=0.43, P=0.334 

E. cheiri 50.0 ± 12.9 20.0 ± 20.0 z=0.89, P=0.187 

I. amara 40.0 ± 14.1 13.3 ± 6.7 z=0.78, P=0.217 

L. sativum 60.0 ± 11.5 66.7 ± 6.7 z=0.18, P=0.429 

L. douglasii 66.7 ± 6.7 53.3 ± 17.6 z=0.35, P=0.363 

M. oleifera 10.0 ± 10.0 10.0 ± 5.8 z=0.00, P=0.500 

N. officinale 40.0 ± 11.5 46.7 ± 6.7 z=0.17, P=0.431 

N. paniculata 0.0 ± 0.0 0.0 ± 0.0 n/a 

P. americana 0.0 ± 0.0 0.0 ± 0.0 n/a 

P. sativum 0.0 ± 0.0 20.0 ± 11.5 z=0.82, P=0.207 

R. odorata 20.0 ± 20.0 17.1 ± 6.8 z=0.12, P=0.451 

S. officinale 66.7 ± 6.7 50.0 ± 17.3 z=0.45, P=0.326 

T. majus 24.0 ± 14.7 20.0 ± 8.7 z=0.17, P=0.434 

V. faba 0.0 ± 0.0 0.0 ± 0.0 n/a 
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Figure Legends: 846 

Figure 1.  CATPCA plots showing the relationships between oviposition preference 847 

index (OPI), total oviposition (TO), and larval survival, for three P. xylostella strains and 848 

total glucosinolate content (TOTAL GLUC), aliphatic glucosinolates with sulfur-849 

containing side chains (AS), other aliphatic glucosinolates (AO), benzenic glucosinolates 850 

(BEN), indolic glucosinolates (IN), glucosinolate richness (S), and chemical complexity 851 

index for glucosinolates (CCI).  Component loadings of CATPCA plots were rotated 852 

using Varimax with Kaiser normalization.  The three P. xylostella strains were DBM-C 853 

(A1, B1, and D1), DBM-G88 (B1 and B2), and DBM-P (C1, C2, and D2).  Component 854 

loadings of CATPCA plots were rotated using Varimax with Kaiser normalization. 855 

Figure 2.  Correlation between plant glucosinolate content and oviposition preference 856 

index (OPI) (A) and total oviposition (TO) (B) for three P. xylostella strains.  The OPI for 857 

each plant type was calculated as the number of eggs laid on each individual plant 858 

divided by the number of eggs laid on the A. thaliana plant that it was compared with in 859 

the same cage, while TO indicates the total number of eggs laid per plant.  The lineal 860 

trend lines are solid for the DBM-C strain, long-dashed for the DBM-G88 strain, and 861 

with short dashes for the DBM-P strain. 862 

 863 

 864 

 865 

 866 

 867 

 868 

 869 

 870 

 871 

 872 

 873 

 874 

 875 

 876 



 32 

Fig. 1 877 
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Fig. 2 879 
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Table S1.  Significance of correlations between plant glucosinolate content and 890 

glucosinolate diversity in the plants tested.  Correlations were analyzed statistically using 891 

one-tailed Spearman´s rho correlations (n = 32).  Four different classes of glucosinolates 892 

were distinguished, aliphatic with sulfur-containing side chains (AS), other aliphatic 893 

(AO), benzenic (BEN), and indolic (IN).  The effect of the diversity of glucosinolates was 894 

analyzed with the glucosinolate richness (S) and the chemical complexity index for 895 

glucosinolates (CCI) of each plant.  Significant P-values (P ≤ 0.05) are shown in bold 896 

type.   897 

 898 

 

 P-value of Spearman´s rho correlation 
 Total glucosinolates AO BEN IN AS S 
CCI P=0.105 P≤0.001 P=0.031 P≤0.001 P≤0.001 P≤0.001 
S P=0.054 P≤0.001 P=0.118 P≤0.001 P=0.002  
AS P=0.109 P=0.289 P=0.018 P=0.114   
IN P=0.084 P≤0.001 P=0.104    
BEN P=0.008 P=0.004     
AO P=0.133      
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Table S2.  Model summary and component loadings of the different CATPCA for 923 

glucosinolate content of the plants tested, oviposition preference index (OPI) and total 924 

oviposition (TO) in the three strains of P. xylostella (DBM-C, DBM-G88, and DBM-P), 925 

and larval survival (LS) in DBM-C and DBM-P.  Variables related to glucosinolate 926 

content included total glucosinolate content (TOTAL GLUC), aliphatic glucosinolates 927 

with sulfur-containing side chains (AS), other aliphatic glucosinolates (AO), benzenic 928 

glucosinolates (BEN), indolic glucosinolates (IN), glucosinolate richness (S), and 929 

chemical complexity index for glucosinolates (CCI).  Component loadings were rotated 930 

with Varimax with Kaiser normalization.  Model summary include Cronbach´s Alpha 931 

(CA), Eigenvalue, and percentage of variance accounted for (% VAF). 932 

 933 

 Model summary for glucosinolate content 
 TOTAL 

GLUC 

AO BEN IN AS S CCI CA Eigenvalue % VAF 

Dimension 1 0.124 0.113 -0.437 0.470 0.614 0.894 0.946 0.702 2.512 35.887 

Dimension 2 0.950 0.237 0.751 0.025 0.000 0.128 0.051 0.411 1.543 22.043 

Total - - - - - - - 0.879 4.055 57.929 

 934 
 Model summary for OPI DBM-C 
 OPI 

DBM-C 

TOTAL 

GLUC 

AO BEN IN AS S CCI CA Eigenvalue % VAF 

Dimension 1 0.008 0.102 0.142 -0.457 0.466 0.625 0.888 0.944 0.691 2.527 31.584 

Dimension 2 0.754 0.904 0.243 0.699 -0.053 0.015 0.155 0.111 0.564 1.973 24.659 

Total - - - - - - - - 0.889 4.499 56.244 

 935 
 Model summary for OPI DBM-G88 
 OPI 

DBM-G88 

TOTAL 

GLUC 

AO BEN IN AS S CCI CA Eigenvalue % VAF 

Dimension 1 0.141 -0.019 0.104 -0.543 0.466 0.622 0.857 0.926 0.693 2.522 32.528 

Dimension 2 0.719 0.917 0.340 0.589 -0.078 0.072 0.252 0.220 0.562 1.943 23.282 

Total - - - - - - - - 0.887 4.465 55.809 

 936 
 Model summary for OPI DBM-P 
 OPI 

DBM-P 

TOTAL 

GLUC 

AO BEN IN AS S CCI CA Eigenvalue % VAF 

Dimension 1 0.112 0.056 0.131 -0.491 0.464 0.624 0.877 0.940 0.693 2.533 31.657 

Dimension 2 0.673 0.888 0.180 0.703 -0.114 0.079 0.200 0.164 0.530 1.855 23.191 

Total - - - - - - - - 0.882 4.388 54.848 

 937 
 Model summary for TO DBM-C 
 TO DBM-

C 

TOTAL 

GLUC 

AO BEN IN AS S CCI CA Eigenvalue % VAF 

Dimension 1 0.622 0.100 0.134 -0.439 0.458 0.605 0.865 0.952 0.742 2.837 35.466 

Dimension 2 0.371 0.933 0.248 0.756 -0.024 -0.059 0.140 0.091 0.468 1.672 20.900 

Total - - - - - - - - 0.889 4.509 56.366 
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 938 
 Model summary for TO DBM-G88 
 TO DBM-

G88 

TOTAL 

GLUC 

AO BEN IN AS S CCI CA Eigenvalue % VAF 

Dimension 1 0.527 0.028 0.125 -0.513 0.463 0.603 0.858 0.937 0.733 2.750 34.372 

Dimension 2 0.550 0.934 0.296 0.686 0.025 -0.044 0.207 0.164 0.529 1.805 22.564 

Total - - - - - - - - 0.892 4.555 56.936 

 939 
 Model summary for TO DBM-P 
 TO DBM-

P 

TOTAL 

GLUC 

AO BEN IN AS S CCI CA Eigenvalue % VAF 

Dimension 1 0.455 -0.008 0.120 -0.534 0.454 0.608 0.860 0.927 0.722 2.680 33.499 

Dimension 2 0.560 0.924 0.326 0.659 0.006 -0.020 0.255 0.185 0.529 1.808 22.600 

Total - - - - - - - - 0.888 4.488 56.099 

 940 
 Model summary for LS in DBM-C 
 LS DBM-

C 

TOTAL 

GLUC 

AO BEN IN AS S CCI CA Eigenvalue % VAF 

Dimension 1 0.186 -0.036 0.097 -0.554 0.463 0.623 0.849 0.924 0.695 2.529 31.616 

Dimension 2 0.656 0.922 0.372 0.571 -0.061 0.087 0.236 0.234 0.541 1.866 23.326 

Total  - - - - - - - 0.883 4.395 54.942 

 941 
 Model summary for LS in DBM-P 
 LS DBM-

P 

TOTAL 

GLUC 

AO BEN IN AS S CCI CA Eigenvalue % VAF 

Dimension 1 0.192 -0.058 0.076 -0.562 0.462 0.627 0.845 0.918 0.696 2.525 31.557 

Dimension 2 0.738 0.896 0.501 0.492 -0.026 -0.003 0.272 0.251 0.578 1.978 24.723 

Total  - - - - - - - 0.889 4.502 56.281 
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Table S3.  Significance of correlations between plant glucosinolate content, two-choice oviposition preference index (OPI), no-choice 952 

total oviposition (TO) and larval survival (LS) in three P. xylostella strains reared on cabbage (DBM-C), artificial diet (DBM-G88), 953 

and pea (DBM-P).  Correlations were analyzed statistically using one-tailed Spearman´s rho correlations (P ≤ 0.05) (n = 31).  954 

Significant correlations are shown in bold type.   955 
 

 

 P-value of Spearman´s rho correlation 

 DBM-C OPI DBM-G88 OPI DBM-P OPI DBM-C TO DBM-G88 TO DBM-P TO DBM-C LS DBM-P LS Total glucosinolates 
DBM-C OPI - P≤0.001 P≤0.001 P≤0.001 - - P≤0.001 - P≤0.001 
DBM-C TO P≤0.001 - - - P≤0.001 P≤0.001 P≤0.001 - P=0.025 
DBM-C LS P≤0.001 - -  P≤0.001 - - P≤0.001 P=0.017 
DBM-G88 OPI P≤0.001 - P≤0.001 - P≤0.001 - - - P≤0.001 
DBM-G88 TO - P≤0.001 - P≤0.001 - P≤0.001 - - P=0.004 
DBM-P OPI P≤0.001 P≤0.001 - - - P≤0.001 - P≤0.001 P≤0.001 
DBM-P TO - - P≤0.001 P≤0.001 P≤0.001 - - P≤0.001 P=0.011 
DBM-P LS P≤0.001 - - - - P≤0.001 P≤0.001 - P=0.012 
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Table S4.  Effect of plant glucosinolate content, glucosinolate diversity, and DBM strain 965 

on two-choice oviposition preference index (OPI), no-choice total oviposition (TO), and 966 

larval survival (LS) in three P. xylostella strains reared on cabbage (DBM-C), artificial 967 

diet (DBM-G88), and pea (DBM-P).  Four different classes of glucosinolates were 968 

distinguished, aliphatic with sulfur-containing side chains (AS), other aliphatic (AO), 969 

benzenic (BEN), and indolic (IN).  The effect of the diversity of glucosinolates was 970 

analyzed with the glucosinolate richness (S) and the chemical complexity index for 971 

glucosinolates (CCI) of each plant.  The generalized linear model used was based on a 972 

Tweedie probability distribution with log link function (P ≤ 0.05) (n = 31).  The slope 973 

estimate was set to zero for the strain DBM-P.  Significant P-values are shown in bold 974 

type.   975 

 976 

 Wald-chi square P Slope Estimate SE 

OPI     

  Strain DBM-C 0.82 0.364 -0.116 0.128 

  Strain DBM-G88 0.30 0.583 -0.070 0.127 

  S 2.19 0.139 -0.045 0.030 

  CCI 11.59 ≤0.001 0.475 0.139 

  AO 11.32 ≤0.001 0.009 0.003 

  BEN 29.47 ≤0.001 0.010 0.002 

  AS 2.75 0.097 0.008 0.005 

TO     

  Strain DBM-C 3.96 0.047 0.337 0.170 

  Strain DBM-G88 7.93 0.005 0.470 0.167 

  S 1.14 0.285 -0.035 0.033 

  CCI 24.66 ≤0.001 0.847 0.164 

  AO 10.10 ≤0.001 0.011 0.003 

  BEN 18.79 ≤0.001 0.011 0.002 

  AS 0.59 0.443 0.004 0.006 

LS     

  Strain DBM-C 0.01 0.971 0.002 0.043 

  S 2.56 0.109 -0.019 0.012 

  CCI 6.69 0.010 0.138 0.053 

  AO 14.26 ≤0.001 0.004 0.011 

  BEN 6.39 0.011 0.002 0.001 

  AS 0.26 0.611 0.001 0.002 

The P-values of the generalized linear model used for OPI, TO, and LS were highly 977 

significant (P ≤ 0.001) based on Omnibus tests 978 
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Figure S1.  Correlation between indolic and benzenic glucosinolate content (µmol/g 986 

plant dry weight) in the plants tested.   987 
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Figure S2.  CATPCA plot showing the relationships between total glucosinolate content 1003 

(TOTAL GLUC), aliphatic glucosinolates with sulfur-containing side chains (AS), other 1004 

aliphatic glucosinolates (AO), benzenic glucosinolates (BEN), indolic glucosinolates 1005 

(IN), glucosinolate richness (S), and chemical complexity index for glucosinolates (CCI) 1006 

in the plants analyzed.  The component loadings of the CATPCA plot were rotated using 1007 

Varimax with Kaiser normalization. 1008 
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