Generalidades

Al hablar de mejora de plantas, se entiende sobre todo que se trata de conseguir un aumento de rendimiento en la cosecha, por ejemplo, obtener mayor cantidad de trigo por hectárea, o mayor producción de tomates o alfalfa, etc. Indudablemente éste es un objetivo que hay que tener siempre presente, pero que hay que conjugar con el logro simultáneo de una mejor calidad del producto. Si no se tuviese esto en cuenta podrían ocurrir efectos perjudiciales.

Por ejemplo: si se hiciese una selección de un forraje simplemente para conseguir mayor peso verde, como peso verde = materia seca + agua, esta igualdad nos indica que un aumento en el primer miembro se podrá conseguir aumentando cualquiera de los dos sumandos del segundo, es decir, que podría ocurrir que lo que se seleccionase fuese un material muy rico en agua y pobre en materia seca en vez de rico en materia seca y pobre en agua que es lo que en general interesa ya que el valor alimenticio está en aquella y no en el agua.

Este caso es sencillo así expuesto, pero se complica si se considera que la materia seca, a su vez, es un complejo de muchas cosas. Allí hay fibra, azúcares, proteínas, grasas e infinidad de componentes. Centremos el valor alimenticio en la proteína. Tendremos que; materia seca = proteína + otras cosas. Por el mismo razonamiento que antes, podemos comprender que no basta con mejorar el contenido en materia seca. Hay que obtener un producto más rico en proteína, es decir, con mayor contenido en nitrógeno. Pero una proteína está formada por diversos aminoácidos, unos esenciales y otros no: proteína = aminoácidos esenciales + aminoácidos no esenciales. Al seleccionar solamente sin tener en cuenta los aminoácidos de la proteína, se podría por tanto, obtener una proteína más rica en nitrógeno total pero deficiente en algunos aminoácidos esenciales.

Este ejemplo puede servir de modelo para cualquier otro caso en que se trate de buscar una mejora efectiva en el aspecto de la calidad que sea. Se impone, por tanto, la necesidad de un
conocimiento más a fondo de las sustancias que determinan la calidad de los productos y una mejora de los mismos en ese sentido sin olvidar desde luego el aumento de producción.

La mejora será posible cuando en el material que se estudie exista la variabilidad suficiente del carácter de calidad para poder aplicar los métodos ordinarios de mejora, siempre que ese carácter responda a las leyes de la herencia.

Ahora bien: Hay que tener presente que la composición química de una planta o de un organismo en general, varía según sea su estado fisiológico o de desarrollo, e incluso algunos componentes varían según la iluminación, o la temperatura, fertilizantes añadidos, enfermedades, presencia de malas hierbas u otras plantas, etc. Todos estos factores pueden llegar a complicar el problema del reconocimiento de los caracteres de calidad. El factor que más afecta en general es el estado fisiológico y ello exige la determinación de las curvas de crecimiento, es decir, las variaciones que las sustancias determinantes de la calidad experimentan a lo largo de la vida de la planta u organismo que se considera. Si es necesario y posible, estas curvas deben estudiarse en distintas condiciones ambientales. El proceso es generalmente complicado y exige planteamientos muy cuidadosos de las experiencias.

En resumen: Antes de emprender un proceso de mejora de calidad, hay que conocer: 1) Cuáles son los caracteres de calidad y si son debidos a una sustancia o sustancias químicas posibles de reconocer por análisis. 2) Si esos caracteres se presentan en la población vegetal de que se dispone, dentro de un margen de variabilidad suficiente para emprender el proceso de mejora. 3) Si esos caracteres son o no heredables. 4) En muchos casos será preciso determinar las curvas de crecimiento para los caracteres requeridos con objeto de conocer los estados o momentos en que la calidad es óptima y con-

gabar este factor con la mejor producción posible, o a la inversa, el óptimo de producción con la mejor calidad posible.

Los índices de calidad

Los materiales vegetales y animales son muy complejos y lo que se sabe de la química de muchos de sus constituyentes es muy poco. Por ello, muchas veces sólo es posible un análisis aproximado de los mismos y no hay más remedio que utilizar esa aproximación como índice de calidad.

Como ejemplos de índices de calidad pueden citarse: el extracto etéreo total como criterio de madurez y calidad de frutos oleaginosos; la fibra bruta o el total de sólidos es un buen criterio de la calidad y grado de blandura a la cocción de los guisantes; el contenido en sólidos solubles en agua sirve como un índice de calidad de los tomates; la acidez de los frutos junto con su contenido en azúcar, es muy útil para determinar su madurez; los ácidos orgánicos influyan también el aroma, color, brillo y estabilidad de los frutos y alimentos en general.

Todos estos índices corresponden, sin embargo, a productos complejos, mezcla de muchas sustancias, entre las cuales se encontrarán algunas que efectivamente sean las responsables de la mejor o peor calidad del producto de que se trate, pero que al ir enmascaradas por otras que no tienen nada que ver conducen a imprecisiones y dudas sobre la verdadera utilidad de tales índices para los programas de mejora.

En otros casos se trata de cuerpos cuya complejidad radica no en el hecho de ser mezclas, sino que por su propia naturaleza ya son complicados, como ocurre con las proteínas, de las que ya se ha hablado y en las que interesa detenerse un poco más, ya que su importancia como índice de calidad es bien conocida: la mayor riqueza en proteína asimilable es de gran interés para evaluar un forraje y en general
un alimento, de manera que frecuentemente determina su precio.

Las proteínas y los aminoácidos

Las propiedades de las proteínas dependen en gran escala de la producción y forma de encadenamiento de los aminoácidos que forman su molécula. Las diferencias en proporción de aminoácidos pueden ser muy notables, como puede apreciarse en el cuadro en que se indica la composición aproximada de tres proteínas diferenciadas en tres grupos distintos de aminoácidos.

<table>
<thead>
<tr>
<th>proteína</th>
<th>alifáticos</th>
<th>aromáticos</th>
<th>heterocíclicos</th>
</tr>
</thead>
<tbody>
<tr>
<td>gelatina</td>
<td>81</td>
<td>4</td>
<td>15</td>
</tr>
<tr>
<td>miosina (proteína de carne)</td>
<td>87</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>albúmina de suero</td>
<td>80</td>
<td>12</td>
<td>8</td>
</tr>
</tbody>
</table>

Las proporciones de los aminoácidos particulares dentro de cada grupo, también variarán mucho. Por ejemplo, la gelatina carece de triptófano (un aminoácido heterocíclico), mientras que la miosina contiene casi un 1%. La sexta parte de los aminoácidos alifáticos de la gelatina son aminoácidos básicos, mientras que en la albúmina de suero sólo forman la cuarta parte, y así en general.

Estas diferencias en las proporciones de aminoácidos constituyen una de las razones de las diferencias entre las proteínas. Existen muchos aminoácidos. Actualmente se conocen más de 100 y su número va aumentando gracias al empleo desde hace unos 20 años de las nuevas técnicas de la cromatografía para su determinación. Sin embargo, no todos ellos se encadenan entre sí para formar proteína. Tan sólo lo hacen unos 20 y el resto de ellos se encuentran libres en los jugos de las plantas. Los animales no los forman en su organismo sino que tienen que adquirirlos de otros seres en forma de proteínas. De aquí la gran importancia de éstas para la alimentación.

Por otra parte, de los 20 aminoácidos que pueden formar proteínas, hay 10 que son fundamentales para la alimentación humana y animal. Interesa por consiguiente que estos aminoácidos estén presentes en los alimentos, y por tanto, para la nutrición, la calidad de la proteína, especialmente su contenido en aminoácidos esenciales, es de más importancia que la cantidad de proteína presente.

Pero las proteínas y aminoácidos no sólo sirven como índices de calidad alimenticia. El contenido en aminoácidos relativamente elevado de los frutos, tiene también importancia en relación con el pardeamiento de los jugos, concentrados y frutos secos, puesto que al menos en parte se debe a una reacción química entre ellos y los azúcares también presentes; el contenido proteico de cervezas, vinos y jugos tiene también importancia en relación con su clarificación y estabilización; la relación carbono/nitrogeno es un criterio importante para juzgar de la calidad de la levadura comprimida: cuanto mayor es esa relación, mejor se conserva pero es de menor actividad, etc.

La variabilidad de los caracteres de calidad

Es un hecho evidente que para emprender un proceso de mejora se necesita disponer de materiales distintos
para poder seleccionar los interesantes, efectuar cruzamientos, etc. Si toda la población de que se dispone fuese idéntica en todos sus caracteres, no habría nada que seleccionar ni que mejorar. Por ello si al estudiar la población para un determinado carácter de calidad se observa que unas plantas son mejores que otras, esas diferencias son las que son aprovechables. Es posible entonces la selección de ese material adecuado y mediante la técnica de mejora más idónea al caso se estudia si en generaciones sucesivas ese carácter se mantiene, es decir, si es heredable y cómo lo hace. De esta manera se dispondrá del material adecuado y de los datos necesarios para que el proceso de mejora sea fructífero y eficaz.

El análisis químico de los materiales permite saber los límites entre los que suele presentarse la variabilidad de ciertos caracteres de calidad. Por ejemplo: La oscilación del contenido en agua, dentro de una especie determinada, suele ser de $\pm 5\%$ sobre el valor medio en frutos frescos y hortalizas, aunque hay casos en que este valor se sobrepasa con mucho, como ocurre con guisantes en que su humedad es del 74% pero puede oscilar entre 84 y 57%; en patatas, con 77% de humedad media, la variación es entre 85 y 66%; en cambio en tomates, con humedad media de 94%, la variabilidad es menor oscilando entre 97 y 91%, así como en lechuga, cebolla y otros.

También hay variabilidad en el contenido en cenizas o sales minerales de variedades de plantas, pudiendo oscilar hasta un 5%. Las cenizas son importantes como índices de calidad en muchos aspectos, por ejemplo, para valorar los alimentos de aves y ganado; también para procesos de industrias agrícolas como en el refinado de azúcar de caña, puesto que un elevado contenido de sales minerales en los jarabes, interfiere con los procedimientos de decoloración y cristalización.

El contenido en azúcar total de los frutos puede oscilar mucho; en general en más o menos 5% sobre la media, aunque hay casos en que puede ser el doble. En hortalizas la oscilación es mucho menor.

La proteína varía también dentro de límites útiles para los procesos de mejora. Sin embargo, los valores que suelen darse no corresponden a la proteína real, sino que no son más que una forma artificial de expresar el contenido en nitrógeno total orgánico. Es decir: lo que se determina en el análisis es el nitrógeno (generalmente por el método de Kjeldahl) y el valor encontrado se multiplica por un factor (casi siempre 6,25). El resultado de esta operación aritmética se dice que es proteína, aunque no es verdad por dos razones, entre otras: 1) en primer lugar porque el N determinado en el Kjeldahl pertenece no sólo a la proteína, sino a otras sustancias orgánicas nitrogenadas, y 2) porque al emplear el factor 6,25 se establece como cierto que la proteína analizada tenía el 16% de N (6,25 es el cociente 100/16) y ésto no es siempre así. El contenido en N de las proteínas varía tal vez desde un 12% hasta un 20%, dependiendo del organismo de que se trate, y aun dentro de la misma especie vegetal o animal puede oscilar dentro de ciertos límites.

La patata, por ejemplo, se dice que contiene de 1,5 a 2 % de proteína calculada sobre la base del N hallado en el análisis multiplicado por el factor 6,25. Sin embargo, la realidad es que solamente contiene la mitad o menos. La alfalfa contiene más de 20 compuestos nitrogenados no proteicos, aunque varios de ellos son aminoácidos libres. Por tanto, el 1 % de proteína calculado según el análisis del N total resulta más elevado de la realidad. Si a esto se añade lo indicado respecto al factor 6,25; se puede afirmar que los valores establecidos de contenido en proteína distan bastante de ser ciertos en muchos casos.

En otra ocasión se comentarán otros aspectos relacionados con la mejora por calidad.