Confirmation of a strong complex phenol-dietary fiber by solid-state NMR spectroscopy with retention of antioxidant activity in vitro.

Alejandra BERMÚDEZ-ORIA¹, Guillermo RODRÍGUEZ-GUTIÉRREZ¹, Africa FERNÁNDEZ-PRIOR¹, Heike KNICKER², Juan FERNÁNDEZ-BOLAÑOS¹*.

¹Department of Food Phytochemistry, Instituto de la Grasa (Spanish National Research Council, CSIC), Ctra. de Utrera km. 1, Pablo de Olavide University Campus, Building 46, 41013 Seville, Spain

²Department of Geocology, Biogeochemistry and Environmental Microbiology, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS-CSIC) Avda. Reina Mercedes, 10, E-41012 Seville, Spain

Email addresses: ABO: aleberori@ig.csic.es; GRG: guirogu@cica.es; AFP: aprior@hotmail.com; HK: knicker@irnase.csic.es; JFB: jfbg@cica.es

*Corresponding author: Tel: 34-954691054; Fax 34-954691262; E-mail: jfbg@cica.es
Abstract.

The aim of this study was to prepare a complex between the olive phenolic compounds, hydroxytyrosol (HT), 3,4-dihydroxyphenylglycol (DHPG) and their mixture, with soluble and insoluble dietary fiber of apple cell wall. A strong interaction between phenols and apple cell wall was observed after drying and was confirmed by ultraviolet-visible spectrometry, Fourier transform infrared spectrometry, differential scanning calorimetry, thermogravimetry and especially by solid-state 13C-NMR spectroscopy.

Antiradical activity by DPPH, ABTS and ORAC assays confirmed that the simple phenolic HT/DHPG maintained in part their antioxidant activity after the complexation with apple cell wall. In addition, the HT/DHPG-soluble and insoluble fractions obtained after simulated gastrointestinal fluids retained this antioxidant activity. These complexes may be protected from absorption during gastrointestinal transit to reach the colon. In the case of the soluble dietary fiber an enzymatic treatment, as a simulation of hydrolysis by colonic microflora, released oligomers with potential antioxidant activity from this complex. Therefore, the intake of HT/DHPG bound to fiber of apple cell wall could provide many health benefits associated to the dietary fiber, and to be fermented by gut bacteria and contribute to a healthy antioxidant environment.

Keywords: olive phenols; apple cell wall; antioxidant activity; phenol-soluble dietary fiber complex; phenol-insoluble dietary fiber complex; solid-state 13C-NMR spectroscopy.
1. Introduction.

Polyphenols and dietary fiber are two important nutritional components present in plant food that are associated with the prevention of cancer and chronic diseases (Zhu, 2018). During the digestion or food processing the cell plant are ruptured and the polyphenols are released from the vacuoles and come into contact with cell wall polysaccharides, the indigestible component of dietary fiber (Le Bourvellec, Le Quere, & Renard, 2007). The interactions can occur spontaneously by the ability of polyphenols to bind to polysaccharides by hydrophobic and hydrogen bonding, and by covalent bonds (Renard, Watrelot, & Le Bourvellec, 2017). Several studies has found that procyanidins and phenolic acid were able to bind to pectin and cell wall of apple and to cellulose (Le Bourvellec, Guyot, & Renard, 2009; Phan, Flanagan, D’Arcy, & Gidley, 2017). These interactions may influence in the bioavailability of the antioxidants affecting their absorption, although polyphenols bound to dietary fiber, which survive upper gastrointestinal tract digestion and reach the colon, may be important for maintaining good gut health (Saura-Calixto, 2011). The fiber, named antioxidant dietary fiber by Saura-Calixto (1998), combines the benefits of dietary fiber and the natural antioxidants, and have shown promising results in relation to gastrointestinal health, including antioxidant and antiproliferative capacities as well as the prevention of cardiovascular disease (Pérez-Jiménez, Díaz-Rubio, & Saura-Calixto, 2013).

In a recent work we studied the interaction between hydroxytyrosol (HT) and 3,4-dihydroxyphenylglycol (DHPG), two the most potent and abundant antioxidant phenols of olive fruit with important biological activity (Wani et al., 2018), with strawberry cell wall, which occurred during drying and resulted in a strong and irreversible complex, specially with the soluble dietary fraction (Bermúdez-Oria, Rodríguez-Gutiérrez, Fernández-Prior, Vioque, & Fernández-Bolaños, 2019). The obtention of a dietary fiber
with associated these phenolic compounds, HT/DHPH, that exhibit numerous health-beneficial properties based fundamentally in its potent ROS scavenging activity and its ability to modulate cellular response against oxidative stress (Robles-Almazan et al., 2018), could be useful to obtain a novel tailor-made dietary supplement to promote intestinal health.

The present study focused on the development of scalable, reproducible and simple complexation method on another different raw fiber material, such as apple dietary fiber, for the recovery of soluble and insoluble dietary fiber enriched with HT/DHPG. The procedure is based on drying of cell wall material with aqueous solution of HT and DHPG and including two-step of simulated gastrointestinal fluids without the addition of digestive enzymes. In addition, we investigated the chemical characteristics of HT/DHPG complexed with the soluble and insoluble dietary fiber of apple cell wall by ultraviolet-visible (UV-vis) spectrometry, Fourier transform infrared spectrometry (FT-IR), thermogravimetry analysis (TGA), differential scanning calorimetry (DSC), and solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. The in vitro antioxidant capacity of such complexes was also determined.

2.1. Purification of hydroxytyrosol (HT) and 3,4-dihydroxyphenylglycol (DHPG) from alperujo (olive oil by-product).

HT and DHPG were purified from alperujo, the main by-product of olive oil extraction using a chromatographic fractionation resulting compounds with 90–95% of purity in weight (Fernández-Bolaños et al., 2013).
2.2. Preparation of apple cell wall material.

Alcohol-insoluble solids (AIS) from apple fruits were made using the method of Renard (2005). Briefly, apples were peeled and cut into 2-3 pieces. The pieces were directly ground in a domestic blender in 70% ethanol and subsequently filtered through a nylon cloth. The resulting solid was ground and washed repeatedly with 70% ethanol until the filtrate had no color. Drying was performed by solvent exchange (96% ethanol and acetone), then overnight in an oven at 40º C.

2.3. Preparation of the apple cell wall-HT/DHPG complex.

Approximately 500 mg of apple cell wall alcohol-insoluble solid (AIS) was added to 10 mL of 1-10 mg/mL HT or DHPG solutions (corresponding to an initial amount of 200 mg bioactive compound (BC)/g cell wall) or a mixture of 5 mg/mL of HT and 5 mg/mL of DHPG solution (100 mg of HT: 100 mg of DHPH/g cell wall). After overnight swelling, the samples were dried in the oven for 72 h at 60 ºC. After drying, the cell wall was rehydrated with water and then washed copiously with ethanol 70% to remove the free phenols, and the cell wall/phenol complex separated by filtration. The content of free HT and DHPG was measured by HPLC and the bound phenols calculated by the difference.

2.4. Determination of cell wall composition.

The hemicellulosic sugar composition was obtained after the hydrolysis with trifluoracetic acid (TFA) (2N, 121º C, and 1 h), by the reduction and acetylation of the solubilized sugars, measuring the acetate of glucitol formed by gas chromatography (GC) (Englyst & Cummings, 1984). Chromatographic parameters used were showed by
Phenyl-phenol method was used for the determination of uronic acid after hydrolysis with sulfuric acid (Blumenkrantz & Asboe-Hansen, 1973).

2.5. Gastrointestinal digestion *in vitro* with simulated gastric and intestinal fluids.

HT/DHPG-bound cell wall, free of soluble phenols, was immersed in 100 mL 0.1 M HCl solution at pH 1.2 (simulated gastric fluid) and incubated with gentle shaking in a water bath at 37º C for the first 2 h. After incubation, the sample was filtered with filter paper, and the filtrate used for the quantification of HT and DHPH delivered in gastric fluid. The insoluble fraction was adjusted to pH 6.8 with the addition of 100 mL phosphate buffer solution (simulated intestinal fluid). The samples were incubated for another 3 h in a water bath at 37º C with agitation. Thereafter, the samples were filtered to separate the soluble fraction from the insoluble fraction, and the free HT and DHPG in the soluble were quantified and the bound phenols calculated by the difference.

2.6. Antioxidant activity measured by DPPH, ABTS and ORAC assays.

2.6.1. Antiradical activity: 2,2-Diphenyl-1-picrylhydrazyl (DPPH).

Free radical-scavenging capacity was determined using the DPPH method as described by Rodríguez et al. (2005). The results were expressed as the average of the ratios of the slopes of the lines obtained for each sample with Trolox calculated for this wavelengths. The results were expressed in terms of Trolox equivalent antioxidant capacity in µmol Trolox/g of sample.

In the case of insoluble material, the antioxidant activity was evaluated as described by Fuentes-Alventosa et al., (2009) with slight modifications (Bermúdez-Oria et al., 2019).
2.6.2. Antiradical activity: 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS)).

The ABTS method was carried out following the modification made by Rubio-Senent, Rodríguez-Gutierrez, Lama-Muñoz, & Fernández-Bolaños (2012). The results were expressed in terms of Trolox equivalent antioxidant capacity in μmol Trolox/g of sample.

2.6.3. Antioxidant activity: Oxygen radical absorbance capacity (ORAC) method.

The antioxidant capacity by ORAC method was measured following the protocol of Ou, Hampsch-Woodill, & Prior (2001) with the modifications of Bermúdez-Oria, et al., (2019). Results were expressed as μmol Trolox equivalents/g of sample.

2.7. Hydrolysis of HT/DHPG linked with soluble dietary fiber and ultrafiltration.

The enzymatic hydrolysis of soluble fiber-phenol complex was performed by mixture of 4 μg/mL of endo- and exo-polygalacturonase and pectin esterase (Novo Nordisk, Bagsvaerd, Denmark) according with Bermúdez-Oria, et al., (2019).

After the hydrolysis the sample was ultrafiltered by an Amicon 8400 stirred cell (Millipore Corporation, Bedford, MA, USA) using a molecular weight cut-off of 3000 and 1000 Da, washing each retained fraction with water until 300 mL of permeate. The three fractions obtained were: the retained fractions over 3000 Da, a fraction over 1000 Da, and the eluted fraction over 1000 Da. All of them were analyzed for antiradical activity by DPPH, ABTS and ORAC methods.

UV Spectrometry. UV spectroscopy was performed using a Coulter DU 800 UV/visible spectrophotometer (Beckman, USA) in the range 200-400 nm.

FT-IR Spectrometry. FT-IR spectra of samples were obtained using FT-IR Bomem MB-120 spectrophotometer (ABB, Canada) in the range 4000-350 cm\(^{-1}\) by the KBr method.

Differential Scanning Calorimetry and thermogravimetry analysis. Measurements were carried out with a thermal analyzer (Q20 DSC, TA Instruments, New Castle, DE). The samples were heated from 50 to 275 °C at a heating rate of 10 °C min\(^{-1}\) in a nitrogen atmosphere. Also, the analysis was performed using a Q600SDT (TA Instruments, New Castle, DE), with a temperature range between 50 °C and 500 °C at a heating rate of 5 °C min\(^{-1}\), under nitrogen atmosphere. For the thermogravimetric analysis a Q600SDT (TA Instruments, New Castle, DE) was used. Approximately 10 mg of sample material was heated from 50 °C to 500 °C at a heating rate of 5 °C min\(^{-1}\), under nitrogen atmosphere.

\(^{13}\)C CP/MAS NMR spectroscopy

For the molecular characterization, solid-state \(^{13}\)C nuclear magnetic resonance (NMR) spectra were acquired, using a Bruker Avance HD 400 MHz spectrometer operating at a \(^{13}\)C frequency of 100.6 kHz and applying the cross polarization magic angle spinning (CP/MAS) technique. Therefore, Zirkonium rotors with KELF-caps with an outer diameter of 4 mm were spun in a triple resonance probe at the magic angle with a spinning speed of 14 kHz. A ramped \(^1\)H- pulse was applied during the contact time of 1 ms. Using a pulse delay time of 2 s between 15000 and 81 000 scans were accumulated to achieve adequate signal-to-noise ratios of the spectra.
3. Results and discussion.

3.1. Preparation of the complex hydroxytyrosol (HT) and 3-4-dihydroxyphenylglycol (DHPG) and cell wall (dietary fiber) of apple.

The influence of drying on the formation of a complex of HT/DHPG-bound to the cell wall of strawberries was investigated in a previous study (Bermúdez-Oria, et al. 2019). To confirm that such a complex formation occurs also with apple cell walls, we assayed the homogenization of apple cell wall, as an alcohol insoluble solid, in the presence of 10 mg/mL HT and DHPG solutions or a mixture of HT:DHPG of 5 mg/mL each one and further drying. The content of free HT and DHPG was measured by HPLC and the bound phenols calculated by the difference (Figure 1). There was a higher retention of HT and DHPG by apple cell wall (52 and 72%) than previously observed for strawberry cell wall (40 and 47%), respectively. In the case of the HT:DHPG mixture, the retention was intermediate between HT and DHPG, at 61.5%. Drying enhanced the binding of apple cell wall with HT/DHPG, as occurred with strawberry cell wall; whereas it is documented that boiling and drying decreases the binding affinity of apple cell walls for procyanidins due to pectin solubilization and degradation, and by altering the cell wall surface area (Le Bourvellec et al., 2012).

When the HT/DHPG-bound cell wall (dietary fiber) was digested in vitro using simulated gastric fluid (pH 1.2, 0.1 M HCl solution, 2 h) with a subsequent pH change, simulating intestinal fluid (pH 6.8 phosphate buffer, 3 h), the amount of HT and DHPG released was very high, in contrast to the result for strawberry cell wall, from which there was practically no release. In this case, the interactions between BC and apple cell wall seemed much weaker once oven-dried and were released by gastric and intestinal conditions more easily to give a final result of 37% and 47% total retention of HT and DHPG, respectively, coinciding with the retention in the case of strawberry cell wall.
(Bermúdez-Oria et al., 2019). The dissolved fraction of phosphate buffer was separated from the insoluble fraction, with both fractions showing a high retention of HT and DHPG, confirmed by the brown color that comes from the initial compounds, which was retained in both fractions (Figure 1).

Based on monosaccharide analysis of the soluble fraction and its uronic acid content (Figure 1), the predominant component of the HT/DHPG-bound complex was a pectin rich in arabinose. This is in agreement with our previous reports of strong binding between HT and DHPG with pectinate beads (Bermúdez-Oria et al., 2017) or with the soluble dietary fiber of strawberry (Bermúdez-Oria, et al., 2019). Therefore, soluble fibers, such as pectin, with associated antioxidant compounds, could be of interest to the food industry due to their health benefits and potential technological applications (Naqash, Masoodi, Rather, Wani, & Gani, 2017; Dranca, & Oroian, 2018; Park, & Yoon, 2015).

3.2. Physical and chemical characterization of the HT/DHPG complex with apple dietary fiber.

3.2.1. UV Absorption Spectrum.

Since there are not present free phenolic compounds, the UV absorption of HT/DHPG was clearly affected by the dietary fiber interaction. In the absorption spectra of the complex of HT and DHPG in the soluble fraction (Figure 2a), a slight band was found at 280 nm (π-π* transition of the phenolic group), and was slightly more pronounced in the case of DHPG, but not present in the control spectrum (soluble fraction obtained from apple cell wall with no addition of BC). This slight increase of intensity of signal indicate that the phenols have been incorporate within soluble fraction, presumably to soluble polysaccharides constituents of apple dietary fiber, likely
through of combination of hydrogen bonding and hydrophobic interaction (Bermúdez-Oria et al., 2017, 2018).

3.2.2. FT-IR Analysis.

The FT-IR spectra of the soluble fraction confirmed the characteristic absorption bands of pectin: at 3000-3800 cm\(^{-1}\) and 2900 cm\(^{-1}\), which are attributed to OH- and C-H stretching vibrations, respectively (Figure 2b). The peaks at 1100, 1700, and 1745-1760 cm\(^{-1}\) are assigned to –C-O-C-, C=O stretching, and ester carbonyl stretching vibrations, respectively. No significant differences were observed in the corresponding spectra of the complex of HT/DHPG with the soluble fraction compared with the control FT-IR spectrum. A total disappearance of the characteristic bands of phenolic compounds were observed in the complex spectra, which may be attributed to the complexation and, partially, to the low loading content of BC in relation with the pectin macromolecule content. Only a slight difference in the zone of 600-670 cm\(^{-1}\), associated with C-H bonds of flexion out-of plane of the aromatic compounds, was observed. This is a reliable indicator of the incorporation of HT/DHPG into the complex, although this result does not indicate the type of involved binding.

3.2.3. Thermogravimetric (TGA) and differential scanning calorimetry (DSC) analysis.

TGA analysis was performed on the control and the two complexes containing BC samples. TGA plots showed three regions at 25-100° C, 150-350° C and 350-500° C (Figure 3a), as reported by other authors for pectin (Combo et al., 2013). The first region (25-100° C) was attributed to the water loss during the temperature rise, and the second region (150-350° C) corresponded to a rapid mass loss due to the polysaccharide decomposition, with complete decomposition of the pectin at 240° C, which could be
attributed to the splitting of the saccharide rings (Li et al., 2015). The third region (350-500°C), the only region that showed differences between the control and HT/DHPG complex samples, showed a slow mass loss after volatilization and thermal decomposition of other components with the subsequent formation of solid char and various gaseous products. The decomposition of the BC linked to the soluble fraction was observed above 400°C. The thermal stability of pectin is practically not altered by the introduction of phenolic compounds and only a very slight weight loss for both phenols happened from 400 to 500°C.

The control’s DSC thermogram showed an endothermic peak around 215°C that corresponded to the melting temperature and was not observed in the DSC thermogram of HT and DHPG complexes in the scanned range in the assay conditions (Figure 3b). Furthermore, the DSC plot revealed a slight exothermic reaction in the control and HT/DHPG samples, corresponding to the degradation of the polysaccharide, which began around 230°C (Figure 3c), with a maximum at 260°C and a slight shift at a higher temperature observed for the HT-bound complex. Besides, the intensity of flow of heat observed in the HT and DHPG soluble complexes were several times higher than for the control, revealing significant changes due to the presence of BC at these high temperatures.

3.2.4. Solid-state 13C NMR spectroscopy.

The solid-state 13C cross-polarization/magic angle spinning nuclear magnetic resonance CP/MAS NMR technique was used to investigate interactions between the added phenols, HT and DHPG, and the soluble and insoluble dietary fiber of apple. For the dry soluble dietary fraction (Figure 4), the resonance lines between 60 and 100 ppm are caused by C1-C5 of the pectin backbone (Synytsya, Copikova, & Brus, 2003;
The peaks at 174 ppm and 170 ppm can be attributed to esterified and non-esterified carboxyl C (C6) of galacturonic acid esterified and not esterified respectively. The signal at 53 ppm corresponds to metoxyl C at C-6 (Figure 4) (Synytsya et al., 2003; Ng et al., 2014). Additional peaks detected between 110 ppm and 160 ppm ppm in the NMR spectra of freezed-dried complexes of HT/DHPG-soluble dietary fiber can be assigned to carbons in the aromatic ring. The signals between 130 and 145 ppm, present in spectra of the antioxidants HT and DHPG (Figure 4, assigned data), suggests that phenols bind to the soluble dietary fiber. In addition, signals between 31 and 37 ppm appear more pronounced in samples with HT and DHPG incorporated. These could be assigned to C-2 of the ethyl chain of HT (38.4 ppm) or DHPG (68.7 ppm), which show a shift downfield probably due to shielding effect produced by the polysaccharides, as occur in the modification of C2 resonance of derived of hydroxytyrosyl alkyl ethers (Madrona et al., 2009) and the alkynitrohydroxytyrosyl ethers (Gallardo, et al., 2016). Since no major changes in the chemical shifts of the pectin signals due to the addition of HT/DHPG are observed, it may be concluded that the complexation caused no major conformational changes of polysaccharides, although probably some chemical shift changes of the antioxidants.

The 13C CP/MAS NMR spectra of the complex of HT and DHPG with the insoluble fraction did not show significant differences compared to the spectrum of the insoluble fraction of the control (Figure 4), a result, which coincided with the finding of Phan et al. (2017) for apple cell walls. In our case, the spectrum is dominated by signals from cellulose, and other neutral polysaccharides, as well as to pectic polysaccharides (Table 1). However, the low intensity signal observed in the chemical shift region assignable to carboxyl C indicates minor contributions of galacturonic acid if compared
to the soluble dietary fiber. Although the spectrum of the insoluble fraction shows some weak intensity in the chemical shift region of phenol C, new resonance lines and a slight increase of signal intensity within this region are observed for the spectra of the complex insoluble material, allowing the conclusion that complexed HT and DHPG are present (Figure 4).

3.3. Antioxidant activity of the insoluble and soluble fractions in vitro.

The insoluble apple fiber fraction showed very little radical scavenging activity in the assay conditions (Figure 5), whereas the fiber complexed with BC (200 mg BC/g cell wall) showed certain antioxidant activity. This activity was highest for linked-DHPG, followed by the mixture HT:DHPG (100:100 mg/g cell wall), and lowest for HT, which needed more fiber (up to 15 mg of insoluble fraction) to obtain an appreciable decoloration of the DPPH free radical. These results with apple cell wall are very different from those obtained in our previous work with insoluble strawberry fiber, in which there was no difference between the samples with HT or DHPG added and the control, although the control did present certain antioxidant activity (Bermúdez-Oria et al., 2019). We conclude that negligent amounts of polyphenols were associated to the insoluble dietary fiber of apple, although the addition of the potent phenolic antioxidants HT and DHPG or their mixture led to the formation of a strong complex with the insoluble material of apple cell wall.

The antioxidant activity of the soluble cell wall fraction was measured by three different methods (DPPH, ABTS and ORAC) with the addition of 200 mg of HT and DHPG, and their mixture (100:100 mg of HT:DHPG) added to 1.0 g cell wall (Figure 6a,b). In the case of HT-bound soluble dietary fiber or the soluble dietary fiber control, no activity was found using the ABTS and DPPH assays, although activity was observed
using the ORAC assay, with significant differences between HT and the control. In contrast, for the DHPG-bound soluble fraction, or the HT:DHPG mixture, free radical scavenging activity was observed by all three methods. These results are in agreement with previous reports on DHPG-pectin complex formation via encapsulation (Bermúdez-Oria et al., 2017) and DHPG-bound soluble dietary fiber complex from strawberry cell wall (Bermúdez-Oria et al., 2019), which confirmed that the DHPG-linked complexes maintain more antioxidant activity than HT-linked ones. The additional –OH group of DHPG with respect to HT may allow for greater availability of the catechol group, which is responsible for the BCs’ antioxidant activity (Spizirri et al., 2009). Curiously, the soluble fraction sample with the mixture of HT and DHPG (100:100 mg/g cell wall) showed an important antiradical activity (122 and 403 µmol of Trolox/g sample for DPPH and ORAC assays, respectively), whereas the sum of activity of HT and DHPG for DPPH and ORAC were only 47 and 357 µmol of Trolox/g sample, respectively, using double the amount of BC for the formation of the complex. These results suggest a possible synergistic effect between HT and DHPG.

Therefore, the two potent phenolic antioxidants HT and DHPG form a strong complex with the insoluble and soluble polysaccharides of apple cell wall and impart their antioxidant properties to the complex.

3.4. Release of pectin fragments with antioxidant activity from the HT:DHPG-soluble dietary fiber complex.

In a previous study, when the size of the polysaccharides in the complex with strawberry cell wall was reduced, the antiradical activity was restored (Bermúdez-Oria et al., 2019). Therefore, a mixture of pectinolytic enzymes was added to reduce the molecular size of the HT:DHPG mixture-soluble dietary fiber complex to investigate its effect on the
complex’s antiradical activity. After enzymatic digestion the solubilized fraction was subjected to sequential ultra-filtration through a 3000 and 1000 Da molecular weight cut-off membrane and the corresponding eluted and retained fractions were analyzed for antiradical activity by DPPH, ABTS and ORAC assays (Figure 6c,d). For the ORAC assay, the antioxidant activity of the fraction > 3000 Da (405 µmol of Trolox/g sample) was similar to the activity of the initial fraction of the HT:DHPG mixture linked to soluble dietary fiber (Figure 6d). In contrast, the antioxidant activity was high in the fractions of smaller molecular size, with values of 290 and 291 µmol of Trolox/g for the < 1000 Da and 3000-1000 Da fractions, respectively. The increase of antioxidant activity in complexes of a smaller molecular size indicates that although the antiradical activities of HT and DHPG seem to be directly or indirectly affected by their interaction with polysaccharides, mostly pectin, their antiradical activity is partially restored when the size of the polysaccharides is reduced.

The reduction of the size of the oligomers or the hydrolytic process of soluble dietary fiber or pectin by colonic bacterial enzymes could change the outcomes obtained in this study; however, this result suggests that the hydrolytic process releases oligomers with potential antioxidant activity from this complex. This activity could help to prevent certain kinds of degenerative or chronic diseases such as colon cancer or inflammatory bowel disease (IBD) (Saura-Calixto, 2012), although future research is needed to verify this hypothesis.

This study confirmed the formation of phenol-polysaccharide complexes via drying. We provided experimental evidence that the complexation of HT/DHPG with soluble and insoluble apple cell wall retained antioxidant activity in vitro after simulated
gastrointestinal fluid and may be protected from absorption during gastrointestinal transit
to reach the colon. Enzymatic treatment and reduction of the size of the polysaccharides
in the soluble dietary fiber complex, as a simulation of hydrolysis by colonic microflora,
released oligomers with antioxidant activity and partially restored the activity of
HT/DHPG affected by the interaction with components of cell wall. As such, the
complexes formed between HT and DHPG, which are two natural phenols present in
olive fruit, with the cell wall of apple fruits could be optimized as a novel bioactive
ingredient in functional food formulations to promote intestinal health.

Funding: This work was supported by the Ministerio de Ciencias, Innovación y
Universidades of Spain and co-funded by European Social Fund (ESF) [AGL2016-79088-R]. A. Bermúdez-Oria received funding from the Spanish FPI program (MEIC)
(BES-2014-068508). The funders had no involvement in study design; in the collection,
analysis and interpretation of data; in the writing of the report; or in the decision to
submit the article for publication.

5. References.
Bermúdez-Oria, A., Rodríguez-Gutiérrez, G., Fernández-Prior, A., Vioque, B., &
Fernández-Bolaños, J. (2019). Strawberry dietary fiber functionalized with phenolic
antioxidants from olives. Interactions between polysaccharides and phenolic

Bermúdez-Oria, A., Rodríguez-Gutiérrez, G., Rubio-Senent, F., Lama-Muñoz, A., &
Fernández-Bolaños, J. (2017). Complexation of hydroxytyrosol and 3,4-
dihydroxyphenylglycol with pectin and their potential use for colon targeting.
Carbohydrate Polymers, 163, 292–300.

Figure captions

Figure 1. Scheme of the *in vitro* simulated gastrointestinal digestion process of HT/DHPG or their mixture HT:DHPG binding to apple dietary fiber. Percentage of bioactive compounds (BC) bound to AIS during drying process (oven-dried), after release with ethanol, and bound in each step of digestion simulation with respect to the bound BC. *Represents the average weight of the insoluble and soluble fractions obtained from digestion of HT/DHPG-bound cell wall (n = 3 for HT and n = 3 for DHPG). The table lists the composition (mg/g AIS) of the HT/DHPG-soluble dietary fiber complex. Each value is the average of four replicates using two HT and two-DHPH-soluble fiber complex samples. Percentage molar of uronic acid and neutral sugar. The used antioxidant and characterization method are also indicated. BC: bioactive compound; PB: phosphate buffer; AIS: alcohol insoluble solid.

Figure 2. Ultraviolet-visible (UV) (a) and Fourier transform infrared (FT-IR) (b) spectra of HT/DHPG–soluble dietary fiber complex and comparison with control (soluble dietary fiber with no BC).
Figure 3. Thermogravimetry analysis (TGA) (a) and differential scanning calorimetry (DSC) (b and c) thermograms of HT/DHPG–soluble dietary fiber complex and comparison with control (soluble dietary fiber with no BC).

Figure 4. Solid-state 13C NMR spectra of HT/DHPG–soluble and insoluble dietary fiber complex and comparison with a soluble and insoluble dietary fiber with no BC added (Control). Peak assignments in based on the previously reported data.

Figure 5. DPPH scavenging activity of insoluble dietary fiber bound to HT (2, 5, 10 and 15 mg) and DHPG or the mixture HT:DHPG (2, 5 and 10 mg), expressed as percent DPPH remaining. Comparison with control (insoluble dietary fiber with no BC). Each bar represents the average value of three replicates. Errors bars represent standard deviation (n = 3). * indicate statistical significance respect control fiber (p<0.05).

Figure 6. ABTS and DPPH scavenging activity (a) and oxygen radical capacity (ORAC)(b) of the HT/DHPG- and their mixture (HT:DHPG)-soluble dietary fiber complex. The three assays are expressed as µmol Trolox/g sample. Antiradical capacity measured by ABTS and DPPH (c) and by ORAC (d) of the pectin fragments obtained from HT:DHPG-soluble dietary fiber complex treated with a mixture of pectinolytic enzymes and recovered by a sequential ultra-filtration through 3000 and 1000 Da molecular weight cut off-membranes. Errors bars represent standard deviation (n = 3). * indicate statistical significance respect control fiber (p<0.05).
Figure 1.

1st Step
- 500 mg AIS with BC
- Driving process 60 °C/12 h

Composition

<table>
<thead>
<tr>
<th>Soluble dietary fiber (mg/40 g)</th>
<th>Uronic acid</th>
<th>Neutral sugar</th>
<th>% neutral</th>
<th>Rhamnose</th>
<th>Fucose</th>
<th>Arabinose</th>
<th>Xylose</th>
<th>Manose</th>
<th>Glucose</th>
<th>Galactose</th>
<th>Uronic acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial BC (mg)</td>
<td></td>
</tr>
<tr>
<td>HT</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>DHPG</td>
<td>73.14 ± 2.37</td>
<td>53.03 ± 0.57</td>
<td></td>
<td>53.31 a 0.57</td>
<td>71.48 ± 3.45</td>
<td>71.46 ± 3.45</td>
<td>1.24 ± 0.47</td>
<td>64.95 ± 11.96</td>
<td>45.31 ± 3.45</td>
<td>45.55 ± 4.06</td>
<td></td>
</tr>
</tbody>
</table>

Simulated fluid digestion

3rd Step: Gastric Fluid
- pH = 1.2, 0.1 M HCl / 2h

4th Step: Intestinal Fluid
- pH = 5.8, Phosphate Buffer (PB) / 3h

Table:

<table>
<thead>
<tr>
<th>Initial BC (mg)</th>
<th>Released (mg)</th>
<th>% Bound</th>
<th>Released (mg)</th>
<th>% Bound</th>
<th>Released (mg)</th>
<th>% Bound</th>
<th>Released (mg)</th>
<th>% Bound</th>
<th>% Total Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>HT</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DHPG</td>
<td>73.14 ± 2.37</td>
<td>53.03 ± 0.57</td>
<td>53.31 a 0.57</td>
<td>71.48 ± 3.45</td>
<td>71.46 ± 3.45</td>
<td>1.24 ± 0.47</td>
<td>64.95 ± 11.96</td>
<td>45.31 ± 3.45</td>
<td>45.55 ± 4.06</td>
</tr>
</tbody>
</table>

Soluble Fraction (70 mg)

Insoluble Fraction (430 mg)
Figure 2.
Figure 3.
Figure 4.

Soluble fiber

<table>
<thead>
<tr>
<th>Sample</th>
<th>Chemical shift (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C6 (COOCH₃)</td>
<td>174.8</td>
</tr>
<tr>
<td>C₅ (COO)</td>
<td>170.5</td>
</tr>
<tr>
<td>Pectin</td>
<td>C1</td>
</tr>
<tr>
<td>C4</td>
<td>79.3</td>
</tr>
<tr>
<td>C2.3.5</td>
<td>68.0</td>
</tr>
<tr>
<td>O-Me</td>
<td>52.9</td>
</tr>
<tr>
<td>HT/DHPG</td>
<td>C-aromatic</td>
</tr>
</tbody>
</table>

Insoluble fiber

<table>
<thead>
<tr>
<th>Sample</th>
<th>Chemical shift (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pectin</td>
<td>C₅ (COO)</td>
</tr>
<tr>
<td>Cellulose</td>
<td>C1</td>
</tr>
<tr>
<td>Pectin</td>
<td>C4</td>
</tr>
<tr>
<td>Pectin</td>
<td>C2.3.5</td>
</tr>
<tr>
<td>Cellulose</td>
<td>C6</td>
</tr>
<tr>
<td>Pectin</td>
<td>O-Me</td>
</tr>
<tr>
<td>HT/DHPG</td>
<td>C-aromatic</td>
</tr>
</tbody>
</table>

Aromatic peaks

Alkyl chains of aromatic compounds

Alkyl chains of aromatic compounds
Figure 5.