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INTRODUCTION

Human activities are globally impacting ecosys-
tems, with important effects on biodiversity, includ-
ing extinction processes (McKinney 2006, Worm et
al. 2006). Species vary in their responses to human
perturbations; while most seem unable to cope with
drastic changes, others may persist, or even flourish
within human-transformed ecosystems (McKinney &
Lockwood 1999). The general pattern of expansion of
some widespread non-native and native species, so-

called ‘winners’, and the contraction of rare and often
endemic native species, so-called ‘losers’, leads to a
biotic homogenization process. This has led to bio-
logical impoverishment worldwide (Olden et al. 2004).

Population expansions of winning species have
gained importance as a major conservation and man-
agement concern (Cardador et al. 2011, Sih et al.
2011, Newsome et al. 2015). The success of these
winners is widely attributed to their high adaptability
and behavioural plasticity, which allow them to
 efficiently exploit opportunities provided by novel,
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human-modified environments (Shultz et al. 2005,
Clavel et al. 2011). Among marine predators, it is
well-known that some gull species are particularly
successful. They efficiently adapt to exploiting a
wide suite of novel resources that provide direct
biotic and abiotic benefits, including food, shelter
and refuge from predation (Ramírez et al. 2012,
Alonso et al. 2015, Osterback et al. 2015). These win-
ning seabirds are often perceived as pests because of
their impacts on urban areas, water reservoirs and
threatened species (Vidal et al. 1998, Skórka et al.
2014, Rock et al. 2016). As a consequence, abundant
research has been conducted on these opportunistic
predators, mainly focused on their population dy -
namics, feeding ecology, pollution levels and patho-
gen load (e.g. Ramos et al. 2011, Payo-Payo et al.
2015). However, most of these studies consider
 conspecifics as ecological equivalents. Although this
simplification can be useful to provide an overview of
population-level feeding preferences or population
dynamics (Ramos et al. 2011, Payo-Payo et al. 2015),
taking into account the individual component within
populations is essential for a better understanding of
the main ecological mechanisms related to the suc-
cess of winning species (Grémillet et al. 1999, Car-
dador et al. 2012, Chapple et al. 2012, Liebl & Martin
2014, Ceia & Ramos 2015, Potier et al. 2015)

Individual specialization occurs when some indi-
viduals within a population utilize only a subset of
the resources that the population uses as a whole.
This may be expressed via an animal’s diet, patterns
of movement or other specific behaviour (Bolnick et
al. 2003, Matich et al. 2011, Ceia & Ramos 2015).
Individual specialization may vary between popula-
tions and across species, which may further enhance
ecological consequences at the individual level (Bol-
nick et al. 2003, Araújo et al. 2011). Variation in indi-
vidual specialization directly affects the population
dynamics of winning species, by facilitating their
adaptability to a large suite of environmental con -
ditions, while reducing competition among con-
specifics (Bolnick et al. 2003, Tinker et al. 2007, Dall
et al. 2012, Liebl & Martin 2014). Thus, taking into
account the individual component should allow for
a better understanding of ecological processes. In
addition, knowing the degree of individual special-
ization in winning species that negatively affect
human or wildlife health may help to implement
more effective management actions (Sanz-Aguilar et
al. 2009, Bowen & Lidgard 2013, Ceia et al. 2014).

In the present study, we investigated the spatial
ecology of the opportunistic yellow-legged gull Larus
michahellis in a breeding population of southeastern

Spain, to examine its degree of individual specializa-
tion in habitat use. This species is a clear example of
a winning predator in southern Europe, as a result of
its ability to efficiently exploit a diverse suite of novel
resources (e.g. Alonso et al. 2015, Payo-Payo et al.
2015, Martínez-Abraín & Jiménez 2016). This gull is
also considered a pest within urban, agricultural and
coastal areas (Vidal et al. 1998). Based on previous
information (Ceia et al. 2014, Tyson et al. 2015, Ceia
& Ramos 2015), we hypothesized that yellow-legged
gulls present a  significant level of individual differ-
ences in habitat use. Specifically, we predicted that
individuals within the population would show niche
segregation with respect to habitat use. To test for
such individual strategies, we applied metrics previ-
ously used to identify diet specialization (Bolnick et
al. 2002, Fodrie et al. 2015). These metrics were
applied to spatial data obtained from 18 yellow-
legged gulls that were GPS-tracked simultaneously
during 4 wk of the breeding season (Bouten et al.
2013). This is one of the first studies to investigate the
spatial movements of this gull species continuously
across several weeks (see Ceia et al. 2014).

MATERIALS AND METHODS

Fieldwork procedures

Fieldwork was carried out at the natural protected
Biosphere Reserve of Marismas del Odiel (37° 13’ N,
6° 59’ W, Gulf of Cadiz, SW Iberian Peninsula; Fig. 1)
in a colony of 250 to 300 breeding pairs. To in -
vestigate spatial movements during the breeding pe-
riod (May 2015), we deployed high-resolution  GPS-
trackers recording the positions of individuals at
5 min intervals (www.UvA-BiTS.nl; Bouten et al.
2013) on 18 breeding adult gulls >4 yr old. Age was
determined from plumage characteristics. Incubating
birds were caught at the nest using a walk-in wire
mesh trap and devices were attached using a wing
harness fixed with a reef knot in the tracheal pit, an
attachment method recommended for large gulls (see
Thaxter et al. 2014, 2016). The GPS logger and har-
ness weighed less than 1.8% of the body mass of the
birds (19 g for the GPS versus 1062 ± 120 g [mean ±
SD] for the tracked gulls), less than the 3 to 5%
threshold suggested for seabirds (Phillips et al. 2003,
Passos et al. 2010). GPS data were downloaded re-
motely through a local base station and automatically
up loaded to the central database (Bouten et al. 2013).
To avoid potential biases associated with differences
between individuals in the number of days with GPS
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data and the potential differential spatial behaviour
during the breeding period, we focused our analyses
on the time period from 14 May to 15 June 2015 (incu-
bation period). We considered only locations recorded
outside the colony (using a radius of 500 m around
each nest) and we removed all travelling locations
(speed >4 km h−1; Navarro et al. 2016). The total num-
ber of GPS locations ranged from a mean of 8200 to
9129, with a mean of 8644 ± 495 locations ind.−1.

Individual specialization and individual spatial
segregation

Individual specialization in habitat use by each
tracked yellow-legged gull was quantified following
Bolnick et al. (2002) and Fodrie et al. (2015). Specifi-
cally, we calculated the proportional habitat use by
each yellow-legged gull as the number of habitat-
specific positions divided by the total number of GPS
positions recorded during the entire tracking period
for a particular individual. Habitat was determined
by merging all filtered foraging GPS locations with
high-resolution land cover information (SIOSE, Soil
Information System of Spain, Junta de Andalucía;

scale was 1:2500; last update 2011). Using this in -
formation, we calculated the proportional similarity
index (PSi) following Schoener (1968). PSi is a meas-
ure of individual specialization based on habitat-
by-habitat deviations in an individual’s habitat use
relative to population level, average habitat use (0 =
more specialized; 1 = more generalist). PSi is based
on the average pairwise overlap of the niche distribu-
tion of individuals and the population (Bolnick et al.
2002). Mean PSi among individuals was used to
determine the average amount or prevalence of
 individual specialization in habitat use in the popula-
tion (IS). We ran Monte Carlo permutations to test
whether observed PSi values differed significantly
from a random distribution of values subsampled
from the population. We randomly reassigned habi-
tat use for each yellow-legged gull in equal propor-
tion to our observed data, and then calculated indi-
vidual and population-level metrics for the random
population. We generated random habitat use data
for 10 000 populations, thereby creating a null distri-
bution of PSi values. We concluded that individuals
were not sampling from a shared distribution of
 habitat use if our observed PSi values were <95% of
all randomly generated values (Araújo et al. 2007).
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Fig. 1. (A) Study area showing the filtered GPS locations of the 18 tracked yellow-legged gulls Larus michahellis during the
2015 breeding season; (B) example of the habitats exploited by a generalist individual; and (C) example of an individual that 

specializes in the use of fish farm habitats
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All of these analyses were per-
formed using the RInSp package
(Zaccarelli et al. 2013) in the soft-
ware package R (R Core Team
2015). Pearson correlation tests
indicated that no significant rela-
tionship exists between the num-
ber of GPS positions and the PSi
values at the individual level (p =
0.71). We did not consider a sex
effect because no significant
 differences in PSi values were
found between sexes (ANOVA
tests: F1,17 = 1.92, p = 0.19).

In addition to the PSi values,
we quantified the degree of indi-
vidual spatial segregation within
each habitat using Schoener’s
overlap index D-metric (Schoener
1968), indicating the relative use
of particular microhabitats (Fried -
laender et al. 2011). For this, we
overlaid all filtered locations onto
a grid of 100 m2 (corresponding to the minimum area
used by the tracking gulls in the present study) to
estimate the proportion of locations in any grid cell.
The cell size was based on the minimum area encom-
passing a single habitat. D-metric values of 1 indicate
a complete spatial overlap between 2 yellow-legged
gulls in a pair, whereas values of 0 indicate complete
 spatial segregation. ANOVA and post hoc tests were
applied to test differences in the D-metric index
between individuals.

RESULTS

Based on the 28 917 filtered locations recorded dur-
ing 1 mo of the 2015 breeding season from the 18
tracked yellow-legged gulls, we detected the use of
11 different habitats (Table 1, Figs. 1 & 2). At the
 population level, the relative use of each habitat (per-
centage of total locations) ranged from 28.4% for fish-
ing ports and estuaries (22.3%) to ~1.0% for garbage
dumps, agricultural lands and fish farms (Fig. 2).

Individual specialization in habitat use

At the individual level, we found PSi values rang-
ing from 0.37 to 0.78, with specialized individuals
(low PSi values) mainly exploiting habitats such as
fish farms, sea or estuarine areas, and less special-

ized individuals (high PSi values) using a higher
diversity of habitats (Fig. 2). Monte Carlo analyses of
individual-versus-population niche variation indicated
that specialized individuals were significantly preva-
lent within the population (IS = 0.52, p < 0.001; Fig. 2).

Individual spatial segregation within each habitat

Based on D-metric values (spatial segregation
between individuals within the same habitats), we
found marked differences between habitats (F10,1710 =
136.69, p < 0.001; Fig. 3). Post hoc tests indicated that
spatial overlap between individuals was significantly
higher in garbage dumps (D-metric = 0.78 ± 0.06),
followed by water ponds, fish farms and fishing ports
(D-metric ranging from 0.36 to 0.41), and estuaries
(D-metric = 0.24 ± 0.15). The lowest spatial overlap
values were found for urban, wetland, saltpans, beach,
sea and agricultural areas (D-metric ranging from 0
to 0.16) (Fig. 3).

DISCUSSION

We examined the spatial ecology of yellow-legged
gulls to test the degree of individual specialization in
their habitat use, by tracking 18 individuals simulta-
neously over 1 mo during the breeding period. Our
results support the hypothesis about winning spe-
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Habitat type Main potential behaviours

Sea Foraging (marine resources and fishery discards)

Estuary Foraging (estuarine fish and crustaceans)
Resting and socializing

Wetland Foraging (fish and other resources such as bird chicks or eggs)
Resting (safe places)

Beach Scavenging (dead cetaceans/fish and human food)

Fishing port Scavenging (fishery discards)

Fish farm Foraging (farm fish)

Saltpans Foraging (fish and crustaceans)
Resting (safe places)

Water pond Foraging (fish)
Cleaning (freshwater)
Resting (safe place)

Agriculture area Foraging (olives, insects and other terrestrial prey)

Urban Scavenging (human food)
Foraging (urban birds and other prey)
Cleaning (freshwater ponds in urban parks)

Garbage dump Scavenging (human food)
Preying (small mammals and insects)

Table 1. Habitat type and the main potential behaviours of the yellow-legged gull 
Larus michahellis
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cies, as they revealed a high diversity of habitats
used by the yellow-legged gulls. Moreover, in accor-
dance with ecological theory related to generalist
species (Bolnick et al. 2003, Araújo et al. 2011), we
also showed that variation within the population pre-
dominately derives from individual specialization in
habitat use. Importantly, we found that the degree
of spatial segregation between individuals differed
markedly between habitats.

At the population level, yellow-legged gulls were
able to use up to 11 main habitats present both in
marine and terrestrial domains, including natural
and human-made habitats. This high plasticity re -
flects the pronounced ability and behavioural flexi-
bility of the yellow-legged gull to exploit a diverse
suite of trophic resources, some of which are novel
resources provided by humans, or use them for other
activities such as resting, bathing or socializing. For
example, it has been reported that in the marine
environment or in fishing ports the yellow-legged
gull exploits marine resources by foraging on natural
prey in the open sea, or opportunistically forages on

fishery discards (Duhem et al. 2003, Ramos et al.
2009). In the saltpans, estuaries and wetlands, birds
exploit different resources such as fish, crustaceans
and bivalves, predate on eggs and chicks of other
birds, or use undisturbed areas to rest or socialize
with conspecifics (Bosch 1996, Munilla 1997, Vidal et
al. 1998, Buechley & S‚ ekercioğlu 2016). In beaches or
urban areas, individuals scavenge on organic matter
present in human waste or dead marine organisms,
predate on urban vertebrates such as pigeons, or use
the ponds present in the urban parks to bath or drink
freshwater (Britton & Morton 1994, Buechley & S‚ eker -
cioğlu 2016, Huig et al. 2016). In some specific habi-
tats such as water ponds, in addition to preying on
amphibians or freshwater fish, the gulls wash their
feathers or rest (Sebastián-González et al. 2012). Most
published studies indicate the high importance of
trophic resources present in garbage dumps for the
yellow-legged gull (Duhem et al. 2003, Ramos et al.
2009). Surprisingly, in our study, the importance of
this habitat was very low. This result may be related
to the low availability of urban dumps in the area
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Fig. 2. Individual variation in habitat use between the 18 GPS-tracked yellow-legged gull Larus michahellis individuals during
one month of the 2015 breeding season. Each individual (x-axis) is represented by a vertical bar, subdivided by the pro -
portion of locations in each habitat in relation to the total GPS locations and the specialization index PSi (black dots; 0 = more
specialized; 1 = more generalist). Mean habitat use and the prevalence of individual specialization in habitat use in the 

population (IS; black dot in the population bar) are also represented (right bar)
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covered by GPS-tracked individuals (Navarro et al.
2016).

Although all GPS-tracked yellow-legged gulls
could potentially exploit all available habitats, based
on PSi values—a metric to test individual special -
ization (Bolnick et al. 2002, Fodrie et al. 2015)—
we found clear differences in habitat use among in -
dividuals within the population. These results are
coherent with the prediction that some generalist or
opportunistic species are composed of ecologically
heterogeneous individuals that repeatedly differ in
behaviour and use of different subsets of available
resources (Bolnick et al. 2002, Bearhop et al. 2004,
Bell et al. 2009). Individual specialization is known to
be widespread across a diverse set of taxa (Bolnick et
al. 2003, Bell et al. 2009, Ceia & Ramos 2015), includ-
ing different seabird species and other marine pred-
ators (e.g. Vander Zanden et al. 2010, Votier et al.
2010, Masello et al. 2013, Ceia & Ramos 2015, Tyson
et al. 2015, Towner et al. 2016, Yurkowski et al.
2016). In general, individual specialization may have
a strong impact on ecological processes and popula-
tion dynamics, and there is evidence that this mech-
anism may reduce intra-specific competition among
individuals, increase individual foraging efficiency
and improve breeding success (Pierotti & Annett
1991, Bolnick et al. 2003, Woo et al. 2008, Araújo et

al. 2011). For this reason, the existence of individual
specialization within populations of winning species
could partially explain their success (Grémillet et al.
1999, Cardador et al. 2012, Chapple et al. 2012, Liebl
& Martin 2014, Ceia & Ramos 2015, Potier et al.
2015). Specifically, individual specialization could
help opportunistic species to exploit the wide range
of ecological opportunities provided by human activ-
ities (food or shelter, among others) in heterogeneous
landscapes, thereby becoming more competitive
than losing species (Carrete et al. 2010, Cardador et
al. 2011, Layman et al. 2015, Newsome et al. 2015,
Robertson et al. 2015).

The high degree of specialization across yellow-
legged gulls of southern Spain has management and
conservation implications related to the implementa-
tion of effective actions to reduce specific impacts on
human or conservation interests (Sanz-Aguilar et al.
2009, Bowen & Lidgard 2013). For example, if the
owners of fish farms wish to reduce the potential
impact of yellow-legged gulls on their installations,
one tractable management option is to remove gulls
that specialize in this resource. One piece of clear
evidence of the efficacy of such targeted measures is
the reduction of the predation of the European storm
petrel Hydrobates pelagicus by yellow-legged gulls,
through the removal of specific petrel predators
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Fig. 3. Spatial overlap (mean and SD) between yellow-legged gull Larus michahellis individuals within each habitat (Agri =
agriculture area, Saltp = saltpans, Wetl = wetlands, Estu = estuaries, Port = fishing ports, Ffarm = fish farms, Wpond = water
ponds, Dump = garbage dumps) based on Schoener’s spatial overlap metric (0 = more segregation; 1 = more overlap). The
results of post-hoc Tukey HSD tests are shown by the lowercase letters above each bar: for individual spatial overlap, the 

means of habitats with the same letter were not significantly different
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within the gull population (Sanz-Aguilar et al. 2009).
However, it is important to point out that although
these management measures could be efficient in the
short term, other individuals can occupy the empty
niche over longer periods.

Interestingly, we also found that the degree of spa-
tial segregation between yellow-legged gulls differed
between habitats. Based on the principle of compe -
titive exclusion, competing individuals exploiting
similar habitats are expected to segregate, especially
when particular resources are limited (Gause 1973,
Pianka 2000). Although we did not measure the
availability of trophic resources or other types of
resource related to other particular behaviours in
each habitat, some of these observed differences may
be explained by inter-habitat differences. For exam-
ple, in garbage dumps or fish farms, high availability
of resources and limited profitable surface area could
allow some degree of spatial overlap between indi-
viduals exploiting similar trophic resources (Cortés-
Avizanda et al. 2012, Arizaga et al. 2014). In contrast,
in other habitats with prey resources for gulls, such
as fishery discards at sea, individuals probably need
to segregate in space to find food, or to reduce com-
petition between conspecifics or with other bird spe-
cies (Navarro et al. 2013, Patrick et al. 2014, Tyson et
al. 2015). For this reason, the different degrees of
individual spatial segregation between habitats may
be viewed as a consequence of the distribution or
availability of the resources used by gulls, or as a
potential mechanism to reduce intra-specific compe-
tition (Bolnick et al. 2007, Matich et al. 2011, Robert-
son et al. 2015).

CONCLUSIONS

Our findings revealed that population-level gener-
alism in habitat use in the yellow-legged gull arises
through varying levels of individual specialization in
habitat use and individual spatial segregation within
each habitat, rather than all individuals being broad
generalists. This combination of individual speciali -
zation and individual spatial segregation may reduce
intra-specific competition, serving as 2 important
mechanisms related to the success of these winning
species in comparison to other, less successful spe-
cies. Further multispecific investigations involving
long-term GPS-tracking data covering the annual
cycle of different colonies located in different envi-
ronmental contexts would be useful to confirm that
individual specialization in habitat use is a common
phenomenon in winning and successful predators.
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