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Introduction
Previous studies implicate necrotic cell death in devastating hu-

man pathologies such as stroke and neurodegenerative diseases 

(Walker et al., 1988; Martin, 2001). In Caenorhabditis elegans, 

specifi c mutations in several genes that encode ion channel 

 subunits and regulators trigger the degeneration of specifi c sets 

of neurons (for review see Syntichaki and Tavernarakis, 2003). 

Dying neurons exhibit macroscopic and ultrastructural cha-

racteristics that are reminiscent of the excitotoxic neuronal 

death that occurs during stroke in mammals (Hall et al., 1997; 

Lee et al., 1999; Nicotera et al., 1999). Thus, vertebrates and 

C. elegans share a death mechanism that involves the hyperacti-

vation of ion channels. These observations are consistent with 

the  hypothesis that a threshold of ion infl ux is needed to initiate 

the degenerative process.

Perturbation of cellular ionic homeostasis contributes deci-

sively to necrotic neuronal death (Syntichaki and Tavernarakis, 

2003). In addition to ion homeostasis, intracellular pH has 

emerged as an important modulator of necrosis in C. elegans. 

Cytoplasmic acidifi cation develops during necrosis, whereas 

the vacuolar H+-ATPase, which is a pump that acidifi es lyso-

somes, is required downstream of cytoplasmic calcium over-

load to promote necrotic cell death (Syntichaki et al., 2005). 

Interestingly, similar acidosis accompanies necrotic cell death 

after stroke in mammals (Sapolsky et al., 1996; Nicotera et al., 

1999). Moreover, the examination of postmortem human brains 

associates neuronal pH alterations with several pathological and 

neurodegenerative states (Li et al., 2004). Investigations in both 

nematodes and mammals converge to implicate specifi c calpain 

and aspartyl proteases (cathepsins) in the execution of necrotic 

cell death (Syntichaki et al., 2002; Yoshida et al., 2002). Calpain 

proteases are normally dependent on calcium for activation, 

whereas aspartyl proteases require a highly acidic environment 

for full activity and are primarily confi ned to lysosomes and 

other acidic endosomal compartments (Ishidoh and Kominami, 

2002; Goll et al., 2003). Studies in primates indicate that dam-

age to the lysosomal membrane is infl icted enzymatically by 

activated calpains. Calpains localize to lysosomal membranes 

after the onset of ischemic episodes, with subsequent spillage 

of cathepsins to the cytoplasm (Yamashima et al., 2003). This 

 observation led to the formulation of the “calpain–cathepsin 

 hypothesis,” whereby the calcium-mediated activation of cal-

pains results in the rupture of lysosomes and leakage of killer 

cathepsins that eventually dismantle the cell (Yamashima et al., 

1998; Yamashima, 2000, 2004). Although these observations 

collectively indicate that lysosomes participate actively in the 

process of cell death, their contribution is poorly understood.
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ecrotic cell death is defi ned by distinctive mor-

phological characteristics that are displayed 

by dying cells (Walker, N.I., B.V. Harmon, G.C. 

Gobe, and J.F. Kerr. 1988. Methods Achiev. Exp. Pathol. 

13:18–54). The cellular events that transpire during ne-

crosis to generate these necrotic traits are poorly under-

stood. Recent studies in the nematode Caenorhabditis 

elegans show that cytoplasmic acidifi cation develops 

 during necrosis and is required for cell death (Syntichaki, P., 

C. Samara, and N. Tavernarakis. 2005. Curr. Biol. 

15:1249–1254). However, the origin of cytoplasmic acid-

ifi cation remains elusive. We show that the alkalization 

of endosomal and lysosomal compartments ameliorates 

 necrotic cell death triggered by diverse stimuli. In addi-

tion, mutations in genes that result in altered lysosomal bio-

genesis and function markedly affect neuronal necrosis. 

We used a genetically encoded fl uorescent marker to 

 follow lysosome fate during neurodegeneration in vivo. 

Strikingly, we found that lysosomes fuse and localize ex-

clusively around a swollen nucleus. In the advanced stages 

of cell death, the nucleus condenses and migrates toward 

the periphery of the cell, whereas green fl uorescent 

 protein–labeled lysosomal membranes fade, indicating 

lysosomal rupture. Our fi ndings demonstrate a prominent 

role for  lysosomes in cellular destruction during necrotic 

cell death, which is likely conserved in metazoans.
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We examined the role of lysosomes in a well defi ned model 

of necrotic cell death in the nematode. We show that the alkali-

zation of endosomal and lysosomal compartments protects 

against necrotic cell death that is induced by mutations in several 

ion channels, as well as by prolonged hypoxia. We investigated 

the effect of mutations that alter lysosome biogenesis in necrotic 

cell death and found that mutations resulting in the accumula-

tion of large lysosomes exacerbate necrosis, whereas mutations 

that impair lysosome biogenesis are protective. Conditions that 

counterbalance intracellular acidifi cation enhance suppression 

of neurodegeneration by aspartyl protease defi ciency, indicating 

that aspartyl proteases are activated by low pH conditions, which 

develop during necrosis. By monitoring lysosomes during ne-

crosis in vivo, we show that lysosomes coalesce around the nu-

cleus and dramatically enlarge during the early and intermediate 

stages of necrosis, although, ultimately, lysosomal defi nition is 

lost. Together, these results point to a decisive role for lysosomes 

in the execution of necrotic cell death.

Results
Alkalization of endosomal and lysosomal 
compartments protects against necrotic 
cell death
Recent data suggests that vacuolar H+-ATPase–mediated intra-

cellular acidifi cation is required downstream of cytoplasmic 

calcium overload to promote necrotic cell death, plausibly by 

enhancing the activity of the low pH–dependent proteases that 

dismantle the cell (Syntichaki et al., 2005). To emulate impaired 

lysosomal acidifi cation in degenerating neurons, we treated 

 animals expressing a neurotoxic gain-of-function (gf ) mec-4(d) 
 allele encoding a hyperactive ion channel subunit that is nor-

mally required for mechanosensation with NH4Cl and acridine 

orange. These lysotropic weak bases are known to accumulate 

in lysosomes and other acidic subcellular compartments, neu-

tralizing their pH (Oka and Futai, 2000). Treatment ameliorated 

degeneration of the six touch receptor neurons of mec-4(d) 
 mutant animals (Fig. 1 A). Similarly, cell death infl icted by the 

toxic deg-3(d) allele, encoding a hyperactive acetylcholine re-

ceptor calcium ion channel, or by overexpression of the hyper-

activated Gαs(Q227L) variant (αs(gf)) was also suppressed after 

treatment with NH4Cl and acridine orange (Fig. 1 A). We as-

sessed cell survival by scoring for expression of a touch receptor–

specifi c mec-4::GFP reporter fusion in adult animal neurons. 

Fluorescent neuron number increased after treatment with alka-

lizing agents in adult mec-4(d) mutant animals (309 ± 19 

NH4Cl and 192 ± 13 acridine orange vs. 176 ± 11 fl uorescent 

neurons in untreated mec-4(d) mutants; n = 100; P < 0.001, 

unpaired t test).

Prolonged hypoxia, which is a condition of low oxygen 

availability that emerges during ischemia and stroke, induces 

necrotic cell death in the nematode (Scott et al., 2002). We ex-

amined the effect of alkalization in hypoxia-induced cell death. 

Nematodes were treated with sodium azide, which inhibits 

complex IV (cytochrome c oxidase) of the respiratory chain and 

simulates hypoxia. Treatment with NH4Cl and acridine orange 

reduced the hypoxic death of wild-type animals (Fig. 1 B).

We considered whether suppression of necrosis is an indi-

rect effect of probable alterations in animal growth and develop-

ment caused by alkalizing agents. We assayed developmental 

timing after egg hatching and past the L1 stage, which is where 

we assayed for cell death. We also assayed for animal locomo-

tion, pharyngeal pumping, and defecation. Treatment with 

NH4Cl and acridine orange, at the concentrations and under the 

conditions used, does not result in any discernible defects in 

 animal growth and development that could infl uence the course 

of necrotic cell death. We conclude that dependence on acidi-

fi ed intracellular compartments is a common denominator of 

necrotic cell death triggered by diverse stimuli.

Altered lysosomal biogenesis 
affects necrosis
To further evaluate the lysosomal role in necrotic cell death, we 

examined mutants defective in lysosomal biogenesis. We exam-

ined necrosis in cup-5 loss-of-function (lf; ar465) mutant 

 animals. Cells of cup-5(lf) mutants contain increased numbers 

of enlarged acidic lysosomes. cup-5 encodes the C. elegans 

 mucolipin-1 homologue that is implicated in mucolipidosis type IV, 

which is a lysosomal storage disease that results in severe devel-

opmental neuropathology in humans (Fares and Greenwald, 

2001; Hersh et al., 2002; Treusch et al., 2004). Neurodegeneration 

Figure 1. Alkalization of endosomal compartments by weak bases pro-
tects against necrotic cell death. (A) Degenerating touch receptor neurons 
in mec-4(d) and PVC interneurons in deg-3(d) and αs(gf) in untreated 
 animals or animals treated with NH4Cl and acridine orange. n > 150. 
P < 0.001, unpaired t test. (B) The effects of alkalizing agents on 
hypoxic death. The graph shows the percentage of animals that survived 
near-lethal treatment with sodium azide. n > 200. P < 0.001; unpaired 
t test. Error bars represent the SD of the mean.
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infl icted by mec-4(d) and deg-3(d) is exacerbated in cup-5(lf) 
mutants (Fig. 2 A). We confi rmed the reduced cell survival by 

scoring for expression of a touch receptor–specifi c mec-4::GFP 

reporter fusion in adult animal neurons. Fluorescent neuron 

number decreased in cup-5(lf);mec-4(d) double mutants, com-

pared with mec-4(d) mutant animals (109 ± 16 cup-5(lf);mec-4(d) 
versus 176 ± 11 fl uorescent neurons in mec-4(d) mutants; 

n = 150; P < 0.001, unpaired t test).

In addition, cup-5(lf) mutants showed increased sensitiv-

ity to hypoxia compared with wild type (16.5 ± 5.3% wild-type 

survival versus 5.3 ± 4.1% cup-5(lf) animal survival. n > 200; 

P < 0.005, unpaired t test). Knockdown of vha-2, which en-

codes for a subunit of the vacuolar H+-ATPase, by RNAi in 

cup-5(lf);mec-4(d) double mutants abolished cup-5(lf)–mediated 

enhancement of cell death (Fig. 2 A). This suggests that the 

 enhanced cell death observed in cup-5(lf);mec-4(d) double mu-

tants is caused by increased lysosome-mediated acidifi cation. 

To confi rm the effect of cup-5 defi ciency on cell death, we out-

crossed cup-5(lf) mutant animals in an effort to minimize the 

possibility that the effects on neurodegeneration we observed 

were caused by unlinked spurious mutations in the genetic 

background of the cup-5(lf) allele. Furthermore, we used RNAi 

to specifi cally target cup-5. Both outcrossed cup-5(lf) deri-

vatives and RNAi-mediated knockdown of cup-5 resulted in 

 enhanced mec-4(d)–induced neurodegeneration (Fig. 2 A).

In a reciprocal approach, we examined necrosis in glo-1(lf) 
mutants. The glo-1 gene encodes a predicted Rab GTPase that 

is similar to proteins implicated in the biogenesis of special-

ized lysosome-related organelles (Hermann et al., 2005). glo-1 

mutant alleles were recovered in a screen aimed at identifying 

genes involved in the formation of birefringent gut granules, 

which are lysosome-related organelles (Hermann et al., 2005). 

glo-1(lf) mutants are defective in the biogenesis of lysosome-

related gut granules, show little or no staining with lysosomal 

markers, and lack detectable expression of the vacuolar 

H+-ATPase subunits VHA-17 and VHA-11 in intestinal pre-

cursor cells (Hermann et al., 2005). We found that all three 

glo-1(lf) alleles ameliorate necrotic cell death triggered by 

mec-4(d) (Fig. 2 B). This suggests that the reduced number of 

lysosomes in touch receptor neurons of glo-1(lf)mec-4(d) 
double mutants results in reduced intracellular acidifi cation 

and, consequently, in reduced necrotic cell death.

Suppression of necrosis by aspartyl 
protease defi ciency is enhanced 
by conditions that impede lysosome-
mediated intracellular acidifi cation
Specifi c calpain and aspartyl proteases are implicated in the ex-

ecution of necrotic cell death in both nematodes and mammals 

(Syntichaki et al., 2002; Yoshida et al., 2002), and the impor-

tance of calpain and aspartyl protease activation in acute cell 

 injury and necrotic cell death triggered by calcium infl ux has 

been previously established (for review see Artal-Sanz and 

 Tavernarakis, 2005). Calpain proteases become activated upon 

the abrupt increase of intracellular calcium that occurs in re-

sponse to diverse necrosis-initiating stimuli, whereas  aspartyl 

proteases function optimally under the highly acidic conditions 

present in the lumen of lysosomes and other acidic endosomal 

compartments (Ishidoh and Kominami, 2002; Goll et al., 2003).

We assessed the effect of lysosome-mediated intracellu-

lar acidifi cation on the requirement for aspartyl proteases in 

necrosis. cad-1(j1) mutants maintain aspartyl protease activity 

that is 90% lower than in wild-type animals (Jacobson et al., 

1988). mec-4(d)–induced neurodegeneration is attenuated in 

cad-1(j1);mec-4(d) double-mutant strains (Syntichaki et al., 

2002). RNAi-mediated knockdown of vha-2 diminishes cell 

death infl icted by mec-4(d) (Fig. 2 B and Fig. 3; Syntichaki et al., 

2005). Cell death was further reduced in cad-1(j1);mec-4(d) 
mutant animals by RNAi-mediated knockdown of vha-2 

(Fig. 3). Two aspartyl proteases, ASP-3 and -4, contribute the 

bulk of protease activity required for neurodegeneration in-

fl icted by diverse genetic insults in C. elegans (Syntichaki 

et al., 2002). Similarly, knockdown of asp-3 or asp-4 by RNAi 

in vha-12(n2915)mec-4(d) double mutants augmented survival 

of the six receptor  neurons, compared with single mec-4(d) 

Figure 2. Effect of lysosomal biogenesis mutants on necrotic cell death. 
(A) Neurodegeneration is enhanced in a cup-5(lf) genetic background, 
where the lysosomal system is expanded. This enhancement is suppressed 
by vacuolar H+-ATPase defi ciency. Degenerating neurons in mec-4(d), 
cup-5(lf);mec-4(d), outcrossed cup-5(lf);mec-4(d), cup-5(RNAi);mec-4(d), 
deg-3(d), and cup-5(lf);deg-3(d) animals. Knockdown of cup-5 by RNAi 
also enhances mec-4(d)–induced neurodegeneration. n > 250. P < 0.005; 
unpaired t test. (B) Neurodegeneration is suppressed by three different 
glo-1 mutant alleles, where lysosomal biogenesis is defective. Degenerating 
neurons in mec-4(d), glo-1(zu391)mec-4(d), glo-1(kx92)mec-4(d), and 
glo-1(zu437)mec-4(d) animals. n > 350. P < 0.005, unpaired t test. 
Error bars represent the SD of the mean.
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mutants (Fig. 3). In contrast, reduced V-ATPase activity did not 

further enhance suppression of necrosis by calpain protease 

 defi ciency (Table I). We conclude that suppression of necrosis 

by aspartyl protease defi ciency is enhanced by conditions that 

impede intracellular acidifi cation.

We considered the contribution of additional cellular pH 

homeostasis mechanisms in necrosis. Two other major mecha-

nisms have been implicated in cytoplasmic and subcellular or-

ganelle pH regulation; fi rst, the sodium–hydrogen exchanger 

(NHX), and second, the cation transporter P-type ATPase. These 

mechanisms operate both on the plasma membrane and at the 

membranes of subcellular organelles, such as mitochondria, to 

facilitate proton traffi cking and pH homeostasis. Multiple nhx 

genes are encoded in the C. elegans genome (more than 9 nhx 

isoforms; Nehrke and Melvin, 2002; http://www.wormbase.org).

pmr-1 is the gene encoding the nematode P-type ATPase 

 homologue. Knockdown of nhx-4, -5, and -9, which are three 

nhx isoforms expressed in neurons, did not alter the extent 

of neurodegeneration induced by mec-4(d) (137 ± 19 

nhx-4(RNAi)mec-4(d), 134 ± 16 nhx-5(RNAi)mec-4(d), and 

134 ± 21 nhx-9(RNAi);mec-4(d) versus 139 ± 14 vacuolated 

neurons in mec-4(d) mutants; n = 100). To address the potentially 

 redundant function of these genes in the nervous system, we as-

sayed cell death in animals in which all three isoforms were 

knocked down by RNAi. We did not observe signifi cant sup-

pression of necrosis in these animals (131 ± 28 nhx-9(RNAi);
nhx-5(RNAi) nhx-4(RNAi)mec-4(d) versus 139 ± 14 vacuolated 

neurons in mec-4(d) mutants; n = 100.). Similarly knockdown 

of pmr-1 did not affect necrotic cell death (pmr-1(RNAi);
mec-4(d): 141 ± 17, versus 139 ± 14 vacuolated neurons in 

mec-4(d) mutants; n = 100). Therefore, neurodegeneration is 

not affected by compromising these other, nonlysosomal pH 

homeostasis mechanisms.

Lysosomal fate during necrosis
The importance of lysosomal membrane permeabilization 

in cell death has previously been established (Kroemer and 

 Jaattela, 2005). Approaches combining electron microscopy and 

immunodetection show that calpains concentrate on lysosomal 

membranes during ischemic stroke in primates (Yamashima, 

2000; Yamashima et al., 2003). However, information on lyso-

some fate and lysosomal system alterations during necrosis in 

vivo is lacking. We monitored the distribution and morphology 

of lysosomes in vivo during necrotic cell death in C. elegans. 

To visualize lysosomes and late endosomes, we fused GFP at the 

COOH terminus of LMP-1, which is the only C. elegans protein 

bearing a lysosomal targeting sequence (GYXXΦ; Φ, large hy-

drophobic amino acid residue) at its COOH terminus (Kostich 

et al., 2000). LMP-1 shows similarity to the vertebrate lysosome-

associated membrane protein LAMP/CD68 (Kostich et al., 

2000; Eskelinen et al., 2003), and it is widely used as a 

lysosomal marker (Treusch et al., 2004; Hermann et al., 2005; 

Nunes et al., 2005). We examined lysosomal distribution and 

morphology in touch receptor neurons of wild-type and 

mec-4(d) animals expressing an LMP-1::GFP fusion.

In the neurons of wild-type animals, lysosomes appear 

scattered throughout the cytoplasm (Fig. 4 A). In contrast, dur-

ing the early stages of neurodegeneration, lysosomes enlarge 

and localize close to the nucleus (Fig. 4 B, i). As neurodegen-

eration progresses, lysosomes fuse to surround an internally 

vacuolated structure (Fig. 4 B, ii–viii). This encapsulated vacu-

ole is likely the swollen nucleus of the dying neuron (Hall 

et al., 1997). To confi rm the nuclear origin of the internal vacu-

ole, we performed DAPI staining in mec-4(d) animals express-

ing the LMP-1::GFP fusion protein. As shown in Fig. 5, 

LMP-1–labeled internal membranes are positive for DAPI 

staining. In agreement with our observation, elevation of cyto-

solic Ca2+ concentration can induce lysosomal fusion (Bakker 

et al., 1997). Consistent with previous studies (Hughes and 

 August, 1982; Lippincott-Schwartz and Fambrough, 1986; 

Hermann et al., 2005), a portion of LMP-1 localizes to the 

plasma membrane (Fig. 4 B, ii–viii).

Lysosomes remain confi ned around the distended nucleus 

during necrotic cell death (Fig. 4 B, ii–v). As neurodegeneration 

proceeds, the nucleus migrates to the periphery of the cell and 

condenses (Fig. 4 B, iv–vi). In the advanced stages of neurode-

generation, GFP intensity decreases and lysosomal defi nition is 

ultimately lost (Fig. 4 B, vii and viii). Interestingly, a decrease 

in LMP-1::GFP immunoreactivity is associated with neuronal 

Figure 3. Suppression of necrosis by aspartyl protease defi ciency is 
 enhanced by conditions that impede intracellular acidifi cation. The number 
of vacuolated touch receptor neurons per 100 L1 stage mec-4(d) animals. 
Bars represent the mean of three independent experiments. n > 300. 
Knockdown of both vacuolar H+-ATPase and aspartyl protease genes 
 resulted in signifi cantly more extended quenching of neurodegeneration 
than for any single gene. P < 0.001, unpaired t test. Effi cacy of RNAi 
was assessed as described in Materials and methods. Error bars represent 
the SD of the mean.

Table I. Calpain and V-ATPase activity in necrotic cell death

Strain Corpses

mec-4(d) 205 ± 9  

gfp(RNAi);mec-4(d) 193 ± 11

clp-1(RNAi);mec-4(d)   96 ± 18

vha-12(n2915)mec-4(d) 112 ± 9  

gfp(RNAi);vha-12(n2915)mec-4(d) 101 ± 13

clp-1(RNAi);vha-12(n2915)mec-4(d)   89 ± 16

Suppression of necrosis by calpain protease defi ciency is not further enhanced 
by reduced vacuolar H+-ATPase activity. Values represent vacuolated touch 
 receptor neurons (± SD) per 100 animals at the L1 stage. n > 250.
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degeneration in mammals (Yamashima et al., 2003). Diffusion 

of the highly localized GFP staining during the late stages of 

neurodegeneration indicates lysosome rupture. To further con-

fi rm the loss of lysosomal integrity, we stained mec-4(d) ani-

mals with acridine orange, which is an acidophilic dye that 

distinctively stains lysosomes. Acridine orange accumulates 

diffusely in the cytoplasm of neurons during the late stages of 

necrosis, indicating extensive cytoplasmic acidifi cation (Fig. 4 C). 

This observation, coupled with the loss of specifi c LMP-1::GFP 

localization, suggests that lysosome rupture and the spillage 

of acidic lysosomal contents mediate cytoplasm acidifi cation 

during necrosis.

Figure 4. Lysosomal morphology and distribution 
during neurodegeneration. (A) Confocal images of 
wild-type touch receptor neurons expressing a pmec-17

LMP-1::GFP transgene. LMP-1::GFP expression, dif-
ferential interference contrast (DIC), and merged im-
ages are shown. Healthy neurons show a scattered 
and punctate pattern of lysosomal distribution. (i) Wild-
type PVM touch receptor neuron. (ii) Wild-type ALM 
(left and right) touch receptor neurons. (B) Confocal 
images of PLM touch receptor neurons of mec-4(d) 
 animals expressing a pmec-17LMP-1::GFP transgene. 
During the early to middle (mid) stages of degene-
ration, lysosomes enlarge and appear to coalesce 
around a swollen nucleus (i–iv). Later on, the nucleus 
migrates to the periphery of the cell and condenses 
(iv–vi). At the late stage, no lysosome structure is 
 evident and the vacuolated cell becomes diffusely fl uo-
rescent (vii and viii). (C) Acridine orange staining 
of a middle to late degenerating PLM touch receptor 
neuron. Acridine orange, DIC, and merged images 
are shown. Bars, 5 μm.

Figure 5. DAPI staining of mec-4(d) animals expressing 
pmec-17 LMP-1::GFP. (A) ALM touch receptor neuron. (B and C) PLM 
touch receptor neurons. Arrows point to DAPI-positive nuclei 
of the dying neurons. Bars, 5 μm.
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We investigated whether alkalizing treatments result in 

altered lysosomal fate. We examined the effects of acridine 

orange and NH4Cl treatment on LMP-1::GFP distribution in 

mec-4(d) mutants. Although the number of unvacuolated cells 

with a wild-type pattern of lysosomal distribution increases, 

vacuolated neurons show the same pattern of lysosomal dis-

tribution as mec-4(d) animals (Fig. 6, A and B). Thus,  reduced 

acidifi cation does not affect lysosome distribution. Our ob-

servations are consistent with fi ndings in animals defi cient 

for the ATP-binding cassette transporter P-glycoprotein-2, 

which is also expressed in neurons. Acridine orange and 

 Lysotracker red staining is reduced in animals lacking 

P-glycoprotein 2, indicating defective acidifi cation. Neverthe-

less, LMP-1::GFP distribution remains unchanged (Nunes 

et al., 2005). We further examined lysosomes in the different 

mutant genetic backgrounds that either enhance or suppress 

 necrosis. We generated transgenic animals harboring 

LMP-1::GFP in cup-5, glo-1, and the aspartyl protease–

 defi cient cad-1 mutant background. The number of vacuo-

lated neurons is decreased in glo-1 and cad-1 mutants and 

increased in cup-5 animals (Figs. 2 and 3). We fi nd that lyso-

somal morphology and distribution is similar in neurons that 

do vacuolate and die (Fig. 6, C–E).

Discussion
In this study, we have examined the involvement of lysosomes 

in necrotic cell death using a well characterized model of 

neurodegeneration in C. elegans. We show that both genetic and 

pharmacological manipulations that affect lysosomal biogene-

sis and function modulate necrosis in the nematode. By follow-

ing lysosome fate during neurodegeneration in vivo, we found 

that lysosomes fuse and localize exclusively around a swollen 

nucleus. In the advanced stages of cell death, GFP-labeled lyso-

somal membranes fade, indicating lysosomal rupture.

What is the cause of lysosomal rupture during necrosis? 

Interestingly, calcium, which is one of the major upstream 

death-initiating signals, has been implicated in this process 

(Zhao et al., 2005). Activated calcium-dependent calpain prote-

ases have been found to localize to disrupted lysosomal mem-

branes in hippocampal neurons of primates after acute ischemia 

(Yamashima, 2000, 2004), leading to the hypothesis that cal-

pains compromise the integrity of lysosomal membranes and 

cause leakage of their acidic contents into the cytoplasm. 

 Calpains become activated after the abrupt increase of intracel-

lular calcium concentration that signals the initiation of necrosis 

(Syntichaki and Tavernarakis, 2002). Excessive calcium infl ux 

Figure 6. Perturbation of lysosomal bio-
genesis, function, and neurodegeneration. 
 Lysosomal morphology and distribution after 
treatment with alkalizing agents and in genetic 
backgrounds affecting lysosomal biogenesis 
and function. (A and B) Confocal images of 
PLM touch receptor neurons of mec-4(d) animals 
expressing a pmec-17LMP-1::GFP reporter fusion, 
after alkalization of lysosomal compartments. 
(A) Images of degenerating neurons  after treat-
ment with 5 mM NH4Cl. (B) Degenerating neu-
rons after treatment with 40 μM acridine 
orange. Nuclei can be seen because, at the 
concentration used, acridine orange stains 
DNA. (C–E) Confocal images of PLM touch 
 receptor neurons of mec-4(d) animals under 
different genetic backgrounds that either sup-
press or enhance necrosis. Double mutants 
 express the same pmec-17LMP-1::GFP transgene. 
(C) Degenerating neurons of cup-5(lf);mec-4(d) 
mutants. Note that vacuoles appear larger. 
(D) Degenerating neurons of glo-1(zu391)
mec-4(d) animals. (E) Images of degenerat-
ing neurons in cad-1(j1);mec-4(d) mutants. 
LMP-1::GFP expression, differential interfer-
ence contrast (DIC), and merged images are 
shown. (left) Early to middle stages of neuro-
degeneration. (right) Middle to late stages of 
neurodegeneration. Bars, 5 μm.
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through several channels and transporter-mediated routes leads 

to intracellular calcium overload and concomitant cell death 

(Lipton and Nicotera, 1998; Nicotera and Bano, 2003). Sodium 

infl ux amplifi es acute neuronal swelling and facilitates calcium 

entry through voltage-gated channels and the Na+/Ca2+ exchanger 

(Sattler and Tymianski, 2000).

Cell injury and death can also be induced by disturbances 

of calcium homeostasis in the ER (Mattson et al., 2000; Paschen, 

2001). The ER is the major calcium storage compartment of 

the cell. Sequestration of calcium into the ER is mediated by 

the sarcoendoplasmic reticulum Ca2+-ATPase, and release back 

to the cytoplasm is controlled by ryanodine, and 1,4,5-inositol 

trisphosphate receptors (Carafoli, 2002). Within the ER, calcium 

binds to calcium-binding molecular chaperones such as calretic-

ulin and calnexin (Michalak et al., 1999; Llewellyn et al., 2000). 

Under conditions of extreme cellular stress, ER calcium stores 

are rapidly mobilized, boosting the massive increase of intracel-

lular calcium concentration, which signals cell demise (Ferri and 

Kroemer, 2001). Pharmacological treatments or genetic muta-

tions that inhibit calcium release from the ER have a strong pro-

tective effect against necrotic cell death (Yu et al., 2000; Xu 

et al., 2001). In contrast, treatment with chemicals such as thap-

sigargin, which promotes the discharge of calcium from intra-

cellular stores by specifi cally inhibiting the sarcoendoplasmic 

reticulum Ca2+-ATPase calcium pump, induces necrotic cell 

death (Takemura et al., 1989; Xu et al., 2001). We hypothesize 

that generalized osmotic destabilization of the cell during necro-

sis may also contribute to the bursting of lysosomes.

The exclusive confi nement of lysosomes around the nu-

cleus during neurodegeneration may refl ect damaged micro-

tubule or actin motors, which mediate the movement of 

lysosomal organelles (Burkhardt et al., 1997). It is known that 

calpain  proteases contribute to cell death by cleaving essential 

cytoskeletal proteins of neuronal axons (for review see Artal-

Sanz and Tavernarakis, 2005). Therefore, calpains may act on 

microtubules at early stages of neurodegeneration. However, we 

cannot rule out the possibility that lysosomes are specifi cally 

targeted to the periphery of the nucleus.

We observed that reduction of necrotic cell death by a 

drop in aspartyl protease activity is enhanced by conditions 

that counterbalance intracellular acidifi cation. Such synergy 

 between aspartyl proteases and pH indicates that aspartyl pro-

teases become activated by low pH conditions, which develop 

during necrosis and facilitate cellular destruction. In addition 

to aspartyl proteases, other proteases that function optimally at 

low pH may become activated by acidifi cation during necrosis. 

Such proteases have been implicated in both apoptotic and 

 necrotic cell death (Ferri and Kroemer, 2001). We suggest that 

preventing acidifi cation suppresses neurodegeneration, in part, 

by lowering the activity of these enzymes. Alternatively, aspar-

tyl proteases and acidifi cation may independently  contribute to 

cell death. However, to discriminate between these alternatives 

requires complete elimination of aspartyl protease or vacuolar 

H+-ATPase activity, which results in  embryonic lethality (Oka 

and Futai, 2000; Pujol et al., 2001; unpublished data).

The totality of our observations denotes an essential and 

general role for lysosomes in necrotic cell death induced by 

various insults. Our study is the fi rst to monitor lysosomal alter-

ations during necrosis in vivo, in any organism. Our fi ndings 

uncovered novel aspects of the cellular changes that transpire 

during neurodegeneration in the nematode. Such information 

could be effectively used toward identifying candidate common 

intervention targets in an effort to battle numerous pathological 

conditions in humans. We envision that alterations of lysosomal 

biogenesis and function by genetic mutations or pharmacologi-

cal treatments modify the susceptibility of neurons to necrosis. 

However, once a threshold is exceeded and cell death com-

mences the sequence of events is essentially unaltered.

Materials and methods
Strains and genetics
We used standard procedures for C. elegans strain maintenance, 
crosses, and other genetic manipulations (Brenner, 1974). Nematodes 
were grown at 20°C. N2 was used as the wild-type strain. The following 
mutant alleles were used: mec-4(u231)X, which is referred to in the text 
as mec-4(d); deg-3(u662)V, which is referred to in the text as deg-3(d); 
nuIs5[pglr-1Gαs(Q227L)pgrl-1GFP], which is referred to in the text as αs(gf); 
arIs37[pmyo-3ssGFP]I;cup-5(ar465)III;dpy-20(e1282)IV, which is referred 
to in the text as cup-5(lf), cad-1(j1)II, glo-1(zu391)X, glo-1(Kx92)X, and 
glo-1(zu437)X. The glo-1 alleles were provided by G. Hermann (Lewis 
and Clark College, Portland, OR). The following double and triple mu-
tants were used: cad-1(j1)II;mec-4(u231)X, vha-12(n2915)mec-4(u231)X, 
arIs37[pmyo-3ssGFP]I;cup-5(ar465)III;dpy-20(e1282)IV;mec-4(u231)X, arIs37-
[pmyo-3ssGFP]I;cup-5(ar465)III;dpy-20(e1282)IV;deg-3(u662)V, glo-1(zu391)-
mec-4(u231)X, glo-1(kx92)mec-4(u231)X, and glo-1(zu437)mec-4(u231)X.

Plasmids and RNAi
To generate pmec-17LMP-1::GFP, we fused GFP at the COOH terminus of the 
C. elegans LMP-1 protein. The translational fusion includes the entire LMP-1 
coding sequence lacking the stop codon, a Gly-Ser-Ser-Pro-Gly-Leu-Ala-
Lys-Gly-Pro-Lys-Gly linker, and GFP. The resulting chimera was expressed 
in touch receptor neurons under the control of the mec-17 promoter. The 
plasmid carrying the reporter fusion was constructed in two steps. First, the 
mec-17 promoter was amplifi ed from N2 genomic DNA with the primers 
5′ C G G G A T C C G A A T C G T C T C A C A A C T G A T C C  3′ and 5′ A A C T G C A G G-
T G A C T A C T T G A G A C C T G  3′. A 1,900-bp PstI–BamHI fragment was cloned 
into the promoterless gfp vector pPD95.77 (Fire et al., 1990). Second, the 
LMP-1 coding region was amplifi ed from genomic DNA using the primers 
5′ C G G G A T C C G A C G C T G G C A T A T C C T T G T C T C  3′ and 5′ C G G G A T C-
C A A T T G A A C T A T G T T G A A A T C G  3′. A BamHI PCR fragment was cloned 
downstream of the mec-17 promoter on the pPD95.77 plasmid vector. For 
RNAi experiments, we used HT115(DE3) Escherichia coli bacteria, which 
were transformed with plasmids that direct the synthesis of double-stranded 
RNAs corresponding to the genes of interest; they were then fed to animals 
according to a previously described methodology (Kamath et al., 2001). 
For cup-5 RNAi, we used a 1.5-kb PCR-generated fragment derived from 
the cup-5 locus using the primers 5′ G G G G T A C C C C A T G A T T T C A G A T G T C-
T C G C  3′ and 5′ G G G G T A C C C C G A A T G C A A A G A A T G A G A A C G  3′. The 
primers used for nhx RNAi constructs are as follows: 5′ G C T C T A G A C T C-
T T C A C T G G C C T G T G  3′ and 5′ C C G C T C G A G A T C A G T A T G A C T G C G  3′ 
for nhx-4, 5′ A A C T G C A G T T A T G G A C G A T A T C A A C  3′ and 5′ C C G C T C G-
A G C C A C A A A C T T C A G C C A C  3′ for nhx-5, and 5′ G C T C T A G A T G G T G T-
C C T G A C T C T T C  3′ and 5′ C C G C T C G A G C T T C C A C T C C A G A C A T C  3′ for 
nhx-9. For pmr-1 we used the following PCR primers: 5′ A A C T G C A G A T T G-
A A A C A C T G A C A T C  3′ and 5′ C C G C T C G A G T A C C T G A A A C A T T C C G  3′. 
RNAi plasmids for vha-2, aspartyl proteases asp-3 and asp-4, and calpain 
clp-1 have been previously described (Syntichaki et al., 2002, 2005). 
We assayed the effectiveness of RNAi by monitoring the expression of full-
length GFP reporter fusions. Plasmid vectors for C. elegans were provided 
by A. Fire (Stanford University School of Medicine, Stanford, CA).

Neurodegeneration assays
Degeneration of specifi c neuron sets in animals bearing deg-3(d), mec-4(d), 
and αs(gf) alleles was quantifi ed as previously described (Syntichaki 
et al., 2002). For alkalization assays, we treated young adult animals with 
lysotropic alkalizing agents (5 mM NH4Cl and 40–150 μM acridine orange; 
Sigma-Aldrich) in liquid cultures supplemented with E. coli bacteria for 
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12 h at 20°C. Neurodegeneration was assayed in the progeny of treated 
animals at the L1 stage of development. To simulate death-inducing hy-
poxic conditions, we treated nematodes at the L4 stage of development 
with sodium azide (0.5 M for 30 min at 20°C; Sigma-Aldrich; adapted 
with modifi cations from Scott et al. [2002]). Statistical analysis of data was 
performed using Excel (Microsoft).

Microscopy
L1 stage mec-4(d) animals expressing LMP-1::GFP were stained with 1 μg/ml 
DAPI for 15 min after methanol fi xation. DAPI-stained animals were ob-
served using a 40× objective (Plan-Neofl uar; Carl Zeiss MicroImaging, 
Inc.), NA 0.75, and a 365 ± 12–nm band-pass excitation/397-nm long-
pass emission fi lter set. A microscope was used, and pictures were taken 
using a camera (AxioPlan and AxioCam, respectively; both Carl Zeiss 
 MicroImaging, Inc.). For LMP-1::GFP imaging, animals were scanned with 
a 488-nm laser beam, under a confocal microscope (Radiance 2000; 
Bio-Rad Laboratories), using the LaserSharp 2000 software package (Bio-Rad 
Laboratories). Images of emission from individual PLM and ALM touch re-
ceptor neurons were acquired using a 515 ± 15–nm band-pass fi lter and 
a 40× Plan-Neofl uar objective, NA 0.75. Acridine orange staining of 
 necrotic cells was done by treating mec-4(d) early L1 larvae with 1 μM acri-
dine orange for 20 min. To visualize stained cells, animals were scanned 
with a 543-nm laser beam. Images of emission from individual touch recep-
tor neurons were acquired using a 590 ± 35–nm band-pass fi lter. Animals 
were mounted in a 2% agarose pad in M9 buffer containing 10 mM so-
dium azide and observed at room temperature. Bright fi eld and epifl uores-
cence images were merged using Photoshop (version 7.0.1; Adobe).

Some nematode strains used in this work were provided by the C. elegans 
Gene Knockout Project at the Oklahoma Medical Research Foundation 
(http://www.mutantfactory.ouhsc.edu/), which is part of the International 
C. elegans Gene Knockout Consortium, and the Caenorhabditis Genetics 
Center, which is funded by the National Institutes of Health National Center for 
Research Resources. We thank A. Fire for plasmid vectors and G. Hermann for 
the glo-1(kx92) and glo-1(zu437) alleles.
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