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Abstract: A new approach to infer the bathymetry from coastal video monitoring systems is presented.
The methodology uses principal component analysis of the Hilbert transform of video images
to obtain the components of the wave propagation field and their corresponding frequency and
wavenumber. Incident and reflected constituents and subharmonics components are also found.
Local water depth is then successfully estimated through wave dispersion relationship. The method
is first applied to monochromatic and polychromatic synthetic wave trains propagated using linear
wave theory over an alongshore uniform bathymetry in order to analyze the influence of different
parameters on the results. To assess the ability of the approach to infer the bathymetry under more
realistic conditions and to explore the influence of other parameters, nonlinear wave propagation is
also performed using a fully nonlinear Boussinesq-type model over a complex bathymetry. In the
synthetic cases, the relative root mean square error obtained in bathymetry recovery (for water
depths 0.75 m � h � 8.0 m) ranges from ∼1% to ∼3% for infinitesimal-amplitude wave cases
(monochromatic or polychromatic) to ∼15% in the most complex case (nonlinear polychromatic
waves). Finally, the new methodology is satisfactorily validated through a real field site video.

Keywords: video monitoring; bathymetry inversion; Principal Component Analysis

1. Introduction

Decision making in coastal zone management requires a knowledge of the bathymetry [1,2].
Obtaining accurate bathymetries has interest on its own, since it allows, e.g., to know how the waves
propagate to the shore and how the morphology has evolved in time (if several bathymetries are
available) or to decide if it is necessary to dredge the mouth of a harbour. Measuring bathymetric
time-series also allows to validate morphodynamic numerical models, especially if obtained with
a relatively high frequency. The morphodynamic models, in turn, can be a helpful tool to predict future
changes and to analyze the impact of potential human actions [3,4]. There is, consequently, a large
interest in obtaining accurate bathymetries [5,6].

In situ bathymetric measurement techniques include a wide variety of approaches that range
from swath-sounding sonar systems [7] to bottom-contacting vehicles such as the Coastal Research
Amphibious Buggy (CRAB) [5]. While in situ techniques provide excellent bathymetries at high spatial
resolution, they are both expensive and highly time consuming. Except during experimental field
campaigns, they are usually obtained at most a few times per year. Alternatives to in situ methods
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include, among other, LiDAR techniques [8,9], satellite images [6,10], video images [11,12], and X-band
radar images [13,14]. The reader is referred to the work in Reference [15] for a review. One technique
will be preferable relative to the others depending on aspects such as the size of the area to be analyzed
or the desired spatial and temporal resolution. For instance, satellite information is unbeatable for
large domains but it has a low spatial resolution and a limited temporal resolution. On the other hand,
video monitoring systems, the object of this work, provide excellent spatiotemporal resolution for
domains up to a few kilometers.

Video monitoring systems [16–18], mainly developed after the relatively recent advent of digital
cameras, have been shown to be a powerful and low-cost tool to monitor the coast. These systems are
useful in a wide range of studies, such as, shoreline detection and coastal variability [2,19,20], intertidal
bathymetry [21,22], or the study of the morphodynamics of beach systems [23–26]. Video systems have
also been shown to be able to give estimates of the bathymetry through the wave propagation linear
dispersion relationship, which relates the water depth to the wavenumber and the wave frequency.
For this purpose, the wave frequency and (space-varying) wavenumber are to be obtained from
a sequence of snap images. Reference [11] obtained the wavenumber from the wave speed (and the
wave frequency), which, in turn, were obtained from timestack images of several transects normal and
parallel to the coast. From then on, there has been a considerable effort to develop reliable techniques
to obtain the bathymetry from video images, working both in 1D space, i.e., in transects, or by treating
the whole images, i.e., 2D [12,27]. Some of the proposed approaches use video images combined
with numerical models and/or radar images. Of mention, there have also been attempts to obtain
the bathymetry without the dispersion equation by using the wave dissipation pattern observed in
time-averaged (timex) images instead of a sequence of snaps [28].

The cBathy algorithm [12] is nowadays the most popular algorithm to obtain 2D bathymetries
from video stations [29,30]. The code is made up of two main parts: first, a bathymetry estimate is
obtained for each hourly video (typically of few minutes at ∼0.5 Hz); second, given a bunch of hourly
(estimated) bathymetries, they are smoothed through a Kalman filter [31] to obtain the final hourly
estimates. In regard to the first part (i.e., the estimate of the bathymetry from one video, which is
the topic this work is focused on), cBathy first transforms each pixel intensity time history to the
frequency domain. To obtain the water depth at any given point, it then considers a neighborhood
of the point and obtains the wave spatial pattern through frequency-domain empirical orthogonal
functions of the Cross Spectral Matrices (CSMs) averaged within frequency bands of interest. The latter
is done to handle noisy data such as in the video images. The analysis of the set of CSMs allows to
get the dominant frequencies (those of which the signal is more coherent) and their corresponding
wavenumbers. The dispersion relationship then allows to obtain estimates of the local water depth for
each dominant frequency and a weighted average of them. Some limitations and/or known problems
of cBathy have been reported in the literature [30,32] (e.g., dealing with high wave heights, wet/dry
tiles, or long waves).

In this work, we propose an alternative to cBathy to obtain nearshore bathymetries from videos,
which is based on Principal Component Analysis (PCA) of the Hilbert transform of the video images.
This methodology consists of retrieving wave patterns from a time–space complex-PCA analysis
of video images, i.e., avoiding the frequency-domain analysis, to subsequently obtain nearshore
bathymetries. The use of PCA in the wave propagation problem was actually introduced prior to
the popularization of video monitoring stations [33]; in this work, PCA was applied to data recorded
through tide gauges and the goal was detecting infragravity waves. The problems observed in that
work were related to the fact that the distance between the gauges was relatively large compared to
the wavelength. This is actually not expected to be a problem for video images detecting wind waves,
for the pixel size projected in the space is much smaller than the wavelength in the area of interest.
The presented algorithm, uBathy, takes its name from cBathy but with “u” referring to ULISES [34],
the software it has been developed in.
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The aim of the present contribution is to demonstrate the validity of this new methodology and
to find the algorithms and parameter values that optimize the result. In order to fully control the
conditions, most tests are performed with synthetic bathymetries and waves. To test the performance
of uBathy in real conditions, the bathymetry inferred from a video captured in a field site is also
included. The proposed methodology is first presented and illustrated with a simple 1D case (Section 2).
The validity of the proposed approach is analyzed through synthetic wave fields, both linear and
nonlinear, propagating over two different bathymetries (Section 3). Special emphasis is devoted to the
recovery of the wave frequency and the wavenumber from the PCA analysis of the video. The influence
of the most relevant parameters is further discussed (Section 4), such as the temporal and spatial
discretization of the video or the parameters that influence the post-process of the PCA to recover the
bathymetry. Additionally, a video from a field site is analyzed with the presented methodology to
estimate a real bathymetry. The result is compared with the one obtained from cBathy. To conclude,
the most important findings are listed (Section 5).

2. Methodology

The present algorithm relies on PCA, which is briefly described in Section 2.1 for completeness.
From this algebraic decomposition, the frequency and wavenumber of the different wave components
are determined (Sections 2.2 and 2.3), and henceforth, the bathymetry is obtained (Section 2.4). All the
steps are illustrated with a simple 1D case (for ease of representation).

2.1. Principal Component Analysis

Consider any spatiotemporal real-valued function, f (x, t) , discretized in space and time into
a matrix X so that Xmn = f (xm, tn) , with m = 1, . . . , M and n = 1, . . . , N. When working with real
video images, xm will be the real-world coordinates corresponding to the image pixels, tn will be the
time of each snapshot, and f will typically be the value of the pixel intensity for the snapshot. Each
column of X corresponds to a stacked “snapshot”, while each row is the time record at a given point.

Let Y be the demeaned matrix, built up by subtracting from each column of X the time average
space-vector:

〈 f 〉m =
1
N

N

∑
n=1

f (xm, tn) , m = 1, . . . , M ,

so that
Ymn = Xmn − 〈 f 〉m . (1)

Considering M time-depending variables, one for each row of the matrix Y, their covariance
matrix is Y · YT/N. Singular value decomposition, the key in PCA, allows to rewrite Y ∈ MM×N

(i.e., an M × N matrix) as

Y = U · S · VT, (2)

with U ∈ MM×Q, S ∈ MQ×Q, V ∈ MN×Q, and Q = min {M, N} . Further, UT · U = VT · V = IQ×Q,
the identity, and S are a diagonal matrix of real positive values (by convention, in decreasing order
in the diagonal). Following usual notation, the qth column of U, a spatial vector, is the “Empirical
Orthogonal Function” EOFq, while the qth row of the product S · VT, a time vector, is the “Principal
Component” PCq. From Equations (1) and (2),

Xmn = 〈 f 〉m +
Q

∑
q=1

EOFq (xm)PCq (tn) . (3)

The EOFs (columns of U) are a set of orthonormal vectors in space, while the PCs (rows of
S·VT) are a set of orthogonal vectors in time. Each pair {EOFq, PCq} is a mode of the decomposition.
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The PCs can be interpreted as a rewritten version of the information in Y using the EOFs as a basis in
Equation (2). The covariance matrix of the data expressed in this new basis is

1
N

(S · VT) · (S · VT)
T
=

1
N

S · ST ,

i.e., a diagonal matrix. The contribution of each PCq and the corresponding EOFq to the total signal
is quantified by the values of the diagonal matrix S · ST, which indeed represents the explained
variance, σ2

q = (S · ST) qq. For complex-valued signals, the above results hold as long as transposed
matrices are substituted by conjugate-transposed matrices. In that case, both EOFq and PCq become
complex-valued vectors but σ2

q remains real valued.
Propagation of small-amplitude waves over a flat bed can be described as [35]

f =
J

∑
j=1

aj cos (kj · x − ωjt + ϕj) ,

where J is number of components of the wave field, aj is the amplitudes, kj = (kxj, kyj) is the wave
vectors (with corresponding wavenumbers kj = | kj |), ωj = 2π/Tj is the angular frequencies (with Tj
being the wave periods), and ϕj is the wave phase lags. The time-wise Hilbert transform is

F =
J

∑
j=1

aj exp (−i (kj · x + ϕj) ) exp (i ωjt) , (4)

and the corresponding space and time discretized matrix reads

Xmn =
J

∑
j=1

aj exp (−i (kj · xm + ϕj) ) exp (i ωjtn) . (5)

For large time domains, it is 〈 f 〉m ∼ 0 and Ymn ∼ Xmn. The J time-wise complex vectors,
i.e., exp (i ωjtn) , tend to be orthonormal as the space-wise vectors are, i.e., exp (−i (kj · xm + ϕj) ) ,
and the Equation (5) is already the PCA decomposition of the signal into its monochromatic
components (with ωj and kj). In this case, the explained variance for the qth mode reads

σ2
q =

a2
q

∑J
j=1 a2

j

. (6)

Hence, each component of the wave field can be linked to a mode of the PCA. Moreover, the angle
of a given PC and EOF can be used to obtain the ωj and kj, respectively, of the corresponding wave
component since

αt = angle {PC (t) } ≈ angle {exp (i ωjt) } = ωjt , (7a)

αx = angle {EOF (x) } ≈ angle {exp (−i (kj · x + ϕj) ) } = − (kj · x + ϕj) . (7b)

Above, we have considered kj · x, while in wave propagation over uneven beds, kj is not constant
and the spatial phase φj (x) = ∫ kj · dx has to be used instead. As shown below, this will not actually
be a limitation.

The usefulness of PCA to analyze wave propagation over uneven beds (i.e., with variable k) is
illustrated with the linear 1D propagation of waves. The bathymetry considered is defined by a water
depth, h, equal to

h (x) = 6 m − 4 m tanh
(

x − 100 m
20 m

)
, 0 � x � 200 m . (8)
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To represent more realistic sea state situations at the coast, where waves with different frequencies
and wavenumbers can coincide, the superposition of two wave trains has been considered. The free
surface elevation η (waves travelling rightwards) is

η (x, t) =
2

∑
j=1

aj (x) cos (φj (x) − ωjt + ϕj) .

The amplitudes, aj (x) , are obtained from the amplitudes at x = 0, a0
j , using fundamentals of

linear wave propagation theory [35]. The wavenumbers kj are related to the angular frequencies and
the water depth through the dispersion relationship

ω2
j = gkj tanh (kjh) .

Three synthetic linear wave propagation cases are considered (Table 1), including a case with only
one wave train (monochromatic), a case with two wave trains of different frequencies (bichromatic), and
a case with two wave trains of the same frequency but opposite propagation directions (reflective). This
allows to describe different features of the PCA. The discretization considers xm = m∆x and tn = n∆t,
with ∆x = 1 m, m = 1, . . . , M = 200 (so that xmax = 200 m), ∆t = 0.25 s, and n = 1, . . . , N = 400
(so that tmax = 100 s).

Table 1. Wave conditions in the seaward boundary for the 1D examples: For each wave train (two at
most), Tj is the period, a0

j is the wave amplitude at x = 0, and dirj is the direction of wave propagation
(+, rightwards).

Cases T1 [s] a0
1 [cm] dir1 T2 [s] a0

2 [cm] dir2

monochromatic 5.1 3.0 + − − −
bichromatic 5.1 3.0 + 8.3 1.0 +

reflective 5.1 3.0 + 5.1 1.0 −

For the monochromatic case, the analysis of the signal yields one main mode that represents 99.5%
of the variance (Table 2). For the bichromatic case, two main modes are obtained (corresponding to the
two components), with variances σ2

1 = 87.6 % and σ2
2 = 12.1 % (i.e., that account for the 99.7% of the

total variance). Finally, when two waves with the same period and moving in opposite directions are
superimposed (reflective case), only one mode that represents 99.7% of the variance is obtained out of
the PCA.

Table 2. Summary of the results of the Principal Component Analysis (PCA) obtained for the
1D examples.

mode σ2 [%] T [s]

monochromatic 1 99.5 5.1

bichromatic 1 87.6 5.1
2 12.1 8.3

reflective 1 99.7 5.1

The angles of the PCs and EOFs of the three cases are represented in the top panels of Figures 1
and 2, respectively. In the monochromatic case, the slope of the angle αt of the PC, leaving aside
the jumps from π to −π, is approximately constant. The slope of the angle αx of the EOF is
gentler at x = 0 than at x = 200 m and acknowledges the dependence of the wavenumber on the
water depth. In the bichromatic case, each mode corresponds to one of the superimposed waves:
the slope of αt is gentler for the second mode than for the first one, consistently with the fact that
ω2 = 0.757 rad/s < 1.232 rad/s = ω1. In the reflective case, where there is only one mode, αt is
similar to the monochromatic case but, now, αx has a wavy behavior, resulting from the superposition
of two waves with the same frequency.
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Figure 1. Angle of the Pricipal Component (PC) (A–C) and frequency (D–F) for the monochromatic (A,D),
bichromatic (B,E), and reflective (C,F) 1D cases versus time: First (second) mode is in solid (dashed)
lines. Red lines are for the mean angular frequencies.

Figure 2. Angle of the Empirical Orthogonal Function ((A–C), wavenumber from phase fitting D–F),
depth from phase fitting (G–I), function fitting (J–L), and windowing (M–O, with wt = 40 s) for each
of the monochromatic, bichromatic, and reflective 1D cases: First (second) mode is in solid (dashed)
lines. Blue lines are for the exact depth.
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2.2. Wave Frequency and Wavenumber: Phase Fitting

The wave angular frequency (just frequency hereafter) at a certain time t0 is to be determined by
fitting the angle of the PC in a vicinity of radius Rt around t0, making use of Equation (7a). However,
to prevent the discontinuities in αt, the latter is first centered at t0,

α̂t = angle {exp (i (αt − αt (t0) ) ) } = angle {PC (t) PC (t0) } , (9)

where complex conjugated values are denoted with an overline. Figure 3 illustrates how α̂t avoids the
discontinues for t0 = 10 s and considers ∆t = 1 s and Rt = 3 s. In a second step, with t̂ = t − t0, α̂ is
fitted through the expression

α̂t ≈ p0 + p1 t̂ ,

so that the frequency at t0 is estimated as ω = p1. This fitting method will be referred to as phase
fitting. An analogous phase fitting procedure can be applied to determine the wavenumber, k, from αx

in Equation (7b).

Figure 3. Angle of the PC before centering (circles) and after centering around t = t0 = 10 s (triangles)
for ∆t = 1 s and Rt = 3 s: Red denotes the point of interest, and blue indicates the neighbour
points used.

Figure 1 (bottom panels) shows in black the ω (t) obtained in the 1D examples, with Rt = 0.5 s
(∆t = 0.25 s in the example). The observed overshoots in ω (t) at the domain boundaries are related to
the discrete Hilbert transform. For each PCA mode corresponding to a travelling wave, the frequency
must be constant. This constant value is estimated by averaging ω (t) but by skipping the values at
a time distance of ≈ T near the boundaries. This averaged frequency will hereafter be referred to as ω,
and it is plotted in red in Figure 1. For the monochromatic and reflective cases, ω∼ω1 = 1.232 rad/s
(Table 2, expressed as period), and for the bichromatic case, the first mode gives ω∼ω1 and the second
mode gives ω∼ω2 = 0.757 rad/s. In all cases, the relative errors in ω1 and ω2 are less than 0.05 %.
The standard deviation, σω, of the values of ω (t) used to obtain ω can be regarded as a measure of
the quality of the recovered frequency. Above, σω/ω < 1 % for the first modes and σω/ω∼2 % for the
second mode in the bichromatic case.

The second row of Figure 2 shows the values of k obtained in the 1D examples through phase fitting
of αx with Rx = 2 m (= 2∆x). The behavior of the wavenumber is smooth (with small oscillations)
except for the reflective case (right), which is unrealistic but consistent with the corresponding αx.
In order to cope with reflected waves, which can occur in some real conditions, an alternative method
to obtain k must be developed.

2.3. Wavenumber: Function Fitting

If non-negligible reflection occurs, the EOF contains information on both the incident and reflected
waves, i.e.,

EOF ≈ Aa exp (−i (ka · x + ϕa) ) + Ab exp (−i (kb · x + ϕb) ) , (10)
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with the condition | ka | = | kb | = k. To obtain k and the rest of the parameters involved and following
the procedure described before for the frequency (Section 2.2) but now including a normalization, we
first define

ÊOF =
EOF (x) EOF (x0)

|EOF (x0) |2
,

so that ÊOF (x = x0) = 1 (real), with x0 being the point where the wavenumber is being estimated.
The expression (10) is then

ÊOF ≈ Âa exp (−i (ka · x̂ + ϕ̂a) ) + Âb exp (−i (kb · x̂ + ϕ̂b) ) , (11)

where x̂ = x − x0. The function of Equation (11) is therefore fitted to the normalized EOF
by optimization in the neighborhood of x = x0. The seven optimization parameters are Âa, Âb,
ϕ̂a, ϕ̂b, | ka | = | kb | = k, and the two angles (directions) of the wavenumbers. The wavenumbers
obtained with this method match the analytical values in all three cases of the 1D example (not shown).
This method to get k, that will be referred to as function fitting, is computationally much more expensive
than phase fitting (around two orders of magnitude).

2.4. Depth Inversion

Once ω (constant) and k (space-varying) have been estimated, the local water depth, h, can be
inferred from the dispersion equation [12]. With γ = ω2/gk, it reads

h =
1
k

atanh(γ) . (12)

Figure 2 (third and fourth rows) shows the results of h in the three 1D cases using phase fitting
and function fitting approaches for k (ω is always computed with phase fitting). The exact bathymetry
of Equation (8) is also included in the figure (blue lines). Most interestingly, the function fitting method
allows to properly recover the bathymetry in the reflective case, where the phase fitting method fails.
From Figure 2, for the nonreflective cases and for the first mode, the function fitting method avoids the
small oscillations observed in the phase fitting method. The function fitting can also produce spurious
peaks, which are due to the difficulties in the optimization to obtain the parameters in Equation (10).
This errors can be avoided by further increasing the computational time.

To reduce the errors associated to the small oscillations observed for the phase fitting method
with a low computational cost and to handle real videos that might include time intervals with large
noise, an extension of the above scheme is proposed. First, instead of performing one unique PCA, all
the sub-videos obtained from a moving time window of width wt are analyzed and only the dominant
PCA mode of each sub-video is considered for the analysis. Second, for each time window, ti, a pair
{ωi, σωi} is obtained from the first PC and sub-videos for which σωi/ωi > 15% are discarded by
assuming that the recovered ωi is not good enough. Third, for each time window, k is obtained from
the first EOF using the phase fitting method. Since the recovery of k might be unfeasible at some points,
those points where the correlation coefficient of the fitted αx are below 0.70 are filtered out as well.
Finally, in a fourth step and following Reference [12], the bathymetry at each point is the result of the
best fit of the dispersion relationship (12) using all the pairs {ωi, ki} obtained in a neighborhood R′

x of
the point (R′

x = 0 meaning that only the values at the point are considered). This extension will be
referred to as the windowing method. The last row in Figure 2 shows, for the same examples, the results
of the windowing method with wt = 40 s and R′

x = 0. While the reflective case cannot be recovered,
as expected, it is seen how the recovered bathymetry fits the exact one in the monochromatic and
bichromatic cases.

The oscillations and related errors, observed using the phase fitting method can also be reduced
by increasing the total time of the video (for nonreflective cases only). Following the above example,
Figure 4 shows the evolution of the root mean square error of the obtained bathymetry, ERMS

h ,
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as a function of time tmax using phase fitting (without windowing) for the monochromatic case.
As a general trend, the error (from the oscillatory pattern in h) reduces as tmax increases. The oscillatory
behavior in Figure 4 is related to the time domain adjusting (or not) to a multiple of the wave period.
For tmax = 300 s, the error is below 5.5 cm. In Figure 2, corresponding to tmax = 100 s, the errors ERMS

h
for the monochromatic case are 10.5 cm (phase fitting), 4.3 cm (function fitting), and 2.8 cm (phase
fitting + windowing).

Figure 4. Evolution of the Root Mean Square (RMS) error in h, ERMS
h , as a function of tmax for the

monochromatic case using phase fitting (without windowing).

3. Results

The proposed methodology introduces parameters such as the resolution of the spatiotemporal
discretization (∆t and ∆x), the radius (Rt and Rx) of the neighborhoods to recover the wave frequency
and the wavenumber from the PCs and EOFs, the video duration (tmax, assuming that the video starts
at t = 0), or the parameters defining the windowing (wt and R′

x). The influence of these parameters
is studied using synthetic linear and nonlinear 2D wave fields. Linear wave propagation equations
assume that the wave height is infinitesimally small and that, for alongshore uniform bathymetries,
simple analytical solutions can be computed. The synthetic linear wave fields will be used to analyze
the influences of ∆t, ∆x, Rt, and Rx. These linear solutions, however, dismiss wave reflections at
the shore, and are unable to represent other important features of real wave fields such as wave
decomposition (energy transfer from one frequency to other) or wave–wave interactions. For this
reason, realistic nonlinear numerical models are also used to examine other phenomena: propagation
over complex bathymetries, generation of subharmonics, and wave reflection. The synthetic nonlinear
2D wave fields will also allow to investigate the influence of tmax and wt (time windowing).

3.1. Analysis for Synthetic Linear Waves: Phase Fitting

Three monochromatic wave trains (W1, W2, and W3; Table 3) and their superposition (WS =

W1 + W2 + W3) are propagated over an alongshore uniform bathymetry (Figure 5A). This bathymetry
corresponds to a beach profile with a shore-parallel bar located 80 m from the shore. Wave conditions
are meant to provide different wave periods in a realistic range and different propagation directions to
check whether the obtained bathymetry is mainly independent of the wave characteristics. Notice that,
since linear wave theory assumes infinitesimal amplitudes, in this section, the amplitudes of Table 3
are only to show the influence of the relative strength of the different wave trains in the WS case.
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Table 3. Wave conditions in the seaward boundary for the analysis of synthetic 2D cases: For each
wave train, T is the period, A is the wave amplitude in deep waters, θ is the angle with respect to the
shore normal in deep waters, and ϕ is a phase lag.

Wave Train T [s] A [cm] θ [◦] ϕ [◦]

W1 7.945 10.0 −16.588 39.0
W2 12.00 6.0 +0.0 0.0
W3 5.022 2.0 +26.079 108.7

Figure 5. Bathymetries (in meters) for the analysis of linear waves (A) and nonlinear waves (B):
The white strip next to the shore highlights h = 0.75 m.

Knowing the wave conditions in the seaward boundary (Table 3), the waves are propagated
towards the coast using the linear wave theory [35]. The initial snapshots for W1, W2, W3, and WS are
shown in Figure 6. In all cases, the spatial domain is 200 m× 300 m (in the alongshore and cross-shore
directions) and the time domain is of 90 s. The video snapshots, Xmn, are obtained by assigning to
each pixel an intensity that is a linear function of the free surface elevation.

Figure 6. Initial snapshots for linear synthetic wave trains W1 (A), W2 (B), and W3 (C) and their
superposition WS (D): Spatial domain is 200 m × 300 m (in the alongshore and cross-shore directions),
and pixel intensity is a linear function of the modelled free surface elevation.

In this section, only the phase fitting method is applied. Within this section, windowing
is not considered so as to focus on the influences of ∆t, ∆x, Rt, and Rx. The influence of the
spatiotemporal discretization (∆t and ∆x = ∆y) of the signal is analyzed considering all combinations
of ∆x = ∆y in {1 m, 2 m, 4 m, 10 m} and ∆t in {0.25 s, 0.5 s, 1 s, 2 s, 4 s}. A major result of the PCA
for monochromatic waves is to obtain one main mode that explains, in all cases, more than 98% of
the total variance of the signal and that matches the corresponding wave train. The results found
for the three monochromatic wave trains are qualitatively similar, and the focus hereafter is on W1.
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For illustrative purposes, Figure 7 shows an example of the angles αt and αx, capturing the refraction of
the propagation as the wave train travels to the shore (compare αx with W1 in Figure 6). For ∆t = 4 s,
the PCA decomposition yields useless results for any ∆x, and hereafter, results with ∆t = 4 s have
been disregarded.

Figure 7. Angles αt (A) and αx (B) of the first PC and EOF corresponding to linear propagation of W1
for ∆t = 0.5 s and ∆x = 4 m: The explained variance is above 99 %.

The wave frequency from the PC has been computed for all the combinations of ∆t and ∆x
and for different values of Rt in {0.5 s, 1.0 s, 2.0 s, 4.0 s}. The relative errors of the recovered ω, εω,
for W1 are shown in Table 4 for ∆x = 2 m. It turns out that results are independent of ∆x. The case
Rt = 4 s, giving large errors, is not considered in the following. The wavenumber k from the EOFs has
been computed for the 2D spatial domain using values of Rx in {2 m, 4 m, 8 m, 12 m, 16 m} and the
different combinations of ∆x and ∆t. Figure 8 (top panels) shows an example of the recovered k as well
as the local relative error, εk, obtained from the first (and only) EOF of the wave train W1. As depicted
in the figure, εk is below ∼ 1%. The global relative RMSE, εRMS

k , obtained for the full set of exploration
results is shown in Table 5 for the domain restricted to depths h � 0.75 m (see also Figure 5 where
h = 0.75 m is highlighted). As occurred with ∆x in the frequency recovery, the influence of ∆t is minor
when computing k (only ∆t = 0.5 s is shown in Table 5).

Table 4. Relative errors for ω, εω (in %), as a function of ∆t and Rt for ∆x = 2 m, corresponding to
linear propagation of W1.

Rt [s]
∆t [s]

0.25 0.50 1.0 2.0

0.5 −0.066 −0.049 — —
1.0 −0.101 −0.092 −0.051 —
2.0 −0.105 −0.105 −0.095 0.024
4.0 −24.7 −48.4 −72.7 −55.4

Table 5. Relative RMSE for k, εRMS
k (in %) for h � 0.75 m, as a function of ∆x and Rx for ∆t = 0.5 s

and Rt = 1.0 s corresponding to linear propagation of W1.

Rx [m]
∆x [m]

1 2 4 10

2 0.583 0.578 — —
4 0.542 0.530 0.508 —
8 0.466 0.468 0.487 —
12 1.279 1.002 4.579 0.741
16 5.534 5.453 6.091 0.732
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Figure 8. Recovered k (A) and h (C) and the corresponding local relative errors, εk and εh (B,D, in %),
obtained using the phase fitting method for the first EOF corresponding to linear propagation of W1
and for ∆t = 0.5 s, ∆x = 2 m, Rt = 1 s, and Rx = 8 m.

Once ω and k are obtained from the only PCA mode of each monochromatic wave train,
the corresponding bathymetry can be derived. Figure 8 (bottom panels) shows the bathymetry
and the error obtained from the same case above. The inversion produces small errors, the largest
errors being located in the shallower area. As in the 1D example, very small oscillations appear
manifestly in k and especially in h. A summary of the results from the PCA for each monochromatic
wave train and the corresponding global relative errors in ω, k, and h is presented in Table 6 (upper
half) for W1, W2, and W3. The errors in k and h are significantly larger for W3, which corresponds to
the wave field with the smallest period.

Table 6. Summary of the results of the PCA obtained using phase fitting (without windowing) for
linear wave propagation and ∆t = 0.5 s, ∆x = 2.0 m, Rt = 1.0 s, and Rx = 8 m: Relative RMS errors
εRMS

k and εRMS
h are given for h � 0.75 m. Next to the retrieved period, the corresponding wave field

is indicated.

Mode σ2 [%] T [s] εω [%] εRMS
k [%] εRMS

h [%]

1 99.2 7.952 (W1) −0.092 0.468 1.083
monochromatic 1 98.7 11.993 (W2) 0.062 0.526 1.085

1 99.9 5.022 (W3) −0.003 4.232 18.572

1 71.0 7.955 (W1) −0.122 1.432 3.182
polychromatic 2 25.3 11.949 (W2) 0.423 2.703 5.826

3 2.9 5.028 (W3) −0.124 6.665 27.554

The PCA of the linear polychromatic wave field (WS in Figure 6) has been performed only for
the default values ∆t = 0.5 s, ∆x = 2.0 m, Rt = 1.0 s, and Rx = 8 m, so as to explore the ability of
the method to identify the different wave components and to infer the bathymetry from each one of
them. In this case, three main modes are obtained (see Table 6 (lower half)) that accumulate a 99.2 %
variance. The periods of each of these modes coincide with those of the corresponding constitutive
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linear waves. Further, the variance of each of them corresponds to the one predicted by Equation (6)
from each of the amplitudes (which are 71.1 %, 25.7 %, and 2.8 %). The angle αx of these three modes
(Figure 9, upper panels) reproduce well each respective linear wave train. A summary of the errors in
k and h is included in Table 6 (lower half). The errors in k and h increase with the mode number, and
again, the largest errors in h occur for the third mode, which corresponds to the smallest period (W3).
However, the bathymetry can be successfully retrieved from the first mode, with a relative error of
only 3 %.

Figure 9. Phase fitting without windowing of the three modes of the linear polychromatic wave field
WS for ∆t = 0.5 s, ∆x = 2 m, Rt = 1 s, and Rx = 8 m: αx (A–C) and εh (D–F).

3.2. Analysis for Synthetic Nonlinear Waves: Function Fitting and Windowing

Nonlinear wave propagation over a nonuniform bathymetry has also been analyzed. The goal is
to test the capability of the new bathymetry inversion method under more challenging conditions and
to gain a better understanding of function fitting and windowing methods. The proposed bathymetry
is based on the one for linear waves but with the addition of three sand banks: two in the region of the
bar, simulating a crescentic bar, and another one near the shore, simulating a transverse bar (Figure 5B).
Nonlinear waves are modelled with the fully nonlinear Boussinesq-type model FUNWAVE [36] (see
Appendix A for details). Unlike in the linear propagation model used above, wave reflection is allowed
to happen in FUNWAVE. Only two wave fields are considered in this section: W1 (monochromatic)
and WS (polychromatic). The influence of the wave height is analyzed through three multiplying
factors for the wave amplitudes in Table 3 (which now represents the real wave amplitudes). The three
multiplying factors are F = 1.0 as reference case, F = 0.25 for smaller nonlinearities (i.e., wave
amplitudes A1 = 2.5 cm, A2 = 1.5 cm, and A3 = 0.5 cm), and F = 2.5 (A1 = 25.0 cm, A2 = 15.0 cm,
and A3 = 5.0 cm). Figure 10 shows snapshots of the wave fields. In the forthcoming analysis,
∆t = 0.532 s, ∆x = 2.0 m, Rt = 1.1 s, and Rx = 8 m.
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Figure 10. Initial snapshots for synthetic nonlinear wave trains W1 (A) and WS (B) for F = 2.5: Spatial
domain is 200 m × 300 m (in the alongshore and cross-shore directions), and pixel intensity is a linear
function of the modelled free surface elevation.

The computations for the first wave field case, W1, are presented to show how the nonlinear
nature of the waves is revealed in the PCA and the corresponding EOFs (Table 7). The first mode
for F = 2.5 corresponds to the wave field W1 (period T ≈ 7.95 s); the second one has half the period
and reflects the nonlinear transfer of the dominant wave field W1 into its first harmonic (of twice the
frequency of the main one). Further on this, the third EOF has a period which is 1/3 of that of the
dominant wave field. As wave amplitudes decrease, contributions to higher harmonics are reduced
and, for F = 0.25, this nonlinear transfer is so small that only one EOF is obtained.

Table 7. Results of the PCA obtained for nonlinear wave propagation of the monochromatic W1
case with different F factors: Next to the retrieved period, the corresponding wave field is indicated
(when applicable).

Factor F Mode σ2 [%] T [s]

0.25 1 98.7 7.953 (W1)

1.0 1 94.6 7.948 (W1)
2 3.9 3.961 ( — )

2.5
1 87.6 7.955 (W1)
2 8.4 3.958 ( — )
3 2.0 2.637 ( — )

For the polychromatic wave field, WS, the complete analysis is performed and the results obtained
using phase and function fitting are summarized in Table 8. For F = 0.25, the three modes retrieve
the three wave fields W1, W2, and W3 (compare the periods in Table 8 with the ones in Table 3).
For F = 1.0 and F = 2.5, the modes retrieve only W1 and W2. The first mode provides better results in
all cases, and function fitting method improves the results for F = 0.25 and F = 1.0. The upper half
of Figure 11 shows, for F = 1.0, how the first two modes correspond to the first two components of
the wave field (W1 and W2), while the third one seems to mix characteristics from a harmonic of W1
with W3 (given that T1/2 ≈ T3). Figure 11 also includes the bathymetry obtained using phase fitting.
Again, as in the linear case, the bathymetries retrieved by modes 2 and 3 have larger errors than that
corresponding to mode 1, and therefore, only the first mode will be considered for windowing.
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Table 8. Summary of the results for nonlinear wave propagation of the polychromatic WS case with
different F factors: Relative RMSE, εRMS

h , are given for h � 0.75 m. Here, “p” and “ f ” stand for phase
and function fitting of the wavenumber. Next to the retrieved period, the corresponding wave field is
indicated (when applicable).

Factor F Mode σ2 [%] T [s]
εRMS

h [%]

p f

1 58.6 7.954 (W1) 19.0 10.1
0.25 2 36.2 11.882 (W2) 54.5 23.4

3 3.1 5.023 (W3) 24.8 10.7

1 52.5 7.951 (W1) 13.5 11.7
1.0 2 34.2 11.870 (W2) 37.1 25.2

3 4.2 4.779 ( — ) — —

1 45.4 7.964 (W1) 30.3 31.7
2.5 2 31.6 11.849 (W2) 36.4 39.0

3 6.9 4.788 ( — ) — —

Figure 11. Results for αx (A–C) and εh (D–F) obtained with the phase fitting method without
windowing from the nonlinear polychromatic wave field WS with F = 1.0 for ∆t = 0.532 s, ∆x = 2 m,
Rt = 1.1 s, Rx = 8 m, and tmax = 90 s.

The results obtained by windowing the polychromatic case WS are shown in Table 9. The three
multiplying factors F, two video lengths (tmax = 90 s, as above, and tmax = 150 s), and five different
values of wt are considered. The number of sub-videos, that is a function of tmax and wt for given
∆t, is included in Table 9 in parentheses. The results have been obtained for R′

x = Rx = 8 m,
thus introducing some spatial filtering. The results for R′

x = 0 have larger errors (∼ 50% higher, not
shown). Applying windowing method improves the results of phase fitting method (for certain optimal
values of wt), and the obtained relative RMSE in h can remain below 15 % for the three values of F.
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Table 9. Results for the first mode for nonlinear wave propagation of the polychromatic WS case with
different F factors, total video length tmax, and window width wt: Relative RMSE, εRMS

h , is given for
h � 0.75 m. Here, “p” and “f ” stand for results using phase and function fitting for tmax, respectively.
The number of sub-videos are included in parentheses.

tmax F

εRMS
h [%]

p f Windowing, wt [s]

30 40 60 80 90

(112) (94) (56) (18) (1)
0.25 19.0 10.1 28.0 13.1 13.6 16.2 19.0

90 s 1.00 13.5 11.7 28.1 10.3 10.8 14.1 13.5
2.50 30.3 31.7 86.1 91.0 83.8 30.8 30.3

(225) (207) (169) (131) (113)
0.25 18.4 8.2 24.8 11.6 12.0 11.9 11.0

150 s 1.00 13.0 10.1 24.2 8.2 8.8 8.6 7.0
2.50 27.5 26.5 99.1 52.5 43.2 30.9 15.1

As an example, Figure 12 shows, for the three inversion methods, the relative errors, εh, obtained
for F = 1.0, tmax = 150 s (and using wt = 60 s for windowing). In this case, both function fitting and
windowing improve the result of phase fitting in all domains. However, as in the 1D example, function
fitting method shows, at some points, peaks due to an optimization failing.

Figure 12. Results for εh obtained with phase fitting (A), function fitting (B), and windowing (C, with
wt = 60 s) from the first mode for the nonlinear polychromatic wave field WS with F = 1.0,
∆t = 0.532 s, ∆x = 2 m, Rt = 1.1 s, Rx = 8 m, and tmax = 150 s.

4. Discussion

4.1. Error Sources

As already seen in the 1D linear example (Figure 2 monochromatic and bichromatic cases),
while the errors in k are similar both in deep and shallow waters (they are almost negligible in the
first mode), the errors in h are much larger in the deeper region. This is a consequence of how the
errors, both in ω and in k, propagate to the inverted water depth. Recalling the dispersion relationship,
we can write

| εh | � | δωεω |+ | δkεk | ,
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for the relative errors εh, εω, and εk, with

δω =
ω

h
dh
dω

=
2γ

(1 − γ2) atanh(γ)
, δk =

k
h

dh
dk

=
1
2

δω + 1 .

Here, γ = ω2/gk. Figure 13 shows δk and δω as functions of γ. This figure is similar to that
by Reference [11] for δk but, here, includes δω. For γ � 0.8 (which is equivalent to kh � 1.10 or
ω2h/g � 0.88), the propagation errors are large and increase rapidly. The physical reason is that waves
do not feel the bottom if water depth is much larger than their wavelength.

Figure 13. Propagation of the errors in k and ω to water depth h when using the dispersion relation.

Note that the number γ increases both if the water depth increases or if the wave period diminishes.
A critical analysis of the results in the view of the values of γ is crucial. In the 1D linear example shown
in Section 2.4, γ goes from 0.53 in the shallow area to 0.93 in the deeper area, with the corresponding
observed amplification of the errors in h (Figure 2). In the 2D examples, the bathymetry retrieved from
W3 gives the largest errors (e.g., Table 6) because the period is the smallest (T = 5.0 s) and γ � 0.8 for
h � 5.5 m, i.e., inside the studied domain (for W1, T = 7.95 s, so that γ � 0.8 for h � 13.5 m, outside
the studied domain).

4.2. Sensitivity to ∆t, ∆x, Rt, and Rx

The influence of the spatiotemporal discretization of the signal has been analyzed through the
linear propagation of W1. One major result of the PCA for monochromatic waves is to obtain one
main mode that explains more than 98%. The error of the wave frequency, εω, depends mainly on ∆t
and Rt (not on ∆x). The radius Rt (that has to be � ∆t) is required to be smaller than T/2 (Table 4) to
avoid the jumps of α̂t, i.e., it has to hold ∆t � Rt < T/2. Once this condition is satisfied, the errors in
ω are small in all cases. Similarly, for the recovery of k through phase fitting, ∆t plays a minor role
and the condition ∆x � Rx < L/2 must hold, where L is the wavelength (which will depend on h
for a given ω). In this case, the error εRMS

k reduces as ∆x and Rx reduce (Table 5), getting stable for
∆x � 4 m and Rx � 8 m (the wavelength in that case ranged from ∼ 20 m to ∼ 65 m).

4.3. Sensitivity to the Inversion Method, Tmax, and Wt

While phase fitting is the only alternative proposed for the recovery of ω from PCs, three different
approaches are considered to recover k from the EOFs: phase fitting, function fitting, and windowing.
Windowing for k relies on phase fitting; applying windowing on function fitting has been disregarded
due to the high computational cost.

Function fitting turns out to be the best choice whenever wave reflection is not negligible or there
are two wave fields with the same frequency (e.g., Figure 2, function fitting panels). Windowing is
able, in general, to reduce the oscillatory patterns of phase fitting, but it does not work for cases with
non-negligible reflection (e.g., Figure 2, windowing panels). Regarding the more realistic nonlinear 2D
wave fields, windowing with a convenient wt can reduce the errors compared to both phase fitting (p)
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and even function fitting ( f ) for F in {1.0, 2.5} (Table 9). For F = 0.25, windowing can improve the
phase fitting results (likely removing part of the oscillatory patterns) but not those of function fitting.
Actually, wave reflection, though small, is not negligible for F = 0.25. In that case, there is little wave
breaking, less energy dissipation, and therefore more wave reflection. Wave reflections are in general
small in dissipative beaches but may play a role in reflective beaches (e.g., beaches with large slopes or
short waves) or in areas with structures such as harbours. Whenever wave reflection is not negligible,
function fitting should be considered.

Figure 14 shows how windowing mitigates oscillatory patterns. The figure shows the relative
errors of h recovered from three different sub-videos. The oscillatory pattern of the error propagates
similar to the own wave field component. Therefore, provided that there are sufficient sub-videos,
the errors are compensated to some extent in the averaging process. The more sub-videos there are
available, the better the windowing will filter the oscillatory pattern as long as the quality of the ω and
h recovered from each sub-video are sufficiently good. This fact can be seen in the Table 9 (especially for
F = 1.0). For small values of wt, the error is greater than that obtained for the analysis of the complete
video (tmax duration); however, as wt increases, the error diminishes. For excessively large values
of wt, the error rises again as the number of sub-videos is reduced. The dependency on wt becomes
stronger for increasing F (more nonlinear waves).

Figure 14. Propagation of the errors εh in the bathymetry inversion for three time windows.

4.4. Field Data

The present methodology has finally been applied to a video from a real field site in which waves
are not only nonlinear but also affected by noise. The results have been compared to those obtained
from cBathy. The cBathy code and the wave video snaps for test have been obtained from the GitHub
distribution [37], managed by the Coastal Imaging Research Network. The cBathy code and images
used (October 22, 2011 at 15h in Duck, NC) are part of the study presented by Reference [12]. The video
consists of 2048 snaps at 2 Hz. The spatial domain of the video covers a region of 1000 m× 500 m with
an irregular mesh of 8576 points (the spatial mesh not being regular does not make a difference for the
present approach). The dominant wave period is around T∼15 s, the wavelengths are around 100 m,
and wave breaking was present in some regions of the domain (lower left part). The ground truth was
obtained through a Coastal Research Amphibious Buggy (CRAB) on 19 October 2011, and the results
are known in a regular mesh (Figure 15), so that all the results from the video analysis were interpolated
to the CRAB mesh for comparison purposes. The reader is referred to the work by Reference [12] for
further details on the data set.

The video of around 16 minutes has been analyzed using the windowing method with wt = 80 s
(i.e., around 5 periods). The results without windowing were unsatisfactory (not shown). For each
sub-video, only the dominant mode is considered. Also, Rt = 1.5 s (for frequency recovery), and
given the long wavelengths, R′

x = Rx = 30 m (for wavenumber recovery). Regarding cBathy, the code
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is applied without modifying any parameter and the Kalman filter is not used (since we consider
only one video). The results obtained both from cBathy and the new methodology (“uBathy”) are
shown in Figure 15, together with the ground truth bathymetry provided by the “CRAB” (the plot
is doubled for ease). In regions with observed wave breaking where the dispersion relation is not
applicable, the errors increase with both methodologies. As shown in Table 10, uBathy improves the
results obtained with cBathy. It not only recovers a higher amount of points (40 % more) but also
provides smaller average error (bias) and RMSE. This proves that the new proposed methodology is
also valid to handle the noisy wave conditions occurring in real beaches. The computational times to
analyse the video with “cBathy” and “uBathy” were of the same order of magnitude.

Table 10. Summary of the results for the field site video analysis.

cBathy uBathy

percentage of points 60 % 84 %
average error (bias) −0.50 m −0.27 m

RMS error 1.38 m 1.29 m

Figure 15. On top (bottom) are results from cBathy (uBathy). From left to right: measured bathymetry
with the CRAB (A,E, in m), inferred bathymetry (B,F, in m), error of the inferred bathymetry (C,G,
in m), and histogram of the errors for the pixels (D,H).

4.5. Future Work

Several known issues require further analysis or remain still open. Such issues will be investigated in
the future by applying systematically the present approach to real field site videos. First, the wavelength
depends on h and, therefore, the values of Rx (and R′

x) could be a function of a previous estimate
(if available) of the bathymetry. Second, when using real videos, there will be the possibility that some
regions of the wave field are particularly noisy at given time intervals (e.g., due to passing of moving
objects). This suggests the extension of the (time) windowing scheme proposed above to a space-time
windowing scheme. Third, the window width wt can be chosen as a function of the wave period T
(namely, wt ∝ T). The exact length of each sub-video is relevant for the quality of its result, according
to Figure 4 (in that figure, tmax plays the role of wt, since there is just one video). By properly choosing
the windows width, the errors could probably be reduced. Fourth, when dealing with a series of hourly
videos, following Reference [15], a Kalman filter should be used.
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Finally, for real field site wave conditions, it is recommendable to retrieve the bathymetry for
adequate conditions: monochromatic waves of small height (ideally), with an adequate wave period
for the desired depths to be measured. In case of macro-tidal conditions, the method can be applied
both in high tide (to obtain the bathymetry of the shallower area) and in low tide (to obtain the deeper
area bathymetry). In dissipative beaches, where wave reflection is minor, the method using phase
fitting with windowing should provide better results, whilst in reflective beaches, function fitting
method should be applied.

5. Conclusions

A new methodology to retrieve the bathymetry out of wave propagation recorded by coastal
video monitoring systems has been presented. It is based on Principal Component Analysis (PCA) of
the Hilbert transform of video images. The method is first tested and validated with synthetic wave
fields over known bathymetries. A first set of examples of wave fields are obtained with linear wave
theory, which describes the propagation of waves of infinitesimal height over an alongshore uniform
bathymetry. To generate more realistic conditions, a fully nonlinear Boussinesq-type model is also
applied to propagate finite-amplitude waves over a more complex alongshore variable bathymetry.
Finally, a field site video is also used to test the method under real wave conditions. A major result of
the present contribution is that PCA successfully provides a decomposition of the videos into a set
of modes associated to the different components of the wave propagation field, even when waves
have large amplitudes (i.e., large nonlinearities). In the latter case, the PCA also allows to isolate the
subharmonic components.

The frequency (ω) of the wave trains are obtained by phase fitting the angles of the PCs,
which successfully works in all the studied conditions. Three different approaches have been developed
to obtain the wavenumber (k). Performing a phase fitting of the angles of the Empirical Orthogonal
Functions (EOFs) can only resolve well the linear wave cases, but it fails under more realistic conditions.
Making a function fitting of the angles of the EOFs enables to accurately obtain the wavenumbers in
most of the tested conditions and it can even identify incident and reflected constituents, but it has
a high computational cost. Applying a time windowing to the phase fitting method greatly improves the
results and provides accurate values of the bathymetry for all tested cases, being much more efficient
computationally, but it fails when there are reflected waves. The latter is the recommended method to
use in dissipative beaches, but in sites with significant wave reflection, the function fitting method is
the only valid approach.

Once ω and k are obtained, the local water depth is successfully estimated by inverting the wave
dispersion relation (for water depths 0.75 m � h � 8.0 m), after establishing the optimal values for
all the parameters. When the methodology is applied to a field of monochromatic or polychromatic
linear waves on the alongshore-uniform bathymetry, relative errors in h do not exceed 3.5 % (using
the phase fitting method for k). For the more realistic case of polychromatic nonlinear waves over
a complex bathymetry, the relative root mean square errors in h are around 15 % (using the windowing
method for k). An application to a real video obtained in a field site confirms the capability of the
present methodology to handle realistic wave conditions. Compared to a state-of-the-art bathymetry
extraction code, the present new approach recovers a 40 % larger amount of points and the overall
error is smaller.
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PCA Principal Component Analysis
EOF Empirical Orthogonal Function
PC Principal Component
RMSE Root Mean Square Error

Appendix A. Nonlinear Wave Field Generation

To model nonlinear waves, FUNWAVE-TVD [36] has been used, which simulates wave
propagation over a rectangular domain employing a set of fully nonlinear Boussinesq equations.
The wave forcing input is modelled by a source term in the equations (the wavemaker), localized
in some internal region of the domain. It needs to be placed over a constant depth and must have
a thickness comparable to the wavelengths present in the domain (usually > 0.25 wavelengths).
The wavemaker used is called WK_DATA2D and adds up monochromatic waves of frequency,
orientation, and amplitude specified by the user. The source code has been modified to also accept the
phases of the monochromatic waves (originally, it used random ones). The coastal and the offshore
boundaries are modelled with sponges followed by reflective walls. Direct sponges have been used,
which attenuate the value of variables over the sponged cells. The values used for the parameters
verify that the sponge thickness is of the order of the wavelength and that most of wave energy is
absorbed. In the laterals, periodic boundary conditions are implemented.

The bathymetry shown in Figure 5 (right panel) is implemented here in the so-called video
zone, which has dimensions of 200 m × 300 m (alongshore and cross shore) as in the linear wave
case. However, the FUNWAVE domain has been extended to fit the wavemaker and the sponges
(Figure A1). Instead of the original seaward depth limit of 7.3 m, the profile is extended up to
8 m depth and then becomes constant. For the frequencies used, this depth results in a maximum
wavelength of about 100 m. Therefore, the thickness of the wavemaker is 25 m and that of the sponges
is 100 m. The extension in the offshore boundary is of 250 m to fit the wavemaker, the sponge, and the
separation spaces for safety. A coastal extension of 122 m that includes a sponge is also implemented.
In order to limit reflection and to avoid breaking the bathymetry is clipped to 0.3 m. However, some
wave reflection still occurs, although the reflected wave has a tiny amplitude. In the laterals, a space
of 140 m at each side is used to minimize potential influences of the periodic boundary conditions
into the domain (Figure A1). The grid size is of 1 m both in the cross-shore and in the alongshore
directions. The first 200 s are the warm-up time and the subsequent 150 s becomes the videos used for
bathymetry inversion.
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Figure A1. Domain used in the FUNWAVE simulations, where the study region is called video zone.
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