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Abstract

In nature, animals are exposed to a broad range of threats imposed by predators, which may

strongly influence the ecology of prey species directly or indirectly by affecting their behavior via

fear of predation. Here, we studied wood mice Apodemus sylvaticus behavioral and physiological

responses to simulated predation risk. Risk avoidance was analyzed by live trapping with control

traps and traps treated with feces of common genet Genetta genetta (direct cue of risk) under new

moon nights and following by simulated full moon conditions (indirect cue). The time devoted to

foraging behavior and capture time were analyzed by video recording mice activity around traps.

Food intake was calculated based on the amount of bait remaining in each trap. Fecal cortico-

sterone metabolites (FCMs) were measured by enzyme-immunoassay as indicators of physio-

logical stress responses. Fewer wood mice were captured during full moon, yet only non-breeding

adult males clearly avoided common genet odor. Mice were captured sooner at night during the

simulated full moon conditions and later in predator-treated traps. Foraging activity was lower

when individuals faced predator’s feces, but neither food intake nor FCM levels were affected by

predation risk cues. Direct and indirect cues of predation risk selectively affected wood mice behav-

ior, although behavioral responses seem to be modulated by different costs–benefit balances

related to the individual’s perception of risk. The lack of physiological responses to predation risk

cues suggests that wood mice did not perceive them as reliable stressors or the response was too

small or transient to be measured by FCM.

Key words: common genet, fecal predator cues, feeding, foraging, moonlight, predator avoidance.

Predation represents one of the most important causes of death for

small mammals and it strongly influences prey ecology directly

through mortality (Brown et al. 1999; Hanski et al. 2001) or

through indirect effects on prey demographic and behavioral re-

sponses to predators (Lima and Dill 1990; Apfelbach et al. 2005;

Dı́az et al. 2005; Zanette et al. 2011; Navarro-Castilla and Barja

2014a, 2014b). Because animals are exposed to a wide range of dan-

gers imposed by predators, they have developed a variety of preda-

tor detection mechanisms and antipredatory responses to minimize

or avoid predation risk (Lima and Dill 1990; Kats and Dill 1998;

Lima 1998). Thus, prey are attuned to respond in a number of be-

havioral and physiological ways to cues associated with predation

risk that can be direct (signals associated to predators: presence,

urine, feces, or sounds) or indirect (e.g., habitat complexity or envir-

onmental conditions) (Eilam et al. 1999; Orrock et al. 2004; Wróbel

and Bogdziewicz 2015).

Most carnivores use secretions from glands, urine, and feces to

mark their territory (Hutchings and White 2000; Barja and List
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2006; Barja 2009; Martı́n et al. 2010; Pi~neiro et al. 2012) and mul-

tiple studies have revealed that several rodent species are sensitive to

the scent of potential predators, avoiding such chemical signals

without needing other cues (Stoddart 1982; Dickman and Doncaster

1984; Calder and Gorman 1991; Jedrzejewski et al. 1993; Navarro-

Castilla and Barja 2014a, 2014b). Furthermore, prey species often

alter their behavior in response to the auditory, visual, and chemo-

sensory cues from predators (Lima and Dill 1990; Kats and Dill

1998; Eilam et al. 1999; Zanette et al. 2011; Clinchy et al. 2013;

Tortosa et al. 2015). Thus, in that prey species are at risk of preda-

tion while performing daily activities, there are tradeoffs between

antipredator behavior and other fundamental activities like foraging

and feeding (Sih 1980; Brown et al. 1988; Brown 1988; Orrock

et al. 2004; Gallego et al. 2017; Sánchez-González et al. 2017).

In addition, antipredatory behavior can be strongly influenced by

the environment. Thus, increased predation risk perception

through lower habitat complexity or higher visibility has revealed

that rodent species will avoid open areas and decrease activity on

nights with a full moon (Kaufman and Kaufman 1982; Kotler

et al. 1988; Wolfe and Summerlin 1989; Kotler et al. 1994; Brown

et al. 2001; Kotler et al. 2002; Eilam 2004; Kotler et al. 2010).

Few studies have attempted to determine whether prey responses

to predation risk situations are influenced by individual character-

istics (e.g., sex, breeding condition, and age of individuals)

(Dickman and Doncaster 1984; Jedrzejewski and Jedrzejewska

1990).

Responses to predation risk should not be restricted only to be-

havioral responses because, under certain risky situations, prey may

display physiological responses which are not translated into a

modification of behavior (Eilam et al. 1999). When animals are sub-

jected to a stressor, the hypothalamus releases corticotrophin releas-

ing hormone inducing the anterior pituitary to secrete the

adrenocorticotropic hormone (ACTH) which signals the adrenal

cortex to release glucocorticoids (GC) to help the individuals to

cope with the stressful situation (Sapolsky et al. 2000). Thus, GC

concentrations can be used as a hormonal measure of physiological

stress responses (Wingfield and Romero 2001; Möstl and Palme

2002). In fact, GC metabolites in feces have been reported in several

vertebrate species as a useful non-invasive technique for assessing

adrenocortical function (Möstl and Palme 2002; Monclús et al.

2006; Lepschy et al. 2007; Dantzer et al. 2010; Barja et al. 2012;

Pi~neiro et al. 2012; Zwijacz-Kozica et al. 2013; Navarro-Castilla

et al. 2014a, 2014b). In mammals, GC plays an important role in re-

sponding to diverse factors such as social conflicts and human dis-

turbances (Sapolsky et al. 2000; Romero 2002; Barja et al. 2007;

Navarro-Castilla et al. 2014a, 2014b). Since stressful situations usu-

ally evoke an increase in GC production, predators could induce

physiological responses in their prey by a physical attack but also by

making them fearful of an imminent attack (Boonstra et al. 1998;

Eilam et al. 1999; Hirschenhauser et al. 2000; Korte 2001; Monclús

et al. 2005; Clinchy et al. 2013; Zanette et al. 2014). Similarly,

increased illumination could act as a potential stressor for noctur-

nally active prey species. However, few studies have previously eval-

uated its effect on the physiological stress response (Navarro-

Castilla and Barja 2014b).

In the present study, we tested whether wood mice Apodemus

sylvaticus showed behavioral and physiological changes due to

increased predation risk due to moonlight (i.e., natural new moon

and simulated full moon conditions) and exposure to predator odor

from an invasive species, the common genet Genetta genetta. Thus,

we studied whether these cues of increased predation risk affected:

(1) wood mouse behavior (i.e., avoidance of predator-treated traps

and foraging activity), (2) food intake, and (3) physiological stress

response in wood mice. Further, the influence of individual charac-

teristics (i.e., sex, reproductive activity, and age) on these responses

was also evaluated. The common genet is an important threat for

small mammals, especially for wood mice (Hamdine et al. 1993;

Virgós et al. 1999). Since variation in predation risk affects foraging

decisions (Lima and Bednekoff 1999), we predicted that wood mice

would alter their foraging behavior when confronted with common

genet feces and they would also avoid entering the predator-treated

traps, especially under high illumination (simulated full moon).

Further, wood mice were expected to vary food intake in response

to their perceived predation risk prior to entering the trap (owing

both to increased illumination and the presence of predator feces),

but also because of the likely detection of common genet fecal odor

by individuals within treated traps. Finally, we expected that expos-

ure to increased illumination and to common genet feces would

evoke physiological stress responses in wood mice as measured by

fecal GC metabolites.

Materials and Methods

Study area
Field work was carried out in the savanna-like holm oak Quercus

ilex woodlands of the National Park of Caba~neros (Central Spain,

30S 385450, UTM 4353479). In this system, large oak trees grow

scattered (mean tree density is 14 ha�1) on a grassland matrix with

almost no shrub cover (<1%; see Pulido et al. 2001; Dı́az et al.

2011).

Experimental design: live trapping and simulation of

predation risk
Prior to the beginning of the experimental study, to determine which

trees were occupied by wood mice and to allow mice to acclimate to

traps, Sherman traps were placed beneath trees (n¼170) in 2 study

sites (separated by 1,500 m) over a 3-day period. Afterward, during

the experimental study (Figure 1), Sherman traps (n¼2/tree) were

placed in those trees (n¼40) confirmed to be occupied by wood

mice. Since predator’s odors have been previously shown to evoke

antipredatory responses in small mammals (Dickman and Doncaster

1984; Navarro-Castilla and Barja 2014a, 2014b), we manipulated

the direct perception of predation risk through predator odor from

one of the main rodent predators in the study area, the common

genet G. genetta. To examine the effect of predator odor, nearby

occupied trees were randomly paired and treatments (traps treated

with predator odor) and control (untreated traps) were assigned to

one tree of each pair at random. Mean distance between predator-

treated and paired control trees was 42.79 m (range 8.20–80.36 m).

Predator treatment consisted in fresh feces of common genet col-

lected from captive animals of the Ca~nada Real Open Center

(Madrid, Spain). To prevent volatile compounds variation in rela-

tion to seasonal or individual factors (Andreolini et al. 1987;

Jemiolo et al. 1991; Hayes et al. 2006; Scordato et al. 2007; Martı́n

et al. 2010), all collected feces were mixed to obtain a homogeneous

mixture avoiding possible bias in our results. Predator treatment

was made following methods by Navarro-Castilla and Barja

(2014a), 100 g of homogenized fecal sample was mixed with

100 mL of distilled water obtaining a mixture similar to real fresh
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feces. Predator presence was simulated by leaving an equal amount

(5 g) of feces at the entrance of treated traps and it was renewed

every day at dusk.

To test the effect of moonlight, the above mentioned experimen-

tal design was carried out during 5 consecutive new moon nights

(20–24 March 2012); afterward, the following 5 nights we simu-

lated full moon light conditions at the same sites by means of artifi-

cial illumination. The illumination device (composed of 3 white and

3 blue led lights grouped behind a diffusion screen simulating a dif-

fuse light with the spectral composition of moonlight) was hung

down from the tree canopy at a height of 2 m to simulate a light in-

tensity of 1 lux at ground level (measured by means of a TES-1332A

luxometer). Light intensity of 1.0 lux approximately corresponds to

the maximum moonlight intensity expected during full moon nights

in this region (Bünning and Moser 1969).

Sherman traps were activated at dusk, and trap checks were car-

ried out 10–12 h later (at dawn) to minimize the time that animals

were kept. Nest material (raw wool with natural lanolin) was used as

bedding inside traps. All traps were baited with 4 g of toasted corn.

Captured individuals were identified to species. Sex and reproductive

condition was determined from external characteristics (Gurnell and

Flowerdew 1994); adult males with enlarged testicles descended into

the scrotal sac and females showing noticeable nipples and/or the va-

ginal membrane perforated were classified as reproductively active.

In addition, a 100 g hand-held scale was employed to measure body

weight which was used to estimate relative age following Navarro-

Castilla and Barja (2014a) (juveniles: <13 g; sub-adults: from 13 g to

<20 g; adults: �20 g). Individuals were marked in non-conspicuous

areas with harmless paints (red food coloring: Ponceau-4R E124) for

individual identification and to control for recaptures. Animals were

quickly handled (<1 min) and then released at the same point of cap-

ture. Manipulations of animals were done in compliance with the

European Communities Council Directive 86/609/EEC for animal

experiments and were carried out under the permit of the Caba~neros

National Park authorities.

Mice foraging behavior and food intake
For recording wood mice foraging behavior, video-cameras

(OmniVision CMOS 380 LTV, 3.6 mm lens) were mounted on a

tripod 60 cm tall located 1 m away and focused on Sherman traps,

covering a field of vision of 1 m2. Video-cameras were provided

with ELRO dvr32 card-based recorders (settings 5 frames/s and

using 16 GB recording cards replaced each day). Both the recording

and the illumination devices were fully autonomous since they were

powered by car batteries (70 Ah, lead-acid) attached to solar panels

(ono-silicon erial P_20; 20 w). However, they were turned on each

day at dusk, before opening traps and renewing predator odor. Mice

foraging behavior, recorded as the time (s) since individuals ap-

peared in the image until they went inside the trap closing it, was

videotaped during trapping sessions. We also recorded at what time

of the night each individual was captured allowing us to know the

time spent by each individual inside traps.

To determine the amount of food eaten, bait remains were oven-

dried at 50 �C (Selecta, model CONTERM 2000208) and weighed

(Giros PG-500; precision 0.01 g). Body weight of individuals was

positively correlated with food intake (r¼0.67, P¼0.002); there-

fore, food intake by an individual was divided by its body weight to

control the effect of body weight on food intake.

Feces collection and fecal corticosterone

metabolites quantification
Fresh feces were collected from traps where individuals were cap-

tured, if urine was detected fecal samples were excluded in order to

avoid cross contamination (Touma et al. 2003). To avoid the effects

of environmental conditions and microorganisms proliferation on

fecal corticosterone metabolite (FCM) levels (Washburn and

Millspaugh 2002; Millspaugh et al. 2003), only fresh feces (i.e., with

a soft texture and not dried) were collected. Fecal samples were col-

lected between sunrise and 2 h after; thus, by only collecting fresh

feces during the early morning we avoided circadian rhythm effects

on excretion patterns (Touma et al. 2003). Corticosterone peak con-

centrations have been observed in wood mice feces on average at

10 h after ACTH injection (range: 8–12 h; see the “results” section);

therefore, fecal samples from individuals trapped >8 h were rejected

to avoid any possible effect of the capture in FCM levels. Fecal sam-

ples were stored in the freezer at �20�C until analysis. To control

for potential observer bias, we used blind observation by coding

samples before laboratory analysis of FCM concentrations.

Figure 1. Flow chart of the experimental study.
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Extraction of FCM from fecal samples was done according to

the modified method of Touma et al. (2003). Fecal samples were un-

frozen and dried in the heater until constant weight. We placed

0.05 g of dry feces in assay tubes with 0.5 mL of phosphate buffer

and 0.5 mL of 80% methanol, then, they were shaken for 16 h and

supernatants were centrifuged at 2,500 � g for 15 min. Pellets were

discarded and the fecal extracts were stored at �20 �C until ana-

lyzed. Quantification was achieved using a commercial cortico-

sterone enzyme immunoassay (EIA) (Demeditec Diagnostics GmbH,

Kiel, Germany) previously validated for measuring FCM in mice

species (Abelson et al. 2016; Navarro-Castilla et al. 2017).

Parallelism, accuracy, and precision tests were done to validate the

EIA (Goymann et al. 1999; Young et al. 2004). Parallelism was per-

formed with serial dilutions of fecal extracts (1:32, 1:16, 1:8, 1:4,

1:2, 1:1) resulting in a curve parallel to the standard. Accuracy (re-

covery) was 118.6 6 31.7% (n¼6). Precision was tested through

intra- and inter-assay coefficients of variation for 3 biological sam-

ples, being 4.7% (n¼6) and 8.2% (n¼3), respectively. In each

assay, we used a standard, whose corticosterone concentration was

known, included in the Demeditec kit. The assay was excluded and

samples were reanalyzed if standard corticosterone concentrations

deviated >10% from the expected value. The assay detection limit

(sensitivity) for corticosterone metabolites was 4.1 ng/mL.

Furthermore, a biological validation was carried out to confirm the

suitability of the EIA for wood mouse fecal samples. Thus, following

the procedure by Touma et al. (2004), we injected a high dose

(60mg/100 g of body weight) of synthetic ACTH (Synacthen Depot,

Novartis, Germany) into 5 captive individuals (2 females and 3

males). Samples of each of the 5 individuals were collected within

minutes after defecation and immediately stored in Eppendorfs at

�20 �C until analysis. Sampling times were: 0, 2, 4, 6, 8, 10, 12, 14,

18, 22, and 26 h post-injection. FCM levels are expressed as nano-

grams per gram dry feces.

Higher FCM concentrations detected in the present study are

similar to those analyzed using the same methodology in another

closely related rodent species, the Algerian mouse (Mus spretus),

inhabiting the same study area (Navarro-Castilla et al. 2017).

This may be attributable to the very low limit of detection (553 pg/

mL) of the Demeditec kit, which is known to detect higher FCM

concentrations than other available commercial kits (see Abelson

et al. 2016).

Data analysis
Capture frequencies according to odor and moonlight treatments, as

well as their interactions with individual characteristics (sex, age,

and breeding condition) were analyzed by fitting log-linear models

to the 5-way contingency table generated by the factors odor (con-

trol/common genet feces), moonlight (new moon/simulated full

moon), sex/age (adult male, adult female, or juvenile), breeding con-

dition (active or not), and presence/absence of capture, taking into

account the structural zeros resulting from the impossibility of find-

ing sexually active juveniles (Dı́az et al. 1999; Morán-López et al.

2015). Recaptures were not taken into account in the captures fre-

quencies tests to maintain data independence.

We used general linear models (GLMs) to analyze differences in

foraging behavior due to moonlight (natural new moon/simulated

full moon), treatment (control/fecal odor), sex (male/female), breed-

ing condition (breeding/non-breeding), age (juveniles/sub-adults/

adults), and recapture (new capture/recapture). We also employed

GLMs to test variation in food intake (corrected by animal’s body

weight); fixed factors were the same as in the foraging activity model

(except age factor) and we included the time that each individual

spent inside the trap as covariate. Finally, variation in FCM was

analyzed by GLMs, including moon phase, treatment, sex, breeding

condition, and recapture as fixed factors and body weight of individ-

uals was included as covariate. Foraging behavior and FCM were

log-transformed as needed to normalize the distributions of

residuals.

The GLMs included the main effects of the factors studied and

their 2-way interactions. Results were considered significant at

a<0.05. The probability of committing table-wise type-I errors was

judged low (ca. 18%; 4 comprehensive test made at a¼0.05;

Streiner and Norman 2011), so that we did not perform adjustments

for multiple comparisons to avoid the risk of committing type-II

errors (Rothman 1990; Feise 2002). Results are given as

mean 6 standard error (SE). We used the SPSS 15.0 statistical soft-

ware (SPSS Inc., Chicago, IL, USA).

Results

Risk avoidance by wood mice
Overall, 153 wood mice (71 new captures and 82 recaptures) were

captured. The study population was dominated by adults (80.3%

vs. 19.7%), females (56.1% vs. 43.9% males), and reproductively

active females (53% vs. 20% reproductively active males; Table 1).

Regarding predation risk factors, simulated full moon conditions

decreased the number of captures compared with the natural new

moon phase (36.5% vs. 63.5%, respectively) while predator treat-

ment did not significantly decrease wood mice captures (46.5% vs.

53.5% control traps) (Table 1 and Figure 2A). Nevertheless, we

found a significant interaction between treatment * sex/

age * breeding condition (Table 1) showing that non-breeding adult

males clearly avoided common genet feces (v2¼7.04, df¼1,

P¼0.008; Figure 2B). None of the interactions among predator risk

factors were significant (Table 1).

Mice foraging behavior and food intake
Wood mice were captured sooner at night during simulated full moon

conditions (5 h 106 340 after trap activation) than during new moon

nights (6 h 4506 340) (F1,76¼5.77, P¼0.019). Further, individuals

Table 1. Results of the fit of a log-linear model analyzing the effects

of individual and predation risk factors on the capturability of

wood mice

Effect df G2 P

Sex/age 2 7.38 0.025

Breeding condition 1 10.68 0.001

Sex/age * breeding condition 1 6.66 0.010

Treatment 1 0.36 0.548

Moonlight 1 12.35 0.000

Moonlight * sex/age 2 3.03 0.220

Moonlight * breeding condition 1 0.15 0.695

Treatment * moonlight 1 0.04 0.843

Treatment * sex/age 2 1.94 0.379

Treatment * breeding condition 1 0.21 0.644

Treatment * moonlight * sex/age 2 0.42 0.809

Treatment * moonlight * breeding condition 1 0.14 0.712

Treatment * sex/age * breeding condition 1 6.54 0.011

Moonlight * sex/age * breeding condition 1 1.01 0.316

Treatment * moonlight * sex/age * breeding condition 1 0.97 1.000
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were captured sooner in control traps (at 5 h 506 340) compared with

traps treated with common genet feces in which individuals were cap-

tured later during the night (6 h 4006 340) (F1,76¼4.66, P¼0.034).

Treatment was the only significant factor explaining the variation

found in foraging behavior before entering traps (Table 2); individuals

spent less time foraging when they were subjected to predator

fecal cues (24.56 6 2.60 s) than when they faced control traps

(31.54 6 4.67 s; Table 2 and Figure 3). The amount of food consumed

was not related to the amount of time that animals spent inside traps,

or by their previous capture history. Further, neither common genet

feces nor illumination influenced food intake. Only breeding condition

emerged as a significant factor (Table 3), with breeding individuals

having a significantly lower food intake (0.0916 0.008 g/g) than non-

breeding individuals (0.1746 0.013 g/g). Interactions among factors

were not statistically significant.

Physiological stress response
In the biological validation experiment, measured FCM baseline lev-

els (prior to injection) for each tested individual ranged from 13,120

to 40,420 ng/g feces. In the 5 individuals, the corticosterone EIA de-

tected an average increase in FCM concentrations ranging from

116% to 247% within 8–12 h of the injection event. Subsequent to

that, a downward trend toward baseline FCM values was detected

within 12–18 h, validating the corticosterone EIA for the analysis of

wood mouse fecal samples.

FCM levels were analyzed in 107 fresh fecal samples. Neither

moonlight nor predator odor emerged as significant factors influenc-

ing FCM levels. Factors explaining the variation found in FCM con-

centrations are presented in Table 4. Body weight of individuals was

positively correlated with FCM levels (Table 4). Overall, FCM levels

were lower in males (130,695 6 53,407 ng/g dry feces) than in fe-

males (138,762 6 41,306 ng/g dry feces) and individuals showed

lower FCM levels when they were recaptured (84,928 6 35,891 ng/g

dry feces) than when they were captured for the first time

(165,002 6 47,982 ng/g dry feces). However, the only significant

interaction between sex * recapture revealed that significant differ-

ences in FCM were between females captured for the first time and

recaptured males (Table 4 and Figure 4).

Discussion

Risk avoidance by wood mice
A decrease in activity during full moon conditions has been

described as a generalized antipredatory behavior in prey species

Table 2. Results of GLMs testing for the effects of predation risk

and individual factors on wood mice foraging behavior

Factor df F P

Moonlight 1 0.301 0.587

Treatment 1 6.945 0.013

Sex 1 1.176 0.286

Breeding condition 1 2.554 0.120

Relative age 1 1.680 0.202

Recapture 1 1.366 0.271

Error 59

Figure 2. Percentage of wood mice captured in relation to direct (common

genet feces) and indirect (moonlight) cues of predation risk (A). Percentage of

captures according to treatment, sex/age, and breeding condition (B).

Asterisks indicate significant differences between the analyzed groups

(**P< 0.01; ***P<0.001).

Figure 3. Effect of treatment (control vs. common genet) on wood mice forag-

ing behavior (s, mean 6 SE). Significant differences are indicated by asterisks

(*P< 0.05).

Table 3. Food intake by wood mice in relation to predation risk and

individual factors

Factor df F P

Moonlight 1 3.579 0.065

Treatment 1 1.432 0.238

Sex 1 0.019 0.890

Breeding condition 1 8.486 0.006

Recapture 1 6.563 0.231

Time inside trap 4 2.608 0.114

Error 55
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(Kotler et al. 2010; Penteriani et al. 2013). This common behavioral

response could explain why fewer wood mice were captured during

the simulated full moon conditions, matching this result with the

moonlight avoidance found in wood mice under natural full moon

nights (Navarro-Castilla and Barja 2014b). The number of newly

captured individuals during the full moon treatment could also have

been influenced by the design of our study, because it was carried

out after the new moon treatment and had a smaller pool of poten-

tial new animals to catch. However, the reduction in the number of

both newly captured and recaptured individuals supported the over-

all negative effect of increased illumination on wood mice foraging.

Therefore, moonlight can indicate a higher risk of predation since

an individual’s vulnerability to a predator depends partly upon visi-

bility. On the other hand, predator odor might provide direct infor-

mation on predation risk even when the predator is absent at the

time of detection. In this study, the number of captures decreased in

traps treated with common genet feces, coincident with several stud-

ies where avoiding areas marked by predators was common in small

mammals (Dickman and Doncaster 1984; Calder and Gorman

1991; Russell and Banks 2007). However, this antipredatory re-

sponse varied depending on individual characteristics, being

significantly different from random expectations for non-breeding

adult males only. Coincident with these results, Dickman and

Doncaster (1984) showed that male wood mice exhibited a higher

avoidance of predator feces than females did. However, in our case,

breeding males did not show such avoidance. Their social, sexual,

and territorial-related behaviors during the breeding season

(Montgomery and Gurnell 1985) and their attraction to new objects

(Brown 1969) could be possible explanations for the results. Similar

differences in response to predator cues due to sex and breeding con-

dition were also found in bank voles Clethrionomys glareolus by

Jedrzejewski and Jedrzejewska (1990). Therefore, sex and breeding

condition differences in the responses to predation risk suggest that

gonadal hormones may be involved in the mediation of the antipre-

datory responses (Perrot-Sinal et al. 1999). On the other hand,

young mammals typically devote less time to predator detection

(Arenz and Leger 2000) which could explain why juveniles were

equally captured although predation risk cues increased. Therefore,

while indirect risk cues (moonlight) seem to be perceived by most in-

dividuals as a more reliable indicator of enhanced predation risk

(Orrock et al. 2004), responses to direct cues (predator feces) are

not generalized, but vary among individuals according to the indi-

vidual’s characteristics and in all likelihood, their previous experi-

ence (Lima and Bednekoff 1999).

Mice foraging behavior and food intake
Predation risk perception may influence animal daily decision mak-

ing to choose when, where, and how long to forage. According to

Lima and Bednekoff (1999), under high risk situations prey reduce

time spent in daily activities to optimize the energy spent on antipre-

datory behavior. Several studies have reported that under high levels

of risk, individuals decreased mobility and concentrated foraging ac-

tivity in safer habitats (Lima and Dill 1990; Dı́az 1992; Kotler et al.

2002). Our results also showed predation risk influencing foraging

behavior. Thus, when traps were treated with common genet feces,

wood mice apparently delayed foraging close to these traps and

were captured later at night. Despite that delay, once individuals

were detected in the vicinity of a trap, they devoted less time to for-

aging, entering feces-treated traps more rapidly than control traps.

In relation to moonlight, wood mice were trapped sooner during

simulated full moon conditions, but no effect of moonlight was

found on foraging behavior. These results perfectly match those of

Dı́az et al. (2005), who found that wood mice reduced foraging be-

havior in response to the presence or activity of common genets but

there was no effect of moonlight on foraging activity. Apart from ef-

fects of the different nature and meaning of both predation risk cues

(direct cues indicate predator presence nearby, whereas indirect cues

just general levels of danger), results may be also explained by tem-

poral variation in their intensity. Predator odor intensity surely

decreased through the night, so that wood mice delayed foraging

and foraged more rapidly when facing predator feces, consistent

with this decreasing intensity of the direct cue. However, moonlight

intensity was constant over the night, so that perception of risk, and

hence responses, did not decrease. According to Lima and Bednekoff

(1999), animals under longer periods of high risk (e.g., full moon

nights) are forced to decrease antipredatory behavior and forage to

meet their energy demands. This hypothesis could explain why al-

though moonlight is supposed to increase perceived predation risk

and wood mice were expected to decreased food intake we did not

find significant differences. Alternatively, as the full moon experi-

ment was carried out after the new moon sampling, this might be an

Figure 4. Log-transformed concentrations (mean 6 SE) of fecal glucocorticoid

metabolites (FCM, ng/g dry feces) in males and females in relation to new

captures or recaptures.

Table 4. Results of a general lineal model testing the effects of indi-

vidual and predation risk factors on fecal glucocorticoid metabol-

ites in wood mice

Factor df F P

Moonlight 1 2.690 0.105

Treatment 1 0.025 0.875

Sex 1 0.177 0.675

Breeding condition 1 0.170 0.681

Recapture 1 1.235 0.270

Body weight 1 5.660 0.020

Sex * recapture 1 4.178 0.044

Error 90
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effect of treatment order (i.e., first new moon directly following by

the full moon experiments) and previous experience. Thus, as a re-

sult of being repeatedly captured during both moon phases, wood

mice may have become accustomed and would have valued the

benefits of obtaining food over the risk perceived via illumination.

Regarding individual factors, only breeding condition led to signifi-

cant differences in food intake. Overall, prey have to trade off food

and safety under each situation, but they also have to prioritize

between different daily activities. In this regard, we conservatively

speculate that breeding individuals could be more careful

under risky situations reducing feeding and allocating more time to

survive and breed.

Physiological stress response
Generally, short-term GC secretion last only a few hours and pro-

motes successful adaptive responses to a stressful stimulus

(Wingfield and Romero 2001), whereas chronic stress occurs when

individuals experienced either multiple, frequent exposure to stres-

sors, and/or long-term continuous exposure to stressors which gen-

erates elevated and prolonged high GC levels exceeding the

individual level of beneficial adaptation and leading to pathological

consequences (Möstl and Palme 2002; Sapolsky 2002; Romero

2004). Physiological responses due to simulated predation risk by

owl calls were previously found for voles and mice (Eilam et al.

1999). However, studies where predation risk was simulated with

predator odor did not evoke any physiological response in different

rodent species (bank voles and weasels: Ylönen et al. 2006; meadow

voles and weasels: Fletcher and Boonstra 2006). In the present

study, neither moonlight nor exposure to predator feces had any in-

fluence on FCM in wood mice, a result similar to the lack of effect

of natural moonlight conditions and red fox fecal odor on the

physiological stress response of wood mice found by Navarro-

Castilla and Barja (2014b). Thus, perceived predation risk does not

appear to be sufficient to elicit increased FCM levels in the wood

mouse. Both the delay in approaching feces-treated traps and

reduced foraging behavior when in proximity to such traps could re-

duce the individual’s perceived predation risk so as to preclude a

physiological stress response, or diminish that response in magni-

tude or duration to the point that it escaped detection by our FCM

assay. Alternatively, inter-individual variation in FCM levels could

result in insufficient statistical power to detect significant differences

among predation risk treatments. Regarding the effect of individual

factors, we found that body weight of individuals, which is closely

related to the age of individuals (Gurnell and Flowerdew 1994), was

positively correlated with FCM levels. Adults may have exhibited

higher FCM levels as a consequence of their breeding condition, that

is, changes due to pregnancy and lactancy (Bauman 2000; Strier

et al. 2003; Reeder and Kramer 2005), as well as to social inter-

actions among adult males (Rogovin et al. 2003). Alternatively, indi-

viduals might simply display age-related physiological responses to

cope with stressors (Hauger et al. 1994). The interaction between

sex * recapture also showed a significant influence on FCM levels,

which could also indicate a greater stress response by females to the

novel testing environment. Higher GC levels in females have been

previously found in this and other rodent species (Touma et al.

2004; Navarro-Castilla et al. 2014a, 2014b), which could be attrib-

uted primarily to differences in the metabolism and/or excretion of

GCs between both sexes (Touma et al. 2003).

Overall, wood mice behavioral changes found under the preda-

tion risk situations studied likely reduced the probability of an en-

counter with a predator, but they imply important trade-offs

between the benefits of safety from predation and the costs associ-

ated with missing opportunities for foraging or reproduction

(Abrams 1986; Lima and Dill 1990; Brown et al. 1999; Brown and

Kotler 2004). Besides being an invasive species, common genets

defecate in latrines, so their feces may be less indicative of their pres-

ence or movement patterns, and therefore, a generalized antipreda-

tory response would not lead to survival benefits that would

outweigh the cost of lost foraging opportunities. Thus, wood mice

are expected to exhibit different antipredatory responses only when

they have an accurate assessment of the current predation risk, and

making decisions, choosing those behavioral options which maxi-

mize their fitness, for example, delaying and reducing foraging activ-

ity when facing common genet fecal cues. Nevertheless, behavioral

responses seem to depend on context, past experience, and individ-

ual variation (Gorman and Trowbridge 1989). The apparent ab-

sence of a GC stress responses to factors that are presumably related

to predation risk (i.e., moonlight and predator odor) suggests that

these factors are not perceived as reliable stressors by wood mice.

So, making decisions by altering behavioral responses seem to be

better, faster, and a more useful option to maximize fitness.
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Morán-López T, Fernández M, Alonso CL, Flores-Renterı́a D, Valladares F

et al., 2015. Effects of forest fragmentation on the oak-rodent mutualism.

Oikos 124:1482–1491.
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