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Abstract

* The concept of self-organization is introduced in
relation to its mathematical description and
applications in biological sciences. The evolution
of complex systems may be driven by synergetic
changes and structural instability. related
concepts such as biological assemblage, self-
maintaining systems, and boolean networks are
discussed. An example of modelling of enzymatic
metabolism with master equation is shown.
Some examples of modelling of co-evolution,
cognitive emergences and social emergence are
shown



Real world is complex

Real phenomena precise complex models
Complex models are simplified abstractions of real phenomena

Which try to describe the most relevant qualitative features
of them
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Dynamics in This process contains the Nonlinear dynamics
the real world physical insight (‘artistry’) in the phase space of
of the theorist in attempting the physical variables

to describe real phenomena

Nonlinear phenomena concern processes involving ‘physical’ variables,
which are governed by nonlinear equations. These models have been
obtained, by some approximate ‘projection’ rationale from presumably
more fundamental microscopic dynamics of the system. (SACKSON 1991 )




Components of the complexity paradigm

A set of contributions have converged in the attempt to model complex phenomena

General systems (Bertalanfy): 1928
Game theory (1928-1950’s):

von Neumann, Nash

Cybernetics & Information: 1940’s
Systems dynamics (Forrester): 50’s
Far from eq thermo (Prigogine): 60’s
Self-organization & synergetics: 70’s
Complex adaptive systems
Nonlinear dynamics

Boolean networks

- Complexity paradigm
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Self-Organization

One main feature of real phenomena is self-
organization

Ability of a system to spontaneously arrange its
components or elements in a purposeful (non-
random) manner, under appropriate conditions but
without the help of an external agency

It is as if the system knows how to 'do its own thing'

Many natural systems show this property: galaxies,
chemical compounds, cells, organisms, and even
human communities



Zhabotinskii Waves at High Concentrations of Malonic Acid Zhabotinskii Waves at Low Concentrations of Malonic Acid
Fig. 4

Physical and chemical
patterns formation

* Belousov-Zhabotinsky
reaction (Prigogine, Haken)

e Advective structuresin a
waste-water purification
lagoon




Needed Ingredients of self-
organization

A set of (many) elements

Some interactive tendency (conatus):

— Interaction probability between particles

— Forces between molecules

— Instincts, impulse in living beings

It may depend on the state of the element
and environment

Random perturbations of the state of every
element



Random perturbations and order from noise

* \on Foerster (1960): noise let
the system explore its state
space and find ‘attractors’

* Magnetic forces are stronger
along certain directions

e Random perturbations
permits to explore all the
configurations and find the
one with minimum energy




Origin of attraction basins

A N-particles system can be described by the evolution of its state
(91,92, 9N P1,P2---PN)

If there are frictions proport to velocity, the motion egs:

dg;/dt = 0H/0p;, 1=1,2,...N (1a)
dp;/dt = —OH[0q; — ap;d,;, 1,5 =1,2,..., N (1b)

describe how the state goes through the phase space.

Any volume element in the phase space shrinks if the trajectory diver-
gence is negative, which is our case:

S

0  dg; 0 dp;
Z a9 ﬂ) + I-c ({pl) = —a<0 (2)
=1 9q; dt Op; dt

Any dissipative system satisfies this condition.

Open (to energy) dissipative systems have always attracting basins in
their space of variables



Probabilistic evolution

Another feature of complex systems: many components — dynamic
instability

Variables x = (z1,22,...,xc) in complex systems dont evolve determin-
istically from their initial states:

e Sensitivity to initial conditions

e Sensitivity to noise

They obey to transition probabilities per unit of time W(x, x')

Master equation:

dp(z—m)—Zu (xX)P( 1) = P(x, 1) 3 WX, x) (3)
dt XX



From master to Fokker-Planck eqgs

In many practical cases:

-the N states (in every variable) are neighboring each other
- N >> 1 (almost a continuous set)

-transicions are always to neighbor states

- system has no memory

- W and p(x,t) are funtions of X

Making a Taylor expansion of the right side of (3) permits to obtain
the Fokker-Planck eq:
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where C is the number of variables and:
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and the drift and fluctuations matrix:
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with k;, k; € {0, £1}, if x are occupation numbers.

The drift is the mean instantaneous rate of change of states close to

(x,1)

The fluctuation matrix is the local rate of change of the variances of
these states. It tends to zero in deterministic processes



When transition probabilities are not known, Fokker-Planck eq is useful
as an euristic tool:

- Drift of the mean state can be inferred from the mean observed
trajectory |

- Q can be modelled as a noise intensity coming from microscopic
fluctuations and external perturbations

- Fokker-Planck eq without b.c. can be solved explicitly:

/ et V.t 7 — VvV — V.t T v. 1 [y _ v — v.t _
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With b.c., it is easier to solve a set of Langevin stochastic equations, which are
formally equivalent:

di—l—ﬁ(ll {z;}.t}) +291;C1(f)
di—Q = fa(@2, {z;},t}) +292;C2(f)
dt@

= fn(zn, {z;}, t}) + ZQC;CC(t)

=1

where (; is a d-correlated Gaussian fluctuating (or random) perturbation in the vari-
able i.

Relationship between the two formulations:
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P(qg,t) when drift o(qg) derives from a potential V(q)

- The attractor is in the bottom of V(q) ! 2

~
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Evolution of P(x) with a two-minima V(x)
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Self-organization and qualitative change

» In many of the most complex self-organizing processes we find that:

1.
2.

3.

4.

The process involves many interactive components

Eventually, the component interactions syncronize each other by chance and it makes
emerge some mesoscopic (middle size) regularity (fluctuation)

In some cases, the macro pattern so obtained probabilistically favors the growth of the
initially random syncronization

The macro pattern grows until it uses all the energy flowing through the systems, or it is
inhibited by the boundaries (resulting in an emergent macroscopic pattern)

» Qualitative change in the self-organizing pattern:

A.

Synergetic change: parameters which control flows, thermodynamic forces, interactions
between components change; it weakens the system attractor; it makes the system
specially sensitive to new fluctuations

Structural instability due to new variables: New interactions with external components (or
systems) appear; it adds new dynamic variables; it provokes instability in the old attractors
and a new topology of attractors in the new (higher dimension) phase-space

» Biological assemblage of self-maintaining systems can be described with B.



Self-maintaining systems

* Hejl: a series of systems in which
self-organizing components
produce each other in an
operationally closed way

* Are the consequence of a

constructive feed-back loop /A“'X\

(organization) which permits the  “ ¢
continuous regeneration of the /

A £ A
components (Varela 1974) &\Géﬂ—*’//
\J\ s

AN



Self-maintaining metabolism

v" In living cells all of the catalysts essential for survival of the
cell are internally produced

v' Rosen: metabolism-replacement systems
v’ Piedrafita et al. (2010) example of 8 eqgs. model:
 Metabolic process from external molecules S,T,U:

S + T—> ST catalized by STU

 STU is replaced against degradation:
ST + U>STU catalyzed by SU

 SU is replaced by:
S + U -2 SU, catalyzed by STU



Self-maintaining metabolism (2)

d[ST)

i =k3[STUST] —k_3;[STUJ[ST] Rate of production of ST as a function of several reaction rates
— ks[ST][SU] +k_s[SUST] — k| [ST]
d[STU] /dt=...
d[SU] / dt= . Concentration
STU STUST
d[STUST] /dt = ... _STUS ST
‘others
d[SUST] /dt = ... %0 0102030405 06
Time
- Steady state attractors are obtained -
which are stable to molecular fluctuations: STU
SuU

- Candidate to represent the prebiotic 0 —

precursor of modern cell metabolism 0 500 1000 1500 2000 2500
Time



Cell membrane

Those metabolic reactions would
not be self-maintaining if
molecular diffussion were included

Neighborhood of reactants is
difficult to maintain
Cells have solved this problem by .. ¢ ™ / °
circumscribing metabolism inside ' \ AN
lipid bilayers omasacecrt®
Bilayers are quite stable but they
may suffer damage and need —water

. . 696069 €0 €9 €0 €9 €) L) —Hydrophilic
metabolic repairing MNANNRNRI ===

Hydrophobic
2% A0 # ( non polar) tails
181
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— Water



Enzymatic metabolism

- In modern cell metabolism, catalysts are complex

molecules called enzymes

- Enzymes can be modelled as stochastic automata

- Regulation by activator: A specific molecule B ensambles

with the Inactive Enzyme (El) which become active (EA)

- EA, with a certain probability, reacts with a substrate S

and produce a product P

- The process is probabilistic

- The state of the enzyme and its reactants in the cell can be
described by the vector n(t) with the occupation numbers of
all the reactants

n(t) = [n (t), na(t), nas(t), nap(t), np(t), ny(t), ny(t)]
- Time evolution of nis given by a Master eq:
dp(n, t) /dt =% @nu>n(t) PINFK, 1) - Zy @n5044(0) PN, 1)

w=hk/V, where kis a reaction rate, and h the combinations of
collisions producing the change
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Models of metabolism (II) 2]
Simulation of cell energy metabolism (CEM) ATP ATI;;"
Three reservoirs with energetic molecules that are ATP
produced from external substrates S;, S,, S; ) 3

A depot is filled when its substrate in cell is high, \_/

or its level is too low
A difficulty appears in double-direction branches that
use ATP (like those between /i and Pi and between /i and Di )

If the right and left reactions are active = wasteful dissipation of energy
(ATP)

Futile cycles can be controlled if the opposing reactions are reciprocally
controlled by some regulator, such as the reaction product itself, Pi



This occurs in the carbohydrate branch of CEM,
where the forward reaction enzyme,
phosphofructokinase, is activated by its
product fructose-1,6-P2 (FBP), while the
antagonist enzyme, fructose-1,6-
biphosphatase, is inhibited by FBP.

A simple two enzymes model to simulate the
two directions of the reaction: glycolysis (A)
and gluconeogenesis (B)

Futile cycle (simultaneous storage and use of
energy) is impeded by the alternating
dominance of one of the two processes

Self-oscillatory glycolitic cycles:

Randomness is crucial when F6P is high and
FBP is low to produce the small threshold conc
of FBP which self-catalyzes

Allosteric regulation of enzyme activity is the

key to create networking controls (Monod: “jai
decouvert le deuxieme secret de la vie»)

storage

Stochastic simulation of

the master equation

by using the Gillespie

method
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Boolean networks

Kaufmann (2004) genetic regulatory networks
Cells as networks of N genes which activate/inhibit in a specific circular sequence
Every gene receive K inputs from other genes and has an internal code to decide if it
inhibits or activates at the next time step
The state of the network is an array of N bits [0011010001011...0101] (O: OFF, 1: ON)
The network state changes at every step until reaching a previous state; then it cycles
in a permanent cycle (attractor)
These attractors could represent the metabolism of the 256 types of cells
For this, the attractor must be stable to
perturbations, period of hours, etc. o w‘\!{
K = 2 seems to have the apropriate /’g/ard‘e;‘taﬁéfden Q‘
biological features

Cell diferentiation would be a transition
to a different attractor

Natural selection would work on the permited
transitions emerged from self-organization

Three sources of biological order:
1. Metabolic self-organization
2. Selection of adapted cells/colonies -
3. Symbiosis of self-maintaining cells or colonies”

« an attractor state
shown in detail

transient tree
and sub—trees

Fig.- Network attractor and its basin



Lynn Margulis Biological assemblage

Endosymbiotic
assemblage

Cytoplasm

DNA,
Plasma \
membrane =
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prokaryote
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Simple monera cells = eukaryote cell

- Cooperative self-organization of cells
to form a pluricellular being
- Sawai, 2005; Hofer et al. 2006
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Aggregation of cells of Dictyostelium Discoideum
(a) and (b) to produce a plasmodium (c) which
migrates and grows vertically (d) and reproduces



Figura 32

1. The ants emit a quantity & of pheromone per unit of time.
2. H decomposes at a rate proportional to its density: -BH.
Its propagation in the medium obeys Fick’s law where Dy is the diffusion

° e
coefficient.
Random depositing persists as long as the number of

insects participating in nest building is small.

ot

behavior

Figure 10: Pheromone Diffusion Gradient Surrounding Two Pillars. Because the two pillars act
as competing attractors for the termites, a saddle-point is created between them. Here we see
2 2-D (left) and 3-D field of equipotential curves radiating out from the deposit sites soon 1o
become pillars.

= Flamingos just arrived on Lake Bogoria, Kenya
- Darwin said that a bird is able to leave her calf before disobeying the call

. . 1
tom |grat|0n FIGURE 5.10. The construction of pillars and arches by a group of termites (draw-
ing by Turid Holldobler, see Wilson, 1971);




Co-evolution of ecological communities

De Angelis et al (1981):

Systems rich in all types of resources, which are widely distributed, tend to favor the evolution of
"specialists" (such as lynx)

Systems in which each resource is not widespread, encourage evolution of "generalists" (such as
Fox)

The higher the fluctuation of environmental resources, the greater the separation from the niches
and less overlap of several species in each niche

Resource rich ecosystems that don’t

experience large fluctuations will have more o e

species (tropical forests) g Mi};
Environmental fluctuations will reduce this o =

AAAAAAA

number
A system with dispersed limited resources:
- if their densities do not fluctuate
greatly: many generalists with a large
niche overlap
- if the fluctuations are large: a few
generalist species
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Prof. Levin have many things to say on it

veans

WITH CHESTNUT

J{ : L F : ition through time predicted by the
Fig. 3.:Changes In species composition through time predicted by the Fig. 4.:Changes in species compos

stochastic \n: stand rpnodel. (Frsm Shugart and West 1977, with permis- STochastic tree stand model when American chestnut is included. (From
sion of J. of Envir. Manage. Copyright by Academic Press, Inc.(London) Shugart and West 1977, courtesy of Academic Press).

Lud,




Cognitive emergences from neural
syncronization

Association
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sensory cortex
1 VIS
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Fig. 4.19. Inputs to the cerebral cortex with somasensory pathways (SOM), auditory path-
ways (AUD), visual pathways (VIS), lateral geniculate (LG), medial geniculate (MG), nu-
cleus ventralis posterolateralis (VPL) [4.46]



Social emergence -

- Prigogine, Haken, Weidlich, Haag, Hejl, Allen,
Sawyer, Schweitzer, Levin

Emergence of macroscopic patterns from

micro-components interactions

Universal concepts of
stochastic multi-component

Specific concepts of social
systems: behavioral vectors,

systems: Master equation; — socioconfiguration, dynamical
average equation, etc. utility functions, etc.
4 4
Micro Individual utility determines Field research and panel
transition rates between P data on change of
behavioral states individual behavior
Feedback
Y between 4
Master equation for models Regression analysis for
probabilistic distribution narilqcal determining the trend
; : . mpiri
of socioconfiguration R parameters
evaluation
4 ¢
Macro average equation for model._sunu]auo.n of
1 P : scenarios, case studies,
socioconfigurations = forecasting
Theory Experience

Fig. 8.5. Synergetic methodology for modeling social dynamics [8.16]

)

d)

Fig. 8.4a—e. Computer-assisted model of urban evolution at time (a) r = 4, (b) t = 12, (¢)
t=20,(d)r =34, (e)t =46 [8.14]



Trails, networks and
drainage patterns
formation

F. Schweitzer, Cellular automata,
Brownian Agents, and active particles

Village in Serengueti, Tanzania

Saline mud of Lake Natron, Tanzania




