Title: A comparative study of the wine fermentation performance of *Saccharomyces paradoxus* under different nitrogen concentrations and glucose/fructose ratios

Authors:
Sandi Orlić 1,2*; F. Noé Arroyo-López 1; Katarina Huić-Babić 2; Iacumin Lucilla 3; Amparo Querol 4 and Eladio Barrio 1

Affiliations:
1 Institut “Cavanilles” de Biodiversitat i Biologia Evolutiva. Universitat de València. Edifici d’Instituts, Parc Científic de Paterna. P.O. Box 22085, E-46071 València, Spain.
2 Department of Microbiology. Faculty of Agriculture. University of Zagreb. Svetošimunska 25. 10 000 Zagreb, Croatia.
3 Dipartimento di Scienze degli Alimenti, Università degli Studi di Udine, via Sondrio 2, 33100 Udine, Italy
4 Departamento de Biotecnología de Alimentos. Instituto de Agroquímica y Tecnología de los Alimentos. CSIC. P.O. Box 73. E-46100 Burjassot, Valencia, Spain.

Running title: *S. paradoxus* wine fermentation performance

Corresponding author: Sandi Orlić, Department of Microbiology, Svetošimunska 25, 10 000 Zagreb, Croatia; tel. +38512394034; fax. +38512393881; email: sorlic@agr.hr
Abstract

Aims: The main goal of the present study is to determine the effects of different nitrogen concentrations and glucose/fructose ratios on the fermentation performance of *Saccharomyces paradoxus*, a non-conventional species for wine making.

Methods and Results: Ethanol yield, residual sugar concentration, as well as glycerol and acetic acid production were determined for diverse wine fermentations conducted by *S. paradoxus*. Experiments were also carried out with a commercial *S. cerevisiae* wine strain used as control. The values obtained were compared to test significant differences by means of a factorial ANOVA analysis and the Scheffé test. Our results show that *S. paradoxus* strain was able to complete the fermentation even in the non-optimal conditions of low nitrogen content and high fructose concentration. In addition, the *S. paradoxus* strain showed significant higher glycerol synthesis and lower acetic acid production than *S. cerevisiae* in media enriched with nitrogen, as well as a lower, but not significant, ethanol yield.

Conclusions: The response of *S. paradoxus* was different with respect to the commercial *S. cerevisiae* strain, especially to glycerol and acetic acid synthesis.

Significance and Impact of the Study: The presented study has an important implication for the implementation of *S. paradoxus* strains as new wine yeast starters exhibiting interesting enological properties.

Keywords: Wine fermentation; *Saccharomyces paradoxus*; *Saccharomyces cerevisiae*; nitrogen content; fructose; glycerol.
Introduction

Grape must is usually fermented by *Saccharomyces cerevisiae* strains, being the main responsible of the quality and flavour of the final product (Pretorius 2000). Although *S. cerevisiae* is the predominant species, *S. bayanus* var. *uvarum* has been described as adapted to low-temperature fermentations during winemaking (Naumov *et al.* 2000). Recently, Majdak *et al.* (2002) and Orlić *et al.* (2007) reported the possibility to use *S. paradoxus* strains as starters in fermentation because of their excellent contribution to the aroma of the wines. *S. paradoxus* is a widespread species usually present in natural habitats (plants, insects, soils, etc) (Sweeney *et al.* 2004), but also in man-manipulated environments, such as ‘pulque’, a Mexican traditional fermented beverage made with *Agave* sap (originally described as *S. carbajali*; Ruiz 1938), and from Croatian vineyards (Redžepović *et al.* 2002). It is worth noting that these *S. paradoxus* strains isolated from fermentative environments exhibit physiological properties of biotechnological interest (Redžepović *et al.* 2003; Belloch *et al.* 2008).

The nutritional requirements for *Saccharomyces* species to produce wines with desirable organoleptic characteristics are relative high, and many factors have been found to influence their growth and their metabolic capabilities, including sugar content, temperature, aeration and nitrogen availability (Gardner *et al.* 1993; Bisson 1999; D’Amato *et al.* 2006).

Sugar content is one of the most important factors during wine fermentation. Grape must usually contain very similar amounts of glucose and fructose (Fleet and Heard 1993), but in some ecological conditions and grape varieties, the proportion may differ. As a consequence of the climatic change, fructose concentration in grapes is increasing respect to glucose, affecting the global wine quality (Jones *et al.* 2005). Although glucose and fructose are co-consumed by yeasts during wine fermentation,
Saccharomyces strains have a preference for glucose, which is usually consumed faster, resulting in a reduction of the glucose/fructose ratio, and the preponderance of fructose towards the end of fermentation (Fleet 1998; Berthels et al. 2004). During this phase of fermentation, when nitrogen sources are consumed and ethanol concentrations are high, some strains have difficulties to ferment the remaining fructose, resulting in slugged and stuck fermentations (Bauer and Pretorius 2000).

Assimilable nitrogen content is another important factor that directly affects the course of fermentation. Nitrogen deficiency may also lead to delayed or stuck fermentations caused by low biomass yield (Bisson 1999; Varela et al. 2004). Nitrogen is an important macronutrient that plays a major role in many of the functions and processes carried out by yeasts. The intrinsic importance of nitrogen content on both yeast growth and its metabolism is well known by winemakers. A minimal concentration of 140 mg l\(^{-1}\) is often quoted as necessary for the fermentation of a must with moderate sugar content (200 g l\(^{-1}\)) (Bell and Henscke 2005). Moreover, the concentration of assimilable nitrogen also influences the formation of volatile and non-volatile compounds that are important for the organoleptic quality of the wine (Bell and Henscke 2005; Hernández-Orte et al. 2006; Vilanova et al. 2007).

In recent years, there has been an increasing demand for wines with high glycerol levels and reduced ethanol content. Glycerol is the major and the most important non-volatile compound produced by yeasts in wines, and significantly contributes to the wine quality by providing slight sweetness and fullness. It is considered as the third major compound produced during wine fermentation after ethanol and carbon dioxide. The amount of glycerol formed during fermentation by S. cerevisiae is around one tenth of the amount of ethanol produced, and its concentrations in wine varying between 1 and 10 g l\(^{-1}\) (Ough et al. 1972), although normal
concentrations are in the range 4-9 g l$^{-1}$. Due to the favorable impact on wine quality, glycerol production is one of the desirable features in wine yeast selection. Glycerol production by yeast is affected by many growth and environmental factors (Gardner et al. 1993; Remize et al. 2000). This metabolite is synthesized by yeasts in response to a hyperosmotic medium.

Most fermentation requirements have been studied for *S. cerevisiae* but not for other *Saccharomyces* species. The aim of the presented study is to determine the effect of different concentrations of assimilable nitrogen and glucose/fructose ratios on the fermentation performance and synthesis of ethanol, glycerol and volatile acidity (the major compounds of wine fermentation) by *S. paradoxus* in a wine model system.

Materials and methods

Yeast strains and inocula preparation

Two yeast, a commercial *S. cerevisiae* wine strain (SOY51) and a *S. paradoxus* strain (SOY54) isolated from Croatian vineyards, were used in the present study. Yeast cultures were maintained on YEPG medium slopes (yeast extract 10 g l$^{-1}$; bacteriological peptone 10 g l$^{-1}$; glucose 20 g l$^{-1}$; agar 20 g l$^{-1}$) at 4°C and transferred monthly to fresh medium until fermentation experiments were carried out.

Starter cultures were prepared according to Wang et al. (2003) with slight modifications. Briefly, one colony was transferred into 10 mL of a basal medium of 6.7 g l$^{-1}$ of Yeast Nitrogen Base (Difco™, Becton and Dickinson Company, Sparks, USA) adjusted to pH 3.2 and supplemented with 50 g l$^{-1}$ of glucose, and incubated at 30°C overnight. Subsequently, yeast cells were harvested (1500 rpm x 15 min), washed three
times with 0.2 M phosphate buffer (pH 7.0), and resuspended into 3 ml of fermentation medium. Experiments were inoculated at ≈ 5×10^4 CFU ml$^{-1}$.

Experimental design and growth media

In this work, a complete factorial design resulting of the combination of 2 yeast strains and 4 growth media was carried out in triplicate. Table 1 summarizes the total number of treatments included in the experimental design. Fermentations were performed in a synthetic must developed by Varela et al. (2004). Natural musts show a variable composition from vintage to vintage that can influence the yeast growth. For this reason, a defined synthetic must was chosen in this work as the most appropriate growth medium to overcome this variation. In the present study, the basal must was modified by adding aseptically different assimilable nitrogen concentrations in the form of amino acids and ammonium salt (must S, 50 mg l$^{-1}$; and must N, 300 mg l$^{-1}$; for a complete description of the different sources of nitrogen used see Varela et al. 2004) and glucose/fructose ratios (must G, 100 g l$^{-1}$ glucose + 100 g l$^{-1}$ fructose; must F, 80 g l$^{-1}$ glucose + 120 g l$^{-1}$ fructose). Fermentations were carried out at 18°C, which is a normal temperature for white must fermentations, without shaking in 500 ml of must air fitted with a side-arm port sealed with a rubber septum for sampling and closed with airlocks. Experiments were monitored during 900 h. At variable time intervals, must samples were taken and diluted in a sterile saline solution and plated onto YEPG agar plates. Then, plates were incubated aerobically at 25°C for 48 h. Counts were expressed as log$_{10}$ CFU ml$^{-1}$.

Chemical analysis

Final ethanol and volatile acidity productions, as well as the residual sugar content in
the must, were quantified according to the Official EU Methods for wine analysis (EC 2000). Glycerol was determined with an enzymatic/colorimetric commercial kit especially designed for wines (Roche Applied Science, Mannheim, Germany) following the manufacturer's instructions.

The production of glycerol along the fermentative process was fit with the reparameterized Gompertz equation proposed by Zwietering et al. (1990):

\[y = G \cdot \exp\{-\exp\left[\frac{G_r \cdot e}{G} \cdot (\lambda - t)\right] + 1\} \]

where \(y \) (dependent variable) is the glycerol concentration at time \(t \), \(G \) is the maximum glycerol production reached (g l\(^{-1}\)), \(G_r \) is the maximum glycerol production rate (g h\(^{-1}\)), and \(\lambda \) is the lag phase period for glycerol production (h). The fit was accomplished using the non-linear module of Statistica version 7.0 (Statsoft Inc, Tulsa, USA), minimizing the sum of squares of the difference between experimental data and the fitted model, i.e., loss function (observed-predicted)\(^2\). Fit adequacy was checked by the proportion of variance explained by the model (R\(^2\)) respect to experimental data.

Microbiological analysis

The microbial growth and decay observed in the different treatments was described by the model developed by Peleg (1996) based on the continuous logistic equation (which accounts for growth) on which a Fermi’s term (for decay) was superimposed. It has the form:

\[N(t) = \frac{N_0 + \frac{N_s - N_0}{1 + \exp[k_g(t_{cg} - t)]}}{1 + \exp[k(t - t_{cg})]} \]

where \(N(t) \) is the number of yeasts at time \(t \), \(N_0 \) the initial number of yeasts, \(N_s \) the maximum number that the environment can support, \(k_g \) a growth rate constant, \(t_{cg} \) a characteristic time indicating the time required to reach half the environmental capacity.
(i.e. \(N(t_{50})/N_0 = 0.5 \)), \(k_l \) a lethality or decline rate constant and \(t_{cl} \) the time to reach 50% survival. Since \(N_0 \) is usually known, the equation may be reduced to one with only five adjustable parameters. To facilitate the fit at the normal plot of log_{10} CFU ml\(^{-1}\) vs time used in microbiology, the log_{10} transformation at both sides of the equation was achieved. This task was also accomplished using the non-linear regression module of Statistica version 7.0.

Statistical data analysis

An analysis of variance was performed by means of the factorial ANOVA module of Statistica software version 7.0, using “yeast strains” and “growth media” as categorical predictor variables. Dependent variables introduced for the analysis were the maximum glycerol production reached (G), the maximum glycerol rate production (G_r), the final ethanol concentration produced (E), the maximum volatile acidity obtained (V), as well as the growth/decay biological parameters estimated with the Peleg model (1996). To check for significant differences between treatments and to form homogeneous group, a post-hoc comparison test was applied by means of the Scheffé test, which is considered to be one of the most conservative post-hoc tests (Winer 1962). An alternative advantage of the Scheffè test is that it can also be used with unequal sample sizes. In this way, when statistical significance is obtained in an ANOVA analysis (\(p \leq 0.05 \)), we can reject the null hypothesis of no differences between means exist, and accept the alternative hypothesis that the means are different from each other.

Results

Yeast growth/decay modeling
S. cerevisiae and S. paradoxus showed a first phase of growth, and subsequent decay, during the 900 h that fermentations were monitored. After the maximum population was reached, the number of yeasts was progressively falling until no viable cells were detected. This behavior could be well fitted by means of the Peleg model (1996), obtaining diverse growth and decline biological parameters of yeast population in the different media (Table 2). An example of this fit is shown in Figure 1 for both yeasts, obtained using 10 samples (marked as circles in the figure) taken along the fermentative process. The proportion of variance explained by the models (R^2), indicative of the fit adequacy, was high and ranged from 94·5 to 99·6% (Table 2).

Growth rate (k_g) and maximum yeast population obtained (N_s), both parameters of the initial growth phase, depended on the media and yeasts tested, and diverse homogenous groups were obtained according to the Scheffé test (see Table 2). N_s ranged from 5·70 (S. cerevisiae yeast in SF must) to 8·30 log$_{10}$ CFU ml$^{-1}$ (S. paradoxus in both NF and NG musts and S. cerevisiae in NG must), resulting both extreme values statistically different. In general, there was a slight tendency in S. paradoxus to reach higher population levels than S. cerevisiae in the different media (except in NG must where values were exactly identical). Media enriched with higher initial nitrogen concentrations (NG and NF musts) showed also higher N_s for both yeasts. For the specific case of S. cerevisiae, those media with higher glucose concentrations (G) showed higher N_s than media enriched with fructose (F) (comparing NG and SG respect to NF and SF musts, respectively), but with no significant differences. However, for S. paradoxus, there was not a clear relation of the influence of the glucose/fructose ratio on this parameter.

The growth rate (that is the increase in the number of yeasts, in logarithmic scale, per time unit) ranged from 0·021 h$^{-1}$ for S. cerevisiae in SF must to 0·868 h$^{-1}$ for...
S. cerevisiae in SG must. It was very difficult to obtain any conclusions about the influence of the yeast species or must type on this parameter, although three different homogeneous groups were obtained after the post-hoc comparison. For S. paradoxus, the highest k_g was obtained in NG must (enriched with nitrogen and a glucose/fructose ratio of 1). However, for S. cerevisiae, the highest k_g was obtained in SG must but with values very similar to the NF must.

Finally, the decline rates (parameter of the decay phase) were very similar among the different runs, and non-significant differences were found according to the ANOVA analysis, ranged from 0·007 (S. paradoxus in NF must) until 0·013 h$^{-1}$ (S. cerevisiae in SG must). Therefore, the number of viable cells decreased more slowly for S. paradoxus in NF must than for S. cerevisiae in SG must. Table 2 also shows the values of time required to reach half the environmental capacity (included between 2·15 and 120·5 h) and time to reach 50% of survival (between 217·5 and 420·0 h). In the case of t_{cg}, no significant differences were found among treatments, but for t_{cl}, three different homogeneous were formed.

Glycerol production modeling

In this work, the production of glycerol along the fermentative process could also be appropriately modeled, but in this case by means of the reparameterized Gompertz equation proposed by Zwietering et al. (1990). A graphic example of the fit is depicted in Figure 1 (marked with squared points), while the parameters obtained for the diverse treatments are shown in Table 3.

The production of glycerol in synthetic must was composed by a first lag phase, where the concentration did not increase, a second phase of intense production, and a third phase where the maximum asymptote was reached and the glycerol concentration...
remained stable. As can be seen in Figure 1, the maximum release of glycerol in must occurred during the decay phase for both yeasts. Similar results were also found in the other treatments (data not shown). The proportion of variance explained by the models was high and ranged from 90·6 to 99·9% (Table 3).

The maximum production of glycerol obtained ranged from 3·76 (S. paradoxus in SG must) to 6·84 g l\(^{-1}\) (S. paradoxus in NG must). Statistically, the production of glycerol in S. paradoxus increased in those media with higher nitrogen levels (N). However, for S. cerevisiae, the production of glycerol was not statistically influenced by the type of must (Table 3). Apparently, for S. paradoxus the effect of glucose/fructose ratio did not show influence on glycerol production. However, in the case of S. cerevisiae, glycerol production slightly decreased in those fructose-enriched media (F), but with no significant differences.

The glycerol production rate was influenced by the yeast species and type of must used, and three different homogeneous groups were detected according to the Scheffé test (Table 3). Glycerol production rates ranged from 0·009 g h\(^{-1}\) for S. cerevisiae in NG must, to 0·031 g h\(^{-1}\) for S. paradoxus in SF must. S. paradoxus always showed a higher glycerol production rate than S. cerevisiae in any must, except in NF, in which S. cerevisiae and S. paradoxus rates were almost identical. In all cases, a lag period was observed for the glycerol production (see Figure 1). This lag period ranged from 7·79 h for S. cerevisiae in NG must to 252·07 h for S. paradoxus in SF must.

Influence of the must composition on other enological parameters

Table 4 shows the final alcohol, volatile acidity and residual sugar concentrations for the different fermentations conducted by both yeast species. According to Table 4, the final volatile acidity produced by S. paradoxus in all fermentations was statistically
lower than that produced by *S. cerevisiae*. Three different homogeneous groups were obtained. One group formed by the fermentations performed with *S. paradoxus* (average $\approx 0.21 \text{ g l}^{-1}$), a second group including the fermentation conducted by *S. cerevisiae* in NF must (0.76 g l^{-1}), and a third group including the remaining *S. cerevisiae* fermentations (average $\approx 1.09 \text{ g l}^{-1}$).

The residual sugar concentration was very similar in all treatments, with no significant differences among them. The average residual sugar concentration was 0.41 g l^{-1}, indicating that the fermentative processes were finished in all cases. Finally, the ethanol yield ranged from 10.7% for *S. paradoxus* in NG must to 12.1% for *S. cerevisiae* in SG must. Not significant differences were found among the diverse fermentations according to the ANOVA analysis (Table 4), although a slight tendency to increase the ethanol yield was noticed in those fermentations performed by *S. cerevisiae* (Table 4). In fact, the lowest yields were obtained in the NG and NF must fermentations conducted by *S. paradoxus*.

Discussion

In this paper, we studied the effect that different nitrogen and fructose concentrations had on the fermentative performance of *S. paradoxus*, a species of potential enological interest (Orlić *et al.* 2007), in comparison to that of the classical wine species *S. cerevisiae*. We compared the production of major wine compounds during fermentation such as ethanol, glycerol and acetic acid.

S. paradoxus, the closest species to *S. cerevisiae* (Rokas *et al.* 2003), is not usually isolated from wine environments (Rainieri *et al.* 2003), but Croatian wines fermented by indigenous *S. paradoxus* strains isolated from vineyard showed good enological properties, with a positive influence on final wine quality (Orlić *et al.* 2007).
In this study, *S. paradoxus* was able to finish the fermentation independently of the initial nitrogen or fructose concentrations present in the must (100 and 120 g l\(^{-1}\)), which is very important for the utilization of strains of this species as a starters in wine fermentations. Our results confirm those obtained previously by Orlić *et al.* (2007) in Chardonnay wine fermentations, where some *S. paradoxus* strains showed a considerable fermentative vigour.

Nitrogen has been described as one of the major limiting yeast growth factors, and assimilable nitrogen concentration around 140-150 mg l\(^{-1}\) has been reported to be necessary to complete fermentation (Bell and Henscke 2005). Some authors have reported that must with 60 mg l\(^{-1}\) of assimilable nitrogen achieve dryness (Wang *et al.* 2003; Beltran *et al.* 2005), but Varela *et al.* (2004) demonstrated that fermentations with 50 mg l\(^{-1}\) of nitrogen left 16 g l\(^{-1}\) of residual sugars. In this work, a total nitrogen concentration of 50 mg l\(^{-1}\) was enough for *S. paradoxus*, as well as for *S. cerevisiae*, to complete the fermentation with an initial sugar concentration of 200 g l\(^{-1}\). Wine yeast strains have significantly different nitrogen requirements that are strain specific and mostly appear during the stationary phase (Manginot *et al.* 1998). D’Amato *et al.* (2006) reported that the maximum population of a *S. cerevisiae* strain in synthetic must fermentations was attained at the higher ammonium concentrations assayed (270 mg l\(^{-1}\)). It is very interesting to notice that in this work *S. paradoxus* reached higher population levels than *S. cerevisiae* practically in all conditions assayed. In fact, *S. paradoxus* reached its highest population levels in media enriched with nitrogen, but their values were not statistically different than those obtained for *S. cerevisiae*.

Glycerol represents a very important non-volatile compound for wine quality, and from a technological point of view it is worth to get a better knowledge of the influence of must components on glycerol production. The maximum production of
glycerol was obtained during the decay phase for both yeast species (Figure 1) in all fermentation conditions. Possibly, glycerol is produced by yeasts at the early stage of fermentation in response to osmotic pressure, but only is released during the last phase of fermentation when occur the breakage of the cell wall due to cellular lysis or higher membrane permeability. Apparently, nitrogen seems to have a significant influence on the glycerol synthesis in *S. paradoxus*, which is not observed in the case of *S. cerevisiae*. Glycerol formation is the results of redox balance and stress response (Nevoigt and Stahl 1997) and the observed differences suggest that the two species could have a different osmotic shock response, especially in presence of nitrogen. This hypothesis is also supported by the final production of volatile acids (mainly acetic acid), another significant redox-driven product, which was also different between *S. cerevisiae* and *S. paradoxus*. Clearly, *S. cerevisiae* produced higher concentrations of acetic acid than *S. paradoxus* under all fermentation conditions.

Although ethanol yields in fermentations conducted by *S. paradoxus* were not significantly different to those obtained with *S. cerevisiae*, we found that *S. paradoxus* always produced lower ethanol concentrations than *S. cerevisiae*. In addition, for both species, there was a slight tendency to produce higher ethanol levels in musts with lower nitrogen content. These results are not in agreement with those obtained by Vilanova *et al.* (2007), who observed higher ethanol yields in fermentations with 300 mg l$^{-1}$ of nitrogen. However, under lower nitrogen concentrations yeast strains metabolize amino acids as a nitrogen source and as a mechanism for NAD(P)H reoxidation (Valero *et al.* 2003). D’Amato *et al.* (2006) determined that an excess of ammonium could also lead to a modification of the aromatic profile of wines. The reason could be that under these conditions yeasts do not need to metabolize amino acids, and hence, a lower production of higher alcohols and their esters is obtained.
Conclusions

This is the first study carried out to evaluate the fermentative performance of *S. paradoxus* under different nitrogen levels and glucose/fructose ratios in a wine model system. In the present work, we have found that a *S. paradoxus* strain isolated from vineyards possess enological properties of interest for the wine industry, such as significant higher synthesis of glycerol and lower production of volatile acidity than *S. cerevisiae*. These properties together with their excellent behavior under the typical stresses present in fermentation environments and an excellent contribution to the aromatic fraction of wines makes them an alternative to *S. cerevisiae* as wine starters according to the current winemaking trends.

Acknowledgements

This work was funded by Croatian Ministry of Science, Education and Sports (grant number 178-0580477-2130) and by the Spanish Ministry of Science and Innovation (MICINN) (projects AGL2006-12703-CO2-01/ALI and 02/ALI). F.N. Arroyo-López (‘Juan de la Cierva’ program) and Sandi Orlić, thank to the Ministry of Education and Science of Spain (MEC) for their respective postdoctoral research contracts.

References

Identification and characterization of *Saccharomyces paradoxus* and

Rokas, A., Williams, B.L., King, N. and Carroll, S.B. (2003) Genome-scale approaches

Ruiz, M. (1938) Contribución al conocimiento de las levaduras del aguamiel y del

Saccharomyces cerevisiae and *S. paradoxus* populations have different thermal

Figure legends

Figure 1. Growth/decay plate count data fitted by means of the Peleg model (1996), and glycerol production modeled with the reparameterized Gompertz equation proposed by Zwietering et al. (1990) for yeasts a) *Saccharomyces paradoxus* and b) *S. cerevisiae* in NG must (300 mg l\(^{-1}\) of assimilable nitrogen; 100 g l\(^{-1}\) glucose + 100 g l\(^{-1}\) fructose).
Table 1. Fermentations included in the factorial experimental design (2 yeast strains x 4 musts) used in the present work.

<table>
<thead>
<tr>
<th>Treatment code</th>
<th>Yeast strains</th>
<th>Must composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sp – NG</td>
<td>S. paradoxus SOY54</td>
<td>300 mg l⁻¹ of assimilable nitrogen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100 g l⁻¹ glucose + 100 g l⁻¹ fructose</td>
</tr>
<tr>
<td>Sp – NF</td>
<td>S. paradoxus SOY54</td>
<td>300 mg l⁻¹ of assimilable nitrogen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>80 g l⁻¹ glucose + 120 g l⁻¹ fructose</td>
</tr>
<tr>
<td>Sp – SG</td>
<td>S. paradoxus SOY54</td>
<td>50 mg l⁻¹ of assimilable nitrogen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100 g l⁻¹ glucose + 100 g l⁻¹ fructose</td>
</tr>
<tr>
<td>Sp – SF</td>
<td>S. paradoxus SOY54</td>
<td>50 mg l⁻¹ of assimilable nitrogen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>80 g l⁻¹ glucose + 120 g l⁻¹ fructose</td>
</tr>
<tr>
<td>Sc – NG</td>
<td>S. cerevisiae SOY51</td>
<td>300 mg l⁻¹ of assimilable nitrogen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100 g l⁻¹ glucose + 100 g l⁻¹ fructose</td>
</tr>
<tr>
<td>Sc – NF</td>
<td>S. cerevisiae SOY51</td>
<td>300 mg l⁻¹ of assimilable nitrogen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>80 g l⁻¹ glucose + 120 g l⁻¹ fructose</td>
</tr>
<tr>
<td>Sc – SG</td>
<td>S. cerevisiae SOY51</td>
<td>50 mg l⁻¹ of assimilable nitrogen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100 g l⁻¹ glucose + 100 g l⁻¹ fructose</td>
</tr>
<tr>
<td>Sc – SF</td>
<td>S. cerevisiae SOY51</td>
<td>50 mg l⁻¹ of assimilable nitrogen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>80 g l⁻¹ glucose + 120 g l⁻¹ fructose</td>
</tr>
</tbody>
</table>
Table 2. Growth/decay biological parameters obtained by means of the Peleg model (1996) for the different fermentations.

<table>
<thead>
<tr>
<th>Treatment code</th>
<th>R²</th>
<th>Nₛ</th>
<th>kₕ</th>
<th>tₑₙ</th>
<th>kₙ</th>
<th>tₑₙ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sp – NG</td>
<td>0.977</td>
<td>8.300a</td>
<td>0.708b,c</td>
<td>24.190a</td>
<td>0.009a</td>
<td>292.600a,b,c</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.002)</td>
<td>(0.424)</td>
<td>(0.016)</td>
<td>(0.113)</td>
<td>(0.001)</td>
</tr>
<tr>
<td>Sp – NF</td>
<td>0.945</td>
<td>8.300a</td>
<td>0.098a</td>
<td>23.015a</td>
<td>0.007a</td>
<td>358.620a,b,c</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.007)</td>
<td>(1.407)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>Sp – SG</td>
<td>0.986</td>
<td>7.300b,d</td>
<td>0.177a</td>
<td>54.925a</td>
<td>0.009a</td>
<td>420.010e</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.009)</td>
<td>(0.141)</td>
<td>(0.010)</td>
<td>(0.247)</td>
<td>(0.002)</td>
</tr>
<tr>
<td>Sp – SF</td>
<td>0.987</td>
<td>7.700a,b</td>
<td>0.340a,c</td>
<td>58.740a</td>
<td>0.010a</td>
<td>395.615a,c</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.001)</td>
<td>(0.141)</td>
<td>(0.073)</td>
<td>(0.141)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>Sc – NG</td>
<td>0.977</td>
<td>8.300a</td>
<td>0.699b,c</td>
<td>23.460a</td>
<td>0.012a</td>
<td>266.520ab</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.017)</td>
<td>(0.141)</td>
<td>(0.164)</td>
<td>(0.110)</td>
<td>(0.001)</td>
</tr>
<tr>
<td>Sc – NF</td>
<td>0.988</td>
<td>7.700a,b</td>
<td>0.864b</td>
<td>23.635a</td>
<td>0.012a</td>
<td>262.875a,b</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.002)</td>
<td>(0.141)</td>
<td>(0.081)</td>
<td>(0.007)</td>
<td>(0.001)</td>
</tr>
<tr>
<td>Sc – SG</td>
<td>0.980</td>
<td>6.400c,d</td>
<td>0.868b</td>
<td>2.155a</td>
<td>0.013a</td>
<td>217.545b</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.022)</td>
<td>(0.141)</td>
<td>(0.070)</td>
<td>(0.219)</td>
<td>(0.003)</td>
</tr>
<tr>
<td>Sc – SF</td>
<td>0.996</td>
<td>5.700c</td>
<td>0.021a</td>
<td>12.057a</td>
<td>0.009a</td>
<td>359.885a,c</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.003)</td>
<td>(0.141)</td>
<td>(0.009)</td>
<td>(0.990)</td>
<td>(0.001)</td>
</tr>
</tbody>
</table>

† Yeast species and types of musts for the different fermentations are shown in Table 1. Note: Nₛ, maximum number of yeasts (log₁₀ CFU ml⁻¹) that the fermentation environment can support; kₕ, growth rate constant (h⁻¹); tₑₙ, time (h) required to reach half the environmental capacity (Nₑₙ/Nₛ=0·5); kₙ, lethality or decline rate constant (h⁻¹); tₑₙ, time to reach 50% survival (h). R², proportion of variance explained by the models. Values followed by different superindexes, within the same column, are significantly different according to Scheffé test. Standard deviations are given between parentheses.
Table 3. Glycerol parameters obtained by means of the Gompertz equation proposed by Zwietering et al. (1990) for the different fermentations.

<table>
<thead>
<tr>
<th>Treatment code</th>
<th>R²</th>
<th>G</th>
<th>Gₚ</th>
<th>λ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sp – NG</td>
<td>0·999 (0·000)</td>
<td>6·846ª (0·507)</td>
<td>0·025ª (0·000)</td>
<td>147·905ª (9·340)</td>
</tr>
<tr>
<td>Sp – NF</td>
<td>0·999 (0·000)</td>
<td>6·676ª (0·154)</td>
<td>0·015ª (0·001)</td>
<td>86·000ª (9·913)</td>
</tr>
<tr>
<td>Sp – SG</td>
<td>0·999 (0·000)</td>
<td>3·763ª (0·267)</td>
<td>0·018ª (0·005)</td>
<td>244·440ª (6·299)</td>
</tr>
<tr>
<td>Sp – SF</td>
<td>0·999 (0·000)</td>
<td>4·394ª (0·045)</td>
<td>0·031ª (0·001)</td>
<td>252·075ª (2·699)</td>
</tr>
<tr>
<td>Sc – NG</td>
<td>0·906 (0·020)</td>
<td>4·785ª (0·183)</td>
<td>0·009ª (0·001)</td>
<td>7·795ª (4·744)</td>
</tr>
<tr>
<td>Sc – NF</td>
<td>0·991 (0·001)</td>
<td>4·171ª (0·146)</td>
<td>0·014ª (0·002)</td>
<td>62·444ª (59·744)</td>
</tr>
<tr>
<td>Sc – SG</td>
<td>0·992 (0·002)</td>
<td>4·850ª (0·121)</td>
<td>0·010ª (0·001)</td>
<td>35·515ª (3·839)</td>
</tr>
<tr>
<td>Sc – SF</td>
<td>0·999 (0·000)</td>
<td>4·447ª (0·059)</td>
<td>0·017ª (0·001)</td>
<td>95·675ª (3·075)</td>
</tr>
</tbody>
</table>

†Yeast species and type of medium for the different fermentations are shown in Table 1.

Note: G, maximum glycerol production reached (g l⁻¹); Gₚ, maximum glycerol production rate (g h⁻¹); λ, lag phase period for glycerol production (h). R², proportion of variance explained by the models. Values followed by different superindexes, within the same column, are significantly different according to Scheffé test. Standard deviations are given between parentheses.
Table 4. Final production of alcohol (%), volatile acidity (g l⁻¹) and residual sugars (g l⁻¹) for the different fermentations.

<table>
<thead>
<tr>
<th>Treatment code†</th>
<th>Alcohol</th>
<th>Volatile acidity</th>
<th>Residual sugar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sp – NG</td>
<td>10·70 (0·28)ᵃ</td>
<td>0·230 (0·030)ᵃ</td>
<td>0·333 (0·057)ᵃ</td>
</tr>
<tr>
<td>Sp – NF</td>
<td>10·82 (0·84)ᵃ</td>
<td>0·140 (0·020)ᵃ</td>
<td>0·433 (0·057)ᵃ</td>
</tr>
<tr>
<td>Sp – SG</td>
<td>11·35 (0·08)ᵃ</td>
<td>0·290 (0·030)ᵃ</td>
<td>0·466 (0·057)ᵃ</td>
</tr>
<tr>
<td>Sp – SF</td>
<td>11·60 (0·00)ᵃ</td>
<td>0·176 (0·005)ᵃ</td>
<td>0·366 (0·057)ᵃ</td>
</tr>
<tr>
<td>Sc – NG</td>
<td>11·15 (0·08)ᵃ</td>
<td>1·140 (0·040)ᵇ</td>
<td>0·400 (0·100)ᵃ</td>
</tr>
<tr>
<td>Sc – NF</td>
<td>11·60 (0·43)ᵃ</td>
<td>0·766 (0·057)ᶜ</td>
<td>0·400 (0·100)ᵃ</td>
</tr>
<tr>
<td>Sc – SG</td>
<td>12·10 (0·14)ᵃ</td>
<td>1·066 (0·057)ᵇ</td>
<td>0·466 (0·057)ᵃ</td>
</tr>
<tr>
<td>Sc – SF</td>
<td>11·70 (0·28)ᵃ</td>
<td>1·072 (0·017)ᵇ</td>
<td>0·433 (0·057)ᵃ</td>
</tr>
</tbody>
</table>

†Yeast species and type of medium for the different fermentations are shown in Table 1.

Note: Values followed by different superindexes, within the same column, are significantly different according to Scheffé test. Standard deviations are given between parentheses.