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Abstract 27 

 The most common fermented beverage, lager beer, is produced by interspecies hybrids of 28 

the brewing yeast Saccharomyces cerevisiae and its wild relative Saccharomyces eubayanus. 29 

Lager-brewing yeasts are not the only example of hybrid vigor or heterosis in yeasts, but the full 30 

breadth of interspecies hybrids associated with human fermentations has received less attention. 31 

Here we present a comprehensive genomic analysis of 122 Saccharomyces hybrids and 32 

introgressed strains. These strains arose from hybridization events between two to four species. 33 

Hybrids with S. cerevisiae contributions originated from three lineages of domesticated S. 34 

cerevisiae, including the major wine-making lineage and two distinct brewing lineages. In 35 

contrast, the undomesticated parents of these interspecies hybrids were all from wild Holarctic or 36 

European lineages. Most hybrids have inherited a mitochondrial genome from a parent other than 37 

S. cerevisiae, which recent functional studies suggest could confer adaptation to colder 38 

temperatures. A subset of hybrids associated with crisp flavor profiles, including both lineages of 39 

lager-brewing yeasts, have inherited inactivated S. cerevisiae alleles of critical phenolic off-40 

flavor genes and/or lost functional copies from the wild parent through multiple genetic 41 

mechanisms. These complex hybrids shed light on the convergent and divergent evolutionary 42 

trajectories of interspecies hybrids and their impact on innovation in lager-brewing and other 43 

diverse fermentation industries.  44 

 45 
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Introduction 46 

 Humans have been producing and consuming fermented beverages for thousands of years 47 

1. During this process, they have unwittingly shaped the evolutionary history of the microbes that 48 

are responsible for fermented products. The star of fermented beverage production is often 49 

Saccharomyces cerevisiae. Many studies have investigated the evolutionary impact of 50 

domestication in fermentation environments on the genomes of different lineages of this species 51 

2–13. These human-associated fermentation environments have also led to innovation through the 52 

hybridization of distantly related species.  53 

 Lager beers are made with hybrids between the distantly related species S. cerevisiae and 54 

Saccharomyces eubayanus 14–16. These hybrids combine unique properties from each; S. 55 

cerevisiae’s carbon utilization and fermentation capabilities combined with S. eubayanus’s 56 

cryotolerance to produce yeasts that could ferment well in the cold 17–22. Other interspecies 57 

hybrids of Saccharomyces have been associated, both favorably and unfavorably, with diverse 58 

fermentations. S. cerevisiae × Saccharomyces kudriavzevii hybrids are prized for their unique 59 

flavor profiles in beer and wine 23. Conversely, hybrids and introgressed strains with large 60 

genomic contributions from S. eubayanus and Saccharomyces uvarum, are viewed as 61 

contaminants in breweries due to the production of off-flavors, while other strains have been 62 

associated with sparkling wine and cider fermentation 16,24,25. Although these previous studies 63 

have hinted at the complexity of fermentation hybrids, their focus on a handful of strains or a 64 

handful of loci has only given us a fleeting glimpse of the diversity Saccharomyces hybrids, their 65 

total genomic compositions, and their evolution.    66 

 Here we identified, sequenced, and analyzed the genomes of 122 interspecies hybrids and 67 

introgressed strains in the genus Saccharomyces to understand their origins and evolutionary 68 
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innovations. This collection contains pairwise hybrids, as well as more complex hybrids and 69 

introgressed strains with three or four parent species. We show that all genomic contributions 70 

from S. cerevisiae have arisen out of three domesticated lineages of S. cerevisiae, while all other 71 

parents belonged to Holarctic or European wild lineages of their respective species. We also 72 

analyzed inheritance of the mitochondrial genome and the genetic events generating functional 73 

diversity in genes relevant to fermented beverages. The genomic complexity of these hybrids 74 

provides insight into their origins and evolutionary successes in human-associated fermentation 75 

environments.  76 

 77 

Results 78 

Summary of Interspecies Hybrid Types 79 

Here, we analyzed the genome sequences of 122 interspecies hybrids and introgressed 80 

strains of Saccharomyces, 63 strains of which are newly sequenced here, more than doubling the 81 

number of previously published hybrid genomes. Collectively, industrial settings dominated the 82 

isolation origins of all hybrids; 86% (n=105) were from beer, wine, cider, a distillery, or other 83 

beverages (Figure 1b, Table S1, Supplementary Text). We identified four types of hybrids: 1) 84 

lager-like (S. cerevisiae (Scer) × S. eubayanus (Seub)) (n=56); 2) S. cerevisiae × S. kudriavzevii 85 

(Skud) (n=15); 3) S. eubayanus × S. uvarum (Suva) (n=41); and 4) more complex hybrids, with 86 

three or four parent species (n=11 more than doubling those previously identified 26) (Figure 1a, 87 

Table S1, Supplementary Text). These more complex hybrids fell into three groups: 4A) S. 88 

cerevisiae × S. kudriavzevii × S. eubayanus × S. uvarum (n=5), 4B) S. cerevisiae × S. eubayanus 89 

× S. uvarum (n=4), and 4C) one S. cerevisiae × S. kudriavzevii × S. eubayanus (Table S1). The 90 

lager-like hybrids were almost exclusively associated with beer (Figure 1b) and have genomic 91 
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contributions that were consistent with previous observations in the two lineages (Saaz and 92 

Frohberg) 27. The S. cerevisiae × S. kudriavzevii strains were associated with beer and wine 93 

(Figure1b). They had considerable differences in S. kudriavzevii genomic content, suggesting 94 

that these hybrids are of variable ages and evolutionary histories. The S. eubayanus × S. uvarum 95 

hybrids and introgressed strains were the most variable, both in isolation environment and 96 

genomic contributions (Figure 1, Table S1). The wide range in genomic contributions in these 97 

strains was likely influenced by their ability to backcross due to the low, but non-zero, spore 98 

viability of hybrids of these sister species 16. These S. eubayanus × S. uvarum strains had the 99 

most total number of translocations (χ2 = 1250.1, p_adj = 2.64 E-15), as well as the most 100 

translocations shared with other hybrid types (χ2 = 15.964, p_adj = 0.0138) (Figure S2). The 101 

shared nature of some of these translocations in hybrids with more than two parents suggests that 102 

S. eubayanus × S. uvarum introgressed strains further hybridized to produce some of the 103 

complex three or four parent species hybrids. Thus, these four types of hybrids each show unique 104 

dynamics in genome evolution and are used for different products that range from several 105 

regional niche beverages to the globally dominant beer style, lagers.  106 

 107 

Wild Parent Populations 108 

 Three out of four of the species contributing to these hybrids (S. kudriavzevii, S. uvarum, 109 

and S. eubayanus) have primarily been isolated from wild settings and have global distributions 110 

with populations that reflect their geography 28,29. We used these established populations and 111 

phylogenomic and PCA approaches to evaluate the origins of these hybrids (Supplementary 112 

Text).  113 
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 S. kudriavzevii has been isolated in Europe and Asia and consists of three described 114 

populations: Asia A, Asia B, and Europe 23,30,31. The S. kudriavzevii sub-genomes of the hybrids 115 

all clustered with the European population as a monophyletic clade (Figure 2a, Figure S3, Table 116 

S2, File S1, Supplementary Text). These findings show that these hybrids were drawn from a 117 

closely related lineage of the European population of S. kudriavzevii. 118 

 In S. eubayanus, analysis of both large and small contributions, showed that these hybrids 119 

and introgressed strains clustered with the Holarctic lineage of S. eubayanus (Figure 2b, Figure 120 

S5, Table S2, File S3, Supplementary Text). Our vastly expanded dataset suggests that the 121 

Holarctic lineage is the closest known relative of all industrially relevant S. eubayanus hybrids 122 

and introgressed strains. The array of hybrids observed here requires that multiple hybridization 123 

events occurred between this lineage and other species. We also analyzed genetic diversity of the 124 

S. eubayanus contributions to industrial hybrids and introgressed strains (Supplementary Text). 125 

We found low nucleotide diversity in lager-like hybrids that shows that these widely used 126 

interspecies hybrids arose out of a narrow swath of S. eubayanus diversity, while the less 127 

frequently used hybrids and introgressed strains retained more nucleotide diversity.  128 

 S. uvarum has a parallel population structure to S. eubayanus 26,32, with the exception of 129 

its increased isolation frequency in the Northern Hemisphere and the presence of pure strains 130 

isolated from Europe. Here we found that all contributions from S. uvarum arose out of the S. 131 

uvarum Holarctic lineage 26. In contrast to our S. eubayanus findings, the S. uvarum sub-132 

genomes of these hybrids and introgressed strains were interspersed with pure wild strains 133 

(Figure 2c, Figure S7 & S7, Table S2, File S5 & S6). These findings suggest that there have been 134 

multiple hybridization events and extensive backcrossing with wild lineages of S. uvarum, 135 

integrating wild diversity into these hybrids and leading to a diverse set of introgressed strains.  136 
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 137 

Domesticated S. cerevisiae Parent Lineages 138 

 Of the species contributing to domesticated interspecies hybrids, S. cerevisiae has the 139 

most extensive datasets, including industrial yeasts 5,8–11. Through both phylogenomic and PCA 140 

approaches, we recapitulated the previously described domesticated S. cerevisiae clades 8,9, and 141 

our 81 interspecies hybrids with S. cerevisiae contributions fell into three domesticated lineages: 142 

Wine, Ale/Beer1, and Beer2 (Figure 2d, Figure S9, Table S2, File S7).  143 

The S. cerevisiae × S. kudriavzevii hybrids grouped with both Beer2 and Wine. Strains 144 

with contributions from three or four parent species fell into both clades (Beer2 and Wine), 145 

suggesting that these complex hybrids originated stepwise through iterative hybridization 146 

(Supplementary Text).  147 

Interestingly, the only hybrids we detected in the Ale/Beer1 group were the lager-148 

brewing yeasts (Figure 2d). The S. cerevisiae sub-genomes of the Saaz and Frohberg lager-149 

brewing lineages formed distinct clades, and although we identified more Frohberg strains, 150 

Frohberg genetic diversity was lower (Supplementary Text). To determine if there was a 151 

particular clade of Ale/Beer1 that was the closest known relative to lager-brewing hybrids, we 152 

performed a targeted analysis of just the Ale/Beer1 S. cerevisiae strains and lager-brewing 153 

hybrids, (Figure S10 & S10, Table S2, File S8, Supplementary Text). Our concatenated 154 

phylogenomic analyses did not strongly support any recognized geographical clade of Ale/Beer1 155 

S. cerevisiae strains as the closest outgroup to the lager-brewing yeasts. Our PCA analyses, 156 

which make no assumptions about consistent genome-wide signals, suggested several Stout beer, 157 

Wheat beer, and mosaic strains as sharing the most ancestry with lager-brewing yeasts, rather 158 

than any clade affiliated with a geographic style (Figure S9). Overall, our analyses clearly show 159 
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that lager strains belong to the Ale/Beer1 lineage of S. cerevisiae and suggest affinity with a 160 

novel set of diverse beer yeasts, but they do not support any known extant strain as the sole 161 

closest relative.   162 

Collectively, our data and analyses conclusively show that there have been multiple 163 

interspecies hybridization events between different domesticated lineages of S. cerevisiae and 164 

wild strains from three other Saccharomyces species (Figure 2d). The sheer number and diversity 165 

of hybrids analyzed here shows that evolutionary and industrial innovation through hybridization 166 

has happened on a scale and with a complexity beyond what previous smaller scale studies have 167 

suggested. In these diverse hybrids, the domesticated S. cerevisiae sub-genomes were likely 168 

preadapted with general industrial fermentation traits, while the wild parent likely contributed 169 

one or more traits advantageous in the specific new industrial fermentation niche being explored. 170 

 171 

Mitochondrial Genome Inheritance 172 

 The classic example of yeast hybrid vigor comes from the cryotolerance of lager-brewing 173 

yeasts. S. eubayanus, S. kudriavzevii, and S. uvarum are all known to tolerate much colder 174 

temperatures 33,34, and recent functional experiments have shown that the mitochondrial genome 175 

(mtDNA) plays a pivotal role in the cryotolerance of interspecies hybrids 17,35. Strikingly, in our 176 

comprehensive dataset, a majority (94%) of the hybrids inherited a mtDNA from another 177 

species, rather than the S. cerevisiae mtDNA (Figure 3a).  178 

 We tested if the parent that donated the mtDNA was also the parent that contributed the 179 

most nuclear gene content. We used a logistic regression to determine if the same parent species 180 

contributed both the mtDNA and the most complete set of orthologs. We found that this trend 181 

was generally true (p=8.0E-6, AIC= 83.75), but there were informative outliers (Figure 3b). In 182 
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particular, more than half of the hybrids with S. kudriavzevii nuclear contributions inherited the 183 

S. kudriavzevii mtDNA, despite the fact that the S. kudriavzevii nuclear contribution was never in 184 

the majority. This discrepancy could be due to a fitness advantage conferred by the S. 185 

kudriavzevii mtDNA in colder fermentations, or it could be due to a fitness advantage conferred 186 

by the S. cerevisiae or other nuclear genomes 36,37. Indeed, all outliers in our logistic regression 187 

analysis were in the direction of inheriting a cryotolerant parent’s mtDNA. These findings 188 

suggest that the inheritance of a cryotolerant mtDNA allowed these hybrids to thrive in colder 189 

environments where pure S. cerevisiae strains struggle, providing evolutionary and genetic 190 

innovation that enabled new fermentation techniques, such as lager brewing. 191 

Hundreds of nuclear-encoded proteins localize to the mitochondria 38. This interaction 192 

can be a source of genetic incompatibilities between the nuclear and mtDNAs, several of which 193 

have been characterized in Saccharomyces interspecies hybrids 39–41. Therefore, we tested 194 

whether mitochondrially localized, nuclear-encoded genes were retained more often than other 195 

genes encoded in the nuclear genome matching the mtDNA parent. We found that more 196 

mitochondrially localized genes were retained in the same ratio as all other orthologs (p = 197 

0.8612, odds ratio = 0.9653) (Table S3, Figure 3c). Although these results suggest that 198 

mitochondrial localization is not the main cause of the correlation between nuclear and mtDNA 199 

content, some nuance is warranted. First, only a small number of mitochondrially localized genes 200 

have been implicated in mito-nuclear incompatibilities 39–41, and other factors that do not rely on 201 

protein localization could also play a role (e.g. metabolite exchange between the mitochondria 202 

and cytoplasm). Perhaps more importantly, these hybrids have often lost whole chromosomes or 203 

regions containing hundreds of genes at a time through chromosome mis-segregation or mitotic 204 

recombination events 15; this restriction imposed by genetic linkage may prevent fine-scale 205 
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retention or loss and obscure any signal driven by specific genes. Finally, some yet unmapped 206 

cryotolerant nuclear alleles might also be favored independently from the cryotolerant mtDNA. 207 

Overall, from this dataset, we conclude that there is a strong correlation between the amount of 208 

nuclear and mitochondrial DNA contributed by each parent species, but mitochondrially 209 

localized genes are not more affected than other genes.   210 

 211 

Pan-Genome Analyses: 212 

 To characterize the core genome of these hybrids, we first analyzed the retention of 213 

1:1:1:1 orthologs conserved in all four parent species and determined which parents contributed 214 

the least and most coding sequences to each hybrid. As few as 12 genes were retained in one 215 

strain, whereas some hybrids have retained almost complete sets of orthologs from all their 216 

parents (Figure S12, and Table S4). On average, these hybrids retained 56.2% of orthologs from 217 

the parent who contributed the least genomic material.  218 

We preformed de novo genome assemblies to analyze the genomic content that was not 219 

present in the parent reference genomes (Figure S13). On average, these hybrids had 47.7 kbp of 220 

novel genomic content; the minimum was 2.2 kbp, and the maximum was 363.3 kbp. In addition 221 

to novel content that may come from the pan-genomes of other the Saccharomyces species, we 222 

detected previously characterized content from prior S. cerevisiae pan-genome analyses, 223 

including horizontally transferred genes (Supplemental Text) 5,12,42. When we searched this 224 

material for Saccharomyces-like genes for which we could assign a function, we found an 225 

enrichment in genes associated with sugar transport, including the Gene Ontology 43,44 terms: 226 

transporter activity (corrected p-val = 4.67E-08), sugar:proton symporter activity (corrected p-val 227 

= 6.04E-08), cation:sugar symporter activity (corrected p-val = 6.04E-08), and sugar 228 
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transmembrane transporter activity (corrected p-val = 6.04E-08) (Table S5). The enrichment of 229 

sugar transport genes in the novel content of these hybrids and introgressed strains is consistent 230 

with strong selection for these activities in industrial fermentation environments. 231 

 232 

Maltotriose Utilization Genes 233 

We took a more detailed look at maltotrisoe utilizing genes because maltotriose is 234 

generally the second most abundant sugar in beer wort or malt extract, and Saccharomyces 235 

strains that utilize it are relatively rare outside of domesticated ale-brewing strains 45–48. Our 236 

analyses of lager-brewing yeasts suggest that both S. cerevisiae and S. eubayanus contributed 237 

genes encoding functional maltotriose transporters to the hybrids, including alleles of S. 238 

cerevisiae MTT1 and S. eubayanus AGT1 previously shown to be functional 18 (Figure 5b, 239 

Supplementary Text). We also recovered other predicted maltose/maltotriose transporter 240 

homologs in other interspecies hybrids and their parent species, which have yet to be explored 241 

functionally (Table S6). We conclude that the complexity and diversity of maltose transporter 242 

genes across Saccharomyces species is extensive and may have provided a source of functional 243 

diversity to fermentation hybrids. 244 

 245 

Phenolic Off-Flavor Genes 246 

The introduction of genes from wild strains, especially the mitochondrial genome and S. 247 

eubayanus AGT1, may have been key to cold fermentations, but other genes likely negatively 248 

impacted products. 4-vinyl guaiacol (4VG) is perceived as a clove-like, phenolic, or smoky 249 

flavor and considered an undesirable off-flavor in most beers. Lager beers are known for their 250 

crisp flavor profiles that lack appreciable 4VG, while wild strains of S. eubayanus and other 251 
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species produce 4VG 49. Two genes, PAD1 and FDC1, are essential for the production of 4VG 252 

50. Studies in ale-brewing yeast show that this trait is under strong domestication selection 253 

(Supplementary Text), but the genotypes of PAD1 and FDC1 across diverse interspecies hybrids 254 

already in use by industry have not been investigated, nor have the evolutionary genetic events 255 

leading to these genotypes. In our large hybrid dataset, we analyzed both retention and predicted 256 

functionality of PAD1 and FDC1 alleles from their parent species (Figure 4).  257 

In both S. cerevisiae × S. kudriavzevii and S. eubayanus × S. uvarum hybrids and 258 

introgressed strains, we found both FDC1 and PAD1 alleles that were predicted to be functional 259 

(Supplementary Text). These findings may reflect selection for diverse flavors, which are 260 

desirable in niche Trappist-style beers made with S. cerevisiae × S. kudriavzevii. In contrast S. 261 

eubayanus × S. uvarum are often viewed as contaminants in industrial brewing environments, 262 

and production of 4VG could contribute to this perception.  263 

In the lager-brewing hybrids, we found that all strains have lost the ability to produce 264 

4VG, but mechanism of this loss differed between Saaz and Frohberg (Supplementary Text). The 265 

Frohberg lager strains likely inherited a loss-of-function FDC1 allele from their domesticated S. 266 

cerevisiae parent and functional PAD1 and FDC1 alleles from their S. eubayanus parent. These 267 

functional wild alleles were then lost through translocations, likely due to break-induced 268 

replication. In contrast, the Saaz lineage has completely lost both the S. cerevisiae and S. 269 

eubayanus alleles of these genes through aneuploidy, an evolutionary trajectory facilitated by the 270 

fact that these subtelomeric genes reside on different chromosomes in these two species. The end 271 

result is that both Saaz and Frohberg lagers lack substantial phenolic off-flavors and have a crisp 272 

flavor profile. Even though Saaz and Frohberg strains evolved this trait through different final 273 

mutations that removed functional S. eubayanus alleles, the pre-adaptation of the domesticated S. 274 
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cerevisiae parent, which already lacked functional genes, played a critical role by limiting the 275 

number of mutations needed. The contrast between Saaz and Frohberg strains highlights that 276 

there are many potential evolutionary trajectories open to interspecies hybrids to achieve a 277 

domestication trait. 278 

 279 

Conclusions 280 

 Here, we characterized the genomes of 122 interspecies yeast hybrids and introgressed 281 

strains, the largest dataset of its kind to date. These hybrids have complex genomes with 282 

contributions from two to four species: S. cerevisiae, S. kudriavzevii, S. uvarum, and S. 283 

eubayanus (Figure 5a). The hybrids with S. cerevisiae contributions all arose out of three 284 

domesticated S. cerevisiae lineages: the wine lineage and two distinct beer clades. In contrast, all 285 

the S. kudriavzevii, S. uvarum, and S. eubayanus parents belonged to Holarctic or European wild 286 

lineages. Our results show how hybrid vigor also applies to microbes, with the domesticated S. 287 

cerevisiae parents providing genes and traits pre-adapted for industrial fermentations and the 288 

divergent species of Saccharomyces contributing new genes and traits that led to the successes of 289 

these hybrids in specific products. First, the frequent retention of mitochondrial genomes from 290 

cryotolerant parents likely conferred a fitness advantage during cold fermentation (Figure 5b). 291 

Second, although the S. cerevisiae genome is required for maltotriose utilization by hybrids, both 292 

S. eubayanus and S. cerevisiae contributed functional maltotriose transporter genes to lager-293 

brewing yeasts. Third, phenolic off-flavor genes have been inactivated or eliminated from lager-294 

brewing yeasts by multiple types of mutations (Figure 5b), while these genes have been retained 295 

in yeasts that ferment products where phenolic off-flavor is prized. 296 
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Hundreds of years ago, a S. cerevisiae strain meeting a S. eubayanus strain sparked the 297 

cold-brewing revolution, and crisp refreshing lagers eventually overtook the global beer market. 298 

This extensive genomic dataset reveals the genetic mechanisms and distinct evolutionary 299 

trajectories followed by hybrid and introgressed strains associated with fermentation products. 300 

These diverse hybrids and introgressed strains highlight how dynamic and complex fermentation 301 

innovation has cascaded down divergent and convergent evolutionary trajectories.  302 

 303 

Methods 304 

Strain Selection and Sequencing 305 

 The strains newly published here are from wild or beverage isolations, the Agricultural 306 

Research Service (ARS) NRRL collection (https://nrrl.ncaur.usda.gov), and commercially 307 

available sources. Table S7 contains the full metadata for strains. Whole genome Illlumina 308 

paired-end sequencing was done as previously described using either 2X100 or 2X250 reads 32,51. 309 

This short-read data is available through the NCBI SRA database under the accession number 310 

PRJNA522928. Short-read data for published genomes were downloaded from NCBI; Table S8 311 

contains a full list of accession numbers and citations 8,9,11,16,26,30,32,42,52–72.  312 

 313 

Hybrid Identification 314 

 We used sppIDer 73, a hybrid detection and analysis pipeline, to identify new hybrids, 315 

pure species, and reconfirm the species and hybrid identities of published data. For sppIDer, we 316 

used a combination reference genome that included all published genomes for all the 317 

Saccharomyces species 63,72,74,75 (https://www.yeastgenome.org/, 318 

www.saccharomycessensustricto.org). For S. kudriavzevii, we used the genome from the 319 
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Portuguese strain ZP591. As previously noted 72, the published S. uvarum genome has the labels 320 

for chromosomes X and XII swapped, so we manually corrected them. We ran sppIDer with 321 

parameters set to identify genomic contributions >1% of the total genome. As sppIDer is 322 

reference genome-based, inheritance of regions not in the reference genome was not analyzed. 323 

Therefore, interspecies hybrids with only minor or subtelomeric introgressions were missed with 324 

this method. We also detected some smaller introgressions through the pan-genome analyses (see 325 

below).   326 

 Hybrid isolation environment was classified based on marketed product type for 327 

commercial strains; for published strains or strains from the ARS NRRL collection, we used 328 

available metadata supplied by the authors or depositors. Full details on hybrid isolation 329 

environment classification can be found in Table S1. To determine if there was an association 330 

between hybrid type and isolation environment, we completed 𝜒2 analyses of hybrid by 331 

environment and of environment by hybrid with a Bonferroni multiple test correction in R. We 332 

limited this test to our most common (n>15) hybrid types (S. cerevisiae × S. eubayanus, S. 333 

cerevisiae × S. kudriavzevii, and S. eubayanus × S. uvarum) and the most common (n>8) origins 334 

(beer, wine, and fruit).  335 

 336 

Whole Genome Sequence Assembly Pipeline 337 

Alignment and single nucleotide polymorphism (SNP) calling were done as described 338 

previously 32. Briefly, short reads were mapped with bwa “mem” to a concatenated reference 339 

genome of just the contributing parents. Reference genomes used for concatenation were the 340 

same as used for sppIDer. Samtools “view” and “sort” were then used to prepare the mapped 341 

reads with a mapping quality greater than 20 for SNP calling. PCR duplicates were removed with 342 
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picard “MarkDuplicates”, and read groups were set with picard “AddOrReplaceReadGroups”. 343 

SNPs were called with GATK’s haplotype caller. Genome coverage per base pair was assessed 344 

with bedtools “genomeCoverageBed”. Strain-specific FASTA files were created by replacing 345 

called SNPs in repeat-masked concatenated reference genomes. Variants called as indels were 346 

replaced with Ns. Regions of extremely high coverage, (i.e. the 99.9th percentile of genome-347 

wide coverage) were masked as Ns. Regions that do not exist in hybrids were masked as Ns, and 348 

regions at low coverage (i.e. between 3X-10X, depending on where the 10th percentile of the 349 

distribution of depth of coverage across the concatenated genomes fell) were masked as Ns. The 350 

strain-specific FASTAs for hybrid genomes were split into their component sub-genomes to be 351 

analyzed with pure strains.  352 

Genomic completeness was estimated as the percent of the reference genome with 353 

coverage above the low-coverage masking threshold. Ploidy was estimated across the 354 

combination genome in 10-kbp windows. We used the R package modes (version 0.7.0) to 355 

analyze the distribution of depth of coverage and determine the antimodes, which correspond to 356 

a change in ploidy state. Some manual curation was needed for strains with “smiley patterns”, a 357 

pattern of increased coverage at chromosome ends that has been noted in other depth-of-358 

coverage analyses 8,76 and may be due chromatin structure 77. For these strains, we used only the 359 

coverages that fell below the 95th percentile to estimate the antimodes and then assigned the 360 

distal ends to the largest ploidy estimated. We also visually checked and corrected rare instances 361 

when a “smiley pattern” lowered the ploidy estimate for the middle of the chromosome. From 362 

this antimode analysis, we were able to assign each 10-kbp window a ploidy value. The total 363 

DNA base-pair content contributed by each parent could then be estimated as the sum of each 364 

ploidy value multiplied by 10k and the number of windows with that ploidy value. Correcting 365 
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this total DNA content per species by the total sum of all contributing species gave us a measure 366 

of total genomic content per species. Genomic contribution to a hybrid genome can be viewed as 367 

genomic content and genomic completeness. To estimate genomic completeness, we determined 368 

what percent of a total parent sub-genome had at least one haploid copy. To estimate genomic 369 

content, we took into account both completeness and ploidy across the combination of sub-370 

genomes. Full details on hybrid genome contributions can be found in Table S1. For 371 

visualizations, we clustered the strains based on ploidy estimated across the combination genome 372 

using Ward’s method in the R package pvclust (v. 2.0–0) 78. 373 

For each strain, we calculated the number of sites called as heterozygous with GATK for 374 

each sub-genome. Strains with more than 20,000 heterozygous sites in any sub-genome were 375 

phased with GATK’s “ReadBackedPhasing” command 79, which can phase short regions of the 376 

genome based on overlapping reads. We then split the output into two phases, one that retains 377 

more reference variants and one that contains more alternative variants in phased regions. This 378 

pseudo-phasing allowed us to investigate regions that are less similar to the published reference. 379 

We converted these phases into two strain-specific FASTA files and masked them for coverage 380 

as above. Both phases were included in all downstream analyses involving phased genomes, 381 

which are noted as “strainID 1” or “strainID 2”. 382 

 383 

1:1:1:1 Orthologs 384 

 We identified genes that are orthologous across all parent genomes based on the 385 

annotations in the published gff files for each reference genome, which yielded a list of 3,856 386 

genes. We used the coordinates to determine the coverage for each ortholog. Gene presence was 387 

noted if the mean coverage for that ortholog was >3X.   388 
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 389 

De Novo Genome Assembly and Pan-Genome Analyses 390 

 We assembled the hybrid genomes with the meta-assembler iWGS 80 and choose the best 391 

assembly based on the largest N50 score. All hybrids, except DBVPG6257, were successfully 392 

assembled and are available under GenBank BioProject PRJNA522928. 393 

 We mapped the short-read data back to these assembled genomes and used the sppIDer 394 

output to classify to which parent reference genome each short read mapped. With this analysis, 395 

we determined which reads did not map to a parent reference genome but did assemble de novo 396 

into a contig of 1.5-kbp or greater. We classified these regions as “unmapped” and used a 397 

tBLASTx to search for S. cerevisiae-like genes using S288C ORFs and retaining hits with e-398 

value < 10-10. To determine if this set of genes identified in these novel assembled regions were 399 

enriched for any functions, we used GO Term Finder (Version 0.86) 43,44. To determine the 400 

potential origin of these novel regions, we used a BLASTn search of the NCBI nucleotide 401 

database (v5). The output of this was then parsed for number of hits with an e-value < 10-10. To 402 

determine the number of hits to different species, we completed 𝜒2 analyses with a Bonferroni 403 

multiple test correction in R.  404 

 405 

Translocation Identification 406 

 To detect shared breakpoints and translocations, we use LUMPY 81 with the mapped 407 

short-read data. We masked for repetitive regions by excluding regions with coverage above 408 

twice the genome-wide mean. Each breakpoint call had to be supported by at least 4 reads to be 409 

included in downstream analyses. We parsed this output for species sub-genome, hybrid type, 410 

and the species pair between which the translocation was detected. We calculated the total 411 
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number of called breakpoints, breakpoints that were shared in at least two hybrids of the same 412 

type, and breakpoints that were shared in multiple hybrid types. We compared these different 413 

categories with 𝜒2 analyses and a Bonferroni multiple test correction in R. 414 

 We also identified translocations from the de novo assemblies. For this analysis, we used 415 

sppIDer results to assign regions of the de novo assemblies to a parent species. Some regions 416 

were unmapped with sppIDer, as noted above. Additionally, some regions had high coverage 417 

from multiple parents in the de novo assembly, where the donor species could not be 418 

unambiguously assigned; these regions are likely repetitive and difficult to assemble. 419 

Translocations were identified when regions that were >2-kbp came from different donor species 420 

and were assembled with <100-bp of unmapped or ambiguous data separating them. On average, 421 

we identified 17 translocations per strain. From this output, we counted the number of 422 

translocations identified in each hybrid type, the donor species, and the pair of species between 423 

which the translocations occurred. We compared hybrid type, species pair, and individual species 424 

with a 𝜒2 analyses with a Bonferroni multiple test correction in R. 425 

 426 

Mitochondrial Genome Analysis Pipeline 427 

We use mitoSppIDer 73 to determine the mitochondrial genome (mtDNA) parent for the 428 

hybrids. This analysis was done in a similar manner to the whole genome sppIDer analysis, 429 

except that mtDNAs for each Saccharomyces species were used 72,82,83, except Saccharomyces 430 

jurei. GenBank accessions lacking full manuscripts included S. mikatae (KX707788) and S. 431 

kudriavzevii (KX707787). 432 

To determine if the mtDNA parent was associated with retention of the nuclear genes, we 433 

performed a logistic regression in R. We used the set of 1:1:1:1 orthologs to determine which 434 
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parent contributed the most complete set of orthologous genes. To determine if there was an 435 

enrichment for the retention of nuclear-encoded, mitochondrially interacting proteins, we used 436 

the set of genes products identified as localize to the mitochondria through the Yeast GFP Fusion 437 

Localization Database 38. When we filtered for genes that were also 1:1:1:1 orthologs, our final 438 

list consisted of 459 genes. To determine if there was a linear relationship between retention of 439 

mitochondrially localized genes and all other orthologs, we performed a linear regression and to 440 

determine if there were more mitochondrially localized genes retained compared to all other 441 

genes, we used a Fisher’s Exact Test with a Bonferroni correction. Tests were performed in R.   442 

Since past work has shown that reticulate evolution, introgression, and horizontal gene 443 

transfers are widespread in Saccharomyces mtDNAs 84, we wanted to explore the inheritance of 444 

mitochondrially encoded genes in more depth. Due in part to their high AT content (~85%), 445 

mtDNAs are often poorly covered using Illumina sequencing. In particular, intergenic regions 446 

and coding sequencing with transposable elements (introns, homing endonucleases, and GC 447 

clusters) can be difficult to assemble. To explore the phylogenetic relationships of these 448 

mtDNAs, we used a bait-prey bioinformatic method to pull out the read sequences of coding 449 

sequences. We used HybPiper 85 to pull out reads from the hybrid Illumina libraries that mapped 450 

to those mitochondrial genes using gene sequences from reference strains used in mitoSppIDer 451 

as baits. These extracted Illumina reads were aligned to the reference genes in Geneious (v. 452 

6.1.6) 86 and manually assembled. We successfully covered six mitochondrial genes (COX2, 453 

COX3, ATP6, ATP8, ATP9, and 15S rRNA), which were used to construct the mitochondrial 454 

phylogenetic haplotype network. This unique set of unambiguously completed genes was 455 

concatenated (4.7-kbp) by strain to produce the haplotype for each pure Saccharomyces or 456 

hybrid strain (Figure S14). Haplotypes and haplotype frequencies for each strain were encoded 457 
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as a nexus-formatted file for PopART v1.7.2 87. The haplotype network was reconstructed using 458 

the TCS method 88. Strains were assigned to each haplotype using DnaSP v5 89. For some 459 

strains, we could not assemble the 15S rRNA gene because of low-coverage data. For these 460 

strains, we inferred their haplotype designation based on an analysis where we removed the15S 461 

rRNA gene. This information is not included in Figure S14 but can be found in Table S9. 462 

 463 

Genes of Functional Interest Analysis Pipeline 464 

To assemble the sequences of genes relevant to brewing, we again used HybPiper 85. To 465 

be included for further analyses, the assembled length had to be at least as long as the bait gene 466 

and had to have a minimum 10X depth of coverage. For the baits, we used either gene sequences 467 

from the S. cerevisiae strain S288C found on the Saccharomyces Genome Database 468 

(https://www.yeastgenome.org); from the S. eubayanus type strain, CBS12357T 72; or the lager 469 

strain W34/70 90. For the PAD1 analysis in S. eubayanus × S. uvarum hybrids, we used the PAD1 470 

gene sequence from the S. uvarum reference genome, CBS7001 63. To get precise gene locations 471 

for PAD1 and FDC1, we used a tBLASTn search of the S. eubayanus, S. kudriavzevii, and S. 472 

uvarum reference genomes with the S. cerevisiae sequences for these genes as the query.  473 

The assembled genes were aligned with MAFFT v.7 91, allowing for reverse 474 

complementation. The alignments were manually trimmed to the protein-coding sequences. For 475 

PAD1 and FDC1, the alignments were conceptually translated to amino acid sequences, and 476 

haplotype networks were built with a modified minimum-spanning network and visualized with 477 

iGraph 92 in R. The haplotype networks were split into communities as previously described 93. 478 

Pairwise distances between sequences were calculated using the trimmed MAFFT 479 

nucleotide sequence alignments and the p-distance method as implemented in MEGA-X 94 with 480 
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the following parameters: substitutions to include Transitions + Transversions, assuming uniform 481 

rates among sites, and using pairwise deletion of gaps. The percent identity of hits to the bait 482 

sequence was organized by species, and hybrid status was recorded in Table S6, along with the 483 

origin of the bait gene and tallies of sequences whose translations were visually identified as 484 

being incomplete or containing premature stop codons. 485 

 486 

Phylogenomic and Population Structure Analyses 487 

We masked regions with no coverage as Ns, which is interpreted as missing data by most 488 

tools; therefore, for downstream whole genome analyses, we only included sub-genomes that 489 

were >50% complete (i.e. major contributions). To include the minor contribution hybrids in the 490 

non-S. cerevisiae analyses, we used reduced genomes that were concatenations of the regions of 491 

the genome that existed in at least one minor hybrid (Table S10). This procedure allowed us 492 

include strains with minor introgressions and only use regions of the genome that had been 493 

contributed by the minor parent. To balance some of our analyses for Saaz and Frohberg lager 494 

strains, we used a random subset of Frohberg strains to match the number of Saaz strains.  495 

Phylogenomic trees were built with RAxML v8.1 95 using SNPs from the whole genome for the 496 

major analyses or the reduced genome for the minor analyses. Trees were visualized with iTOL 497 

96. The PCA analyses were done with the adegenet package in R 97 and visualized with ggPlot2 498 

98. Estimates of adjusted 𝜋 (𝜋 *100) were calculated with the PopGenome package in R 99. 499 

 500 

Data and Code Availability 501 

References and accession numbers for the published data used can be found in Table S8. 502 

Short-read data newly published here is available through the NCBI SRA database under the 503 
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accession number PRJNA522928. Custom R and Python scripts used for this publication can be 504 

found on GitHub (https://github.com/qlangdon/hybrid-ferment-invent). 505 
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 775 

Figure Legends 776 

Figure 1. Summary of genomic contributions and isolation environments for interspecies 777 

hybrids. (a) Hybrids were clustered by genomic contributions. Lager strains are in the bottom 778 

half, S. uvarum × S. eubayanus strains are at the top, and most complex hybrids are in the 779 
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middle, except for the single S. cerevisiae × S. eubayanus × S. kudriavzevii hybrid (very bottom). 780 

Individual hybrid strains are along the y-axis, and the genomes of the species contributing to 781 

hybrids are along the x-axis. S. cerevisiae (Scer) is in red, S. kudriavzevii (Skud) is in green, S. 782 

uvarum (Suva) is in purple, and S. eubayanus (Seub) is in pink. Dotted lines indicate 783 

chromosomes. Ploidy estimates are indicated by opacity, where darker regions are higher ploidy. 784 

(b) Counts of hybrids isolated from different environments. The lagers have been split into Saaz 785 

and Frohberg lineages. Other is grouped with Unknown and represents one isolate from a 786 

distillery. Tables S1 & S3 includes all isolation information and metadata.  787 

 788 

Figure 2. Population and phylogenomic analyses of S. cerevisiae, S. kudriavzevii, S. uvarum, S. 789 

eubayanus, and their hybrid sub-genomes. 790 

All phylogenies were built with RAxML with pure strains of a species and any hybrids with 791 

>50% complete sub-genome for given species. Bootstrap support values >70% are shown as 792 

gray dots. Branches are colored by the origin of isolation for each strain. Each hybrid has a 793 

stacked bar plot showing the genomic content for each species contributing to their genome; 794 

species colors are the same as in Figure 1a. For the Principal Component Analyses (PCA), dot 795 

colors represent strains’ origins, and color clouds represent populations or lineages. The axes of 796 

all PCAs are scaled to the same range. Phylogenies with strain names, Newick formatted files, 797 

and data frames used to build PCAs are available as Figures S2, S4, S6, and S8; Table S2; and 798 

Files S1, S3, S5, and S7. (a) Left: Phylogeny of S. kudriavzevii with 30 strains and 38,992 SNPs 799 

from across the genome and rooted with an Asia B strain, IFO1803 (removed for clarity). Right: 800 

Principal component projection for PC1 and PC2, excluding Asia B. (b) Phylogeny of S. 801 

eubayanus with 92 strains and 18,878 SNPs from across the genome, rooted with Population A 802 
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(PopA). Right: Principal component projection of PC1 and PC2. (c) Phylogeny for S. uvarum 803 

with 82 strains and 18,652 SNPs from across the genome, rooted with the Australasian lineage 804 

(removed for clarity). Right: Principal component projection for PC1 and PC2, excluding the 805 

Australasian lineage. (d) Top: Phylogeny for S. cerevisiae with 612 phased (for strains with 806 

>20K heterozygous sites) or unphased haplotypes and 21,222 SNPs from across the genome, 807 

rooted with the Taiwanese strain EN14S01 (removed for clarity). Previously identified wild 808 

lineages from West Africa, Malaysia, North America, Japan, and the Philippines are included in 809 

the Wild Misc group 11,74. The other lineages are named in a similar manner to previous studies 810 

on ale-brewing and Mediterranean Oak (MedOak) strains 8,9,71. Bottom: Principal component 811 

projection for PC1 and PC2 (including EN14S01, which groups with Sake/Asian). 812 

 813 

Figure 3. Mitochondrial genome inheritance in interspecies hybrids. 814 

(a) The bar plots show proportion of 1:1:1:1 ortholog content for each sub-genome for each 815 

hybrid grouped by the mitochondrial genome (mtDNA) parent, which are labeled across the top. 816 

Colors represent different parent species and are that same as in of Figure 1a. (b) Analysis of 817 

concordance between which mtDNA was inherited and which parent contributed the most 818 

complete set of orthologous genes. “True” includes hybrids that inherited the most nuclear gene 819 

content from the same species as the mtDNA. “False” includes hybrids with mtDNA that did not 820 

match the species that contributed the most nuclear gene content. Colors represent the mtDNA 821 

parent, and shapes represent the largest nuclear genome contributor. The middle of the box plot 822 

corresponds to the median, the upper and lower limits are the 75th and 25th percentiles 823 

respectively, and the whiskers extend to the largest or smallest value no greater than 1.5 × the 824 

differences between the 75th and 25th percentiles. There was a significant correlation between the 825 
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mtDNA parent and the largest nuclear genomic contributor (logistic regression p=3.58E-8, AIC= 826 

118.21). Notably, the S. eubayanus × S. uvarum hybrids, which have often undergone many 827 

backcrossing events, follow this trend and are both cryotolerant species. (c) Linear relationship 828 

of the number of 1:1:1:1 orthologs versus the number of nuclear-encoded, mitochondrially 829 

localized genes present in the sub-genome that matches the mtDNA (linear regression p=2.0E-830 

16, AIC= 1151.5). The inset shows the mean proportion of mitochondrially localized versus all 831 

other nuclear genes present in the sub-genome that matches the mitochondrial parent (p = 832 

0.8612, odds ratio = 0.9653). 833 

 834 

Figure 4. Hybrid inheritance and functionality of genes responsible for 4-vinyl guaiacol (4-VG) 835 

production. 836 

Retention of the regions where the adjacent PAD1 and FDC1 genes, which are both required for 837 

4-VG production, are located in each parent species (a-c), shown as 10-kbp windows of ploidy 838 

estimates over last 100-kbp of the chromosome. Gene locations are represented by black dotted 839 

lines. Higher opacity represents higher ploidy. Species colors are that same as in Figure 1a. Scer 840 

= S. cerevisiae, Spar = Saccharomyces paradoxus, Smik = Saccharomyces mikatae, Skud = S. 841 

kudriavzevii, Suva = S. uvarum, and Seub = S. eubayanus. (a) Scer × Skud hybrids: all strains 842 

inherited versions of both PAD1 and FDC1 from Scer that are predicted to be functional, + | +, 843 

but they have lost the Skud alleles. (b) Suva × Seub hybrids: all strains inherited versions of 844 

PAD1 and FDC1, from either Suva or Seub, that are predicted to be functional, + | +. (c) All 845 

lager strains have completely lost the region in the Seub genome where these genes reside. 846 

Additionally, all Saaz strains have also completely lost the Scer versions of these genes, Δ | Δ. 847 

All but two Frohberg strains have retained versions of PAD1 from Scer that are predicted to be 848 
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functional, but inherited Scer alleles of FDC1 that are predicted to be inactive due to a frameshift 849 

mutation, + | Ψ. Haplotype networks were built for the amino acid sequences for Fdc1 (d) and 850 

Pad1 (e). Colored pies correspond to Scer lineages, hybrids, or wild species with size 851 

representing the number of strains with that haplotype. Non-Scer nodes or groups of nodes are 852 

labeled by the species to which they correspond. Colored clouds correspond to communities: red 853 

is mostly Scer, blue is mostly non-Scer (including Seub and Suva), yellow is mostly Spar and 854 

Smik, green is mostly Skud, and gray is mostly loss-of-function alleles. Pseudogenes are marked 855 

as Ψ with additional information about the loss-of-function nucleotide and amino-acid changes. 856 

Dotted connections represent >100 amino acid differences. 857 

 858 

Figure 5. Summary of hybrids and origin of lager traits. 859 

(a) Simplified summary of parents and resulting hybrids. On the left is a cladogram of just the 860 

Saccharomcyes species that have contributed to fermented beverage hybrids. Three distinct 861 

lineages of S. cerevisiae (Scer) have contributed to hybrids; for the wild parents (S. kudriavzevii 862 

(Skud), S. uvarum (Suva), and S. eubayanus (Seub)), Holarctic or European lineages gave rise to 863 

the hybrids. Gray lines point from each parent to the resulting hybrid. The order of secondary or 864 

tertiary hybridization events was inferred from genome composition. This simplified view does 865 

not show when multiple lineages of Scer have contributed to different hybrid types (e.g. Scer × 866 

Skud hybrids), backcrossing (e.g. Seub × Suva hybrids), or minor subtelomeric contributions (e.g. 867 

small Scer contributions to some Seub × Suva hybrids). (b) Summary of how lager-brewing 868 

yeasts acquired their unique trait profile. The two lager-brewing lineages, Saaz and Frohberg, 869 

arose out of hybridizations between domesticated Scer ale strains and wild Seub strains. The Scer 870 

strains could utilize maltotriose (+), did not produce phenolic-off-flavor (POF-), and preferred 871 
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warmer temperatures (☼), while the Seub strains tolerated colder temperatures (❆), could not 872 

use maltotriose (-), and produced phenolic-off-flavors (POF+). The two lager-brewing lineages 873 

inherited the Seub mitochondrial genome (pink circle), which partly conferred cryotolerance. 874 

Both lineages also inherited maltotriose transporter genes from both parents (MTT1 from Scer 875 

and SeAGT1 from Seub). Finally, both lineages convergently became POF- through multiple 876 

distinct mechanisms, including pre-adaptation in the S. cerevisiae ale-brewing parent due to a 877 

mutated pseudogene (PAD1 | fdc1Ψ in red), aneuploidy removing functional S. eubayanus genes 878 

(pad1Δ | fdc1Δ in pink), and translocations in all Saaz strains and some Frohberg strains (pad1Δ | 879 

fdc1Δ in red). 880 

 881 

Figure S1. Genomic contribution comparison of Muri and WLP351. 882 

Modified sppIDer plot, where the y-axis is estimated ploidy, rather than coverage, for the S. 883 

cerevisiae (50%) × S. eubayanus (5%) × S. uvarum (45%) strains Muri61 and WLP351.  884 

 885 

Figure S2. Summary of total genomic coverage and shared translocations. 886 

The minimum and maximum normalized coverage of all strains that contain each chromosome 887 

are shown as colored bars. Darker chromosomes mean that chromosome is present in more 888 

strains. Vertical dotted lines represent translocations that are shared in at least four strains, 889 

including between hybrid types. The color of the line represents the reciprocal species. (a) Only 890 

lager strains and translocations found only in lagers. (b) All 122 hybrids and interspecies 891 

translocations. 892 

 893 

Figure S3. Phylogenomic trees for S. kudriavzevii with strains labeled. 894 
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(a) Phylogeny identical to Figure 2a with strains labeled. (b) Phylogeny identical to Figure S4 895 

with strains labeled. Newick files are available as Files S1 & S2. 896 

 897 

Figure S4. Phylogenomic and population placement of hybrids with minor S. kudriavzevii 898 

contributions.  899 

(a) Phylogenomic tree built with 36 strains and 12,424 SNPs from regions of the genome that 900 

exist in at least one minor contributing hybrid. Bootstrap support values >70% are shown as gray 901 

dots. Branch colors represent origin of isolation. The inner colors correspond to origin or 902 

population. Outer stacked bar plots show the genomic content for each of the hybrids; species 903 

colors match Figure 1a. (b) PCA using whole genome data for European S. kudriavzevii strains 904 

and all major contributor hybrids. (c) PCA using a reduced genome (67%) but including 905 

additional minor hybrids. Phylogenies with strain names, Newick formatted files, and data 906 

frames used to build PCAs are available as Figure S3, Table S2, and File S2. 907 

 908 

Figure S5. Phylogenomic trees for S. eubayanus with strains labeled 909 

(a) Phylogeny identical to Figure 2b with strains labeled. (b) Phylogeny identical to Figure S6 910 

with strains labeled. Newick files available as Files S3 & S4. 911 

 912 

Figure S6. Phylogenomic and population placement of hybrids with minor S. eubayanus 913 

contributions.  914 

(a) Phylogenomic tree built with 112 strains and 69,631 SNPs from regions of the genome that 915 

exist in at least one minor contributing hybrid. Bootstrap support values >70% are shown as gray 916 

dots. Branch colors represent origin of isolation.  The inner colors correspond to origin or 917 
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population. Outer stacked bar plots show the genomic content for each of the hybrids; species 918 

colors match Figure 1a. Long branches are biased by the extensive missing data in hybrids with 919 

very small contributions from S. eubayanus. (b) PCA using whole genome data for Holarctic S. 920 

eubayanus strains and all major contributor hybrids. (c) PCA using a reduced genome (25%) but 921 

including additional minor hybrids. Phylogenies with strain names, Newick formatted files, and 922 

data frames used to build PCAs are available as Figure S5, Table S2, and File S4. 923 

 924 

Figure S7. Phylogenomic trees for S. uvarum with strains labeled. 925 

(a) Phylogeny identical to Figure 2c with strains labeled. (b) Phylogeny identical to Figure S8 926 

with strains labeled. Newick files are available as Files S5 & S6. 927 

 928 

Figure S8. Phylogenomic and population placement of hybrids with minor S. uvarum 929 

contributions.  930 

(a) Phylogenomic tree built with 69 strains and 36,541 SNPs from regions of the genome that 931 

exist in at least one minor contributing hybrid. Bootstrap support values >70% are shown as gray 932 

dots. Branch colors represent origin of isolation.  The inner colors correspond to origin or 933 

population. Outer stacked bar plots show the genomic content for each of the hybrids; species 934 

colors match Figure 1A. (b) PCA using whole genome data for Holarctic S. uvarum strains and 935 

all major contributor hybrids. (c) PCA using a reduced genome (84%) but including additional 936 

minor hybrids. Phylogenies with strain names, Newick formatted files, and data frames used to 937 

build PCAs are available as Figure S7, Table S2, and File S6. 938 

 939 

Figure S9. Phylogenomic tree for full S. cerevisiae analysis with strains labeled. 940 
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Phylogeny identical to Figure 2d with strains labeled. A Newick file is available as File S7. 941 

 942 

Figure S10. Phylogenomic and population placement of lagers within the Ale/Beer1 clade.  943 

(a) Phylogenomic tree built with 267 strains and 21,953 SNPs from the whole genome. The total 944 

number of Frohberg strains was down-sampled to match the same number of Saaz strains. The 945 

tree was rooted with the Wine strain DBVPG1106. Bootstrap support values >70% are shown as 946 

gray dots. Branch colors represent origin of isolation. The inner colors correspond to origin or 947 

population. Outer stacked bar plots show the genomic content for each of the hybrids; species 948 

colors match Figure 1a. (b) PCA using whole genome data for Ale/Beer1 strains, all Saaz strains, 949 

and the down-sampled set of Frohberg strains. The two lineages of lager strains form separate 950 

groups, but they do not cluster with any described geographical lineage of the Ale/Beer1 clade. 951 

Pure S. cerevisiae Ale/Beer1 strains outside of the labeled lineages are unplaced, including a 952 

cluster of Stout strains, Wheat strains, and mosaic strains that our analyses suggest share the 953 

most ancestry with lager-brewing yeasts. (c) PCA using all lager strains. The low diversity in the 954 

Frohberg lager strains drives PC1, which led us to balance the dataset by down-sampling this 955 

lineage. Phylogenies with strain names, Newick formatted files, and data frames used to build 956 

PCAs are available as Figure S11, Table S2, and File S8. 957 

 958 

Figure S11. Phylogenomic tree for Ale/Beer1 S. cerevisiae analysis with strains labeled. 959 

Phylogeny identical to Figure S10 with strains labeled. A Newick file is available as File S8. 960 

 961 

Figure S12. 1:1:1:1 orthologs present in hybrid genomes. 962 
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(a) Stacked bar chart of all 1:1:1:1 orthologs present in hybrids. Strains are sorted from most to 963 

least ortholog content. Completeness of the ortholog set from the species that contributed the 964 

most (b) or least (c) orthologs to the strains. Strains are ordered independently in all panels. 965 

 966 

Figures S13. Complete de novo genome assembly for all strains. 967 

Total assembled genome for each strain. Regions are colored by which parent could be assigned 968 

in the de novo assembly based on the sppIDer results. “Multi” are regions where reads from 969 

many species mapped at high coverage. “Unmapped” are novel regions assembled from reads 970 

that do not map to parent reference genomes. For each assembly, contigs are ordered from 971 

largest to smallest from left to right. 972 

 973 

Figure S14. Mitochondrial genome haplotype network. 974 

Six mitochondrial genes were concatenated in 364 wild Saccharomyces strains and interspecies 975 

hybrids and used to build a TCS88 phylogenetic network. Haplotype classification is provided in 976 

Table S9. Haplotypes are represented by circles, and circle size is scaled according to the 977 

haplotype frequency. Pie charts show the frequency of haplotypes based on species or hybrid 978 

designation. The number of mutations separating each haplotype are indicated by lines on the 979 

edges connecting the haplotype circles. 980 

 981 

Figure S15. 982 

Labeled (in turquoise) haplotype networks for PAD1 and FDC1. Edge numbers are the number 983 

of amino acid changes. Networks correspond to those used in Figure 4 for the amino acid 984 

sequences of (a) Fdc1 and (b) Pad1. (b) A different haplotype network orientation of Figure 4E 985 
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that increases the visibility of each community and haplotype. Table S9 contains the key to 986 

which strains belong to which haplotype.  987 

 988 

Table S1. All hybrids and their parent contributions. 989 

Table S2. PCA analyses. 990 

 Percent explained by each principal component included in column headers. 991 

Table S3. Results of Fisher’s Exact Test and Bonferroni correction of mitochondrially localized 992 

genes. 993 

 mtInteracting = nuclear-encoded but mitochondrially localized gene. 994 

Table S4. Summary of number of 1:1:1:1 orthologs present in each sub-genome. 995 

Table S5. GO term results of genes found in novel regions of the de novo assembled genomes. 996 

Table S6. Brewing relevant gene summaries. 997 

“-“ Indicates when HybPiper failed to recover and assemble genes for this group or that 998 

these assemblies failed our length and coverage cutoffs. 999 

Table S7. Metadata for all strains newly sequenced in this study. 1000 

 The “New hybrid” column denotes hybrid genome sequences that are newly published in 1001 

this study. 1002 

 Scer = S. cerevisiae, Spar = Saccharomyces paradoxus, Smik = Saccharomyces mikatae, 1003 

Skud = S. kudriavzevii, Suva = S. uvarum, and Seub = S. eubayanus. 1004 

Table S8. Published data accession information. 1005 

Table S9. Haplotype key for mitochondrial genomes, PAD1, and FDC1. 1006 

 Dataset A only includes strains where 15S rRNA could be assembled, while Dataset B has 1007 

15S rRNA removed. 1008 
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Table S10. Regions used for minor contribution analyses.  1009 

 1010 

File S1. Newick formatted file of the S. kudriavzevii phylogeny with major hybrids. 1011 

File S2. Newick formatted file of the S. kudriavzevii phylogeny with minor hybrids. 1012 

File S3. Newick formatted file of the S. eubayanus phylogeny with major hybrids. 1013 

File S4. Newick formatted file of the S. eubayanus phylogeny with minor hybrids. 1014 

File S5. Newick formatted file of the S. uvarum phylogeny with major hybrids. 1015 

File S5. Newick formatted file of the S. uvarum phylogeny with minor hybrids. 1016 

File S7. Newick formatted file of the S. cerevisiae phylogeny with all strains analyzed. 1017 

File S8. Newick formatted file of the S. cerevisiae phylogeny of just the Ale/Beer1 clade. 1018 

 1019 
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Figure S8
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