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ABSTRACT

Halo bias is the main link between the matter distribution and dark matter haloes. In its simplest
form, halo bias is determined by halo mass, but there are known additional dependencies on
other halo properties which are of consequence for accurate modelling of galaxy clustering.
Here, we present the most precise measurement of these secondary-bias dependencies on
halo age, concentration, and spin, for a wide range of halo masses spanning from 10'%7 to
10'47 h~! Mg At the high-mass end, we find no strong evidence of assembly bias for masses
above My, ~10' p~! M. Secondary bias exists, however, for halo concentration and spin,
up to cluster-size haloes, in agreement with previous findings. For halo spin, we report, for
the first time, two different regimes: above My;, ~ 10'3 p! Mg, haloes with larger values
of spin have larger bias, at fixed mass, with the effect reaching almost a factor 2. This trend
reverses below this characteristic mass. In addition to these results, we test, for the first time,
the performance of a multitracer method for the determination of the relative bias between
different subsets of haloes. We show that this method increases significantly the signal to noise
of the secondary-bias measurement as compared to a traditional approach. This analysis serves
as the basis for follow-up applications of our multitracer method to real data.
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1 INTRODUCTION

The clustering of galaxies is the prime observable that can be used
to trace the large-scale structure of the Universe (LSS). In the
standard model of cosmology, dark matter clusters along density
peaks that were generated during inflation and collapse to form dark
matter haloes. In this scenario, galaxies form when gas falls into
collapsing dark-matter haloes (e.g. White & Frenk 1991). Hence,
the relationship between galaxies, haloes, and the underlying matter
distribution is crucial to our ability to test cosmological and galaxy
formation models against observations.

The bias of dark matter haloes can be broadly defined as the
relation between the distribution of haloes and the underlying matter
density field. In its simplest description, the linear halo bias depends
only on halo mass, with more massive haloes being more strongly
clustered than less massive haloes (Kaiser 1984). However, halo
bias is a much more complex effect that is known to depend on
a variety of secondary halo properties. Among these dependencies
on secondary properties, the most studied is the dependence on
assembly history, called halo assembly bias. Low-mass haloes (M
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< M,, where M, is the characteristic mass scale) that assemble a
significant portion of their mass early on were shown to be more
tightly clustered than haloes that assemble at later times, at fixed
halo mass (see e.g. Gao, Springel & White 2005; Wechsler et al.
2006; Li, Mo & Gao 2008; Han et al. 2018; Salcedo et al. 2018). For
high-mass haloes (M > M,), however, the picture is less clear, with
most studies showing a small or absent assembly bias signal at M ~
10" h~! My, (Gao & White 2007; Salcedo et al. 2018). For cluster-
size haloes of M ~ 10" h~! Mg, Chue, Dalal & White (2018)
report a significant detection of halo assembly bias, of the opposite
sign to the one observed at small halo masses (i.e. haloes are more
tightly clustered than their older counterparts), with the inversion
occurring precisely at M ~ 10'* h~! Mg These conclusions appear
to be in contradiction with the results from Mao, Zentner & Wechsler
(2018), who claimed to have found no halo assembly bias for very
massive haloes. The analysis of halo assembly bias is extended
to higher orders in Angulo, Baugh & Lacey (2008). Li et al.
(2008) and Chue et al. (2018) further discussed the dependence
of the halo assembly bias signal on the particular definition of halo
age/formation time.

Halo bias has been shown to depend on a number of other halo
properties, including spin, concentration, and shape. Hence, the
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term halo assembly bias has progressively been replaced by the
more general secondary bias.! Concentration, in particular, has been
extensively used as a proxy for formation epoch (see Wechsler et al.
2002). Although the behaviour observed for concentration is similar
to that reported for age, there are some qualitative differences. At
halo masses of M ~ 10" h~' Mg, a change of regime is well
established: halo bias is larger for more concentrated haloes below
this mass, but the trend reverses for higher masses (see e.g. Wechsler
etal. 2006; Gao & White 2007; Han et al. 2018; Salcedo et al. 2018).
The other ‘secondary’ property that has drawn significant attention
in recent years is spin, A, which is proportional to the angular
momentum of the halo. At fixed mass, haloes with larger values of
A are found to be more tightly clustered than those having smaller
values across the entire mass range considered, which typically
covers M > 10'2 h=! M, (e.g. Bett et al. 2007; Gao & White 2007;
Faltenbacher & White 2010; Lacerna & Padilla 2012). The effect,
however, appears to increase at the high-mass end (Salcedo et al.
2018).

Despite the variety of measurements, a comprehensive physical
model of secondary halo bias is yet to be established. Dalal et al.
(2008) proposed that certain features of halo assembly bias for high-
mass haloes can be understood through the statistics of primordial
density peaks. At low masses, the authors argue that assembly
bias arises from a subpopulation of low-mass haloes whose mass
accretion has ceased. For other attempts, we refer the reader to
Zentner (2007) and Sandvik et al. (2007), which are based on the
implementation of the ellipsoidal collapse model in the framework
of the excursion set formalism.

Secondary halo biases have important consequences for the
modelling of galaxy clustering. Measurements of the two-point
correlation function from surveys like the Sloan Digital Sky Server
(York et al. 2000) or the 2dF Galaxy Redshift Survey (Colless
et al. 2001) indicate that more massive, more luminous, and
redder galaxies are, in general, more tightly clustered than their
less massive, less luminous, and bluer counterparts (e.g. Zehavi
et al. 2005; Guo et al. 2014). The establishment of secondary bias
invalidates any simple conclusion exclusively based on halo mass,
consequently forcing halo-galaxy connection models to adjust (see
Hearin et al. 2014, 2016; Tojeiro et al. 2017; McEwen & Weinberg
2018). In this context, it has become an observational challenge to
prove the existence of the so-called galaxy assembly bias, i.e. the
dependence of galaxy clustering on secondary halo properties such
as the accretion history of haloes (see e.g. Lin et al. 2016; Miyatake
et al. 2016; Guo et al. 2017; Montero-Dorta et al. 2017; Niemiec
et al. 2018).

In this paper, we provide state-of-the-art measurements of sec-
ondary bias for age, spin, and concentration over four orders of
magnitude in mass, in the virial mass range 10.7 < log;o (Myi/h™"
Mg) < 14.7. This large dynamical range is achieved by combining
four different MultiDark N-body numerical simulations.? In addi-
tion, we test for the first time the application of a full multitracer
approach to the measurement of secondary bias. This technique is
based on the fact that different tracers of LSS (e.g. distinct types
of haloes) occupying the same cosmological volume reflect the
same underlying density field. Multitracer techniques are designed

I Throughout the text, the term ‘assembly bias’ will exclusively refer to
secondary bias produced by age, i.e. formation epoch. The effects produced
by concentration and spin will be dubbed spin and concentration bias,
respectively.
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Table 1. Numerical properties of MultiDark simulations. The columns
correspond to the name of the simulation, the length of the box’s side,
the number of particles, the force resolution, and the mass of each simulated
particle.

Name Lpox Ny € M,
(=" Gpe) (h'kpe) (7' Mp)
SMDPL 0.4 38403 1.5 9.6 x 107
MDPL2 1 38403 5 1.5 x 10°
BigMDPL 2.5 38403 10 2.4 % 100
HugeMDPL 4.0 4096° 25 7.9 x 1010

to minimize the statistical uncertainties associated with cosmic
variance by combining the information from distinct biased tracers
of the LSS (McDonald & Seljak 2009; Seljak 2009; Abramo &
Leonard 2013; Abramo, Secco & Loureiro 2016) — however, our
method does not rely on knowledge of the density field, hence it
can also be applied to real data.

This paper is organized as follows. Section 2 provides a brief
description of the MultiDark simulations. The standard method
used to measure the relative bias from the correlation function is
presented in Section 3. Our main measurements of secondary bias
are shown in Section 4. These measurements are compared with
those obtained from a multitracer technique in Section 5, where
this approach is also briefly described (an extended description of
the method can be found in the Appendix). Finally, we compare our
results with previous literature and summarize the main conclusions
of our analysis in Section 6. Throughout this work, we assume the
standard ACDM cosmology (Planck Collaboration XVI2014), with
parameters 7 = 0.677, 2, = 0.307, Qs = 0.693, ny = 0.96, and
og =0.823.

2 SIMULATIONS

In order to study the clustering of haloes with different secondary
properties we use the publicly available suite of MultiDark cosmo-
logical N-body simulations (Klypin et al. 2016). In this work, we
analyse four different simulation boxes: Small MultiDark Planck
(SMDPL), MultiDark Planck 2 (MDPL2), Big MultiDark Planck
(BigMDPL), and Huge MultiDark Planck (HugeMDPL). These
boxes have ~4000° particles and side lengths of 0.4, 1, 2.5, and 4
Gpc h~!'. A summary of the numerical parameters of each simulation
is shown in Table 1.

Haloes were identified using the ROCKSTAR software (Behroozi,
Wechsler & Wu 2013) and we only use the halo catalogue at redshift
z = 0. Furthermore, only distinct haloes were included in this
analysis. A halo is said to be distinct if its centre does not lie within
a larger halo. The halo mass function and the velocity function for
all distinct haloes in each MultiDark simulation are displayed in
Fig. 1. We emphasize in Fig. 1 the large dynamical range addressed
in this analysis. Fig. 1 also illustrates the halo mass and velocity
incompleteness of each box (see Comparat et al. 2017 for further
details).

In this study, we focus on the following halo properties:

(1) Virial mass, M,;;, computed in ROCKSTAR using the virial
threshold of Bryan & Norman (1998), see Behroozi et al. (2013)
for more details.

(i) Maximum circular velocity, V., defined as

GM(< r):|
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Figure 1. Halo mass function (left) and velocity function (right) for the four MultiDark simulation boxes at z = 0 employed in this work (see Table 1 for their
numerical parameters). This figure illustrates the vast range of halo masses, velocities, and abundances analysed in this work. Dashed lines show the range of
halo masses and velocities where completeness drops due to mass resolution effects. For the more conservative resolution limits employed in this work, see

Table 2.

(iii) Age, ayp, defined as the scale factor at which half of the
peak mass of the halo was accreted.
(iv) Spin, A, defined as in Bullock et al. (2001), namely

_ /]
\/inir Vvir Rvir

where J is the halo’s angular momentum and Vy; is its circular
velocity at the virial radius R.,.
(v) Concentration, ¢y, defined as

(@)

Rono
= N 3
€200 R 3)
where Ry is computed from
4
Mo = ?200,0ch§00, 4)

and R is the Klypin scale radius (Klypin, Trujillo-Gomez &
Primack 2011), which includes V.« and M,;; in its definition and
assumes a NFW profile (Navarro, Frenk & White 1997).

We consider not only M,;, as the primary halo property, i.e. the
main predictor of halo clustering, but also Vi, which characterizes
the depth of the gravitational potential well. Note that Vy,. is defined
unambiguously in N-body numerical simulations, in contrast to
the virial mass, which depends on the particular density-contrast
threshold adopted. In addition, adopting V.x has been shown
to provide important advantages in the context of halo-galaxy
connection frameworks such as halo abundance matching (Conroy,
Wechsler & Kravtsov 2006; Trujillo-Gomez et al. 2011). To ensure
a robust measurement of all relevant halo properties, we limit our
analysis to haloes with more than 500 particles. An independent
Vmax cut was implemented, such that less than 1 per cent of haloes
in each sample possesses less than 500 particles. For each box, this
is equivalent to performing the mass and velocity cuts shown in
Table 2.

To illustrate the general features of our data set, we show in
Fig. 2 the distributions of the properties discussed above in the
MDPL2 box. The age parameter, a;,, ranges from ~0.3 to ~0.5,
which correspond to redshifts of 2.3 and 1, respectively. Spins are
typically in the range ~0.01-0.05, and concentrations span values
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Table 2. Cuts in virial mass performed in each simulation. These cuts were
chosen so that only haloes with more than 500 particles are included in the

analysis.

Name Mass cut (b~ Mo) Vmax cut (km s™1)
SMDPL >4.8 x 10'° >80
MDPL2 >7.5 x 1011 >200
BigMDPL >1.2 x 1013 >316
HugeMDPL >4.0 x 1013 >631

of 5-15, approximately. As expected, very little correlation between
secondary and primary halo properties is found.

3 RELATIVE BIAS MEASUREMENT

In this section, we provide a brief description of the standard
procedure used to measure secondary bias from simulations, which
is based on the computation of the 2-point correlation function.

To quantify the dependence of halo clustering on a secondary
property S, we measure the relative bias between a subsample of
haloes selected according to S and all haloes in the same primary
bias property (B) range,
&E(r, B, S)

£(r,B) ’
where we consider the primary bias parameters B = M.;; and Vi,
and the secondary parameters S = ay2, A, €200-

Each simulation box at z = 0 was divided in sub-boxes with
Lgybbox = Lvox/4. The resulting sub-catalogues were further divided
in bins of width 0.15 in log;o(M,;;) or 0.1 in logo(Viax). The
haloes with the 25 per cent highest and lowest values of a particular
secondary property were then selected in order to compute the
expression shown in equation (5).

The 2-point correlation function was measured using COR-
RFUNC (Sinha & Garrison 2017). In the top panels of Fig. 3,
we show the correlation function for haloes selected according to
age (left) and spin (right), in the log(M,;) ranges 12-12.15, and
13.35-13.5, respectively. Here, each point corresponds to the mean
value of all sub-boxes and the error bars represent the standard
deviation, computed from the entire set of sub-boxes. As found by

bX(r, B, S) = (5)
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Figure 2. Joint histograms of Myir, Viax, @172, A, and ¢200 and their marginal
distributions. Each panel shows the correlation between a primary property
and a secondary property in the MDPL2 simulation.

several previous studies, at fixed halo mass, haloes that assemble a
significant portion of their mass at earlier times are more tightly
clustered than those that assemble at later times. Additionally,
haloes with a higher spin value are more strongly clustered than
low-spin haloes. Note that the magnitude of these effects strongly
depends on the particular halo mass range selected. In the lower
panels of Fig. 3, the power spectrum for the same subsets of haloes
as measured using the multitracer approach is also provided (see
Section 5).

To fit the linear bias parameter we include both auto- and cross-
correlations between different primary property bins, for distances
ranging from 5 to 10 Mpc 2~!. We choose this range of scales due
to the higher signal to noise in the assembly bias detection and
to facilitate the comparison with previous literature. We then take
the ratios of the correlation functions &5 (r)/&5(r) — b /b% and
perform a minimum-x 2 estimation for the relative bias.

4 THE EFFECT OF SECONDARY BIAS

The relative biases b(B, S) for all combinations of primary properties
B = M,i;, Vmax and secondary properties S = ajpn, A, ca0 are
presented in Fig. 4. In each plot, the relative bias for haloes with the
25 per cent highest and lowest values of each secondary property,
with respect to the entire population in the corresponding primary-
property bin, is shown across all available MultiDark simulations.
Error bars represent the standard deviation computed from all
sub-boxes, where cross-correlations between primary-property bins
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have been taken into account. Note that the error on the mean is, in
most cases, smaller than the size of the markers.

The shaded region in each plot corresponds to the maximum
finite width error, which can potentially be produced by the size
of the mass bins. This effect could arise if a secondary property is
correlated with halo mass. Thus, when selecting the top and bottom
quartiles of such secondary property, one would also be selecting
haloes based on mass. In order to quantify this effect, we select the
25 per cent highest and lowest mass values in each mass bin and
compute the relative bias.

As shown in the two upper panels of Fig. 4, the assembly bias
signal at the low-mass end (M ~ 10'%7 1=! M) corresponds to an
effect of ~45 per cent for old haloes and of ~30 per cent for young
haloes. The assembly bias detection is consistent with zero at M ~
10" h~' My, and beyond, in agreement with recent findings from
Mao et al. (2018). The same behaviour is seen in the right-hand
column, where the primary property is Vnx and the effect vanishes
atlogioViax 2 2.7.

In the third panel of Fig. 4, we present results on concentration
bias, characterized by the secondary property caoo. In agreement
with previous literature, a significant secondary bias signal is found
for cy09 in the same mass range (see e.g. Wechsler et al. 2006; Gao &
White 2007; Jing, Suto & Mo 2007; Han et al. 2018; Salcedo et al.
2018). Here, an inversion occurs at masses ~10'> A~! M. At the
high-mass end, the difference in bias between the two quartiles is of
a factor of 1.75. We note, however, that the inversion of the top and
bottom quartiles when the haloes are binned by V., can be partially
understood as a consequence of how the halo bias depends on V.«
for very massive haloes. In massive haloes, the bias decreases as
Vmax increases (Xu & Zheng 2018), which contributes to the trend
seen in Fig. 3.

Another feature of interest can be seen in the secondary bias
signal for spin, A, shown in the second row of Fig. 4. By extending
our analysis to very low halo masses, using the SMDPL box, we
are able to detect, for the first time, an inversion similar to that
found for concentration, with the top and bottom quartiles this time
crossing over at masses of ~10'> 1~ M, (or, equivalently, Vi, ~
10?2 km s~1). The large scale of the spin bias effect at the high-mass
end, reaching a factor 2 at ~10'*> h~! M, is also noteworthy. It
is interesting to note that the values of the spin parameter for the
quartiles are remarkably similar across the entire mass range that
we analysed, at around A ~ 0.015 for the lowest quartile, and A &~
0.08 for the highest quartile.

Due to the resolution gap between SMDPL and MDPL2, we
further investigated the inversion at the low-mass end using the
BolshoiP simulation (Klypin et al. 2011) and found results con-
sistent with those shown in Fig. 4. We additionally compared the
different spin definitions in Peebles (1969) and Bullock et al. (2001)
and found the results to be consistent with each other.

Fig. 4 confirms previous results regarding the asymmetric nature
of secondary bias for age and concentration (see e.g. Salcedo
et al. 2018 for a recent work). The effect appears significantly
less pronounced for spin, for which it is only really noticeable at
the very high mass end. A thorough discussion of our results in the
context of previous literature is presented in Section 6.

5 THE MULTITRACER APPROACH

Multitracer techniques are designed to minimize the statistical
uncertainties associated with cosmic variance by combining the
information from distinct biased tracers of the LSS, including haloes
(McDonald & Seljak 2009; Seljak 2009; Abramo & Leonard 2013;
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Figure 3. 2-point correlation function (upper panels) and power spectra (lower panels) illustrating the effect secondary bias. The left-hand panels show the
effect of age bias for haloes of masses between 102 and 10'>!> 1~! Mg, in the MDPL2 simulation. The right-hand panels show the effect of spin bias for
haloes of masses ranging between 10'33% and 10'3> h~! M, in the BigMDPL simulation.

Abramo et al. 2016). They have been employed in the analysis
of real data (Blake et al. 2013; Ross et al. 2014; Marin et al.
2016), as well as in forecasts for future surveys, where they are
expected to be especially beneficial due to the broad nature of their
galaxy selections (Ferramacho et al. 2014; Alonso & Ferreira 2015;
Fonseca et al. 2015; Abramo & Bertacca 2017; Witzemann et al.
2018). In this work, we have applied multitracer techniques to the
measurement of secondary bias from the MultiDark simulations,
and have regarded each subset of haloes, defined through primary
and secondary properties, as a different LSS tracer. A brief de-
scription of the method can be found in the Appendix (for more
information, see Abramo et al. 2016).

In order to compute the effect of the secondary-bias parameters
using power spectra we use the same MultiDark boxes and sub-
boxes that were described in Section 3, with the same primary
bias (M, or Vyax) bins and same criteria for splitting the samples
into secondary-bias classes. We then compute the multitracer power
spectra for a grand total of 32 different species of tracers — 8 bins
in halo mass, times 4 bins in the secondary bias parameters.

The linear bias parameter is finally computed in terms of the ratios
of spectra Pg_s(k)/Pg(k). The variance of those ratios is determined
from the sample of 27 sub-boxes in the case of the 400 7~! Mpc
boX (Lsup-box = Lbox/3), and 64 sub-boxes (Lgup-pox = Lbox/4) in the

MNRAS 487, 1570-1579 (2019)

cases of the 1, 2.5, and 4 ! Gpc boxes. We fit a constant (linear)
bias to the ratios of spectra as a function of bandpower, using all
available scales up to k < Min(0.3 & Mpc’l, ksnot) Where kgpo is the
scale at which the shot noise of the tracer species (B, S) dominates
over the power spectrum of that tracer at the level of 90 per cent,
ie. Pg s(ksno) = 0.1 P = 0.1715s.

In the lower panels of Fig. 3, we show the power spectra computed
using the multitracer method for haloes selected according to age
(left) and spin (right), in the same halo mass bins used for the
correlation function measurements presented in the top panels. As
expected, the effects of assembly and spin bias are also significant
in the power spectrum.

Fig. 5 shows the same secondary-bias measurements of Fig. 4, but
determined through the multitracer method. We immediately notice
that the multitracer method yields significantly smaller statistical
errors across all MultiDark simulations when measuring secondary
biases. Our derived uncertainties in the secondary bias range from
<1 per cent for the least massive (and most abundant) haloes of
the SMDPL box, to ~5-10 per cent for the massive haloes of the
HugeMDPL box. When compared to the standard method, we find
that the decrease in uncertainty depends on secondary property,
quartile, and mass. For the MDPL2 simulation, as a reference, we
report a decrease of roughly 25-40 per cent in the uncertainty for
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Figure 4. Secondary biases b(S, P) as defined in equation (5), estimated using the standard correlation-function method, for primary properties M, (left-hand
column) and Viax (right-hand column), and secondary properties a2, A, and cao0. Each point corresponds to the average among all sub-boxes of a particular
simulation and the errors are the standard deviation computed from the entire set of sub-boxes. Note that cross-correlations between primary-property bins
have been taken into account in the determination of error bars. All plots show the biases of top and bottom quartiles of a particular secondary property, for all
available MultiDark simulations (see the text).

age as the secondary property. For spin the decrease is typically In particular, the bias estimated through the correlation function
around 10-35 per cent and for concentration we find a decrease of is measured within a narrow distance range of 5—10 ™' Mpc,
up to 30 per cent. whereas the bias in terms of the power spectrum is measured on

‘We must emphasize that the results presented in Figs 4 and 5 are scales k ~ 0.05-0.3 : Mpc™', depending on the box size and level
not directly comparable, since they probe different distance scales. of shot noise. In particular, this means that, if there is a significant
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Figure 5. Secondary bias measured through the multitracer method, as described in Section 5. Similarly to Fig. 4, the left-hand column corresponds to the
primary property My, the right-hand column to the primary property Vimax, and each row corresponds to the secondary properties a2, A, and cgp. Once again,
each point show the average among all sub-boxes and the errors are the standard deviation from the entire set of sub-boxes.

scale dependence of the secondary bias, the measurements using
correlation function and power spectra could differ. In that case our
results using the power spectra may differ from tracer to tracer, and
from box to box — on that regard, see the Appendix.
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With the aforementioned caveats, both methods provide quali-
tatively similar results for assembly, concentration and spin bias.
Some small differences are, however, worth noting. In particular,
the multitracer measurements appear flatter at the high-mass end,
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especially for HugeMDPL, as compared to the standard measure-
ments. In addition, the top-right panel of Fig. 5 seems to show hints
of a cross-over between young and old haloes for high-V,,« haloes.
Further investigation will be required in order to clarify the origin
of these differences.

6 DISCUSSION AND CONCLUSIONS

By combining all available MultiDark simulations, we provide the
most precise measurement of secondary halo bias across a wide
virial mass range, spanning from 10'%7 to 10'*74~! M. Further-
more, we present the first multitracer measurement of secondary
bias across the same comprehensive dynamical range.

For masses below 10'* h~! M, we find, in agreement with, e.g.
Gao et al. (2005), Wechsler et al. (2006), Li et al. (2008), Salcedo
et al. (2018), Mao et al. (2018), and Chue et al. (2018), that older
haloes are more strongly clustered than younger haloes, for the
definition of age given in Section 2. Above 10'* 1~! M, we detect no
solid evidence of halo assembly bias or of a cross-over between the
top and bottom age quartiles, in agreement with Mao et al. (2018),
who also used the MDPL2 box. Interestingly, some hints of a cross-
over are found when V,,,« is used as the primary halo property and
the simulation data is analysed using the multitracer technique. This
is not observed when a traditional approach is employed, nor when
halo mass is used as the primary halo property in the multitracer
measurement. Follow-up work will be devoted to clarify the origin
of this feature in V. We highlight that, using the BigMDPL
simulation, Chue et al. (2018) reports a significant assembly bias
signal at 10'3 7~! M. Through the methodology adopted in this
paper, however, we were unable to obtain statistically significant
measurements in the same mass range.

We present a novel feature in the secondary bias produced
by spin: a cross-over between top and bottom quartiles at M ~
10" h~' M, or, equivalently, at V. ~ 10>2 kms™'. We are able
to probe such small halo masses due to the high-mass resolution of
the SMDPL simulation. Although the presence of a cross-over in
age is still uncertain, the detection of this phenomenon in spin, in
combination with previous detections for concentration and several
other properties, might be an indication that the inversion of the
secondary bias signal is a universal property. In this context, Salcedo
et al. (2018) argues that the behaviour of spin bias is different
from that of other secondary biases, which may suggest a distinct
physical origin. Some of the evidence we present here, however,
might cast serious doubt on such claim. For example, Salcedo et al.
(2018) states that spin bias differs from other secondary biases due
to its weak mass dependence and the fact that it increases with
mass, whereas most other secondary biases decrease with mass.
However, in the wider mass range probed in this work, we find that
the relative bias for spin varies as much as for age (~0.5). Moreover,
the detection of a cross-over places spin bias in the same footing as
other secondary biases, since it shows that the fact that it increases
with mass was an artefact of the mass scales that were being probed.

Our results place updated constraints to models addressing the
connection between galaxies and haloes. The wide dynamical range
that we probe encompasses haloes hosting from emission-line
galaxies at the low-mass end to massive quiescent galaxies and
clusters at the high-mass end. In the context of the halo-galaxy
connection, it has become an observational challenge to prove the
existence of galaxy assembly bias, a hypothesis that states that
the clustering properties of galaxies, at fixed halo mass, depend
on secondary halo properties such as the accretion history (or
age) of haloes (see e.g. Lin et al. 2016; Miyatake et al. 2016;
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Montero-Dorta et al. 2017; Niemiec et al. 2018). For luminous red
galaxies (LRGs), indications of the existence of galaxy assembly
bias have been reported by Montero-Dorta et al. (2017) and Niemiec
et al. (2018), from a sample extracted from the Baryon Oscillation
Spectroscopic Survey (BOSS; Dawson et al. 2013). The typical
mass of the haloes inhabited by these galaxies is estimated in
~10"27-13 p=' M, (Niemiec et al. 2018), but a large scatter is
expected, so that the most massive LRGs could inhabit haloes above
~10" h~! Mg, These results are, in principle, compatible with both
the halo assembly bias and the concentration bias signal reported
in Fig. 4. Our measurement of halo assembly bias at the high-mass
end can be properly connected to the results presented in Montero-
Dorta et al. (2017) and Niemiec et al. (2018) through the technique
of ‘age matching’ (Hearin et al. 2016).

In addition, the large scale of the spin bias signal for cluster-
size haloes, of almost a factor 2 at ~10'*5 h~! Mg, suggests
an alternative route towards an observational proof of secondary
bias. Probing the effect of spin bias requires measuring rotation,
or a proxy for it, in a large sample of galaxy clusters. These
measurements, which are still extremely challenging, might be
possible in the near future thanks to techniques such as kinetic
Sunyaev—Zel’dovich effect (see e.g. Baldi et al. 2018).

We have applied, for the first time, a fully multitracer approach
to the measurement of secondary bias. Here, different subsets of
haloes are viewed as different LSS tracers. We show that this
method is capable of reproducing all features observed from the
standard measurement. In addition, we have obtained statistical
uncertainties which are comparable to other bias estimates from
N-body simulations that minimize cosmic variance by relying on
direct knowledge of the density field, e.g. Gao & White (2007);
Chue et al. (2018). However, in contrast to those methods, which
in effect compute 8,/8,, at each point (in configuration or Fourier
space), the technique used in this work can be applied both to
simulations as well as to actual data, in real or redshift space.

The multitracer approach is a promising technique for future
surveys like Euclid® or DESI*, where cosmological measurements
will be performed from data sets containing multiple galaxy
populations. The effort presented is this paper will serve as the basis
for future developments aimed at the application of the method to
real data.

The main conclusions of this work can be summarized as follows:

(i) No statistically significant halo assembly bias signal (sec-
ondary bias on a,;,) is detected for haloes above M ~ 104~ M.

(i) A cross-over is detected, for the first time, in the spin bias
signal. Below M ~ 10" h~!' Mg, lower spin haloes are more
tightly cluster than higher spin haloes, at fixed halo mass. The
signal reverses above this characteristic mass. The effect of spin
bias increases significantly at the high-mass end, reaching almost a
factor of 2 at M ~ 10'3 h~! M.

(iii) We test, for the first time, the performance of a fully
multitracer approach for the measurement of secondary bias. These
techniques are designed to minimize the statistical uncertainties
associated with cosmic variance by combining information from
distinct biased tracers of the LSS, in this case, haloes.

(iv) The multitracer approach is capable of reproducing all
secondary-bias features observed from the standard measurement,
with the advantage that the signal to noise improves significantly. We
find that the decrease in uncertainty depends on secondary property,

3https://www.euclid-ec.org
“https://www.desi.Ibl.gov

MNRAS 487, 1570-1579 (2019)

6102 4840J00 80 UO Jasn OISO elon[epuy BoISYoNSY ‘Isul Aq /ZLEL6YS/0LS /2] N0Sqe-a]oIE/SEIUW/W0D dNO"0jWapEo.//:SAY WOl POPEO|UMOQ


https://www.euclid-ec.org
https://www.desi.lbl.gov

1578  G. Sato-Polito et al.

quartile, and mass. For the MDPL2 simulation, as a reference, we
report a decrease of roughly 25—40 per cent in the uncertainty for
age as the secondary property. For spin the decrease is typically
around 10-35 per cent and for concentration we find a decrease of
up to 30 per cent.

(v) Our halo assembly bias measurements are consistent with
results suggesting that galaxy assembly bias can be detected from
massive galaxies alone, and, in particular, from LRGs.
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APPENDIX A: THE MULTITRACER
TECHNIQUE

The optimal combination of the density fields of a number of biased
tracers, which results in minimum-variance estimators for the power
spectra of those tracers, was derived in Abramo et al. (2016). The
technique consists in a generalization of the weights obtained by
Feldman, Kaiser & Peacock (1994) for a single tracer — the so-
called FKP weighting. The multitracer weighted density field of a
tracer species « is defined as f,(X) = >, wap(X)35(X), where the
weights are defined by

figb? P _
1+ 'Peﬁnﬂbﬂ . (A])

In the expression above, i1, (X) is the measured number density of
the tracer «, b, is its fiducial bias, P, = Pn(kp) is the fiducial
matter power spectrum at the pivot scale k, = 0.1/ Mpc™!, and
Pett = D, i1;b? Py, We stress the fact that the multitracer weights
are not equivalent to the FKP weights: in particular, notice that the
weighted fields f, are ad-mixtures of the density fields of all tracers.
Only when there is a single tracer the multitracer weight reduces to
the FKP weight.

After computing the Fourier transform of the weighted fields we
take their (quadratic) amplitudes and combine them into bandpow-
ers to get the spectra of the weighted fields. In the FKP method, the
estimator of the power spectrum for the tracers is basically the power
spectra of the weighted fields, with an appropriate normalization
and its respective shot noise subtraction. In the multitracer method,

Wep = l’_laba (Sa/s —
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the minimum-variance estimators for the autopower spectra of the
individual tracers are computed in terms of a linear combination
of the spectra of the weighted fields, with the subtraction of a shot
noise term — see Abramo et al. (2016) for details.

Since we have 8 mass bins, each one having 4 bins corresponding
to the secondary bias parameters, there are 32 individual tracers. We
compute the power spectra of each individual tracer, and average the
spectra of tracers in the same mass bin in order to obtain the power
spectra for the entire mass bin (we checked that this procedure yields
the same result as computing the power spectra for the combination
of tracers in the same mass bins directly). Once we have the power
spectra of the individual tracers [Pp s(k)] as well as the spectra
corresponding to the tracers in the corresponding mass bin [Pg(k)],
we determine the ratios of halo biases through the ratios of their
spectra, Pp s(k)/ Pp(k) — b} o(k)/b% (k).

A key aspect of multitracer optimal weighting is the fact that
the weighted fields f, are linear combinations of the density fields
of each tracer, hence the multitracer power spectrum estimators
automatically include all the auto- and cross-spectra of all tracers, in
a minimum-variance combination. In particular, this means that the
information from cross-spectra has already been taken into account
by the multitracer autospectra estimators, so in principle we do not
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need to compute them separately. This is not the case for the FKP
power spectra, where the information in the cross-spectra needs to
be added separately.

In Fig. Al, we show the power spectrum (left-hand panel)
for a particular age quartile (youngest haloes) in the mass
bin log,, M[h~! Mg] = 13.825 & 0.075, extracted from the 4 Gpc
HMDPL box, as well as the ratio of this power spectra to the power
spectrum of the entire mass bin (right-hand panel). The dashed lines
correspond to the power spectra computed using the multitracer
optimal weighting, whereas the solid lines show the traditional
(FKP) weighting. It is clear that the variances of the amplitudes
of the power spectra, as well as the statistical fluctuations of the
ratios of spectra (the relative bias), are smaller when we employ
the multitracer weighting. In the case of this mass bin and box, the
spectra are dominated by shot noise, so the multitracer technique,
which uses the information from the cross-correlations, is naturally
aless noisy estimator of the power spectrum. When shot noise is less
relevant (as happens for low-mass bins), the statistical fluctuations
of the power spectra estimated with the two methods can be similar,
but the covariance of the ratios of the power spectra are typically
much smaller when we employ the multitracer method (Abramo
et al. 2016).
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Figure Al. Left: Power spectrum in the entire wavenumber range considered for a subset containing the youngest haloes in the virial mass bin
log,o M[h~' Mp] = 13.825 & 0.075, extracted from the 4 Gpc HMDPL box. Dashed lines correspond to the power spectra computed using the multitracer
optimal weighting, whereas solid lines show the traditional (FKP) weighting. Right: Same as before for the ratio of the power spectrum of the youngest haloes

and that of the entire population in the corresponding bin.
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