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Abstract: The alarming spread of multiresistant infections has kick-started the quest for alternative
antimicrobials. In a way, given the steady increase in untreatable infectious diseases, success in this
endeavor has become a matter of life and death. Perhaps we should stop searching for an antibacterial
panacea and explore a multifaceted strategy in which a wide range of compounds are available on
demand depending on the specific situation. In the context of this novel tailor-made approach to
combating bacterial pathogens, the once forgotten phage therapy is undergoing a revival. Indeed,
the compassionate use of bacteriophages against seemingly incurable infections has been attracting
a lot of media attention lately. However, in order to take full advantage of this strategy, bacteria’s
natural predators must be taken from their environment and then carefully selected to suit our needs.
In this review, we have explored the vast literature regarding phage isolation and characterization
for therapeutic purposes, paying special attention to the most recent studies, in search of findings
that hint at the most efficient strategies to identify suitable candidates. From this information, we
will list and discuss the traits that, at the moment, are considered particularly valuable in phages
destined for antimicrobial therapy applications. Due to the growing importance given to biofilms
in the context of bacterial infections, we will dedicate a specific section to those characteristics that
indicate the suitability of a bacteriophage as an antibiofilm agent. Overall, the objective is not just to
have a large collection of phages, but to have the best possible candidates to guarantee elimination of
the target pathogens.
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1. Phage Therapy: A Major Comeback with Minor Setbacks

The existence of viruses that can infect and kill bacterial cells, known as bacteriophages (or phages),
was discovered almost simultaneously by Frederick Twort and Félix d’Herelle about one century
ago, but it is the latter who has been credited with introducing the concept of using these entities
as antimicrobial agents [1,2]. Indeed, the French-Canadian microbiologist pioneered the so-called
phage therapy and used phages to treat patients with various infectious diseases [3]. Since that time,
the utilization of phages for therapeutic applications has remained common practice in Eastern Europe,
saving countless human lives [4]. Conversely, in other parts of the world, the introduction of antibiotics
pushed this anti-infective strategy out of center stage for many decades. After all, antibiotics were
cheaper to manufacture and exhibited a broader spectrum of activity, thereby eliminating the need
to identify the etiological agent prior to treatment prescription. However, with time, overuse and
misuse of antibiotics became widespread in different fields, such as human and veterinary medicine
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or agriculture. In this context, antibiotics exerted the selective pressure that resulted in the spread of
resistance markers and led up to the current antimicrobial resistance crisis [5]. Alarmingly, the number
of deaths associated with bacterial infections is rising and threatens to reach levels not seen since the
preantibiotic era. The reason for this is that more and more bacterial strains are acquiring multiresistance
and are, consequently, able to survive treatment with most, if not all, antibiotics commonly used
in the clinic. Given the severity of such a scenario, besides curtailing unnecessary antibiotic use,
the scientific community has started a race to find as many alternatives to conventional antibiotics as
possible [6]. Among the many options being explored, the revival of phage therapy presents itself
as an attractive strategy to substitute or complement other therapies [7]. This is especially the case
because phages, due to their unique mechanism of action, exhibit some notable differences compared
to other types of antimicrobials, some of which are particularly advantageous. These positive attributes
include their natural origin, lack of toxicity for humans or nontarget microbes (being harmless to
the normal microbiota), and their effectiveness against antibiotic-resistant bacteria, amongst others.
On the downside, phage therapy generally requires identification of the target pathogen and phage
resistance development remains a possibility, although it is not usually as easily transferable to other
microorganisms as antibiotic resistance determinants. Moreover, resistance could be easily overcome
by using combinations of different phages (phage cocktails) instead of a single phage for therapeutic
applications [8].

Nonetheless, not everything is rosy on the way toward normalizing the use of bacteriophages
against unwanted bacteria in the context of human medicine. Most notably, it will be paramount to
convince both the general public and the competent authorities that these antimicrobials are safe for
human health and the environment, as well as provide undeniable proof of their efficacy in clinical
settings. Indeed, these are two key aspects in order to surmount the current regulatory constraints
that limit the use of bacterial viruses for infection treatment in humans. Until relatively recently,
most evidence regarding the effectiveness of phage therapy was the result of direct use in patients,
but well-organized and reproducible data will be essential in order to comply with the requirements
set out for the approval of medicinal products [9]. In this regard, the growing number of completed
clinical trials will certainly be invaluable. On the other hand, the growing utilization of phages
as biocontrol agents for the disinfection of inert surfaces may also help to pave the way toward
regulatory approval [10]. As a matter of fact, the relevant authorities in different countries (USA, Israel,
Canada, Switzerland, Australia, New Zealand, and the Netherlands) have already approved this type
of applications against several pathogens in the context of the food industry [11,12]. For example,
there are several commercially available products to be used against various food pathogens, such as
Listeria monocytogenes, Salmonella, or Escherichia coli, as surface disinfectants or processing aids. Indeed,
the FDA has recognized some phage-based formulations as “generally regarded as safe” (GRAS) as
food additives. Regarding medicinal use, phage therapy is now under the scrutiny of government
agencies, which are trying to determine the most adequate regulatory framework considering the
special characteristics of phages. In the meantime, patients in many countries can have access to this
treatment as compassionate use [13]. One of the major challenges of regulating phage approval is the
diversity of phages that will be necessary to successfully implement this therapeutic strategy. Indeed,
in order to harness the full potential of phage therapy and its adaptability to changes in pathogenic
strains, there should be room for making changes to phage-based formulations without the need for a
lengthy and costly approval process. In addition to regulatory hurdles, bringing phage therapy to the
market also has the problem of not being very attractive for pharmaceutical companies. To some extent,
this is a consequence of their natural origin, as phages cannot be patented. Also, their use is aimed to
be used as an acute course of treatment rather than for chronic administration, which obviously means
that they would not be as profitable as other medicines. However, the relevant authorities can help by
designing an affordable and straightforward pathway for regulatory compliance that might perhaps
encourage the participation of smaller specialized companies.
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Overall, it is apparent that phages are getting closer and closer to becoming a mainstream
antimicrobial treatment option, especially in the case of difficult-to-cure multiresistant infections.
However, in order to get the most out of phage therapy, we will need to have an arsenal of well-chosen
effective and safe bacteriophages at our disposal. This will involve a number of steps that, if not
carefully planned, may hinder the successful development and subsequent implementation of this
strategy (Figure 1). In order to maximize speed and minimize costs, it is necessary to establish clear
guidelines indicating where and how to look for suitable therapeutic phages, as well as define the
most valuable traits in the identified candidates.
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2. In Search of New Phages

One of the main advantages of using bacteriophages as antimicrobials is their sheer quantity and
diversity. As a matter of fact, even without improvement by genetic engineering, nature represents an
almost limitless source of new phage variants. It is well known that phages are the most abundant
biological entities on earth (about 1031 phages in total) [14]. On top of that, bacterial viruses evolve
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at a dizzying rate and are, as a result, highly diverse. Indeed, there is evidence indicating that
bacteriophages outpace their hosts in the coevolutionary race [15]. Now, this all sounds like good news
from the perspective of the antimicrobial development pipeline until coming to the realization that
finding the right phages for our purpose among this huge set of candidates is quite the gargantuan
task. Nevertheless, it is also worth noting that vast phage collections are already available in different
research centers and universities around the globe. As a result, this would be a good place to start once
the target microbe is identified.

It is obviously impossible to screen for phages everywhere, so a major step consists in narrowing
down the most probable reservoirs of viruses that infect and kill our target microbe. As is always the
case with predators, these reservoirs are likely to coincide with the main habitats of their prey, that
is, the target pathogen. In that sense, d’Hérelle suggested that the best source of bacterial viruses for
antimicrobial applications are samples from patients who are recovering or who have just recovered
from an infection [16]. Indeed, he first remarked the existence of “bacteria eaters” in stool samples of
patients recovering from bacillary dysentery [1]. Similarly, phages against enterohemorrhagic E. coli
(EHEC) O157:H7 were found in fecal samples from human patients and cattle [17]. Additionally, phages
infecting Cutibacterium acnes (formerly Propionibacterium acnes) and Actinobacillus have respectively
been isolated from human skin and dental plaque [18,19]. Given the prevalence of human pathogenic
bacteria in infected patients, another good reservoir of phages infecting these microorganisms is
wastewater from hospitals [20]. If clinical samples are not available, good results have also been
obtained with sewage water, which has actually become a frequent starting point for phage hunts [21].
In the case of microbes with high prevalence in diverse ecological niches, different environmental
sources like river or stream water have also been the place to isolate new bacteriophages [22,23].
Additionally, drinking water was the source of phages infecting Enterococcus and Staphylococcus [24],
while silage from dairy farms proved a good source of listeriaphages [25].

In some cases, the phage titer in these reservoirs will be high enough to allow direct isolation of the
virus after filtration of the sample; for example, by visualization of lysis plaques on plates containing the
host (double layer assay). However, this is not always the case and enrichment steps are often required
to detect the presence of the phage. Frequently, it is a good idea to collect large-volume samples in
order to increase the chances of phage isolation, especially when dealing with samples taken from
environmental sources. It must also be noted that some phages form very small plaques on a bacterial
lawn, which would hinder their identification by the double layer method. For this reason, if no plaques
are observed during the isolation step, it might be worth repeating the process but using techniques
that increase plaque size, such as addition of subinhibitory concentrations of antibiotics [26,27] or other
compounds like sodium thiosulfate, ferric ammonium citrate or 2,3,5-triphenyltetrazolium [28].

Another important aspect in the quest to find new phages with antimicrobial potential lies in
the selection of the most appropriate host strain or strains. However, this choice will also depend on
the specific goal of the search. Thus, if the objective is the identification of phages against as many
strains of a given pathogen as possible, multihost selection protocols should be used. Additionally,
the host strains should preferably be very varied in terms of their characteristics and origin so that they
are representative of the species. In this sense, Casey et al. [29] recommend using bacteria reference
collections for phage identification, as they offer a good representation of the intraspecies diversity,
together with strains of clinical relevance. However, in some cases, there may be a specific target strain
or group of strains that do not seem to be susceptible to the phages available in different collections.
Then, it will be necessary to carry out screenings using these strains as selection hosts. Nonetheless,
if finding a new virulent phage that infects our target strain proves to be very difficult, it is possible
to carry out an adaptation strategy in which coevolution rounds may allow the selection of a phage
variant that can effectively infect and kill the pathogenic strain. This protocol is called the step-by-step
(SBS) method [30]. The phenomenon of local host adaptation also plays a role in the identification of
new phages [31]. Indeed, phages are known to co-evolve very closely with their host strains. As a
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result, virulent phages from a given reservoir or geographic location are oftentimes more effective at
targeting strains from that same milieu.

3. Desirable Traits in Phages with Antimicrobial Potential

3.1. Specific but Not Too Specific

One of the major advantages of bacteriophages as antimicrobials is their specificity. A consequence
of this characteristic is that they are not only innocuous to eukaryotic cells, but also to all prokaryotic
cells outside their host range. This would ensure that the normal microbiota remains intact during
therapy, which in turn would be expected to help prevent secondary infections and probably accelerate
recovery. Indeed, there is growing proof that the microorganisms inhabiting our bodies play very
important roles in our overall health. Antibiotic treatment, by contrast, can severely affect our normal
microbiota due to their more general, broad-range action, which often results in serious side effects [32].
Another benefit of this specific action is that we can technically try to identify viruses that only
infect certain strains within a bacterial species, distinguishing, for example, between pathogenic and
nonpathogenic isolates. Again, some microbes can potentially be helpful or harmful to their human
hosts depending on the presence of sometimes only a few genes that turn them from friend to foe.
As a result, it would be ideal to develop antimicrobials that can differentiate between commensal and
pathogenic strains of the same species.

Notwithstanding the incredible target precision that can be achieved with phage therapy, it is
generally preferable to isolate viruses able to attack a wide range of strains within a bacterial species.
In some cases, it may also be desirable that a given phage can infect different pathogenic species
within a genus. Staphylococcal phages are a good example of this, with some of them infecting the
two opportunistic pathogens Staphylococcus aureus and Staphylococcus epidermidis, such as myophages
phiIPLA-RODI and phiIPLA-C1C [33]. The polyvalent nature of staphylophages is also useful since it
allows carrying out phage propagation on nonpathogenic species, such as Staphylococcus xylosus [34].
Remarkably, there are phages capable of infecting different genera within the Enterobacteriaceae family,
including E. coli O157:H7, Salmonella enterica ser. Paratyphi, and Shigella dysenteriae [35].

At first glance, it would appear that having a broad host range would be a synonym of success for
a bacteriophage, as it would increase its likelihood of encountering a susceptible bacterial cell, which is
necessary for survival of the phage population [36]. However, this hypothesis is not supported by
the available experimental data. Thus, the ability of a given phage to infect and multiply inside a
host depends on factors from both prey and predator. As mentioned previously, some studies have
observed a very well-tuned coevolution, leading to local specificity in phage–host interactions [31].
Indeed, there is evidence that greater specialization can be linked to increased infection efficacy and
the other way around, which suggests that there is an evolutionary compromise between these two
properties [37,38]. Therefore, while it is possible to broaden the host range of a given phage, this might
lead to a “weaker virus” that cannot propagate as efficiently.

In any case, a bacteriophage used for therapeutic applications should at the very least be able
to infect the different variations of the pathogen population inside the patient. As this is not always
possible with single-phage preparations, the use of a phage cocktail, if available, is always a better
option. Interestingly, study of the coexistence dynamics between the cyanobacterium Prochlorococcus
and ten cyanophages revealed that acquisition of resistance to one phage sometimes resulted in
enhanced infection by other phages [39]. In some cases, the authors could demonstrate that this was
due to the increased adsorption of “the other phages” to the phage-resistant mutants than to the
original bacterial strain. If this phenomenon is also observed in therapeutic phages, it would be useful
in the context of phage cocktail administration, as it would manifest itself as a synergic rather than an
additive effect between the different viruses. Identification of the potential phage receptors in the host
is an important aspect of designing a phage cocktail. Evidently, it would be better to have experimental
evidence of the nature of the receptor for a specific phage. However, if this information is not available,
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there are now resources to predict potential receptor molecules based on the phage genome data and
information from literature or databases [40,41]. Indeed, it would help to avoid combining phages
that can potentially exhibit cross-resistance. Moreover, it would be preferable to select phages whose
target receptors are essential for bacterial fitness or virulence as the likelihood of phage resistance
selection will be lower or, at the very least, might lead to lesser pathogenicity. Furthermore, if there is
receptor modification, the probability of phage variants that can infect the altered receptor are much
higher than they are in cases of receptor loss, a possibility with nonessential receptor molecules [42].
Indeed, infectivity evolution in phages during therapeutic applications should be studied more in
depth. Especially, because it provides a unique opportunity of using an evolving antimicrobial that
can potentially overcome by itself bacterial resistance mechanisms during therapy [42].

Another strategy for limiting phage resistance is the selection of phages harboring modified
nucleotides, like archeosine or N6-(1-acetamido)-adenine, in their genomes. This would make the
viral DNA resistant to the activity of many restriction endonucleases, one of bacteria’s natural
antiphage defense systems [43]. A hint of this trait can be found during genome sequencing
through the identification of genes involved in the biosynthesis of these nucleotides. For instance,
recent studies showed that siphophages Vid5 and BRET, which respectively infect the enterobacteria
Pantoea agglomerans and E. coli, carry archeosine biosynthesis genes [44,45].

3.2. Virulent Phages Only, Please

In addition to the lytic cycle, which ends up with the death of the bacterial cell, some bacteriophages
can also undergo the so-called lysogenic cycle. In this case, the viral genome integrates into and
replicates with the bacterial chromosome. The viral genetic material, known as prophage, can stay in
this state for generations until an environmental signal turns on the machinery leading to its excision
from the bacterial genome and kick-starts the lytic cycle. This type of phage is called temperate and
they are known to actively contribute to the phenomenon of horizontal gene transfer, one of the
main mechanisms involved in the spread of antimicrobial resistance and virulence genes. As a result,
temperate phages are not considered good candidates for phage therapy. In contrast, phages that
can only undergo the lytic cycle, or virulent phages, are ideal for this purpose, as their multiplication
is almost always followed by lysis of the infected cell. These phages are also sometimes called
“professionally lytic” [46]. During the phage selection process, virulent and temperate phages can
tentatively be differentiated as they respectively produce clear and turbid plaques on a bacterial lawn.

In some cases, phages that can infect and kill the target organism, especially if it is a specific
strain, are scarce and utilization of virulent derivatives from temperate phages is required. This
can be achieved by selecting or constructing mutant phage variants through different protocols.
For example, phage deletion mutants can be easily isolated by exposing the phage particles to several
rounds of a chelating agent such as ethylenediaminetetraacetic acid (EDTA), sodium citrate, or sodium
pyrophosphate [47]. Chelating agents exert a destabilizing effect on the phage particles by binding the
cations located on their surface, which results in conformational defects and, ultimately, in viability
loss. However, viral particles carrying deletions in their genome are smaller and can retain their
conformation and remain viable under these conditions. From the selected deletion mutants, it would
be then possible to identify the virulent variants, as they would produce clear instead of turbid
plaques. Alternatively, phages can be genetically manipulated to obtain a virulent variant by removing
genes involved in lysogeny. Indeed, a cocktail containing engineered phages successfully eliminated
an infection by a drug-resistant strain of Mycobacterium abscessus from a cystic fibrosis patient [48].
However, the use of genetically modified organisms is still shrouded in controversy and is not even a
viable option in many countries.

Nevertheless, strictly virulent phages are not completely free from the danger of facilitating
transfer of antibiotic resistance genes. For instance, Keen et al. [49] recently described the existence of
“superspreader” virulent phages, which do not carry endonucleases in their genome and release the
bacterial DNA to the environment. This would make it possible that this now extracellular DNA can
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enter other microorganisms by natural transformation and potentially spread resistance or virulence
markers. In fact, this study reported that addition of the phage to cocultures of a kanamycin-sensitive
Bacillus sp. and kanamycin-resistant E. coli strains led to a 1000-fold increase in transfer of the antibiotic
resistance marker to Bacillus. This would not be a desirable situation so it would be important to ensure
that a phage with therapeutic potential does degrade the bacterial chromosome prior to cell lysis.

Once confirmed that a candidate phage is strictly virulent and not a superspreader, the next step
is to determine if it can propagate efficiently both in vitro and in vivo. First, it is necessary to study
propagation under in vitro conditions, for example, by performing a one-step growth curve. This
technique requires achieving the synchronous infection of all bacterial cells in a population in order
to then monitor how the number of extracellular and intracellular viable phage particles changes
throughout the lytic cycle. This data will allow calculation of valuable propagation parameters, such
as burst size (average number of new phage particles released per infected cell) and latent period
(part of the lytic cycle between virion attachment to the cell and start of new phage particle release).
In some cases, a shorter latent period has been associated with the possession of DNA-dependent RNA
polymerases in the phage genome [50]. Theoretically, this protein might shut down host transcription
and increase the efficiency of the phage replication cycle, although this phenomenon has not been
supported by experimental evidence yet. After confirming that the phage can propagate under in vitro
conditions, which is essential for phage production, in vivo experiments should be performed to
confirm that the virus can also multiply effectively at the infection site if the target host is present. This
ability to self-propagate during treatment is undoubtedly a major advantage compared to other types
of antimicrobials, whose concentration invariably decreases after administration to the patient.

3.3. Safe for Human Health and the Environment

Following the isolation of a phage with therapeutic potential, it is necessary to perform genome
sequencing and analysis. Thanks to the advances made in this field, this has become an easy and
affordable task that can actually save us a lot of time and money on additional experiments. On the
one hand, examination of the phage genome can confirm that there are no genes involved in lysogeny,
such as the lytic cycle repressor, integrases or site-specific recombinases. Identification of genes
encoding potential endonucleases can also suggest that it is not a “superspreader”. On top of that,
genomic analysis is the single most reliable way to know whether the phage genome encodes toxins or
antimicrobial resistance determinants. Indeed, if there are any such genes, the phage should never be
considered for therapeutic applications. If possible, it is also preferable to choose a propagation host (a
so-called surrogate strain) that does not carry prophages or virulence/antibiotic resistance markers [51].

Besides not being carriers of “bad genes”, bacteriophages must be innocuous when administered
to the patients. As mentioned above, one key aspect of phages as therapeutics is the fact that they
do not infect nontarget bacteria, leaving the normal microbiota largely undisturbed after therapy.
Regarding their safety for the patient, all clinical trials so far indicate that they do not exhibit significant
toxicity. Nonetheless, it is worth noting that phages need to be well purified in order to remove toxic
substances before administration. A clear example of this is endotoxin, which could lead to serious
side-effects if not thoroughly removed from the phage suspension. The importance of endotoxin
removal depends, however, on the type of application. For example, it is essential for intravenous
administration, while purification does not need to be so strict for topical or oral administration to the
patient [51,52]. In that sense, it is also important to consider the potential effect of widespread lysis of
the target bacteria inside the patient. It is worth noting, however, that studies in which filtered lysates
were administered directly to patients without further purification led to mild or, most frequently,
no symptoms [53]. Overall, the available data suggests that the doses required for bacteriophages to
trigger toxicity exceed the effective concentrations necessary for their application. This holds true
not only for the administered doses but also considering the propagation inside the patient. As such,
phages typically exhibit a high therapeutic index, a quantitative measurement of the relative safety of a
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drug, which is obtained as the ratio between the dose leading to toxicity and the amount that displays
antimicrobial activity.

Due to the relative simplicity and lack of diversity of bacteriophages in terms of their chemical
composition, basically consisting of proteins and nucleic acids, their potential interactions with the
immune system are relatively easy to study and predict in stark contrast to other types of antimicrobials.
Given that the outward structure of the viral particle consists basically of proteins, phages can be
immunogenic. This issue would be especially problematic when intravenous (i.v.) administration is
required, as it could potentially lead to an anaphylactic response. However, i.v. administration of
phages has been performed repeatedly without observing major negative side effects [52].

Widespread phage application as an antimicrobial also poses questions regarding its potential
impact on natural environments [54]. Indeed, it is very important to assess the risk of altering the
composition of natural microbial communities due to the release of phages from clinical, veterinary
or agricultural applications. These changes could be deleterious to ecosystems as they might alter
nutrient cycling. Given the structure of these communities, an impact of phages on soil ecological
dynamics (phage to bacteria ratios of 1:1) would be more expected than on aquatic communities (phage
to bacteria ratios of 1:100). However, this disruptive effect would be expected to be much lower than
that of antibiotics given the specificity of bacteriophage activity.

A key aspect to ensure the safety of phages aimed for therapeutic applications is the development
of well-defined bacteriophage production and quality control protocols that allow manufacturing
of pharmaceutical-grade phage products [55]. These methods should maximize phage yield in the
production stage followed by highly effective purification steps [55,56]. Thus, while satisfying health
and environmental concerns should be a priority, the economic viability of industrial phage production
must also be taken into account. All of these steps are also very important in order to achieve regulatory
approval of phage-based formulations [57].

3.4. Stability

As mentioned above, phage particles consist of a nucleic acid molecule inside a proteinaceous
envelope. As such, they are much more complex and labile compounds than other antimicrobials.
This fact makes them unstable outside a specific range of environmental conditions (temperature, pH,
UV-light, salt concentrations, proteases). Thorough analysis of phage particle stability is, therefore, an
integral part of the phage characterization process. For example, a very effective virulent phage that
has a very narrow stability range may not be well suited for therapy. Indeed, the viral particles must be
able to withstand the production, storage and administration stages in sufficient numbers to reach their
target. However, the conditions that allow phage stability maintenance vary enormously depending
on the specific phage [58]. In fact, it appears that neither family nor close structural similarity are
good predictors of stability range, although tailed phages generally seem to be the most stable under
adverse environmental conditions [59].

After propagation, the bacteriophage should remain viable and infective throughout storage.
As mentioned above, specific storage conditions have to be tested for each phage, as they may vary
depending on its characteristics. For example, different storage temperatures are better suited for
different phages [59]. Thus, while some are more stable at temperatures around 4 ◦C, others must be
kept at freezing temperatures of −20 ◦C or even −80 ◦C. In contrast, some phages exhibit very good
stability at room temperature or even 37 ◦C. Another important factor is the format for storing the
phage particles. For instance, some phages remain viable for longer periods of time when stored in
a liquid (which can be growth medium or a buffer). An alternative possibility is storing the phage
particles in a dry powder, which can be produced by different techniques such as lyophilization (freeze
drying) or spray drying. In this case, it is necessary to consider that the drying process itself may be
deleterious for the viral particles, which might lead to a considerable titer loss prior to storage [22,60].
Sometimes, preservation in both liquid and dry form can be improved by adding different stabilizing
agents, such as skim milk, glycerol, trehalose, or sorbitol [61]. Alternatively, the phages can be kept
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as a nucleic acid inside infected cells, which can then be stored frozen at −80 ◦C [62]. The lytic cycle
would continue as soon as bacterial growth is resumed. However, González-Menéndez et al. [60]
showed that this technique does not always improve phage particle stability compared to storage
of the naked phages. Some studies have also shown that phage encapsulation in nanovesicles can
enhance stability by protecting the particles from environmental factors, although a study showed that
this improvement was only noticeable during short-term but not during long-term storage [63].

In order to be a good candidate for phage therapy, the viral particles must be stable not only during
the production and storage stages, but also during its application, that is, it has to remain infective
from the moment of administration to the patient until it reaches the target pathogen. In that context,
the characteristics of the phage and the type of formulation used will depend on the administration
route and target organs. With regards to temperature, for example, the phage should be able to
withstand the body temperature for long enough to reach its target host. Additionally, if application is
to be carried out by topical administration, it would be desirable that the phage is not exceedingly
sensitive to UV-light exposure, so that it is not inactivated before infecting the bacterial cells. If
treatment is aimed at respiratory infections, the phage particles should be able to withstand techniques
used for the preparation of aerosols, such as freeze- or spray-drying [64–66]. In turn, the ability to
withstand an acidic pH will be very important if the phage is to be administered by the oral route.

As was the case with storage, encapsulation of the phage particles can also be helpful in order
to improve stability during treatment. For example, by facilitating skin absorption of the product so
that the phage can reach deeper layers of the epidermis, or by protecting the phage particles from
the acid in the stomach or from bile salts [67]. Encapsulation can also be suitable for inhalation of
a phage formulation that has to reach the lungs. For instance, a study by Singla et al. [68] showed
that phages in liposomes were more effective than nonencapsulated phages for treating pneumonia
caused by Klebsiella pneumoniae. Additionally, encapsulated phages displayed a greater ability to enter
eukaryotic cells than their nonencapsulated counterparts [69]. This indicates that they have greater
potential for reaching intracellular pathogens. Recent work by Nobrega et al. [70] demonstrated that
improved phage stability during oral administration could be achieved by genetically engineering the
phage particles of the E. coli phage T7 to display lipids on their surface. The authors proposed this
strategy as a good alternative to encapsulation. This high stability is very important as otherwise, oral
administration of phages requires very high phage titers (≥1011 PFU/mL) so that at least a dose of 106

PFU can reach the intestine.
Topical application of phages is the preferred form of treatment for various skin infections, ranging

from acne to serious burn wound infections. In these cases, the phage will typically be applied as
a cream. Good results for phage stability in this format have been obtained so far. For example,
phages against C. acnes remained viable for 90 days in a semisolid preparation if stored protected from
light and at 4 ◦C [18]. In the case of the staphylococcal phage K, stability for several days could be
achieved with a cream stored at room temperature, and the results were improved when using an
oil-in-water nanoemulsion [71]. The authors hypothesized that this enhanced stability may be the result
of electrostatic forces [72]. Additionally, the nanoemulsion may lead to decreased electrostatic repulsion
between the negatively charged surfaces of the phage particle and the cell. In the case of products
aimed at treating burn wound infections, Merabishvili et al. [73] examined the stability of phages
against the main causative agents (P. aeruginosa, A. baumanii, S. aureus) in different antibiotic-containing
formulations, including creams, ointments, and hydrogels. The results of this work indicate that the
pH of the product is the most limiting factor for phage stability.

Finally, the bacteriophage must be able to resist the immune response of the patient. However, it
seems that a very high dose of phage particles, much higher than that recommended for treatment,
is necessary in order to elicit a significant immune response [74]. According to a study by
Majewska et al. [74], this response is higher if the phage is applied by subcutaneous injection rather
than by oral administration. This lack of a very intense response by the immune system is probably
the result of continuous exposure to phages which are part of the human microbiome [75]. In any
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case, definitively showing that phages can remain viable and be effective will come from further
studies in animal models and clinical trials. It is also important to make sure that the phage particles
are not inactivated by neutralizing antibodies. However, a humoral immune response would be
more of a problem when the phages are administered parenterally rather than after oral or topical
application [76]. Moreover, antibody production dynamics would be expected to occur more slowly
than pathogen elimination by the phage and, as a result, phage neutralization by the immune system
should not constitute a problem during acute infection therapy. Additionally, PEGylation of the phage
particles, that is, addition of monomethoxy-polyethylene glycol (mPEG), is known to reduce their
immunogenicity and result in lesser levels of cytokine production in mice [77]. Nonetheless, these
responses still must be studied in more depth.

3.5. Antibiofilm Potential

Biofilms are the most common lifestyle of bacteria in both natural and artificial environments,
including inside the human body. As a result, it is now known that biofilms contribute to bacterial
pathogenicity, especially in the case of chronic infections [78]. These multicellular structures allow
the bacterial cells to survive under normally lethal conditions, resisting challenges by the immune
system or antimicrobial compounds thanks to a combination of multiple mechanisms [79]. This makes
biofilms very difficult to eliminate, and one of the major problems that need to be tackled in order to
combat infections. In that sense, bacteriophages may, given their special characteristics, provide an
interesting alternative to conventional disinfectants or antibiotics [80,81]. However, it is necessary to
demonstrate that a given phage is a useful antibiofilm agent. Several studies have already shown that
phage treatment of preformed biofilms can successfully reduce the amount of total attached biomass as
well as the number of viable bacterial cells attached to the surface. For instance, phage phiIPLA-RODI,
which infects different staphylococcal species, can successfully kill S. aureus cells from preformed
single-species and multispecies biofilms [33,82]. A further example was provided by Khalifa et al. [83],
who showed that an enterococcal phage could eliminate in vitro biofilms and prevent infection by
Enterococcus faecalis in an ex vivo model of root canal infection. Likewise, phages have been used
to kill biofilm cells from numerous important pathogens such as P. aeruginosa [84], A. baumanii [85],
and uropathogenic E. coli [86], amongst others. Also, some studies have demonstrated that phages
can move across these complex microbial populations (Figure 2A) and propagate if a suitable host is
present (Figure 2B) [87,88]. Remarkably, phages also seem to be able to infect the infamous persister
cells (Figure 2C) that are known to contribute to recalcitrant infections, even if they cannot proceed
with the lytic cycle until bacterial growth is resumed [89].

An interesting feature of some phages is the possession of genes coding for exopolysaccharide
depolymerases (Figure 2D) that can degrade the polysaccharidic component of the extracellular
matrix of biofilms facilitating biofilm dispersion and access of the phage into the deeper layers of this
structure [90,91]. It is clear that including at least one such phage in a therapeutic cocktail would be of
help to all the different phages. Similarly, production by phage J8-65 of a colinidase, which targets
polysaccharides in the cell envelope, was responsible for synergy between this phage and T7 in a
temperature- and media-dependent manner [92]. Alternatively, a bacteriophage of interest could be
genetically modified to encode a depolymerase in its genome, as Lu and Collins [93] demonstrated in
their proof-of-principle work with phage T7. Although this strategy would be very controversial at
the moment, if engineered phages become more widely accepted for therapy applications, this would
open the door for modification with other types of genes that may control biofilm development. A
very interesting example was provided by Pei et al. [94] who cloned a quorum-quenching enzyme
in the genome of T7 bacteriophages. While phage degradation of the extracellular matrix is a very
desirable outcome, phage inactivation by matrix components should be avoided (Figure 2E).
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Another important aspect to examine is whether a given phage can potentially promote biofilm
formation of the target pathogen (Figure 2F). In this sense, there are examples showing that both
biofilm enhancement and inhibition are possible depending on the phage–host pair, although studies
concerning the impact of virulent phages have been so far outnumbered by those focusing on
temperate viruses [95]. For example, different studies have shown that addition of some virulent
phages leads to increased biofilm formation in strains of S. aureus, P. aeruginosa, Salmonella, and
Vibrio anguillarum [96–98]. In some cases, such as P. aeruginosa, it is known that the phenotype is due to
the selection of phage-resistant mutants with better biofilm-forming ability [97]. This could be solved
by application of a phage cocktail, as selection of mutants against all phages in the cocktail would
be less likely. In V. anguillarum, phage KVP40 promotes increased cell aggregation [98]. In contrast,
accumulation of extracellular DNA was responsible for increased attached biomass upon low-level
predation of S. aureus by phage phiIPLA-RODI [96]. Nonetheless, it is worth emphasizing the need to
understand the specific mechanisms underlying biofilm increase by phages in order to take action to
reduce or completely eliminate this undesirable phenomenon.

4. Conclusions

In the midst of a nearly apocalyptic scenario regarding our ability to cure infectious diseases,
phage therapy seems like a saving grace. Perhaps not a perfect strategy by itself, it certainly is a
good supplement to other therapies as part of a vast antimicrobial arsenal. Their specificity also fits
very nicely within the tendency toward a more personalized approach to human medicine, especially
when it comes to treatment strategies. However, it is paramount to have as much information as
possible before phage therapy use in the clinic is generalized. This will hopefully prevent some of
the errors made with antibiotics. Additionally, it is very important to have a crystal-clear view of the
characteristics that make a bacteriophage a good candidate for therapeutic use. Once it is established
where and how the search for new phages will be performed, careful analysis of the isolated phage
should ensue. Perhaps the single most important trait is the selection of strictly lytic phages, while
temperate phages should be either modified or discarded outright. In addition, phages should not
carry virulence or antibiotic resistance genes in their genomes and preferably produce endonucleases
that degrade the host chromosome prior to cell lysis, thereby preventing spread of bacterial genes to
other microbes by natural transformation. Clearly, bacteriophages will never attain the spectrum of
action of antibiotics, if only because of their particular multistep mechanism of bacterial killing, the lytic
cycle, which involves several specific interactions at the molecular level. This may not necessarily be a
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drawback, as phage specificity also allows for tightly controlled killing of pathogenic targets without
damaging eukaryotic cells or nontarget microbes. This feature is very important given the increasingly
recognized role of the microbiota in human health. Another aspect that requires attention during
phage selection is phage particle stability under different conditions, especially those occurring during
storage and, above all, during treatment. Nonetheless, strategies that allow prolonged stability such as
encapsulation should be also developed further. Last but not least, the interactions between phages
and microbial biofilms should be analyzed in depth in order to maximize the potential use of bacterial
viruses to reduce or eliminate these structures. Indeed, this might be a key step in the fight against
chronic, recalcitrant infections that do not respond to other types of antimicrobial therapy. Overall,
phage therapy seems like a viable, promising strategy that might play a major role in the antibacterial
regimes of the future, perhaps even the near future. Nonetheless, further research is still necessary to
fill in the gaps that will enable using this strategy while maximizing both efficacy and safety.
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