Lithium-based sorbents for high temperature CO₂ capture: effect of precursor materials and synthesis method

M.T. Izquierdo^{1,2*}, V. Gasquet¹, E. Sansom¹, M. Ojeda¹, S. Garcia¹, M.M. Maroto-Valer¹.

¹ Research Centre for Carbon Solutions (RCCS), School of Engineering and Physical Sciences, Heriot-Watt University, EH14 4AS, Edinburgh, United Kingdom

² Instituto de Carboquímica, ICB-CSIC. c/Miguel Luesma, 4. 50018 Zaragoza, Spain.

*Corresponding author: <u>mizq@icb.csic.es</u>

Abstract

The aim of this work was to study the effect of the silica source (pure reagent or fly ash, FA) and preparation method (solid state reaction and precipitation method) using a Li-pure reagents on the CO_2 uptake at high temperature of the prepared sorbents. CO₂ uptake of sorbents prepared from pure reagents or FA was compared. A relationship between surface area, pore volume and particle size with CO₂ uptake of the prepared samples was not found. X-ray diffraction (XRD) characterization revealed different Li₄SiO₄ contents in the produced samples. Sample prepared from Li₂CO₃ and SiO₂ pure reagents by solid state method had a high Li_4SiO_4 content (91.5 wt%), but in the presence of FA the main compound was Li₂CaSiO₄, which has a low theoretical CO₂ uptake capacity. There is a negligible effect of the preparation method on samples prepared from LiOH with either pure silica or FA. However, for pure reagents (LiOH and SiO₂), the Li₄SiO₄ content was lower than that found when Li₂CO₃ was used as starting material, probably due to a lower synthesis temperature. For LiOH-FA derived samples, XRD patterns showed that CaO was the main crystal phase and the Li content was low, indicating that this element was probably present in the amorphous phase. Except for the Li₄SiO₄ rich sample, a linear relationship was found between the experimentally measured CO₂ uptake and the theoretically calculated one based on the stoichiometry of carbonation reactions exhibited by active phases contained within each sorbent, and normalised to crystal phase contents. Despite the high CaO content in some of the FA-derived samples, the carbonation reaction does not proceed via $CaCO_3$ formation and Li₂CaSiO₄ and Ca₅(SiO₄)₂CO₃ crystal phases are present in the carbonated samples, limiting the CO₂ capture of CaO present in the fly ash.

1. INTRODUCTION

Carbon capture and storage (CCS) is one of the technological options to reduce anthropogenic CO_2 emissions. In CCS, CO_2 is captured at large point sources such as coal-fired power plants or industrial plants, compressed to supercritical conditions and, then, sent for storage.

The costs of CCS can be divided into three components: capture (including separation and compression), transport and storage (including measurement, monitoring and verification). The cost of capture dominates the cost of CCS systems [1].

Solid sorbents have become a promising option to capture CO₂, although liquid solvents are still considered as the most mature CO₂ capture technology. However, the commonly used amine-type solvents are prone to degradation and oxidation (performance stability) resulting in products that are corrosive and may require hazardous material handling procedures [2].

In this context, the use of solid sorbents represents an alternative that could reduce the energy required to move liquid solvents and their regeneration by more than 30% if high CO₂ uptake capacity of the sorbent is achieved [3]. Lithium ceramics represent a group of high-temperature CO₂ sorbents that have attracted interest mainly because their superior stability compared to CaO [4]: they can work under a wide temperature range, between 25 °C and 700 °C [5], and they can maintain the CO₂ capture efficiency upon cycling [5, 6]. Among lithium ceramics, lithium orthosilicate, Li₄SiO₄, is one of the most promising materials due to its high CO₂ uptake capacity and sorption kinetics, especially at high temperatures [5]. Li₄SiO₄ chemisorbs CO₂ according to the following reaction:

$$Li_4SiO_4 + CO_2 \leftrightarrow Li_2CO_3 + Li_2SiO_3$$
(1)

The theoretical maximum uptake of Li_4SiO_4 is 735 g CO_2/kg sorbent, but previous works claimed that Li_2SiO_3 was not able to absorb CO_2 [7, 8]. Recent papers proposed that CO_2 absorption on Li_2SiO_3 does occur, but it is not kinetically favoured [9, 10]. Furthermore, practically, this reaction product restricts the sorption process, limiting the CO_2 theoretical maximum uptake of Li_4SiO_4 to 367 g CO_2/kg sorbent.

A process simulation study for integration of a Li_4SiO_4/Li_2CO_3 looping of a postcombustion CO_2 capture plant into a natural gas combined (NGCC) plant was carried out to compare energy penalty, and thus costs, with amine- CO_2 based capture (conventional MEA and second generation solvent CESAR-1) and calcium looping into the same power plant [11]. The authors showed lower energy penalty for Li_4SiO_4/Li_2CO_3 looping system compared to the best performing (CESAR-1) and they also found a significant efficiency improvement compared to calcium looping.

It has been reported that doping Li_4SiO_4 with sodium [12], potassium [13] aluminium and iron [14] could improve ion mobility. Since the reaction of Li_4SiO_4 with CO_2 is assumed to occur at the outer surface of the crystal grain, it is related to ion diffusion of Li^+ and O^{2^-} , which react with CO_2 to form lithium carbonate [15]. Thus, inserting defects into Li_4SiO_4 crystal lattice could improve its reactivity.

The use of waste materials as a source of silica for lithium orthosilicate synthesis has been previously investigated [16]; it could help not only to reduce the cost of the sorbent but also to introduce foreign elements into the Li₄SiO₄ crystal lattice that could avoid the kinetic restrictions due to the formation of

Li₂SiO₃ layer [14, 17]. However, there are other elements present in this type of silica-containing wastes that could not participate in the reaction, which could limit the sorbent performance; so as a general guide, the CO₂ uptake capacity of waste-derived high temperature solid sorbents should be to at least similar to the commercially available solvents, which has been reported around 180 g CO_2 /kg solvent for 30% MEA (in water) at 40 °C and an inlet CO₂ concentration 4% [18].

In this work, the effect of silica source (pure reagent or fly ash) and the preparation method (solid state reaction and precipitation method) on CO_2 uptake at high temperature of derived Li₄SiO₄ sorbents have been evaluated. The main goal is to assess the role of foreign elements present in the fly ash as potential promoters of CO_2 capture by the derived sorbent materials. Lastly, a comparison between the aforementioned sorbents and those prepared from pure reagents under the same synthesis conditions will be also established.

2. EXPERIMENTAL

2.1. Preparation of samples

Lithium sources used were Li_2CO_3 (Across Organics, purity 99.0%) and LiOH.H₂O (Across Organics, purity 98.0%). Silica sources used were SiO₂ (Aldrich, purity 99.5) and a fly ash from an Estonian oil shale power plant (composition in Table 1).

To obtain lithium orthosilicate according to reactions (2) and (3) the Li source with a 10% of excess of the stoichiometric amount was added to prevent the sublimation of lithium at high temperature [19]. When the fly ash (FA) was used as silica source, the amount added to the synthesis was that equivalent to the

required stoichiometric molar SiO₂ content.

$$2 \operatorname{Li}_2 \operatorname{CO}_3 + \operatorname{SiO}_2 \xrightarrow{} \operatorname{Li}_4 \operatorname{SiO}_4 + 2 \operatorname{CO}_2$$
 (2)

$$4 \operatorname{LiOH} + \operatorname{SiO}_2 \xrightarrow{} \operatorname{Li}_4 \operatorname{SiO}_4 + 2 \operatorname{H}_2 O \tag{3}$$

Table 1. Fly ash composition

Component	%
SiO ₂	33.97
Al ₂ O ₃	8.77
Fe ₂ O ₃	4.36
MgO	4.51
CaO	34.84
Na ₂ O	0.01
K ₂ O	4.94
TiO ₂	0.51
MnO	0.06
P ₂ O ₅	0.19
LOI	7.5

Two different methods for Li_4SiO_4 preparation have been used: solid state reaction (SS) and precipitation method (P).

The conventional SS method is the dominating pathway for ceramic synthesis due to its simplicity. The appropriate amount of Li- and Si- sources were mixed in a planetary ball mill (Pulverissete 6, Fritsch). After that, the resulting powder was submitted to calcination in a muffle furnace, at 600 °C when using LiOH and at 800°C when using Li₂CO₃.

The precipitation method was only used with LiOH because its higher solubility compared to Li_2CO_3 . LiOH was dissolved into deionized water, using a water ratio previously used by Chang et al. [20]: 1 mol LiOH.H₂O/375 ml H₂O. Once the clear solution is prepared, the Si source is added to maintain a molar ratio 4.4 LiOH.H₂O/1 SiO₂. The total amount of solid added depends on Si-source: pure reagent or fly ash, as it has been explained above. The solution is stirred

during 20 min at room temperature. After that, it is subjected to evaporation.

Two different procedures were applied to evaporate water from the solution: (i) a simple evaporation (E) at 70 °C until constant weight; (ii) evaporation using a rotary evaporation (R) at 55 °C under vacuum. After the evaporation step, the resulting powder was submitted to calcination at 600 °C in a muffle furnace. The synthesis temperature was lower in this case based on the studies of Chang et al. [20].

The calcined material was ground by a mechanical mortar and pestle to break down agglomerated particles before characterization and analysis.

A summary of the preparation conditions as well as sample labelling of the prepared sorbents is depicted in Table 2.

Label	Li-source	Si-source	Synthesis	Evaporation	Calcination
			method	method	
LiC_Si/SS	Li ₂ CO ₃	SiO ₂	Solid state	-	800 ºC, 7 h
LiOH_Si/SS	LiOH	SiO ₂	Solid state	-	600 ºC, 7 h
LiC_FA/SS	Li ₂ CO ₃	Fly ash	Solid state	-	800 ºC, 7 h
LiOH_FA/SS	LiOH	Fly ash	Solid state	-	600 ºC, 7 h
LiOH_Si/P_E	LiOH	SiO ₂	Precipitation	70 ºC	600 ⁰C, 7 h
LiOH_Si/P_R	LiOH	SiO ₂	Precipitation	Rotary, 55 °C	600 ⁰C, 7 h
LiOH_FA/P_E	LiOH	Fly ash	Precipitation	70 °C	600 ⁰C, 7 h
LiOH_FA/P_R	LiOH	Fly ash	Precipitation	Rotary, 55 °C	600 °C, 7 h

Table 2. Synthesis conditions and nomenclature for prepared samples.

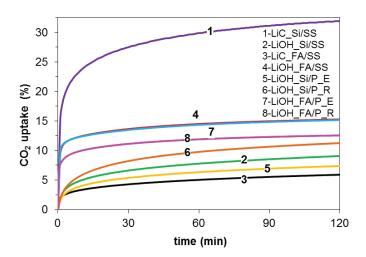
2.2. Characterization of samples

Sorbents were characterized by different techniques. N₂ physisorption analysis at -196 °C was performed in a Micromeritics Gemini VII to obtain BET surface area and pore volume. XRD diffractograms were collected by a Bruker D8

Advance X-ray powder diffractometer equipped with an X-ray source with a Cu anode working at 40 kV and 40 mA and an energy-dispersive one-dimensional detector. Identification and quantification of crystalline phases were carried out by DIFFRAC.EVA and TOPAS software. DIFFRAC.EVA software supports a reference pattern database derived from Crystallography Open Database (COD) and The Powder Diffraction File (PDF) for phase identification. Quantitative XRD analysis of the crystal phase was performed by Rietveld refinement [21] using TOPAS software. Inorganic Crystal Structure Database (ICSD) was used to obtain crystal structures of the considered phases. S-Q method was used in complex diffractograms; this method is based on the comparison of peak intensities between the considered samples. Particle size distribution (PSD) was obtained using a Mastersizer 3000 with a Hydro SM to disperse the sample in the solvent. The solvent used was ethanol in order to avoid FA dissolution.

2.3. CO₂ capture tests

The CO₂ uptake capacity of the prepared sorbents was evaluated using a thermobalance Q500 from TA Instruments. The performance of the sorbents was tested under 50 ml/min flow containing 92% CO₂. The sample was in-situ pre-treated during 60 min at 110°C under N₂, followed by 30 min at 600 °C, heating rate of 25°C/min, under N₂ atmosphere. After this pre-treatment, the atmosphere was changed to the CO₂ atmosphere (92 %, N₂ as balance) and it was kept under isothermal conditions at 600 °C during 120 min. Blank tests were performed for those running conditions.


3. RESULTS AND DISCUSSION

3.1. Sample characteristics and CO₂ uptake

The fly ash used has a silica content of 33.97 %, which was lower than that used in other works [22, 23], and thus a higher amount of fly ash had to be added to the synthesis in order to obtain the desired Li₂CO₃-SiO₂ stoichiometry that yields Li₄SiO₄ (reaction 2). The presence of Na in the fly ash is almost negligible (0.01% Na₂O); despite Na₂SiO₃ is able to capture CO₂, the quantity is limited to values around 1% under dry conditions [24]. The presence of Ca in the fly ash is however noteworthy (34.84% CaO). This FA was selected because its high calcium content and it is representative of fly ash resulting from combustion of lignite and sub-bituminous coal with CaO up to 15-35% [25]. Thus, other fly ash with high CaO content coming from combustion of lignite and sub-bituminous coal could be used for this approach.

It has been well established that CaO-based sorbents have high sorption capacity (stoichiometric uptake value of 78 wt%) and fast kinetics under a wide range of temperatures, but regeneration has to be conducted at temperatures higher than 900 °C [26], which implies rapid loss of sorbent activity during capture looping leading to the need to add fresh sorbent during the process [27].

Other elements also present in the fly ash such as K, Fe and Al are reported to enhance Li-containing sorbents performance by Li_4SiO_4 doping [14, 28, 29]. Hence, the influence of the abovementioned fly ash containing elements in the resultant synthesised sorbents was evaluated. Towards that aim, sorbents prepared from pure reagents were also evaluated for CO_2 uptake under the same experimental conditions. The strong effect of the carbonation temperature was already observed for pure Li_4SiO_4 and alkali promoted Li-sorbents [20, 23, 30, 31] and accordingly the carbonation temperature selected for this study was 600 °C. Figure 1 depicts the CO₂ uptake at 600 °C obtained in thermogravimetric

experiments for the samples prepared (notation in Table 2).

Figure 1. TG curves of CO₂ uptake isothermal experiments for the prepared samples.

For sample LiC_Si/SS, a CO₂ uptake of 31.9 % was obtained, which is close to the theoretical sorption capacity of Li₄SiO₄ of 36.7 % and comparable to that found by other authors using a similar synthesis procedure [14, 26, 31, 32]. Except for LiC_Si/SS and LiC_FA/SS samples, for which the use of pure reagents has a very positive impact on CO₂ uptake, 31.9% and 5.9% respectively, for the rest of the samples the use of FA has enhanced the CO₂ uptake performance. This is somehow unexpected due to the amount of inert material that would be present in FA-derived samples, which would accordingly lower the capture capacity of the sorbents. Therefore, in order to compare

performance of the samples, capture capacity values of those sorbents obtained using FA as Si source were normalized to the SiO₂ content of the raw FA. So, if reactions (2) and (3) are complete, Li_4SiO_4 content of samples prepared with pure reagents would be 100% and Li_4SiO_4 content of samples prepared with FA would be 50.6%.

Figure 2 shows normalised CO_2 uptake values, i.e. corrected for the theoretical active mass of each sample. As can be seen, normalized CO_2 uptake values are around 30%, near to the theoretical sorption capacity of Li₄SiO₄ of 36.7% for samples LiOH-FA/SS and LiOH-FA/P-E.

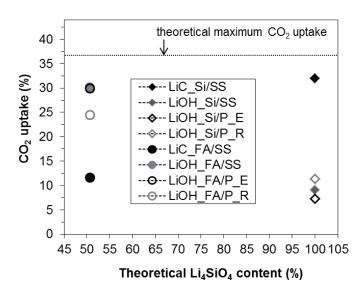


Figure 2. CO_2 uptake from TG isothermal experiments at 600 °C (for samples synthetized with FA CO_2 uptake values have been normalized to theoretical active mass).

Surface area, pore volume, average particle size and CO_2 uptake values of the samples are reported in Table 3. It can be observed that there is not a relationship between surface area, pore volume or particle size and CO_2

uptake. Kanki et al. [33] reported the dependence of the CO₂ absorption reaction on the Li₄SiO₄ surface properties, which were modified by ball milling processing; they observed a change of CO₂ uptake from c.a. 10% to 30% for as-prepared Li₄SiO₄ and 120 min milled Li₄SiO₄, respectively, and they found surface areas five times larger after 120 min ball milling. In the same way, Venegas et al. [10] reported an increased reactivity when using very small particles, < 3 μ m, and they attributed this result to the presence of more Li atoms over the surface of those small particles.

In this work, similar CO₂ uptake is obtained with samples exhibiting quite different particle size, as can be deduced from Table 3. On the contrary, samples exhibiting simultaneously similar particle size and surface area, for instance LiC_FA/SS and LiOH_FA/SS samples, exhibited a quite different CO₂ uptake capacity, 11.6% and 30.2% (see Figure 2), respectively. Thus, surface area, pore volume and average particle size values cannot explain the different CO_2 uptake values.

Label	BET surface area	Pore volume*	Particle size	CO ₂ uptake**	
	m²/g	cm³/g	μm	%	
LiC_Si/SS	4.3	0.005	39	31.9	
LiOH_Si/SS	4.0	0.007	83	9.0	
LiC_FA/SS	1.7	1.7 0.003		7.3	
LiOH_FA/SS	2.3	0.004	124	11.3	
LiOH_Si/P_E	5.1	0.005	163	5.9	
LiOH_Si/P_R	5.2	0.006	140	15.3	
LiOH_FA/P_E	4.9	0.006	91	15.2	
LiOH_FA/P_R	4.2	0.005	93	12.4	

Table 3. Characterization of prepared sorbents

*(p/p₀=0.95)

**raw values from Figure 1.

3.2. Evaluation of CO₂ capture uptake from different sorbents active phases

When the synthesis was carried out in presence of FA other reaction products rather than Li₄SiO₄ could be present in the prepared sorbent due to other reaction paths apart from reaction (2) and (3). The CO₂ uptake capacity of the sorbent would be influenced by the ability to absorb CO₂ of those compounds. In addition, the presence of other elements could act as dopants for the Li₄SiO₄ structure. An increased reactivity for CO₂ absorption has been reported when Li₄SiO₄ is doped with heteroatoms that help ions diffusion [14, 22, 28]. Despite some authors [5] found that doping enhanced the carbonation reaction kinetics due to ions diffusion enhancement through the carbonate shell, these authors also found a decrease of CO₂ uptake because the reduction of the active mass. This fact was also observed in this work and it was particularly relevant because the SiO₂ content of the FA is lower than that used in other studies [22, 23]; this was the reason to normalise CO₂ capture to Li₄SiO₄ content on the whole sorbent assuming complete reaction (2) and (3).

Accordingly, XRD analysis was carried out in order to gain insight on the reasons for the different CO_2 uptake performance of the samples. XRD patterns of the samples as well as main crystal phase assignation are presented in Figure 3. As shown, Li₄SiO₄ is the main crystalline phase present in the samples synthesised from pure reagents. However, this is not the case for samples synthesised from FA in which other crystalline phases were found as a result of the reaction of Li₂CO₃ or LiOH with other elements present in the FA. Moreover, Li₄SiO₄ was not the main phase in none of the samples prepared from FA. It can be seen that the main crystal phase present in sample LiC- FA/SS is Li₂CaSiO₄, but this compound is a minority phase in the rest of FAbased samples. According to the low CO₂ uptake of the LiC-FA/SS sample (5.9%), that crystal phase seems to be low efficiency for CO₂ absorption. Li₂CO₃ is found in all samples, including in those ones prepared from LiOH. For samples prepared from LiOH and FA, this fact could be explained in terms of unburned carbon present in the FA (LOI value of 7.5%). Moreover, the presence of Li₂CO₃ has been observed during the synthesis of Li₄SiO₄ from LiOH at temperatures lower than 600 °C [20] and it was described as a result of a formation mechanism of Li₄SiO₄. Accordingly, despite Li₂CO₃ was not the raw material used for the synthesis of those samples, its presence is not unexpected, according the above description.

For the three samples prepared from LiOH and FA, the main crystal phase is CaO. These samples exhibited relatively high CO₂ uptake capacity, despite the different synthesis method and despite Li₄SiO₄ is not the main phase present. It is well-known the high theoretical CO₂ uptake capacity of CaO (78%), so CO₂ capture uptakes for samples LiOH_FA/SS, LiOH_FA/P-E and LiOH_FA/P-R could be related to the CaO content of the samples as well as the presence of Li₄SiO₄. For these samples, the Li₂CaSiO₄ content, which was shown to have low potential for CO₂ capture in the case of sample LiC-FA/SS, seems to be low based on the peak intensity in the XRD patterns. The interaction of CaO present in the FA with the rest of the compounds present in the FA during synthesis at high temperature is not different to that found during calcination at high temperature in the Ca-looping process in presence of coal ash [34], except in the case of sample LiC_FA/SS in which the main calcium phase is Li₂CaSiO₄. This is probably due to the higher temperature used in the synthesis with Li₂CO₃ when compared with that with LiOH (800°C and 600 °C, respectively) and the same SS synthesis method.

For the samples prepared from LiOH and SiO₂, the CO₂ uptake was very low compared with that prepared from Li_2CO_3 and SiO₂, regardless of the synthesis method used. This fact could be understood in terms of the low Li_4SiO_4 content because no other elements are present.

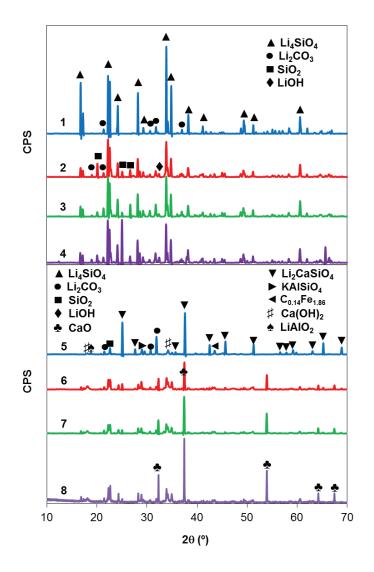


Figure 3. Diffractograms, with identification of main crystal phases, for samples synthetized from pure reagents (top): 1) LiC-Si/SS; 2) LiOH_Si/SS; 3) LiOH_Si/P_E; 4) LiOH_Si/P_R; and from FA (bottom): 5) LiC_FA/SS; 6) LiOH_FA/SS; 7) LiOH_FA/P_E; 8) LiOH_FA/P_R.

For those samples prepared from FA, it seems obvious that some of the crystal phases present in the samples could capture CO_2 .In addition to the CO_2 capture uptake exhibited by Li_4SiO_4 through reaction (1), CaO, Ca(OH)₂ and Li_2CaSiO_4 can also react with CO_2 through reactions (4), (5) and (6):

$$CaO + CO_2 \leftrightarrow CaCO_3 \tag{4}$$

$$Ca(OH)_2 + CO_2 \leftrightarrow CaCO_3 + H_2O$$
(5)

$$2 \operatorname{Li}_2 \operatorname{CaSiO}_4 + \operatorname{CO}_2 \leftrightarrow \operatorname{Li}_2 \operatorname{CO}_3 + \operatorname{Li}_2 \operatorname{SiO}_3 + \operatorname{Ca}_2 \operatorname{SiO}_4$$
(6)

The stoichiometric CO_2 uptake is 78%, 59% and 15% for reactions (4), (5) and (6), respectively. Therefore, in order to evaluate the CO_2 uptake of the samples when considering the presence of different active compounds for CO_2 capture, quantification of the crystal phases was carried out. For samples synthesised from pure reagents, quantification has been carried out by Rietveld refinement. For samples synthesised from FA, values reported come from S-Q (semiquantitative) procedure. The patterns were very complex and it was not possible to model the diffractograms by Rietveld refinement. Despite these S-Q values are not as accurate as those obtained by refinement, they can provide knowledge on the abundance of each crystalline phase on the sample. Table 4 shows XRD quantification analysis of the crystalline phases. As qualitatively predicted before, the Li₄SiO₄ content is very limited for samples prepared from FA, despite the amount of FA added was equivalent to the SiO₂ molar ratio needed for reactions (2) or (3). This fact could be understood for sample LiC_FA/SS, because the main crystalline phase obtained was Li₂CaSiO₄; however, the amount of elemental Li considering the contribution of the species reported in Table 4 (9.4% Li), is far from the Li amount added for the synthesis, 23.2% Li. This suggests that an important part of this element is

in the amorphous phase. For samples LiOH_FA/SS, LiOH_FA/P_E and LiOH_FA/P_R the main compound was CaO, and small amounts of Li_4SiO_4 can be found despite free LiOH is still available in the crystal phase. Again, the Li content of the crystalline phases reported in Table 4 was lower than 6%, indicating that some Li compounds would be in the amorphous phase.

	Crystaline phases, wt%								
Label	Li ₄ SiO ₄	Li ₂ CO ₃	LiOH	SiO ₂	Li ₂ CaSiO ₄	Ca(OH) ₂	CaO	LiAlO ₂	KAISiO ₄
LiC_Si/SS	91.5	6.3	-	2.2	-	-	-	0.0	0.0
LiOH_Si/SS	52.3	9.9	19.8	15.7	-	-	-	0.0	0.0
LiC_FA/SS	-	17.0	-	2.9	62.0	6.1	-	3.0	3.0
LiOH_FA/SS	8.4	2.9	6.4	-	1.9	10.5	65.0	2.9	2.0
LiOH_Si/P_E	52.1	10.5	21.3	16.1	-		-	0.0	0.0
LiOH_Si/P_R	63.0	9.3	14.5	13.2	-		-	0.0	0.0
LiOH_FA/P_E	9.0	3.0	4	-	2.0	6.0	70.9	3.0	2.0
LiOH_FA/P_R	8.5	3.5	7.5	-	3.2	3.2	66.8	2.5	2.5

Table 4. Main crystal phases of prepared samples from XRD analysis

As can be seen, the synthesis method does not affect the composition of the crystal phase when comparing LiOH and FA starting materials; however, for Li_2CO_3 and FA starting materials, the synthesis temperature played an important role on the final composition of the prepared material. For sorbents prepared with pure reagents, Li content obtained from XRD quantification is close to the amount of Li added for the synthesis, in particular for sample prepared from Li_2CO_3 (22.4% versus the added 23.2%); in those samples prepared with LiOH the Li content was about 20%. This lower value cannot be attributed to Li volatilization during synthesis, because the temperature used was lower (600°C) than that used when Li_2CO_3 was the starting material. This would entail that either the precursor or the lower synthesis temperature promotes the movement of Li-containing compounds to the amorphous phase and this fact is independent of the synthesis method used, SS or precipitation. Despite some authors have attributed an enhanced CO₂ uptake capacity to the amorphousness of finely grinded Li₄SiO₄ [33], in this work those samples with a lower content of crystalline Li compounds (mainly due to Li₄SiO₄), i.e. higher amorphous Li content, exhibited different CO₂ uptake capacities.

In order to take into account the contribution of relevant crystalline phases to CO_2 capture, the maximum theoretical CO_2 uptake of the synthesized materials was calculated and normalised based on the content of each of the active crystalline phases (Table 4) and according to reactions (1), (4), (5) and (6). This normalised theoretical value was then compared with the experimentally measured CO_2 uptake in Figure 4.

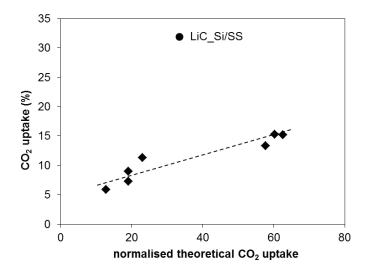


Figure 4. Experimentally measured CO_2 uptake versus normalised theoretical CO_2 uptake calculated from identified active crystalline phases according to reactions (1), (4), (5) and (6).

If the point corresponding to sample LiC_Si/SS is disregarded, it would be a direct relationship between the experimentally measured CO_2 uptake and the theoretically calculated one (based on stoichiometric CO_2 uptake values for reactions (1), (4), (5) and (6) and normalized to its crystal phase content). In other words, it seems that the only factor affecting the CO_2 uptake performance of the prepared samples is the presence of active phases for CO_2 capture.

However, the data point corresponding to sample LiC_Si/SS is far from the trend line depicted in Figure 4. The Li₄SiO₄ content of this sample is the highest among all the studied samples and there is no other compound present that could capture CO₂. The CO₂ uptake was 31.9%, but normalizing to the Li₄SiO₄ content, i.e. to the active mass, the CO₂ uptake is 33.4%, which is close to the theoretical stoichiometric uptake. Despite CaO has a much higher theoretical CO₂ uptake capacity than that of Li₄SiO₄ and the content of CaO of samples prepared with LiOH and FA is high, the experimental CO₂ uptake for sample LiOH_FA/SS was only 15.3% respect to the calculated one of 60.3%. In order to explain this behaviour, XRD patterns of some samples after carbonation at 600 °C were obtained.

Figure 5 shows the main crystal phases of samples LiC_Si/SS, LiC_FA/SS and LiOH_FA/SS before (as prepared samples) and after carbonation. As can be seen, after carbonation the main crystalline phases in sample LiC_Si/SS are Li_2CO_3 and Li_2SiO_3 , as expected according to reaction (1); however, it can be observed the presence of c.a. 3.5 % of unreacted Li_4SiO_4 . This value can explain the disagreement between the experimental and calculated CO_2 uptake of sample LiC_Si/SS (31.9% and 33.4%, respectively).

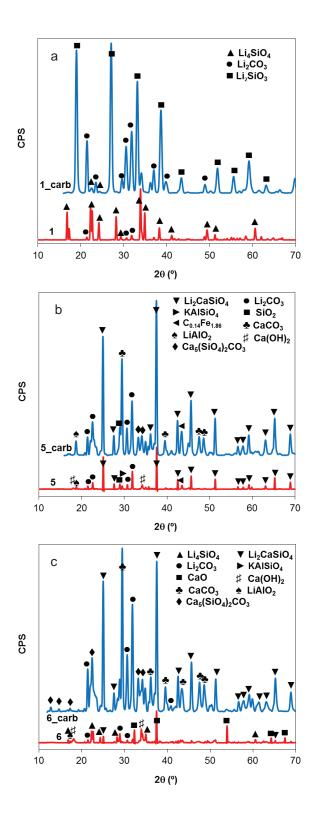


Figure 5. Main crystal phases from XRD for as prepared samples (only as reference: more detailed in Figure 3) and after carbonation at 600 °C: Samples (a) 1-LiC-Si/SS; (b); 5-LiC-FA/SS; (c) 6-LiOH-FA/SS

After carbonation of sample LiC_FA/SS, it can be observed the presence of unconverted Li₂CaSiO₄ according to reaction (6), which was the main crystal phase in the prepared sample. CaCO₃ is present after carbonation, according to reaction (5), because CaO was not present in the prepared sample. Moreover, a new crystal phase is present, $Ca_5(SiO_4)_2CO_3$, which could come from the reaction between Li₂CaSiO₄ and CO₂ following a different path than that of reaction (6) including also connected reaction paths with reaction (5). The difference among experimental and calculated CO₂ uptake of sample LiC_FA/SS, 5.9% and 12.8%, respectively, could be explained in terms of the unreacted Li₂CaSiO₄ crystal phase.

After carbonation of sample LiOH_FA/SS it cannot be observed the presence of CaO, which was the main crystal phase in the raw sample; this means that CaO reacted with CO₂ according to reaction (4). The new crystal phase, $Ca_5(SiO_4)_2CO_3$, is also present and again it can be observed the presence of unconverted Li₂CaSiO₄ according to reaction (6). The presence of CaCO₃ in the carbonated LiOH_FA/SS sample is lower than in sample LiC_FA/SS despite the high amount of CaO present in the former sample. However, the content of Li_2CaSiO_4 and $Ca_5(SiO_4)_2CO_3$ is higher. This fact could explain the difference among experimental and calculated CO_2 uptake of sample LiC_FA/SS, 15.3% and 60.3%, respectively.

4. CONCLUSIONS

Li-based sorbents have been synthesised from either pure reagents or using a fly ash as a silica source by two different methods: solid state and precipitation. Measured CO₂ uptake of the samples did not show to have a linear relationship with either surface area, pore volume or particle size of the samples. The CO_2 uptake for samples prepared from LiOH and SiO₂ was very low compared with that for samples synthesised from Li₂CO₃ and SiO₂, independently of the synthesis method used, SS or precipitation. This fact could be attributed to the Li₄SiO₄ content, as the only compound present in those samples that could absorb CO₂.

Samples prepared with FA exhibited higher CO_2 uptake values than the samples prepared with pure reagents (except that prepared with Li_2CO_3 and solid state synthesis method), which cannot be explained because the reduced active mass due to the FA dilution addition. This fact could be explained in terms of the presence of high CaO content.

Except for the sample containing almost pure Li_4SiO_4 , a direct relationship between experimentally measured CO_2 uptake values and theoretically calculated values considering crystal phase contents and theoretical CO_2 uptake of each phase has been found. For the sample containing almost pure Li_4SiO_4 it seems that this compound is completely available for reaction with CO_2 , reaching a CO_2 uptake of 31.9%. Despite the high CaO content in some of the synthesized samples, the carbonation reaction does not proceed via CaCO₃ formation and Li_2CaSiO_4 and $Ca_5(SiO_4)_2CO_3$ crystal phases are present in the carbonated samples, limiting the CO_2 capture of CaO present in the fly ash.

Acknowledgements

The financial support of the Research Centre for Carbon Solutions (RCCS) at Heriot-Watt University is gratefully acknowledged.

M.T. Izquierdo duly acknowledges the Spanish Ministry of Education, Culture

and Sports financial support under "Salvador Madariaga" programme for senior

researchers (ref no.PRX17/00264).

References

- [1] IEA/OECD. 20 years of Carbon Capture and Storage: Accelerating future deployment. Paris, France: International Energy Agency; 2016.
- [2] Mondal MK, Balsora HK, Varshney P. Progress and trends in CO₂ capture/separation technologies: A review. Energy 2012;46:431-41.
- [3] Gray ML, Champagne KJ, Fauth D, Baltrus JP, Pennline H. Performance of immobilized tertiary amine solid sorbents for the capture of carbon dioxide. International Journal of Greenhouse Gas Control 2008;2:3-8.
- [4] Yancheshmeh MS, Radfarnia HR, Iliuta MC. High temperature CO₂ sorbents and their application for hydrogen production by sorption enhanced steam reforming process. Chemical Engineering Journal 2016;283:420-44.
- [5] Nair BN, Burwood RP, Goh VJ, Nakagawa K, Yamaguchi T. Lithium based ceramic materials and membranes for high temperature CO₂ separation. Progress in Materials Science 2009;54(5):511-41.
- [6] Yi KB, Eriksen DO. Low temperature liquid state synthesis of lithium zirconate and its characteristics as a CO₂ sorbent. Separation Science and Technology 2006;41:283-96.
- [7] Kato M, Nakagawa K. New series of lithium containing complex oxides, lithium silicates, for application as a high temperature CO₂ absorbent. Journal of the Ceramic Society of Japan 2001;109:911-4.
- [8] Tsumura N, Kuramoto A, Shimamoto Y, Aono H, Sadaoka Y. Thermal stability of sodium aluminum silicates with and without alkali carbonates. Journal of the Ceramic Society of Japan 2005;113:269-74.
- [9] Khomane RB, Sharma BK, Saha S, Kulkarni BD. Reverse microemulsion mediated sol-gel synthesis of lithium silicate nanoparticles under ambient conditions: Scope for CO₂ sequestration. Chemical Engineering Science 2006;61:3415-8.
- [10] Venegas MJ, Fregoso-Israel E, Escamilla R, Pfeiffer H. Kinetic and reaction mechanism of CO₂ sorption on Li₄SiO₄: Study of the particle size effect. Industrial & Engineering Chemistry Research 2007;46:2407-12.
- [11] Garcia S, Fernandez ES, Stewart AJ, Maroto-Valer MM. Process integration of post-combustion CO2 capture with Li₄SiO₄/Li₂CO₃ looping in a NGCC plant. 13th International Conference on Greenhouse Gas Control Technologies, Ghgt-13 2017;114:2611-7.
- [12] Mejia-Trejo VL, Fregoso-Israel E, Pfeiffer H. Textural, Structural, and CO2 Chemisorption Effects Produced on the Lithium Orthosilicate by Its Doping with Sodium (Li_{4-x}Na_xSiO₄). Chemistry of Materials 2008;20:7171-6.
- [13] Sanna A, Maroto-Valer MM. Potassium-based sorbents from fly ash for high-temperature CO₂ capture. Environmental Science and Pollution Research 2016;23:22242-52.

- [14] Gauer C, Heschel W. Doped lithium orthosilicate for absorption of carbon dioxide. Journal of Materials Science 2006;41:2405-9.
- [15] Xiong RT, Ida J, Lin YS. Kinetics of carbon dioxide sorption on potassium-doped lithium zirconate. Chemical Engineering Science 2003;58:4377-85.
- [16] Olivares-Marin M, Drage TC, Maroto-Valer MM. Novel lithium-based sorbents from fly ashes for CO₂ capture at high temperatures. International Journal of Greenhouse Gas Control 2010;4:623-9.
- [17] Amorim SM, Domenico MD, Dantas TLP, Jose HJ, Moreira RFPM. Lithium orthosilicate for CO₂ capture with high regeneration capacity: Kinetic study and modeling of carbonation and decarbonation reactions. Chemical Engineering Journal 2016;283:388-96.
- [18] Jou FY, Mather AE, Otto FD. The solubility of CO₂ in a 30-mass-percent monoethanolamine solution. Canadian Journal of Chemical Engineering 1995;73:140-7.
- [19] Feng YJ, Feng KM, Cao QX, Hu J, Tang H. Fabrication and characterization of Li₄SiO₄ pebbles by melt spraying method. Fusion Engineering and Design 2012;87:753-6.
- [20] Chang CC, Wang CC, Kumta PN. Chemical synthesis and characterization of lithium orthosilicate (Li₄SiO₄). Materials & Design 2001;22:617-23.
- [21] Young RA. The Rietveld Method. Oxford University Press; 1995.
- [22] Sanna A, Maroto-Valer MM. CO₂ Capture at High Temperature Using Fly Ash-Derived Sodium Silicates. Industrial & Engineering Chemistry Research 2016;55:4080-8.
- [23] Sanna A, Ramli I, Maroto-Valer MM. Development of sodium/lithium/fly ash sorbents for high temperature post-combustion CO₂ capture. Applied Energy 2015;156:197-206.
- [24] Rodriguez MT, Pfeiffer H. Sodium metasilicate (Na2SiO3): A thermokinetic analysis of its CO₂ chemical sorption. Thermochimica Acta 2008;473:92-5.
- [25] Mehta PK. Pozzolanic and Cementitious By-products as Mineral Admixtures for Concrete:A Critical Review. American Concrete Institute 1983;1:46.
- [26] Kato M, Nakagawa K, Essaki K, Maezawa Y, Takeda S, Kogo R, et al. Novel CO₂ absorbents using lithium-containing oxide. International Journal of Applied Ceramic Technology 2005;2:467-75.
- [27] Abanades JC. The maximum capture efficiency of CO₂ using a carbonation/calcination cycle of CaO/CaCO₃. Chemical Engineering Journal 2002;90:303-6.
- [28] Zhang S, Zhang Q, Wang H, Ni Y, Zhu Z. Absorption behaviors study on doped Li4SiO4 under a humidified atmosphere with low CO₂ concentration. International Journal of Hydrogen Energy 2014;39:17913-20.
- [29] Seggiani M, Puccini M, Vitolo S. Alkali promoted lithium orthosilicate for CO₂ capture at high temperature and low concentration. International Journal of Greenhouse Gas Control 2013;17:25-31.
- [30] Lopez Ortiz A, Escobedo Bretado MA, Guzman Velderrain V, Melendez Zaragoza M, Salinas Gutierrez J, Lardizabal Gutierrez D, et al.

Experimental and modeling kinetic study of the CO₂ absorption by Li4SiO4. International Journal of Hydrogen Energy 2014;39:16656-66.

- [31] Zhang Q, Han D, Liu Y, Ye Q, Zhu Z. Analysis of CO² Sorption/Desorption Kinetic Behaviors and Reaction Mechanisms on Li4SiO4. Aiche Journal 2013;59:901-11.
- [32] Izquierdo MT, Turan A, Garcia S, Maroto-Valer MM. Optimization of Li4SiO4 synthesis conditions by a solid state method for maximum CO₂ capture at high temperature. Journal of Materials Chemistry A 2018;6:3249-57.
- [33] Kanki K, Maki H, Mizuhata M. Carbon dioxide absorption behavior of surface-modified lithium orthosilicate/potassium carbonate prepared by ball milling. International Journal of Hydrogen Energy 2016;41:18893-9.
- [34] He D, Qin C, Manovic V, Ran J, Feng B. Study on the interaction between CaO-based sorbents and coal ash in calcium looping process. Fuel Processing Technology 2017;156:339-47.