ESTUDIO DE LOS MÉTODOS EMPLEADOS EN LA CARACTERIZACIÓN DE LOS SUELOS SALINOS Y ALCALINOS DE LAS ISLAS CANARIAS

por

E. FERNANDEZ CALDAS, V. PEREZ GARCIA Y V. GARCIA

PUBLICADO EN
ANALES DE EDAFOLOGIA Y AGROBIOLOGIA
Tomo XXXII, Núms. 5-6.—Madrid, 1973
ESTUDIO DE LOS MÉTODOS EMPLEADOS EN LA CARACTERIZACIÓN DE LOS SUELOS SALINOS Y ALCALINOS DE LAS ISLAS CANARIAS

por

E. FERNÁNDEZ CALDAS, V. PÉREZ GARCÍA Y V. GARCÍA

SUMMARY

METHODS USED IN THE CHARACTERISATION OF SALINE AND ALKALI SOILS IN THE CANARY ISLANDS

A study have been made of different methods used to characterise the saline and alkali soils in the Canary Islands, checking the procedures recommended by the U.S. Salinity Laboratory U. S. A.

In general, with minor variations, these methods can be applied to the study of these type of soils in the Canary Islands.

La abundancia de suelos salinos y alcalinos en las regiones áridas de las Islas Canarias, y la importancia de estas regiones, desde el punto de vista agrícola para los cultivos de mayor importancia económica como el plátano y tomate, nos ha llevado a hacer un estudio de sus características para conseguir un mayor aprovechamiento agrícola.

No obstante, antes de iniciar el estudio de estos suelos, se hace necesario comprobar si las técnicas para caracterizar los suelos salinos y alcalinos, generalmente empleados en otras latitudes, se pueden utilizar con suficiente garantía en los suelos salinos y alcalinos de estas islas.

Esta comprobación se hace aún más necesaria si tenemos en cuenta la naturaleza de estos suelos, todos ellos de origen volcánico, en los que es frecuente encontrar un porcentaje de Na de cambio superior al 30 por 100 sin que el pH sea muy elevado y viceversa, suelos con pH próximos a nueve y con un tanto por ciento de cambio muy inferior a 15, y elevada saturación en K en el complejo de cambio que puede influir en algunas características físicas de estos suelos principalmente en su permeabilidad.
Para este estudio, se han elegido las técnicas establecidas por el U. S. Salinity Laboratory, aplicándose a un número elevado de muestras representativas de los fenómenos de salinidad y alcalinidad de estas islas. Los suelos estudiados presentan una gran variabilidad en sus características físico-químicas, encontrándose los suelos arcillosos, con una variación del pH desde 6.54 a 9.10 y de la conductividad eléctrica del extracto saturado de 4.2 a 71.0 mmbos./cm. 25°C.

El interés de este estudio tiene por objeto el establecer aquellas técnicas más idóneas para caracterizar los suelos salinos y alcalinos en las Islas Canarias.

Técnicas y métodos de análisis

La toma de muestras se realizó a una profundidad de 20 cm. secándolas al aire y pasándolas posteriormente por tamiz de 2 mm. A la fracción preparada de esta forma, se le aplicaron los métodos y técnicas de análisis propuestos por el U. S. Salinity Laboratory señalados en el Handbook número 60.

La medida del pH, se efectuó en la suspensión suelo-agua 1:2.5, utilizando un medidor de pH Cambridge con electrodo de vidrio y calomelano.

La conductividad eléctrica (CE × 10^3 25°C) se midió en conductivímetro Meter L B R - W T W.

Resultados experimentales y discusión

a) **Conductividad eléctrica y concentración catiónica del extracto saturado**

En general se utiliza el valor de la conductividad eléctrica del extracto saturado, para determinar aproximadamente el estado de salinidad de un suelo. El valor de esta conductividad, si bien no guarda una alta correlación con el contenido en sales totales solubles de un suelo, está, generalmente, correlacionado con la concentración total de cationes solubles en el extracto saturado.

Bower, Campbell y Richard (1) encuentran esta alta correlación en los suelos salinos del Oeste de Estados Unidos, estableciendo entre éstos dos términos la ecuación de regresión:

\[\text{CST}_{\text{me}/1} = 10.37 (\text{CE} \times 10^3)^{1.083} \] (1)

De igual forma, Fireman y Reeve, encuentran una correlación altamente significativa entre CE × 10^6 y la C. S. T. me/1 en los suelos salinos y alcalinos de Gem County (Idaho) (2).
<table>
<thead>
<tr>
<th>Suelos</th>
<th>Porcentaje de saturación</th>
<th>E.C. x 10^3</th>
<th>Cationes en extracto saturado mg/l</th>
<th>Cationes solubles totales mg/l</th>
<th>CST</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ca^{2+}</td>
<td>Mg^{2+}</td>
<td>Na^{+}</td>
</tr>
<tr>
<td>32</td>
<td>40.0</td>
<td>73.0</td>
<td>158.60</td>
<td>162.50</td>
<td>492.60</td>
</tr>
<tr>
<td>29</td>
<td>42.4</td>
<td>51.0</td>
<td>90.10</td>
<td>97.37</td>
<td>267.50</td>
</tr>
<tr>
<td>49</td>
<td>38.7</td>
<td>42.0</td>
<td>45.50</td>
<td>19.50</td>
<td>370.00</td>
</tr>
<tr>
<td>50</td>
<td>38.5</td>
<td>6.4</td>
<td>10.60</td>
<td>10.70</td>
<td>58.50</td>
</tr>
<tr>
<td>51</td>
<td>38.6</td>
<td>8.2</td>
<td>11.40</td>
<td>14.50</td>
<td>68.00</td>
</tr>
<tr>
<td>56</td>
<td>32.5</td>
<td>45.0</td>
<td>39.80</td>
<td>98.40</td>
<td>430.00</td>
</tr>
<tr>
<td>57</td>
<td>36.7</td>
<td>4.6</td>
<td>14.10</td>
<td>21.20</td>
<td>21.12</td>
</tr>
<tr>
<td>58</td>
<td>38.2</td>
<td>24.5</td>
<td>40.70</td>
<td>77.20</td>
<td>224.00</td>
</tr>
<tr>
<td>61</td>
<td>26.1</td>
<td>20.0</td>
<td>34.40</td>
<td>69.50</td>
<td>260.00</td>
</tr>
<tr>
<td>68</td>
<td>36.5</td>
<td>10.5</td>
<td>46.80</td>
<td>39.20</td>
<td>61.50</td>
</tr>
<tr>
<td>89</td>
<td>61.5</td>
<td>4.2</td>
<td>18.60</td>
<td>14.20</td>
<td>16.12</td>
</tr>
<tr>
<td>92</td>
<td>78.4</td>
<td>7.1</td>
<td>57.10</td>
<td>21.50</td>
<td>26.57</td>
</tr>
<tr>
<td>102</td>
<td>88.1</td>
<td>6.8</td>
<td>19.70</td>
<td>11.20</td>
<td>48.00</td>
</tr>
<tr>
<td>170</td>
<td>48.0</td>
<td>9.2</td>
<td>16.60</td>
<td>16.00</td>
<td>85.00</td>
</tr>
<tr>
<td>262</td>
<td>33.3</td>
<td>25.5</td>
<td>46.70</td>
<td>62.70</td>
<td>139.00</td>
</tr>
<tr>
<td>224</td>
<td>46.1</td>
<td>7.4</td>
<td>3.30</td>
<td>4.90</td>
<td>70.50</td>
</tr>
<tr>
<td>254</td>
<td>51.0</td>
<td>6.0</td>
<td>35.40</td>
<td>21.20</td>
<td>28.25</td>
</tr>
<tr>
<td>262</td>
<td>46.7</td>
<td>6.5</td>
<td>36.90</td>
<td>25.00</td>
<td>22.50</td>
</tr>
<tr>
<td>414</td>
<td>50.1</td>
<td>6.5</td>
<td>27.40</td>
<td>23.90</td>
<td>34.25</td>
</tr>
<tr>
<td>400</td>
<td>26.9</td>
<td>5.5</td>
<td>31.60</td>
<td>15.90</td>
<td>23.37</td>
</tr>
<tr>
<td>1419</td>
<td>34.9</td>
<td>5.2</td>
<td>29.00</td>
<td>28.50</td>
<td>17.62</td>
</tr>
<tr>
<td>3022</td>
<td>32.1</td>
<td>6.7</td>
<td>28.20</td>
<td>12.60</td>
<td>37.00</td>
</tr>
<tr>
<td>3023</td>
<td>32.2</td>
<td>8.1</td>
<td>28.30</td>
<td>22.10</td>
<td>36.30</td>
</tr>
<tr>
<td>3045</td>
<td>49.8</td>
<td>5.9</td>
<td>32.10</td>
<td>25.40</td>
<td>23.75</td>
</tr>
<tr>
<td>3046</td>
<td>51.4</td>
<td>6.3</td>
<td>38.30</td>
<td>22.50</td>
<td>29.12</td>
</tr>
<tr>
<td>4884</td>
<td>68.0</td>
<td>5.6</td>
<td>18.10</td>
<td>10.20</td>
<td>44.00</td>
</tr>
<tr>
<td>4855</td>
<td>64.7</td>
<td>4.8</td>
<td>9.50</td>
<td>8.90</td>
<td>23.50</td>
</tr>
<tr>
<td>3959</td>
<td>52.1</td>
<td>7.1</td>
<td>8.30</td>
<td>14.50</td>
<td>57.00</td>
</tr>
</tbody>
</table>
En la (tabla 1), se indican las características de salinidad de suelos de estas islas elegidos para este estudio.

Como se observa, la relación C. S. T. mg/L CE × 10³ 25°C, varía entre 9,2 y 14,6 con un valor medio de 12,7.

En estos suelos, la correlación entre la CE × 10³ y la concentración total de cationes solubles, es altamente significativa a un nivel superior al 0,1 por 100, con un índice de correlación r = 0,9850 y una ecuación de regresión.

\[y = 11.19x + 16.15 \] (2)

Donde «y» expresa la concentración total de cationes solubles en mg/L y «x» el valor de CE × 10³ 25°C. Gráfica número 1.

Este alto valor de «r» y la ecuación de regresión obtenida, nos permite también apreciar el estado de salinidad de un suelo, realizando la medida de la conductividad eléctrica del extracto saturado, lo que está de acuerdo con los establecidos por el U. S. Salinity Laboratory.

También lo confirma, el hecho de que los valores de C. S. T. determinados por la fórmula (1) propuesta por Bower, Campbell y Richard y el obtenido por suma de los cationes determinados analíticamente en estos suelos, guardan una estrecha relación, principalmente para valores bajos y medios de conductividad.
b) Relación entre el pH y el Na de cambio de un suelo

Fireman y Reeve (2), en los estudios realizados sobre los suelos salinos y alcalinos de Gen County (Idaho), encuentran que si bien el pH del suelo tiende generalmente a incrementarse, a medida que lo hace el Na de cambio, no existe correlación significativa, que permita calcular el valor del Na de cambio a partir de la medida del pH del suelo.

Richards (3), sostiene este mismo punto de vista, recomendando la no generalización de la relación entre el pH y el grado de saturación del complejo de cambio por el ión Na⁺.

Fireman y Wadleigh (4), en los estudios realizados sobre los suelos salinos y alcalinos del Oeste de Estados Unidos, no encuentran relación entre el pH y el Na de cambio, pero si, una relación altamente significativa con el tanto por ciento de Na de cambio. En estos suelos, puede llegarse a predecir el tanto por ciento Na de cambio a partir de la medida del pH, pero no permite determinar la concentración exacta ni aproximada, del grado de saturación del complejo de cambio por el ión Na⁺.

En la tabla número 2, se indican los valores de pH y tanto por ciento Na de cambio de estos suelos salinos y alcalinos. Como se observa los valores de pH varian entre 7.00 y 9.19 y el tanto por ciento Na de cambio entre 8.7 y 69.4.

Determinando el coeficiente de correlación entre estos dos términos, se obtiene un valor de r = 0.2, no significativo. Según esto, en los suelos salinos y alcalinos de estas islas, la medida del pH en la suspensión suelo-agua 1:2.5, no permite el cálculo del tanto por ciento Na de cambio y menos aún la determinación del grado de saturación del complejo de cambio del suelo por el Na⁺.

c) Cationes solubles y cationes de cambio

La ecuación de Gapon define la relación de equilibrio entre los cationes solubles y los de cambio en el caso de los suelos salinos y alcalinos.

La gran importancia de la validez de esta ecuación, es que nos permite calcular el valor de tanto por ciento Na de cambio (P. S. C.), a partir de las concentraciones de los cationes solubles en el extracto saturado.

Como se observa en la tabla número 3, esta ecuación, aplicada al estudio de estos suelos, nos proporciona valores para la constante de Gapon, que varían más o menos ampliamente de unos suelos a otros, con un valor medio para esta constante de 0.04.
TABLA 2

Valores de pH y porcentaje de sodio de cambio

<table>
<thead>
<tr>
<th>Suelos número</th>
<th>pH 1:2.5</th>
<th>CTC mg/100</th>
<th>Na⁺ cambio mg/100</th>
<th>% Na cambio</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>8.31</td>
<td>26.82</td>
<td>12.78</td>
<td>47.6</td>
</tr>
<tr>
<td>32</td>
<td>8.86</td>
<td>31.06</td>
<td>9.63</td>
<td>31.0</td>
</tr>
<tr>
<td>49</td>
<td>7.80</td>
<td>15.02</td>
<td>10.97</td>
<td>68.8</td>
</tr>
<tr>
<td>50</td>
<td>8.24</td>
<td>5.42</td>
<td>3.11</td>
<td>57.3</td>
</tr>
<tr>
<td>51</td>
<td>7.20</td>
<td>16.83</td>
<td>10.39</td>
<td>64.8</td>
</tr>
<tr>
<td>56</td>
<td>7.77</td>
<td>14.66</td>
<td>8.86</td>
<td>60.4</td>
</tr>
<tr>
<td>57</td>
<td>7.00</td>
<td>32.71</td>
<td>2.86</td>
<td>8.7</td>
</tr>
<tr>
<td>58</td>
<td>7.38</td>
<td>12.24</td>
<td>8.50</td>
<td>69.4</td>
</tr>
<tr>
<td>61</td>
<td>8.96</td>
<td>16.15</td>
<td>10.76</td>
<td>66.6</td>
</tr>
<tr>
<td>68</td>
<td>7.70</td>
<td>10.94</td>
<td>3.54</td>
<td>18.4</td>
</tr>
<tr>
<td>88</td>
<td>7.85</td>
<td>23.27</td>
<td>4.57</td>
<td>18.4</td>
</tr>
<tr>
<td>92</td>
<td>7.70</td>
<td>22.04</td>
<td>4.20</td>
<td>18.0</td>
</tr>
<tr>
<td>102</td>
<td>8.35</td>
<td>23.52</td>
<td>12.15</td>
<td>51.6</td>
</tr>
<tr>
<td>170</td>
<td>8.00</td>
<td>17.70</td>
<td>9.90</td>
<td>54.2</td>
</tr>
<tr>
<td>202</td>
<td>8.62</td>
<td>22.86</td>
<td>15.30</td>
<td>64.4</td>
</tr>
<tr>
<td>234</td>
<td>9.19</td>
<td>32.92</td>
<td>17.48</td>
<td>51.5</td>
</tr>
<tr>
<td>254</td>
<td>8.22</td>
<td>34.96</td>
<td>4.55</td>
<td>13.0</td>
</tr>
<tr>
<td>262</td>
<td>7.20</td>
<td>24.98</td>
<td>8.73</td>
<td>34.4</td>
</tr>
<tr>
<td>414</td>
<td>8.05</td>
<td>34.17</td>
<td>4.00</td>
<td>11.9</td>
</tr>
<tr>
<td>1406</td>
<td>7.75</td>
<td>15.51</td>
<td>2.72</td>
<td>17.5</td>
</tr>
<tr>
<td>1419</td>
<td>8.51</td>
<td>18.78</td>
<td>3.09</td>
<td>12.5</td>
</tr>
<tr>
<td>3022</td>
<td>7.80</td>
<td>10.98</td>
<td>2.45</td>
<td>23.8</td>
</tr>
<tr>
<td>3023</td>
<td>8.08</td>
<td>12.63</td>
<td>2.35</td>
<td>19.5</td>
</tr>
<tr>
<td>3045</td>
<td>7.97</td>
<td>22.96</td>
<td>4.04</td>
<td>17.6</td>
</tr>
<tr>
<td>3046</td>
<td>7.96</td>
<td>24.70</td>
<td>3.36</td>
<td>13.5</td>
</tr>
<tr>
<td>3284</td>
<td>8.64</td>
<td>24.93</td>
<td>4.19</td>
<td>17.2</td>
</tr>
<tr>
<td>4485</td>
<td>8.72</td>
<td>23.63</td>
<td>4.43</td>
<td>18.7</td>
</tr>
<tr>
<td>5936</td>
<td>8.67</td>
<td>35.52</td>
<td>4.90</td>
<td>13.8</td>
</tr>
</tbody>
</table>

Sustituyendo este valor en la siguiente ecuación:

\[
\sqrt{\frac{50 (100 - \text{PSC})}{(\text{PSC})^2}} \times \frac{\text{PSC}}{100 - \text{PSC}} = \text{CTE, de Gapon (3)}
\]

Propuesta por el U. S. Salinity Laboratory, puede permitir el cálculo de P. S. C., a partir de las concentraciones de los cationes solubles en el extracto saturado.

En la tabla número 3, se indican los valores del P S C, calculados por la ecuación (3) y los obtenidos experimentalmente empleando el método del acetato sódico. Si comparamos estos valores, obtenidos por uno y otro método, observamos una gran variación entre ellos.

De los suelos salinos y alcalinos estudiados, solamente el 35.7 por ciento presentan una variación de 0 a 5 unidades, el 32.1 por 100 la variación es de 5 a 10 unidades y los restantes superior a 10 unidades.
<table>
<thead>
<tr>
<th>Suelos número</th>
<th>Cte. Gapón</th>
<th>$V(Ca^{++}+Mg^{++})/2$</th>
<th>% Na de cambio Determinado por CH_3-COO Na</th>
<th>Calculado por la ecuación *</th>
<th>SAR Na^+</th>
<th>SC $(CTC-SC)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>0.03</td>
<td>47.6</td>
<td>51.9</td>
<td></td>
<td>27.8</td>
<td>0.01</td>
</tr>
<tr>
<td>32</td>
<td>0.01</td>
<td>31.0</td>
<td>61.5</td>
<td></td>
<td>41.5</td>
<td>0.45</td>
</tr>
<tr>
<td>49</td>
<td>0.05</td>
<td>68.2</td>
<td>61.1</td>
<td></td>
<td>40.7</td>
<td>2.20</td>
</tr>
<tr>
<td>50</td>
<td>0.07</td>
<td>57.3</td>
<td>40.1</td>
<td></td>
<td>17.9</td>
<td>1.35</td>
</tr>
<tr>
<td>51</td>
<td>0.09</td>
<td>64.8</td>
<td>41.1</td>
<td></td>
<td>18.9</td>
<td>1.84</td>
</tr>
<tr>
<td>56</td>
<td>0.03</td>
<td>60.4</td>
<td>66.1</td>
<td></td>
<td>51.7</td>
<td>1.52</td>
</tr>
<tr>
<td>57</td>
<td>0.02</td>
<td>8.7</td>
<td>15.9</td>
<td></td>
<td>5.0</td>
<td>0.10</td>
</tr>
<tr>
<td>58</td>
<td>0.08</td>
<td>89.4</td>
<td>53.0</td>
<td></td>
<td>29.2</td>
<td>2.27</td>
</tr>
<tr>
<td>61</td>
<td>0.06</td>
<td>66.6</td>
<td>57.2</td>
<td></td>
<td>34.9</td>
<td>2.00</td>
</tr>
<tr>
<td>68</td>
<td>0.02</td>
<td>18.4</td>
<td>27.0</td>
<td></td>
<td>9.4</td>
<td>0.22</td>
</tr>
<tr>
<td>89</td>
<td>0.06</td>
<td>18.4</td>
<td>25.4</td>
<td></td>
<td>3.9</td>
<td>0.26</td>
</tr>
<tr>
<td>92</td>
<td>0.05</td>
<td>10.0</td>
<td>16.0</td>
<td></td>
<td>5.0</td>
<td>0.23</td>
</tr>
<tr>
<td>162</td>
<td>0.07</td>
<td>51.6</td>
<td>36.0</td>
<td></td>
<td>14.8</td>
<td>1.07</td>
</tr>
<tr>
<td>170</td>
<td>0.05</td>
<td>54.2</td>
<td>46.0</td>
<td></td>
<td>21.5</td>
<td>1.18</td>
</tr>
<tr>
<td>202</td>
<td>0.07</td>
<td>64.4</td>
<td>48.7</td>
<td></td>
<td>24.4</td>
<td>1.81</td>
</tr>
<tr>
<td>224</td>
<td>0.03</td>
<td>51.5</td>
<td>55.9</td>
<td></td>
<td>34.9</td>
<td>1.66</td>
</tr>
<tr>
<td>254</td>
<td>0.03</td>
<td>19.0</td>
<td>17.3</td>
<td></td>
<td>5.3</td>
<td>0.15</td>
</tr>
<tr>
<td>262</td>
<td>0.04</td>
<td>14.4</td>
<td>13.6</td>
<td></td>
<td>4.0</td>
<td>0.17</td>
</tr>
<tr>
<td>414</td>
<td>0.02</td>
<td>11.9</td>
<td>20.6</td>
<td></td>
<td>6.9</td>
<td>0.13</td>
</tr>
<tr>
<td>1456</td>
<td>0.04</td>
<td>17.5</td>
<td>15.2</td>
<td></td>
<td>4.8</td>
<td>0.21</td>
</tr>
<tr>
<td>1419</td>
<td>0.04</td>
<td>12.7</td>
<td>11.5</td>
<td></td>
<td>3.5</td>
<td>0.14</td>
</tr>
<tr>
<td>3022</td>
<td>0.04</td>
<td>23.6</td>
<td>23.1</td>
<td></td>
<td>8.2</td>
<td>0.81</td>
</tr>
<tr>
<td>3026</td>
<td>0.02</td>
<td>19.5</td>
<td>29.1</td>
<td></td>
<td>11.2</td>
<td>0.93</td>
</tr>
<tr>
<td>3048</td>
<td>0.04</td>
<td>17.6</td>
<td>11.5</td>
<td></td>
<td>4.5</td>
<td>0.21</td>
</tr>
<tr>
<td>3084</td>
<td>0.04</td>
<td>13.5</td>
<td>12.3</td>
<td></td>
<td>3.6</td>
<td>0.16</td>
</tr>
<tr>
<td>4483</td>
<td>0.02</td>
<td>17.2</td>
<td>30.1</td>
<td></td>
<td>11.7</td>
<td>0.21</td>
</tr>
<tr>
<td>4585</td>
<td>0.02</td>
<td>18.7</td>
<td>29.6</td>
<td></td>
<td>10.9</td>
<td>0.28</td>
</tr>
<tr>
<td>5855</td>
<td>0.01</td>
<td>33.8</td>
<td>39.3</td>
<td></td>
<td>17.0</td>
<td>0.16</td>
</tr>
</tbody>
</table>

* Valor medio: 0.04 \(\sqrt{\left(\frac{50 (100 - PSS)}{(PSS)^2 \times CST} \right)} \times \frac{PSC}{100 - PSC} = 0.04 *

Cte. Gapón: 0.04
Estos resultados, nos indican que en el caso de estos suelos el valor del PSC, calculado a partir de la ecuación de Gapon y la propuesta por el U. S. Salinity Laboratory, no es exacto, puesto que solamente en el 35.7 por 100 de los estudiados, la variación es de cinco unidades entre el valor obtenido aplicando la ecuación (3) y el experimental.

El término «Razón de adsorción de sodio» (SAR) definido por la relación $\frac{Na^+}{\sqrt{(Ca^{++} + Mg^{++})/2}}$ está basada en el equilibrio existente entre los cationes solubles y los de cambio en un suelo salino o alcalino.

![Gráfica 2](image)

En un estudio realizado en Estados Unidos sobre suelos de este tipo, se encontró una relación lineal entre el SAR y la razón $\frac{SC}{CTC-SC}$ ampliamente significativa y que permitía el cálculo del sodio de cambio (SC) o el tanto por ciento Na de cambio (PSC) a partir de la concentración de los cationes Ca$^{++}$, Mg$^{++}$ y Na$^{+}$ en el extracto saturado.

La tabla número 3, muestra los valores obtenidos para el SAR y $\frac{SC}{CTC-SC}$ en los suelos salinos y alcalinos objeto de estudio.
Existe una correlación significativa a nivel superior al 0.1 por 100 ($r = 0.7321$) entre estos términos que da lugar a una ecuación de regresión:

$$y = 0.04x + 0.07$$

Donde «y» representa la relación $\frac{SC}{CTS-SC}$ y «x» el valor del SAR en mg/l. Gráfica número 2.

En la gráfica se observa que el 82 por 100 de los puntos representativos de estas dos variables, están próximos a la recta representativa de esta ecuación de regresión.

Este resultado indica que en el caso de los suelos salinos y alcalinos de Tenerife, la relación entre el SAR y la razón $\frac{SC}{CTC-SC}$ puede ser utilizada con suficiente aproximación para el cálculo del SC o el PSC a partir de las concentraciones de los cationes en el extracto saturado.

Resumen y conclusiones

Se ha realizado un estudio sobre muestras de suelos salinos y alcalinos de las Islas Canarias, con el fin de comprobar si las técnicas propuestas por el U. S. Salinity Laboratory, en el estudio de suelos salinos y alcalinos, pueden ser aplicadas a este tipo de suelos.

1.°) Existe una correlación significativa a nivel superior al 0.1 por ciento entre la conductividad y la concentración total de cationes en el extracto saturado, expresados estos términos en mS/cm. y mg/l respectivamente, que permite calcular el estado de salinidad a partir de la medida de la conductividad eléctrica, empleando la ecuación de regresión obtenida para los suelos salinos y alcalinos de Canarias.

2.°) En los suelos salinos y alcalinos no existe correlación significativa entre el tanto por ciento Na de cambio (PSC) y el pH del suelo medido en la suspensión suelo-agua 1:2.5.

3.°) El cálculo del PSC, obtenido empleando la ecuación de Gapon y la propuesta por el U. S. Salinity Laboratory (3), no da la seguridad de que los valores obtenidos sean reales, puesto que solamente en el 35.7 por 100 de los suelos estudiados la variación es de 5 unidades entre los resultados experimentales y los obtenidos empleando estas ecuaciones.
4.°) El PSC puede ser determinado, basándonos en la relación SC lineal existente entre el SAR y la razón ————, al ser significativa CTC:SC a nivel superior al 0.1 por 100 la correlación entre estos dos términos.

Bibliografía

Recibido para publicación: 19-11-73.