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Absence of localization in a class of topological systems
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Topological matter is a trending topic in condensed matter: From a fundamental point of view, it has introduced
new phenomena and tools and, for technological applications, it holds the promise of basic stable quantum
computing. Similarly, the physics of localization by disorder, an old paradigm of obvious technological importance
in the field, continues to reveal surprises when new properties of matter appear. This work deals with the
localization behavior of electronic systems based on partite lattices, with special attention to the role of topology.
We find an unexpected result from the point of view of localization properties: A robust topological metallic state
characterized by a nonquantized Hall conductivity arises from strong disorder in topological systems based on
bipartite lattices. The key issue is the nature of the disorder realization: selective disorder in only one sublattice.
The generality of the result is based on the partite nature of most recent two-dimensional materials such as
graphene or transition-metal dichalcogenides, and the possibility of the physical realization of the particular
disorder demonstrated in Ugeda et al. [M. M. Ugeda et al., Phys. Rev. Lett. 104, 096804 (2010)] and Zhao et al.
[L. Zhao et al., Science 333, 999 (2011)].
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I. INTRODUCTION

After the seminal work of Anderson [1], it was understood
that in a noninteracting two-dimensional electron system
at zero temperature in spatial dimension D � 2 and in
the thermodynamic limit, the electronic wave function will
be localized by disorder. In more realistic situations, the
scaling theory of localization allowed a classification of the
localization behavior of materials into universality classes set
by symmetry and space dimensionality [2,3] based on the
Altland-Zirnbauer sets of random matrices [4]. The advent of
topological insulators [5–7] provided a new class of delocal-
ized states, the edge states, robust under disorder provided
some discrete symmetries were preserved. The symmetry
classes were then adapted to include the topological features
and a “tenfold way” classification was set [8,9].

Centering the attention on the three nonchiral symmetry
classes of the original Wigner-Dyson classification in two
dimensions, we expect the following situation: All states
will be localized in the orthogonal class AI (time-reversal
symmetryT withT 2 = 1 preserved), and a mobility edge [10],
i.e., a well-defined energy separating a region of extended
states from the localized states, is expected in the symplectic
class AII (time-reversal symmetry with T 2 = −1 preserved).
Finally, in the unitary class A (T broken), extended states
can remain at particular energies but no mobility edge will be
present. Only classes A and AII support topological indices.
The prototypical examples in class A are systems showing the
integer quantum Hall effect (IQHE) and anomalous quantum
Hall systems, the latter exemplified by the Haldane model [11].
Spin Hall systems [12,13] belong to class AII.

The interplay of topology and localization was first an-
alyzed in the context of the robustness under disorder of
the Hall conductivity quantization in the IQHE [14–17].
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This is an example of a Chern insulator that belongs to
symmetry class A (all discrete symmetries are broken) in the
standard classification. The mechanism for localization in both
topological classes A and AII is referred to as “levitation and
annihilation” [18]. For moderate disorder, the states in the
edges of the conduction and valence bands start to localize.
As disorder increases, the gap is totally populated by localized
states and the extended states carrying the Chern number shift
towards one another and annihilate, leading to the topological
phase transition. The difference between the two classes is
that while in the symplectic class AII a finite region of
extended states with a well-defined mobility edge remains
until the transition takes place, there is no mobility edge in
the unitary class A systems. The extended states carrying the
Chern number are located at particular single energies.

We use the Haldane model [11] as a typical example of a
class A system based on a bipartite lattice. As it is known,
depending on the parameter values, the model can represent
a Chern or a trivial insulator. The main result of this work is
the finding of an extended region of delocalized states with
a well-defined mobility edge that emerges for strong disorder
in class A systems when disorder is selectively distributed in
only one sublattice. This is a surprising result and is against
the traditional view since no mobility edge should be expected
in this class. Moreover, the final metallic state is an anomalous
Hall metal even in the case when the clean starting system
is a topologically trivial insulator with T broken. Hence
our result implies that the standard classification has to be
complemented.

In addition to its fundamental interest, the physics of this
work can be relevant to understanding the effects of disorder
in actual material systems. Many of the two-dimensional (2D)
materials relevant for technological or fundamental physics are
based on bipartite lattices. The most prominent examples, i.e.,
graphene and its siblings silicene, germanene, or stanene, as
well as boron nitride or transition-metal dichalcogenides MX2

(M = Mo, W and X = S, Se), are based on the honeycomb
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lattice [19]. Topological materials are based on lattices having
at least two atoms per unit cell. Most of them are also defined
on partite lattices. Experiments done in graphene show the
experimental possibility of inducing disorder selectively in one
sublattice only [20], and how certain dopants sit preferentially
in only one sublattice [21].

II. MODEL AND METHODS

We use the Haldane model [11] as a generic example of a
Chern topological insulator. The Haldane model tight-binding
Hamiltonian can be written as

H = −t
∑
〈i,j〉

c
†
i cj − t2

∑
〈〈i,j〉〉

e−iφij c
†
i cj + M

∑
i

ηic
†
i ci , (1)

where ci = A,B are defined in the two triangular sublattices
that form the honeycomb lattice. The first term t represents
a standard real nearest-neighbor hopping that links the two
triangular sublattices. The next term represents a complex
next-nearest-neighbor hopping t2e

−iφij acting within each
triangular sublattice with a phase φij that has opposite signs
φij = ±φ in the two sublattices. This term breaks time-
reversal symmetry and opens a nontrivial topological gap
at the Dirac points. The last term represents a staggered
potential (ηi = ±1). It breaks inversion symmetry and opens
a trivial gap at the Dirac points. The topological transition
occurs at |M| = 3

√
3t2 sin φ, as shown in Fig. 1. Most of our

calculations have been done for the simplest case φ = π/2 and
a typical value t2 = 0.1t . The trivial mass M has been set to
zero, except when analyzing the topologically trivial case. A
physical realization of the model with optical lattices has been
presented in [22] (see also [23]).

Potential (Anderson) disorder is implemented by adding
to the Hamiltonian the term

∑
i∈A,B εic

†
i ci , with a uniform

distribution of random local energies, εi ∈ [−W/2,W/2].
We will discuss two cases: disorder equally or selectively
distributed among the two sublattices. For selective disorder,
the sum runs only over one sublattice.

The Haldane model belongs to symmetry class A where
the different topological phases can be characterized by a Z-
topological number, the Chern number ν (see Fig. 1). In the
clean insulating system, it can be computed from the single-

FIG. 1. Phase diagram of the Haldane model as a function of
the parameters M and φ with |t2/t | < 1/3. The condition |M| =
3
√

3t2 sin φ sets the boundary between a trivial (Chern number ν = 0)
and a topological (ν = ±1) insulator.

particle Bloch states un(k) as

νn = 1

2π

∫
S

�n
z (k)dS, (2)

where the integral is over the first Brillouin zone S and
�n

z (k) is the z component of the Berry curvature, �n(k) =
∇k ∧ An(k), defined from the Berry connection, An(k) =
〈un(k)| − i∇k|un(k)〉. The nontrivial topology of metallic
states (anomalous Hall systems) is associated with a finite, non-
quantized Hall conductivity that can be computed using a Kubo
formula. The main technical difficulty in addressing disordered
systems is the breakdown of translational symmetry, which
prevents working directly in momentum space. The subject
being very old, many numerical and analytical tools have been
worked out to deal with this oddity. Topological systems share
the same problem, as most topological indices are naturally
defined in k space. We have used a numerical recipe based on
the Kubo formula to compute the Hall conductivity in the dis-
ordered tight-binding model similar to that described in [24].

The localization behavior of the system has been explored
with standard tools: level spacing statistics and inverse partic-
ipation ratio (IPR) [9]. A transfer matrix method [25] has also
been used to compute the localization length and confirm the
presence of a mobility edge.

III. WARMING UP: DISORDER EQUALLY DISTRIBUTED
IN BOTH SUBLATTICES

We first present the case of Anderson disorder equally
distributed in the two sublattices which shows the standard
behavior of class A systems: extended states carrying the
topological index remain at singular energies, approach each
other as disorder increases (levitation), and merge (annihilation
of the topological index). Figure 2 shows the spectrum for the
Haldane model with Anderson disorder equally distributed
over the two sublattices for a disorder strength W = 3t .
The black dots at a given height correspond to the set of

FIG. 2. Level statistics analysis for the Haldane model with An-
derson disorder W = 3t equally distributed over the two sublattices.
States are localized (Poisson distribution, PPoisson) all along the energy
range. Extended states (GUE statistics, PGUE) are found at the two
singular energies where the level spacing variance approaches 0.178.
This result agrees with the analysis done in Ref. [27].
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FIG. 3. Localization transition studied through level statistics
for the Haldane model with Anderson disorder equally distributed
over the two sublattices. The horizontal green line marks the GUE
variance. The two extended states present at W = 3t merge around
W = 5t and annihilate as disorder increases. All states become
localized for W > Wc ∼ 5t . The average DOS is also shown.

eigenenergies for a given disorder realization in a finite
lattice with size d = 30. We have performed 1000 disorder
realizations, shown at slightly different heights. Superimposed
to the spectrum we show the level spacing variance as a
function of energy. The variance of the level spacing variation
contains information on the localization of the states at a
given energy region (details can be found in Appendix B).
The statistics of the Gaussian unitary ensemble (GUE) is
expected only for extended states [26], while localized states
follow the Poisson distribution. It is clear that there are two
extended states, one below the gap and another one above,
where the variance clearly approaches the GUE variance
0.178. These results are in perfect agreement with those
presented in Ref. [27]. In Fig. 3, we show the level statistics
variance and the density of states (DOS) for three different
disorder strengths: W = 4t,5t,6t . Levitation and annihilation
is clearly operative, and the critical disorder for localization
is in good agreement with that obtained in Ref. [28] for the
topological transition, 4t < Wc < 5t .

IV. MAIN RESULTS: DISORDER SELECTIVELY
DISTRIBUTED IN ONLY ONE SUBLATTICE AND

ANOMALOUS HALL METAL

The unexpected result obtained is that for selectively
distributed disorder in only one sublattice, the class A systems
with nontrivial topology end up in a robust metallic state where
the extended states are separated from the localized states by
a well-defined mobility edge. This result is unconventional in
two ways: First the absence of localization for very strong
disorder is unusual for any system. Second, in the standard
classification, class A systems do not support a mobility edge.
Figure 4 shows a level spacing statistic analysis of the Haldane
model in the topological phase for increasing disorder strength.
In the figure, we see the level spacing variance as a function
of energy and the distribution of level spacings associated
with two characteristic energies in the spectrum: one at higher
energies (blue line), where states start to localize first when
disorder is introduced, and one at lower energies, close to
the middle of the spectrum (green line) where extended states
are expected to persist up to higher disorder strength. The
red dotted horizontal line marks the variance of the GUE
associated with the presence of extended states. We see that as

FIG. 4. Level statistics analysis for the Haldane model with
Anderson disorder selectively distributed over one sublattice. The red
dotted horizontal line marks the variance of the GUE associated with
the presence of extended states. As disorder increases, the singular
energies where extended states were located at moderate disorder
strength W/t = 10–30 evolve to a full extended region of delocalized
states with a well-defined mobility edge.

disorder increases, the singular energies where extended states
were located at moderate disorder strength W/t = 10–30
evolve to a full extended region of delocalized states with a
well-defined mobility edge. Figure 5 shows that the extended
region of delocalized states is a robust feature that persists
up to a disorder strength of W = 200t . We have also set up
a calculation of the localization length via a transfer matrix
method to confirm the presence of the mobility edge (see
Appendix A).

The topological nature of the metallic state is reflected in
the calculation of the Hall conductivity shown in Fig. 6. In our
previous publication [28], we showed that the Chern insulator
suffered a topological transition to a state with nonquantized
Chern number at a critical disorder strength around Wc ∼ 50t .
What we see here is the further evolution to an anomalous Hall
metal when disorder is further increased and the metallic state
is well established. The panels in Fig. 6 show that the Hall
conductivity stays finite in the metallic region for W > Wc.
The different curves correspond to different sizes of the system.
We see that for increasing system sizes, σxy is not decreasing
which proves that we are not dealing with a finite-size effect.
Despite the large numerical error bars, a finite conductivity can
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FIG. 5. Level spacing variance for increasing disorder strengths
W/t in the selectively distributed disorder case. The middle region
has the same variance as that of GUE and corresponds to extended
states. Even though the transition is becoming sharper, the region is
not shrinking. This is clear evidence for the existence of an extended
region of delocalized states. A mobility edge in the center of the
band has emerged from the singular, isolated energies by increasing
disorder.

be granted. The same analysis done for the Haldane model in
the trivial phase shows that the final state is also an anomalous
Hall metal.

V. UNDERSTANDING WHAT IS GOING ON:
SIDE QUESTIONS

This work brings up a number of questions. We have
addressed some of them with the help of the additional
calculations detailed in the appendices, but others remain open.

Disordered systems are classified according to their discrete
symmetries (time reversal, inversion, and particle hole) and
their topology. From the examples discussed in the appendices,
it is clear that the main role in the absence of localization
is played by the nontrivial topology of the conduction and
valence bands of the clean system. Particle-hole symmetry
does not seem to play a role.

We have found that when the bands of the clean system have
nontrivial Berry curvature, the final state analyzed in class A
is a T broken disordered metal with finite Hall conductivity
(irrespective of the global “Chern number” of the initial state).
A topologically nontrivial system in class AII is the model
of Kane and Mele for the spin Hall insulator [12]. Since it is
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FIG. 6. Hall conductivity of the resulting metallic state emerging
from the Chern insulator for disorder strengths above the critical value
for the topological transition. The conductivity is not quantized and
depends on the chemical potential. Despite the big numerical bars, a
finite nonzero value can be granted.

made of two copies of the Haldane model with opposite Chern
numbers for the two spin species and the disorder does not mix
the spins, the final state will also be metallic with nontrivial
spin Hall conductivity. This shows that time-reversal symmetry
is not playing a crucial role in the absence of localization.

It is tempting to think that the obtained metallic state
belongs to the clean triangular sublattice only. Its topological
nature, though, proves that this is not so, since the anomalous
Hall effect is due to the interband matrix elements of the
current operator [29]. The analysis of the partial IPR (see
Appendix B) shows that the extended states found in the
extreme disorder case have a nonzero (although suppressed
by orders of magnitude with respect to the clean sublattice)
extended weight in the disordered sublattice. This can be
understood starting from the limit where the two sublattices
are not connected (t = 0). The parameter t connects the two
T broken triangular sublattices, one with all states localized
and the other one with all states extended. Treating t as a
perturbation, the perturbed states will be a superposition of
extended and localized states, which is still an extended state.

The metallicity of the final state seems to be at odds with the
nonlinear σ model results [9,30], so it would be very interesting
to implement the selective disorder case in this approach.

A similar metallic phase has also been described recently
in [31,32] at intermediate disorder strength, but it goes away by
increasing disorder in these examples. A possible explanation
for the intermediate metal phase in [31] is the existence
of a pseudo-time-reversal symmetry that makes the system
approximately symplectic.

The physics described in this work can be realized in
topological materials based on other more complicated partite
lattices [33]. The results presented in this work are conceptu-
ally important and can be useful to interpret experiments in the
honeycomb lattice doped with adatoms sitting preferentially in
one sublattice, as described in Ref. [21]. Artificial [34] or op-
tical [22] lattices are other possibilities to realize this physics.

ACKNOWLEDGMENTS

We gratefully acknowledge useful conversations with
Alberto Cortijo, Belén Valenzuela, Fernando de Juan, Adolfo
G. Grushin, and J. A. Vergés. E.C. acknowledges the financial
support of FCT-Portugal through Grant No. EXPL/FIS-
NAN/1728/2013. This research was supported in part by
the Spanish MECD Grant No. FIS2014-57432-P, the Euro-
pean Union structural funds, and the Comunidad de Madrid
MAD2D-CM Program (S2013/MIT-3007), as well as the
European Union Seventh Framework Programme under Grant
Agreement No. 604391 Graphene Flagship FPA2012-32828.

APPENDIX A: LOCALIZATION LENGTH VIA A
TRANSFER MATRIX METHOD TO CONFIRM THE

PRESENCE OF THE MOBILITY EDGE

Our main result is the finding that for Anderson disorder
selectively distributed in only one sublattice, the metallic state
is robust no matter how large the disorder. We have set up
a calculation of the localization length λM transfer matrix
method as used in Ref. [18]. The results for selective disorder
are shown in Fig. 7. It is apparent that a region of extended
states, for which the renormalized localization length λM/M ≡

245414-4
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FIG. 7. Renormalized localization length 
M as a function of the
(linear) system size (M) calculated for various disorder strengths Wi

by the transfer matrix method.


M = const (typical of a critical behavior), shows up around
E = 0. This proves the existence of a mobility edge.

APPENDIX B: UNDERSTANDING THE NATURE OF
EXTENDED STATES IN THE ANOMALOUS HALL PHASE

It might appear at first sight that the transition that
we are describing occurs between a topological insulator
based on the honeycomb lattice (Haldane model) to a pure
triangular lattice with imaginary hoppings (metallic). In order
to investigate the properties of the extended wave function, we
have performed calculations of the partial IPR in the disordered
sublattice (partial IPR is like conventional IPR, but the lattice
summation is over a single sublattice). We expected to find a
critical disorder W sub

c above which all states become localized
in that sublattice. This critical disorder should coincide with the
value when the Chern number ceases to be quantized. The re-
sults in Fig. 8 indicate that delocalized states are also present on
the disordered sublattice at extremely large disorder. We have
seen that extended states have a finite, extended weight in the
disordered sublattice. This is an essential ingredient because if

states were only extended in the nondisordered sublattice, the
physics would be that of a single band. Since the anomalous
Hall effect is due to the interband matrix elements of the current
operator, no anomalous Hall response could be found. It is
appealing to interpret these extended states starting from the
limit where the two sublattices are not connected, when t = 0.
In this case, we have a T broken triangular lattice where all
states are localized, i.e., the disordered sublattice, and a T
broken triangular lattice where all states are extended, i.e., the
clean sublattice. If one then assumes that connecting the two
sublattices perturbatively with t does not break the extended
character of the states in the clean sublattice, we then see that
the new perturbed states would be superpositions of localized
states with extended states. A state which is a superposition of
an extended state with a localized state is still an extended state.
This explains why we observe extended states in the full energy
region where the clean sublattice develops its band. Moreover,
it also explains why the perturbed states look like extended
states in the disordered sublattice also. This happens because
the perturbation will mix the states closest in energy, and for
localized states those are the furthest apart in space. A very
simple relation between the energy difference �E between lo-
calized states, their spatial distance R, and the DOS ρ(E) at the
typical energy E where these states occur can be derived [25],

�E ∼ [Rdρ(E)]−1, (B1)

where d is the spatial dimension. The smallest �E results
in the largest R. In deriving the last expression, it is assumed
that localized states are homogeneously distributed. A
superposition of those closest in energy would then have
a finite weight at points very far apart on the lattice and,
like a tight-binding description of an electron in a solid, the
respective wave function would be extended. The reasoning

FIG. 8. Partial IPR for strong (W > 300) disorder selectively located in sublattice B. Electrons in this sublattice are also delocalized even
though the IPR is very small.

245414-5
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above is limited by the assumption that extended states in the
clean sublattice remain extended even for finite t when we
connect the two sublattices. If the system was T invariant, with
real t2, we know that the assumption would not hold, as there
are no extended states in that case. We may then anticipate that
breaking T , or maybe having finite Berry curvature, plays a key
role here, but at the moment we lack an explanation for why
the extended states in the clean sublattice remain extended.

APPENDIX C: ROLE OF TOPOLOGY IN THE CASE OF
SELECTIVE DISORDER

In order to ascertain the role played by the nontrivial
band topology on the localization properties of the class A
systems, we have analyzed the localization properties of a pure
triangular lattice with imaginary (Haldane) hoppings (the band
has no Berry curvature). The Haldane model in the trivial phase
(the bands have a nonhomogeneous Berry curvature, but the
Chern number cancels when the chemical potential lies in the
gap) gives rise to a topological metal as in the topological case.

In Fig. 9, we show the level spacing variance for Anderson
disorder with strength W/t = 0.5, 1, 10 in the triangular
lattice with complex hoppings t2 = 0.1t . It is clear that except
for the lowest disorder simulated here, where finite-size effects
might be important, all states are localized.

This result reinforces the idea that it is the presence of
nontrivial Berry curvature in the valence and conduction bands
that plays a role in the absence of localization.

APPENDIX D: ROLE OF TIME-REVERSAL SYMMETRY

AI systems on bipartite lattices have time-reversal sym-
metry. The next question we have asked is: Does a class AI
system with intrasublattice hopping display a metallic phase
for large enough selective disorder? The Haldane model with
real NNN hoppings belongs to this class. Figure 10 shows
the level spacing statistics with t2 = 0.1t and M = t . There
are no extended states. Note that even for W = 300t , the
level spacing variance is always different from GUE. This
analysis clarifies several things. First that the selective disorder
analyzed through the work does act as standard Anderson
disorder since the system analyzed undergoes localization
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FIG. 9. Level spacing variance for Anderson disorder with
strength W = t = 0 : 5; 1; 10 in the triangular lattice with complex
hoppings t2 = 0.1t .
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FIG. 10. Level space variance for the Haldane model with real
NNN hoppings. The system belongs to class AI: Time-reversal
symmetry is preserved and inversion is broken. The system undergoes
standard Anderson localization.

even though one sublattice remains perfect. Since the model
is topologically trivial, we cannot conclude anything on the
role of time-reversal symmetry. This result reinforces the
correlation between the absence of localization and nontrivial
topology. That time-reversal symmetry is not playing a major
role in the absence of localization is indicated by the analysis
of the Kane-Mele model discussed in the main text.

APPENDIX E: ROLE OF PARTICLE-HOLE SYMMETRY:
CLASS D VERSUS CLASS A

For simplicity, a purely imaginary value of the next-nearest-
neighbor hopping parameter has been used through the work
(φ = π/2). This choice induces an accidental particle-hole
symmetry in the system and technically it belongs to class D.
For this class, it is known that a metallic phase shows up with
increasing disorder. Anderson disorder breaks this symmetry,
but on average it is restored. In order to ascertain that our results
refer to class A systems, we have performed a calculation of
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FIG. 11. Level spacing variance for Anderson disorder on a single
sublattice in three different systems based on the Haldane model:
NNN with a real part. The system is in class A and has no particle-hole
symmetry.
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the level spacing variance for the model with NNN having a
finite real part. In Fig. 11, we show the level spacing variance
for Anderson disorder on a single sublattice in three different
systems: one with purely imaginary NNN hoppings (Haldane),
which belongs to the symmetry class D due to particle-hole
symmetry (Anderson disorder breaks it, rendering the system
class A, although on average the symmetry is restored); another
one with complex NNN hoppings, where the real part breaks
particle-hole symmetry and the system is in class A even in the
absence of disorder (we used t2 = 0.1t + i0.1t); and finally
one with NNN hoppings purely real, thus preserving time-

reversal symmetry, as required in symmetry class AI. It is
apparent that the only difference between the first (class D on
average) and second (class A) cases is a small shift of the region
of extended states. This shift is a consequence of the breaking
of particle-hole symmetry. For the system in class AI, there
are no extended states, as expected, although the presence
of a Dirac point at E = −3(Ret2) = −0.3t still makes the
level spacing variance unconventional, even for such strong
disorder. The conclusion is that the physics we are unveiling
here is characteristic of class A, where no mobility edge is
expected, and not from class D.
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