RESEARCH ARTICLE

Dimension of the intersection of a pair of orthogonal groups

Seok-Zun Songa, R. Durán Díazb, L. Hernández Encinasc*, J. Muñoz Masquéc, and A. Queiruga Diosd

aDepartment of Mathematics, Cheju National University, Jeju 690-756, Republic of Korea
bDepartamento de Automática, University of Alcalá, Campus Universitario N-II, km. 33,600, 28871-Alcalá de Henares, Madrid, Spain; cDepartment of Information Processing and Coding, Applied Physics Institute, CSIC, C/ Serrano 144, 28006-Madrid, Spain;
dDepartment of Applied Mathematics, E.T.S.I.I., University of Salamanca, Avda. Fernández Ballesteros 2, 37700-Béjar, Salamanca, Spain

(July 2008)

Let \(g, h : V \times V \rightarrow \mathbb{C} \) be two non-degenerate symmetric bilinear forms on a finite-dimensional complex vector space \(V \). Let \(G \) (resp. \(H \)) be the Lie group of isometries of \(g \) (resp. \(h \)). If the endomorphism \(L : V \rightarrow V \) associated to \(g, h \) is diagonalizable, then the dimension of the intersection group \(G \cap H \) is computed in terms of the dimensions of the eigenspaces of \(L \).

Keywords: Diagonalizable endomorphism, Isometry, Matrix exponential, Orthogonal group, Symmetric bilinear form.

AMS Subject Classification: 15A57, 15A63, 22E10, 22E60.

1. The group of isometries

This paper is an extended version of a preliminary statement of Theorem 2.1, which was presented [1] without proof. Here, we also include a counterexample showing that the hypothesis in the theorem cannot be improved.

Let \(V, W \) be two complex vector spaces of finite dimension and let \(\mathcal{L}(V,W) \) be the space of \(\mathbb{C} \)-linear mappings from \(V \) into \(W \). We write \(\mathfrak{gl}(V) = \mathcal{L}(V,V) \) and we denote by \(GL(V) \) the linear group of \(V \), i.e., the group of invertible elements in \(\mathfrak{gl}(V) \).

Definition 1.1 An element \(A \in GL(V) \) is said to be an isometry of a symmetric bilinear form \(g : V \times V \rightarrow \mathbb{C} \) if the following equation holds:

\[g(A(x),A(y)) = g(x,y), \quad \forall x, y \in V. \tag{1} \]

Lemma 1.2 Let \(g : V \times V \rightarrow \mathbb{C} \) be a symmetric bilinear form on an \(n \)-dimensional complex vector space \(V \) and let \(V', V'' \) be vector subspaces such that,

(1) \(g|_{V'} \) is non-degenerate,
(2) \(g(v,v'') = 0, \forall v \in V, \forall v'' \in V'' \),
Then, every isometry \(A \in GL(V) \) of \(g \) can be written as

\[
A = \begin{pmatrix} A' & O \\ B & C \end{pmatrix}, \quad B \in \mathcal{L}(V', V''), \ C \in \mathfrak{gl}(V''),
\]

and \(A' \) is an isometry of \(g|_{V'} \).

Proof We set \(A = \begin{pmatrix} A' & D \\ B & C \end{pmatrix} \), with \(A' \in \mathcal{L}(V', V') \), \(B \in \mathcal{L}(V', V''), \ C \in \mathfrak{gl}(V''), \ D \in \mathcal{L}(V'', V') \). If \(v_1, \ldots, v_n \) is a basis for \(V \) such that \(v_1, \ldots, v_{n'}, n' = \dim V' \), is a basis for \(V' \) and \(v_{n'+1}, \ldots, v_n \) is a basis for \(V'' \), then \(A \) is an isometry if and only if the following equations hold:

\[
g(A(v_i), A(v_j)) = g(v_i, v_j), \quad i, j = 1, \ldots, n. \tag{2}
\]

If \(i = 1, \ldots, n' \), then \(A(v_i) = A'(v_i) + B(v_i) \), with \(A'(v_i) \in V', B(v_i) \in V'' \), and according to the item (2), for \(i, j = 1, \ldots, n' \) from the equation (2) we obtain

\[
g(A(v_i), A(v_j)) = g(A'(v_i), A'(v_j)) + g(B(v_i), B(v_j))
\]

\[
+ g(B(v_i), A'(v_j)) + g(B(v_j), B(v_i))
\]

\[
= g(A'(v_i), A'(v_j))
\]

\[
= g(v_i, v_j),
\]

thus proving that \(A' = A|_{V'} \) is an isometry for \(g|_{V'} \).

Similarly, if \(i = n'+1, \ldots, n \), then \(A(v_i) = D(v_i) + C(v_i) \) with \(D(v_i) \in V', C(v_i) \in V'' \). Again from the item (2), we obtain

\[
0 = g(v, v_i) = g(A(v), A(v_i)) = g(A(v), D(v_i) + C(v_i)) = g(A(v), D(v_i)),
\]

for every \(v \in V \). As \(A \) is an isomorphism this in particular implies \(g(v', D(v_i)) = 0 \) \(\forall v' \in V' \), and we can conclude \(D = 0 \) by applying the item (1).

Consequently, the structure of the set of isometries of a degenerate symmetric bilinear form \(g \) can be recovered from the non-degenerate part of \(g \). Because of this, below we confine ourselves to consider only non-degenerate symmetric bilinear forms. In this case, the equation (1) implies \(\det A = \pm 1 \), and the set of all isometries of \(g \) is a subgroup of \(GL(V) \), which is denoted by \(G \). By choosing an orthonormal basis in \(V \), every element of \(G \) is represented by an orthogonal matrix and an isomorphism holds, \(G \cong O(n, \mathbb{C}) \). The Lie algebra of \(O(n, \mathbb{C}) \) is denoted by \(\mathfrak{o}(n, \mathbb{C}) \). We also remark on the fact that \(G \) is a closed subgroup in \(GL(V) \) and hence, \(G \) is a Lie subgroup of the linear group of \(V \), the Lie algebra of which is denoted by \(\mathfrak{g} \).

2. The dimension of the intersection group

Theorem 2.1 Let \(V \) be an \(n \)-dimensional complex vector space and let \(g, h \) be two non-degenerate symmetric bilinear forms on \(V \). Let \(G, H \) be the groups of isometries of \(g, h \), respectively and let \(L : V \to V \) be the endomorphism associated to \(g, h \), i.e.,

$$g(x, L(y)) = h(x, y), \forall x, y \in V.$$ If L is diagonalizable, then

$$\dim(G \cap H) = \sum_{i=1}^{r} \left(\frac{m_i}{2} \right),$$

where m_i, $i = 1, \ldots, r$, are the dimensions of the eigenspaces of L.

Proof Let α_i, $i = 1, \ldots, r$, be the distinct eigenvalues of L and let $E(\alpha_i)$ be the eigenspace attached to α_i. As L is diagonalizable, we have $V = \oplus_{i=1}^{r} E(\alpha_i)$. We claim that $E(\alpha_i)$ and $E(\alpha_j)$ are orthogonal with respect to both metrics for $i \neq j$. In fact, if v_i (resp. v_j) is a non-vanishing eigenvector for α_i (resp. α_j), then taking account of the fact that L is symmetric, we obtain

$$\alpha_j g(v_i, v_j) = g(v_i, L(v_j)) = g(L(v_i), v_j) = \alpha_i g(v_i, v_j).$$

Hence, $(\alpha_i - \alpha_j) g(v_i, v_j) = 0$. As $\alpha_i \neq \alpha_j$, we conclude $g(v_i, v_j) = 0$. In addition, from the definition of L, we have $h(v_i, v_j) = g(v_i, L(v_j)) = \alpha_j g(v_i, v_j) = 0$. Therefore $E(\alpha_i)$ and $E(\alpha_j)$ are also h-orthogonal.

As a consequence of the g-orthogonality of the eigenspaces we deduce that every $E(\alpha_i)$ is non-singular with respect to both bilinear forms g and h.

By choosing a g-orthonormal basis for every subspace $E(\alpha_i)$ and collecting all these bases, we obtain a basis (v_1, \ldots, v_n) of eigenvectors for L which is also g-orthonormal. Hence the matrices of g and h in this basis are as follows:

$$M_g = I_n = n \times n \text{ identity matrix},$$

$$M_h = \text{diagonal} \left(\alpha_1, \ldots, \alpha_r \right), \quad m_1 + \ldots + m_r = n.$$ Let \mathfrak{g} (resp. \mathfrak{h}) be the Lie algebra of G (resp. H). The map $\exp: \mathfrak{g} \to G$ induces a diffeomorphism from a neighborhood of the origin in \mathfrak{g} onto a neighborhood of the unit element in G ([4, Theorem 3.31]). Hence $\dim(G \cap H) = \dim(\mathfrak{g} \cap \mathfrak{h})$, and we are led to determine the Lie algebra of the intersection subgroup. Moreover, as $\mathfrak{g} = \{ A \in \mathfrak{gl}(V): g(x, A(y)) + g(A(x), y) = 0, \forall x, y \in V \}$, and similarly for \mathfrak{h}, we conclude that $\mathfrak{g} \cap \mathfrak{h}$ can be identified to the subspace of $n \times n$ skew-symmetric matrices $A = (a_{ij})$ such that

$$A^t M_h + M_h A = 0. \quad (3)$$

We decompose A in blocks as follows:

$$A = \begin{pmatrix} A_{11} & \cdots & A_{1r} \\ \vdots & \ddots & \vdots \\ A_{r1} & \cdots & A_{rr} \end{pmatrix},$$

each A_{ij} being a $m_i \times m_j$ matrix for $i, j = 1, \ldots, r$, and the equation (3) transforms into the following system: $\alpha_i A_{ij} + \alpha_j A_{ji}^t = 0$, $i, j = 1, \ldots, r$. As A is skew-symmetric, we have $A_{ij} + A_{ji}^t = 0$. Hence this system is equivalent to saying $(\alpha_i - \alpha_j) A_{ij} = 0$ for $1 \leq i < j \leq r$.

Accordingly, $A_{ij} = 0$, $i \neq j$, and the submatrices A_{11}, \ldots, A_{rr} are arbitrary. As $\dim(\mathfrak{o}(m, \mathbb{C}) = \binom{m}{2}$, we can conclude.

Corollary 2.2 Let $S^2 V^*$ be the space of symmetric bilinear forms on V and let
$\mathcal{U} \subset S^2V^*$ be the subset of non-degenerate forms. The pairs $(g,h) \in \mathcal{U} \times \mathcal{U}$ for which the conclusion of the theorem above holds, is a dense subset in $\mathcal{U} \times \mathcal{U}$.

Proof The map $\theta : \mathcal{U} \times \mathcal{U} \to \mathfrak{gl}(V)$, $\theta(g,h) = L$, is analytic and the result follows taking [2, Chapter 7, Theorem 1] into account.

Remark 1 According to the proof of the previous theorem, the matrices of the form $\exp(\tilde{A}_{11}) \cdots \exp(\tilde{A}_{r})$, with $A_{ii} \in \mathfrak{o}(m_i, \mathbb{C})$ for $1 \leq i \leq r$, and

$$\tilde{A}_{ii} = \begin{pmatrix}
O_{\mu_i,\mu_i} & O_{\mu_i,m_i} & O_{\mu_i,n-\mu_{i+1}} \\
O_{m_i,\mu_i} & A_{ii} & O_{m_i,n-\mu_{i+1}} \\
O_{n-\mu_{i+1},\mu_i} & O_{n-\mu_{i+1},m_i} & O_{n-\mu_{i+1},n-\mu_{i+1}}
\end{pmatrix},$$

where $\mu_i = m_1 + \ldots + m_{i-1}$, $O_{\mu \nu}$ denoting the null $\mu \times \nu$ matrix, span the intersection group $G \cap H$. Hence the problem of computing the intersection group is feasible; in fact, it reduces (up to polynomial time) to exponentiate skew-symmetric matrices of sizes m_1, \ldots, m_r (see [3]).

Example 2.3 Assume $\dim V = n = 5$, and that L has two distinct eigenvalues α, β such that $\dim E(\alpha) = 2$, $\dim E(\beta) = 3$. In this case, $\mathfrak{g} \cap \mathfrak{h}$ is identified to the matrices of the form

$$A = \begin{pmatrix} A_{11} & O \\ O & A_{22} \end{pmatrix}, \quad A_{11} = \begin{pmatrix} 0 & d \\ -d & 0 \end{pmatrix}, \quad A_{22} = \begin{pmatrix} 0 & a & b \\ -a & 0 & c \\ -b & -c & 0 \end{pmatrix}.$$

According to Remark 1, the intersection group is generated by $\exp \tilde{A}_{11} \exp \tilde{A}_{22}$. Exponentiating, we obtain

$$\exp \tilde{A}_{11} \exp \tilde{A}_{22} = \begin{pmatrix}
\cos d & \sin d & O \\
-\sin d \cos d & O & [v]^{-2} \begin{pmatrix} \lambda_{11} & \lambda_{12} & \lambda_{13} \\ \lambda_{21} & \lambda_{22} & \lambda_{23} \\ \lambda_{31} & \lambda_{32} & \lambda_{33} \end{pmatrix} \end{pmatrix},$$

where $v = (a, b, c)$, and

$$\begin{align*}
\lambda_{11} &= c^2 + (a^2 + b^2) \cos(|v|), \\
\lambda_{12} &= a|v| \sin(|v|) + bc (\cos(|v|) - 1), \\
\lambda_{13} &= b|v| \sin(|v|) - ac (\cos(|v|) - 1), \\
\lambda_{21} &= -a|v| \sin(|v|) - bc (\cos(|v|) - 1), \\
\lambda_{22} &= b^2 + (a^2 + c^2) \cos(|v|), \\
\lambda_{23} &= c|v| \sin(|v|) + ab (\cos(|v|) - 1), \\
\lambda_{31} &= -b|v| \sin(|v|) + ac (\cos(|v|) - 1), \\
\lambda_{32} &= -c|v| \sin(|v|) - ab (\cos(|v|) - 1), \\
\lambda_{33} &= a^2 + (b^2 + c^2) \cos(|v|).
\end{align*}$$
3. A counterexample

The formula for the dimension of the intersection group $G \cap H$ given in the previous theorem is no longer true if the endomorphism L is not diagonalizable.

We provide a counterexample in arbitrary dimension as follows: For the metrics g, h with matrices given respectively by

$$M_g = \begin{pmatrix} (k) \\ 0 \ldots 1 \\ \vdots \\ 1 \ldots 0 \end{pmatrix}, \quad M_h = \begin{pmatrix} (k) \\ 0 \ldots 1 \\ \vdots \\ 1 \ldots 0 \end{pmatrix},$$

we obtain $\dim(g \cap h) = \min(k, n-k)$. In fact, assuming $k \leq n-k$, a computation shows that the $n \times n$ matrices A such that $A^t M_g + M_g A = 0$ and $A^t M_h + M_h A = 0$ are

$$A = \begin{pmatrix} O & Y \\ Z & O \end{pmatrix},$$

where

$$Y = -\begin{pmatrix} (k) \\ 0 \ldots 1 \\ \vdots \\ 1 \ldots 0 \end{pmatrix}, \quad Z^t = \begin{pmatrix} (n-k) \\ 0 \ldots 1 \\ \vdots \\ 1 \ldots 0 \end{pmatrix}$$

and Z is the $(n - k) \times k$ matrix given by

$$Z = \sum_{h=1}^{k} \sum_{i=0}^{h-1} z_h E_{n-k-i, h-i}, \quad z_1, \ldots, z_k \in \mathbb{C},$$

(E_{ij}) being the standard basis of the matrix vector space. Moreover, $\dim E(\alpha) = 2$, where α is the only eigenvalue of L. In fact,
\[M_L = M_g^{-1} M_h = \begin{pmatrix} \alpha & 0 & 0 & \ldots & 0 & 0 \\ 1 & \alpha & 0 & \ldots & 0 & 0 \\ 0 & 1 & \alpha & \ldots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \ldots & \alpha & 0 \\ 0 & 0 & 0 & \ldots & 1 & \alpha \\ 0 & 0 & 0 & \ldots & 0 & 1 \alpha \end{pmatrix} \]

4. Conclusions

The dimension of the intersection group of the orthogonal complex groups corresponding to two non-degenerate symmetric bilinear forms \(g, h \) is seen to depend quadratically on the dimensions of the eigenspaces of the linear transformation \(L \) associated to \(g, h \), whenever \(L \) is semisimple. A computationally feasible procedure to obtain the intersection is provided. A counterexample in arbitrary dimension to the formula for the dimension of the intersection group in Theorem 2.1 when the nilpotent part of \(L \) does not vanish, is also included.

Acknowledgements

R. Durán Díaz and J. Muñoz Masqué are supported by Ministerio de Educación y Ciencia (Spain) under grant MTM2005–00173, and L. Hernández Encinas and Seok-Zun Song are supported by Korean Science and Engineering Foundation (Korea) under grant F01–2007–000–10047–0.

References