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a b s t r a c t

Interpretation of faults in seismic images is central to the creation of geological models of the subsurface.
The use of prior knowledge acquired through learning allows interpreters to move from singular ob-
servations to reasoned interpretations based on the conceptual models available to them. The amount
and variety of fault examples available in textbooks, articles and training exercises is therefore likely to
be a determinant factor in the interpreters' ability to interpret realistic fault geometries in seismic data.
We analysed the differences in fault type and geometry interpreted in seismic data by students before
and after completing a masters module in structural geology, and compared them to the characteristics
of faults represented in the module and textbooks. We propose that the observed over-representation of
normal-planar faults in early teaching materials influences the interpretation of data, making this fault
type and geometry dominant in the pre-module interpretations. However, when the students were
exposed to a greater range in fault models in the module, the range of fault type and geometry increased.
This work explores the role of model availability in interpretation and advocates for the use of realistic
fault models in training materials.
© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Reflection seismic imaging is a fundamental tool for under-
standing the structure of the Earth's crust. Despite the importance
of seismic interpretation to subsurface geoscience, there are
remarkably few studies of how interpretations themselves are
performed e in marked contrast to the numerous technical studies
of how the images themselves are created (e.g., Juhlin, 1995;
Yilmaz, 2001; Campbell et al., 2010; Alcalde et al., 2013). The
interpretation of seismic reflection data is the fundamental method
for determining the geometry and displacement of faults in the
subsurface at lithospheric to reservoir scales (e.g., Yielding et al.,
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1991; Tari et al., 1992; Underhill and Paterson, 1998; Simancas
et al., 2003; Faulkner et al., 2010). The aim of this paper is to
examine the role of advanced (graduate) training on seismic
interpretation with specific reference to faults. Faults were chosen
because they play a major influence in the seismo-mechanical
properties of the crust, the migration and trapping of fluids and
the shaping of the Earth's surface (e.g., Handy et al., 2007;
Wibberley et al., 2008).

Interpretation of seismic image data involves a certain degree
of knowledge in structural geology, stratigraphy and tectonic
settings, as well as an understanding of the physics behind the
creation of a seismic image. Interpreters must use knowledge and
understanding to produce a consistent solution that satisfies not
only all available data, but also conforms to expectation
(Frodeman, 1995; Rankey and Mitchell, 2003; Bond et al., 2011).
Knowledge is acquired from new information by developing new
or modifying existing schemas (models) (Piaget, 1983; Kastens and
Ishikawa, 2006). This learning process usually relies on the
observation of multiple examples of the structures to be processed
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(or interpreted) in different contexts. These examples provide a
source of prior knowledge which will help to tie observations to
knownmodels during the interpretation stage. In geosciences, this
issue is often epitomised in the maxim “the best geologist is the
one who has seen the most rocks”, attributed to Read (1957). A
successful learning process, however, requires that the studied
examples are assimilated through use, forming a deeper under-
standing of the problem (Chi et al., 1989). This understanding
process allows experts to move quickly from small-scale, scat-
tered, singular observations, to reasoned, more coherent and
larger-scale combined interpretation (Larkin et al., 1980; Baker
et al., 2012). Teaching materials (e.g., lecture notes, textbooks,
atlases and practical exercises) usually include abundant examples
of faults from different tectonic settings, with geometric variety
and complexity. These examples constitute a major source of
generation or modification of existing fault models for students.
Therefore, the relative proportion of different fault representa-
tions in training material is likely to influence the models available
to students: a potential source of bias for certain fault types. This
bias occurs when models that are easier to recall are more
commonly used, and it is known as “availability bias” (Tversky and
Kahneman, 1973, 1974).

In a seismic interpretation experiment by Macrae et al. (2016),
geologists with greater experience in structural geology, that had
interpreted seismic image data frequently, and had worked at the
greatest number of structural styles, achieved significantly better
interpretation results than those with less experience. The
learning process, including training, is an important aspect of
model assimilation. It is assumed that geoscientists with the most
training and practical experience will achieve better results than
those with less experience. For example, Bond et al. (2012)
observed a correlation between seismic interpretation accuracy
and education level in an experiment completed by 184 partici-
pants: more “correct” interpretations were achieved by in-
terpreters with masters and PhD degrees. The same relationship
between experience and interpretation accuracy was observed in
a subsequent interpretation experiment with borehole data (Bond
et al., 2015). A positive correlation between interpretation success
and training illustrates that interpreters use different approaches
when facing interpretation problems according to their different
expertise levels.

Masters degree programmes focusing on petroleum geoscience
are an integral part of many geoscientists' professional develop-
ment, and are increasingly demanded by the oil industry (Heath,
2000, 2003). Such courses often represent a student's first oppor-
tunity to learn ‘the art’ of seismic interpretation in more detail. In
bespoke modules on stratigraphy or structural geology, elements of
seismic interpretation are often taught as part of the course. These
modules encompass the learning and application of stratigraphic or
structural principles together with conceptual models of different
tectonic settings that influence the interpretation of a seismic im-
age. The interpretation of faults and the correlation of stratigraphic
horizons across them are central to the interpretation of a seismic
image and are of significant relevance to petroleum geoscience
(e.g., Gartrell et al., 2004; Løseth et al., 2009; Richards et al., 2015;
Yielding, 2015). Such interpretation forms the basis of a geological
or structural framework model.

This paper investigates the influence of available fault examples
in training material on the acquisition of interpretational skills by
petroleum geoscience masters students taking a module in struc-
tural geology. We analyse the results from an interpretation
experiment (Alcalde et al., 2017) carried out before and after the
students completed the module. Rather than examining whether
students perform better or not after completing the module, as this
would be subjective, our analysis focuses on differences in fault
geometries. Interpreted fault geometries Pre- and Post-module are
compared to those presented during the module and representa-
tions in common textbooks. This comparison allows us to investi-
gate the potential influence of available fault models in textbooks
and presented in the module teaching. This contribution aims to
identify potential sources of availability biases in the seismic
interpretation of faults.

2. Interpretation experiment

The interpretation experiment was taken by c. 70 masters stu-
dents before and after completing a training module on structural
geology for petroleum exploration (referred to in the text from
herein as Pre-module and Post-module). The training, delivered by
a highly experienced industry professional, included abundant
examples and interpretation exercises of seismic image data. At the
start of the experiment, the participants were given a seismic
section either in two-way travel time (TWT) or in depth (Fig. 1). The
participants were asked to interpret the seismic section, paying
special attention to a major fault located near the middle of the
section.

The students were also asked to complete an anonymous
questionnaire designed to elicit background, training and knowl-
edge in structural geology and experience in seismic interpretation,
before and after completing the module (Fig. 2). Over 90% of the
participants in the experiment had a background in geology, with
60% having no industry experience in geology or geophysics. Only
7% of the students interpreted seismic more frequently than
monthly. Their experience in seismic interpretation and in struc-
tural geology ranged chiefly from basic to good, none of the stu-
dents considering themselves experts in either discipline.

3. Masters module in structural geology

The interpretation experiment was completed by students
studying on the Integrated Petroleum Geoscience Master of Science
degree at the University of Aberdeen, UK. The experiment was run
twice, in 2015 and 2016, with different student groups but with the
same training element delivered by the same tutor using the same
material and practical exercises.

The two-week long intensive module (72 h in total) entitled
“Structural Geology for Petroleum Exploration”, consisted of a se-
ries of lectures and practical exercises intended to provide a
comprehensive knowledge of structural models relevant to petro-
leum exploration and structural styles employed in the interpre-
tation of seismic image data. The learning outcomes of the module
were to: (i) improve participants' seismic interpretation skills by
developing an understanding of structural geometry and the
application of appropriate structural models in different tectonic
settings; (ii) provide a toolkit for making more robust, viable and
quick interpretations at regional, prospect and reservoir scales, or
for very quick assessment of an existing interpretation; and (iii)
provide some common concepts and language to facilitate team
technical discussions.

The module contents included an overview of the fundamentals
of structural geology applied to seismic interpretation, together
with specific lessons on the different tectonic settings (i.e., exten-
sional, compressional, strike-slip, inversion and salt tectonics).
Module materials include multiple diagrammatic and real case
examples of seismic interpretations from different tectonic set-
tings. Due to their importance in petroleum geology, a particular
emphasis was placed on fault characteristics, including fault ge-
ometry, displacement and recognition strategies. A specific lesson,
entitled “Fault analysis techniques”, addressed 2D/3D correlation,
fault displacement and trapping assessment. The module also



Fig. 1. Seismic images used in the interpretation exercise (a) in two-way travel time (TWT), and (b) in depth domain.

Fig. 2. Self assessed by students of their experience in (a) structural geology and (b) seismic interpretation, for Pre- (in blue) and Post-module (in red). Six Post-module students
(7.1%) left the questionnaire blank. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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provided a number of heuristic tools commonly used in structural
seismic interpretation. These tools included map-based mecha-
nisms to determine extent and displacement direction (e.g., “the
bow-and-arrow rule”; Elliot, 1976) as well as elements for fault
analysis in 2D sections, such as the concept of regional elevation to
distinguish extensional from compressional settings (Cooper et al.,
1989) and the relationships between fault and hanging wall ge-
ometries (White et al., 1986).
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4. Analysis of the interpretation results

The Pre- and Post-module experiment results contain a similar
number of interpretations (73 Pre-module and 85 Post-module), a
total of 158 interpretations. These have been sub-divided by the
domain in which they were interpreted - TWTor depth (Fig. 3a and
b, respectively). An almost equal number of interpretations were
undertaken in each domain, both Pre-module (36 in TWT and 37 in
depth) and Post-module (43 in TWT and 42 in depth). This allows
assessment of any effect the interpretation domain may have had
on the experiment outcome. The interpretations in TWT were also
converted to depth using the approach described in Alcalde et al.
(2017), in order to merge the Pre- and Post-module datasets.

The results of the interpretation experiment were analysed in
terms of four different elements, for both the Pre- and Post-module
results: (1) geometry and placement of the fault(s); (2) analysis of
fault curvature; (3) the number of faults and horizons interpreted
with depth; and (4) fault type.

The variability in interpreted fault placement was computed at
nine depths in each interpreted seismic image (markers from 1 to
9 km, every km) (Fig. 3). At each depth marker, the 1st and 3rd
quartile positions (in horizontal distance) for the fault
Fig. 3. Stacked results of the interpreted faults by students (a) Pre-module and (b) Post-m
terpretations in the two domains. The black lines at the right side of the images mark the n
interpretation populations were calculated. The distance between
quartile 1 and quartile 3 (i.e., the inter-quartile fault placement
range), provides a good estimation of the fault placement spread at
a given depth (blue lines for Pre- and red lines for Post-module
quartiles in Fig. 4a). The difference between Pre- and Post-
module inter-quartile ranges (DIQ) is also calculated (Fig. 4a). The
fault placement spread in the Post-module results is generally
greater (DIQ of 85 m on average), with the maximum difference
located at the bottom of the section (DIQ ¼ 320 m). Only at 5 and
7 km depth is the fault spread larger in the Pre-module set, with
differences at these depths of 33 and 67 m, respectively. The Post-
module interpretations are offset to the left at depths below 4 km in
comparison to the Pre-module interpretations (Fig. 4a).

In this work, we define curved faults as any non-planar fault,
i.e., faults that change in dip along their length. The upper part of
the images (i.e., depths ranging from 0 to 3 km and times from 0 to
2.5 s TWT) show similar interpretations of fault geometry. An
analysis of the geometry of the interpreted faults was undertaken
using curvature analysis, to act as a proxy for the curved nature of
the interpreted faults. Curvature is calculated for each point on a
curve, with equation y ¼ f (x), the tangent line of which turns at a
certain rate. The curvature k is a measurement of the rate of
odule. Note that the results in TWT were converted to depth, for comparison of in-
ine depths at which the analyses of the fault and horizon interpretations were made.



Fig. 4. Analysis of the fault placement spread (a), and count of the number of faults (b) and horizons (c) in percentage with depth normalised to the number of interpretations in
each set. The fault placement spread is represented by the 1st and 3rd quartiles in horizontal position of the interpretations shown in Fig. 3, blue for Pre-module and red for Post-
module. The numbers at the depth markers show the difference in the interquartile range between Pre- and Post-cases (DIQ), with positive values indicating a smaller interquartile
range Post-module. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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turning of this tangent:

k ¼
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f
00 ðxÞ�
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�3=2
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where f0(x) and f00(x) are the first and second derivatives of the
curve. Curvature values were calculated for all the faults at the fault
nodes, the points on the digitised faults connecting two segments
of different dip. The absence of change in dip between two seg-
ments (i.e., a flat segment) results in curvature zero, whereas the
higher the curvature value, the greater the change in dip between
the two segments. Computation of the curvature values from the
nodes of the Pre- and Post-module fault interpretations allows a
quantitative comparison of the geometry of the interpreted faults
in the two datasets (Fig. 5). At the top of the profile, Pre-module
faults have a greater curvature than the Post-module ones down
to 1.5 km depth, a depth fromwhich themedian curvature values of
both datasets decrease at a similar rate. This decrease occurs irre-
spective of the domain (TWT or depth) in which the seismic image
was interpreted. At 6.5 km depth, the Post-module curvature values
start increasing again whereas the Pre-module ones decrease,
reaching two orders of magnitude difference at 8 km depth. The
mean curvature values converge at the bottom of the section.

The number of faults and horizons interpreted at different
depths were counted at the 9 depth markers and normalised
against the total number of each subset (Fig. 4b and c). The inter-
preted fault count shows a similar amount of faults in the shallow
part of the section down to 5 km (1% more faults in the Pre-module
results on average); at this depth and greater, Post-module fault
interpretations exceed the Pre-module horizon interpretations (7%
more on average, Fig. 4b). The Post-module interpretations had a
greater number of horizon interpretations at the different depths,
resulting in 25% more horizons interpreted on average at each
depth marker than the Pre-module interpretations (Fig. 4c).

Finally, the type of faults interpreted in the two datasets was
also analysed (Fig. 6). The fault types identified comprised, in order
of occurrence magnitude: normal, inversion, reverse and unde-
fined. Normal faults are themost dominant fault type interpreted in
both datasets, with 49.3% and 42.4% of the Pre- and Post-module
fault interpretations, respectively. In the Pre-module data set,
reverse and inverted faults were interpreted with a similar
frequency (26% and 23.3%, respectively). The Post-module results
show a greater number of inversion interpretations (38.8%, c. 15%
more than the pre-module fault interpretations), and a smaller
number of reverse fault interpretations (11.8%, 14.2% less than the
pre-module fault interpretations).
5. Fault illustrations in textbooks and teaching material

Beyond the answers to the questionnaire (Fig. 2), it is difficult to
assess the backgrounds of interpreters to determine effectively
their exposure to different fault models in their early-years
training. Here, we assess the representation of faults in textbooks
as a proxy. A count of fault type and style was carried out in ten
textbooks commonly used in structural geology teaching (Table 1).
The publications were chosen to represent the range in fault
models available to geology students in textbooks. The ten text-
books include European and US publications, ranging in publication
date from 1987 to 2013. Fault representations in figures were
counted and grouped based on their slip motion: normal, reverse
(thrust), inversion and strike-slip. The faults were also classified as
planar (e.g., Fig. 7a and b) or curved if they showed changes in dip
(e.g., Fig. 7c and d). The fault count was carried out observing the
following guidelines: (i) each sub-figure was counted as one fault,
no matter how many faults were represented (e.g., Fig. 7c and
d counted as one curved fault each); (ii) block diagrams only
counted as faults if they showed displacement (e.g., Fig. 7e); (iii)
oblique faults counted as both strike-slip and the corresponding
dip-slip (Fig. 7f). Faults with unclear or absent slip motion, faults in
outcrop photographs or maps, shear fractures, joints etc. were
excluded from the fault count. The fault count was done by eye, and
therefore faults with subtle or imperceptible changes in dip may
have been assigned to the planar set unintentionally.

The result of the fault count show a dominance of normal (429
faults) and reverse (380) fault types compared to strike-slip (126)
and reactivated (inverted) faults (11) (Table 1). Together, normal
and reverse faults represent more than 86% of the faults found in
the textbooks (Fig. 8a). The geometry of the faults was also
addressed in the fault count (Fig. 9). In total, the number of curved
faults (523) is higher than the number of planar faults (423). Curved
faults are dominant in all the fault types except in strike-slip faults,
where planar faults are twice as prevalent as curved faults (90 vs 36
faults, respectively).



Fig. 5. Calculated fault spread (a) and calculation of the curvature values with depth in logarithmic (b) and linear (c) scale, for all the fault nodes. The spread of the nodes cor-
responds to the values illustrated in Fig. 4 a. The continuous lines in the curvature graph represent the median values calculated from the curvature analysis. For display purposes, 6
and 4 outliers were not shown in the curvature graphs b and c, respectively.

Fig. 6. Percentage of faults interpreted as normal, inversion, reverse or undefined in
the students' interpretations. Pre-module (in blue) and Post-module (in red). The
numbers at the top of the bars indicate the number of interpreted faults of each tec-
tonic setting. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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The fault count was further divided into examples from intro-
ductory textbook chapters and those from more advanced chap-
ters (Table 1, Fig. 10). We define introductory chapters as those
including the fundamentals of faults (i.e., nomenclature,
classification and basic concepts) commonly describing Ander-
sonian mechanisms (Anderson, 1950, 1951), and usually in the
form of block diagrams or conceptual models. In contrast,
advanced chapters usually include more detailed description of
faults, with specific examples, usually from real settings. This
subdivision of fault count shows that fault appearances in intro-
ductory chapters are dominated by planar faults (75% appearances
on average, excluding inversion), whereas curved faults dominate
in advanced chapters (73% on average), except in strike-slip fault
types (Fig. 10).

Numerous fault examples, both conceptual (e.g., block dia-
grams) and real, were presented in the masters module teaching
material. A fault count, similar to the textbooks, was carried out of
faults represented in the teaching material, module lectures and
practical exercises (Table 2). The fault type count in the module's
lectures and exercises show a similar distribution to the count in
textbooks (Fig. 8): normal faults (164 in lectures and 8 in exer-
cises) and reverse (96 and 7, respectively) are the most observed
types, whilst strike-slip (14 and 2, respectively) and inverted faults
(19 and 5, respectively) are less prevalent. Whilst fewer in number
(22) the faults counted in the module exercises, however, show a
more distributed representation compared to the other two
counts. The fault geometries in the module materials (both lec-
tures and exercises) also show the same distribution between
planar (37% of the total) and normal faults observed in the text-
books (63%) (Fig. 9).



Table 1
Count of fault types and geometries in illustrations in ten commonly used structural geology textbooks. The table differentiates between introductory chapters and advanced
chapters in the textbooks. Introductory chapters involve conceptual descriptions of the mechanisms, geometries and motion of faults, whereas advanced chapters include
more realistic geometries and real examples. The chapters were divided as follows in the textbook sources (introductory chapters, “int”; advanced chapters “adv”): Dennis
(1987); Twiss and Moores (1992) (int: 4; adv: 5 to 20); Hatcher, (1995) (int: 8 to 10; adv: 11 to 13); Van der Pluijm and Marshak (2003) (int: 6 and 8; adv: 14 to 22); Price
and Cosgrove (2005) (int: 5 to 8; adv: 9 to 18); Ragan (2009); Fossen (2010) (int: 8 and 9; adv: 16 to 21); Grotzinger and Jordan (2010); Davis et al. (2012); McClay (2013).

Textbook Fault type count

Introductory chapters Advanced chapters

Normal Inversion Reverse
(thrust)

Strike-slip Normal Inversion Reverse
(thrust)

Strike-slip

Planar Curved Planar Curved Planar Curved Planar Curved Planar Curved Planar Curved Planar Curved Planar Curved

Dennis (1987) 7 12 12 18 1 2
Twiss and Moores (1992) 9 4 4 2 7 1 12 31 21 31 11 5
Hatcher (1995) 12 3 7 2 5 13 26 6 3 38 1 2
Van der Pluijm and Marshak (2003) 19 3 11 6 9 4 1 57 1 19 57 7 12
Price and Cosgrove (2005) 12 11 13 20 6 7 2 7
Ragan (2009) 8 8 2 3 3
Fossen (2010) 40 7 8 6 21 63 4 21 22 12 6
Grotzinger and Jordan (2010) 3 1 6 3 5
Davis et al. (2012) 13 14 14 14 9 4
McClay (2013) 6 6 7 7 8

Fig. 7. Examples of faults counted in the textbooks. Faults included planar (a and b) and curved (c and d) geometries. Block diagrams were only counted if they showed any
displacement (e). Transpressional or transtensional faults were counted as both strike-slip and reverse or normal slip senses (f). Modified from Van der Pluijm and Marshak (2003)
(a and c); Fossen (2010) (b, d and e); and Davis et al. (2012) (f).
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6. Discussion

6.1. Variation in fault placement and extent

In seismic image data, faults are commonly interpreted as 2D
surfaces linking stratal terminations (e.g., Bahorich and Farmer,
1995). However, faults are frequently at the limit of the vertical
and horizontal resolution of the seismic data, permitting multiple
valid interpretations of the same dataset and hence carry inter-
pretation uncertainty (Botter et al., 2014). The Inter-quartile range
of fault placement can be used as an indicator of fault placement
uncertainty for each seismic image, where larger inter-quartile



Fig. 8. Percentage of appearances of each fault types in (a) the textbooks; (b) in the masters module lecture materials; and (c) in the masters module exercises (bulk numbers in
brackets). Sources in Tables 1 and 2.

Fig. 9. Fault geometry appearances in textbooks (blue) and masters module materials (combining lectures and exercises; orange). Textbook sources in Table 1. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)
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ranges correspond to higher uncertainty (Alcalde et al., 2017). The
experiment results show a greater spread in placement of the Post-
module interpreted faults across the majority of the seismic section
(Fig. 5a). As the students were interpreting the same images, Pre-
and Post-module data uncertainty does not change. Thus, we infer
that the difference in interquartile range relates to differences in
the Pre- and Post-module interpretation process by the student
cohorts.

Both Pre-module and Post-module interpretation results attest
to a dramatic reduction in the number of horizon interpretations at
c. 3 km depth (Fig. 4c). Alcalde et al. (2017) identified this boundary
as a threshold depth separating the upper-part of the seismic sec-
tion, with high seismic reflectivity and coherence and hence greater
data constraint, to the lower part, showing lower seismic reflec-
tivity and relatively incoherent reflections with greater interpre-
tational subjectivity. This boundary also corresponds to a change in
the number of faults interpreted at depth (Fig. 4b). Overall, the
number of fault interpretations decreases below the boundary in
both sets of interpretations. However, the number of fault in-
terpretations is greater in the Post-module interpretations,
particularly at increasing depths (Fig. 4b) when compared to the
Pre-module interpretations. The effect of data quality on the
number of faults interpreted at depth is more gradual than that
observed for horizon interpretations. There are 178 fewer horizon
than fault interpretations below 3 km (47 horizons vs. 225 faults).
This may be because: 1) the fault geometry at depth can be pro-
jected from the upper-part of the seismic image into the lower
more subjective data; or 2) simply an artefact of interpretation of
sub-vertical features as compared to sub-horizontal horizons. It
would be expected that more experienced interpreters use infor-
mation from the data-constrained upper-section to project their
interpretations in the deeper parts. In this respect, Shipley et al.
(2013) hypothesised that experts are more capable to associate
different spatial observations into a single entity. In these less data-
constrained areas, conceptual models play a greater role in the
interpretation of the seismic image (Bond, 2015). This inference is
supported by the greater number of horizons interpreted and the
more sustained fault interpretations to greater depths in the Post-
module dataset.

We suggest that, following the Structural Geology for Petroleum



Fig. 10. Percentage of appearances of planar (yellow) and curved (blue) faults in introductory (“Int.”) and advanced (“Adv.”) chapters in the ten textbooks analysed, for each fault
type. Textbook sources in Table 1. Only the textbooks containing both introductory and advanced chapters were included. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Table 2
Count of fault types and geometries in illustrations in the masters module lectures and exercises.

Teaching material Fault type count

Normal Inversion Reverse (thrust) Strike-slip Total

Planar Curved Planar Curved Planar Curved Planar Curved

Masters module lectures 63 101 1 18 45 51 7 7 293
Masters module exercises 2 7 1 8 1 3 22
Total 65 108 2 26 45 52 7 10 315
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Explorationmodule, the students weremore confident drawing the
fault to depth into areas of poor-quality seismic image. This
increased confidence in their interpretation abilities is supported
by the student responses in the questionnaire (Fig. 2). We propose
that the Post-module students were more confident in their
interpretation of the seismic image, making their interpretations
less restricted, leading to the interpretation of more variable fault
geometries and to the subsequent increase in fault placement range
(i.e., the calculated inter-quartile range), creating coherent holistic
interpretations. Comparable increases in confidence relating to the
amount of training for interpreters were also observed in a similar
experiment carried out by Bond et al. (2011).

6.2. Interpretation of fault type and geometry

The nature of the seismic image used in the experiment is such
that correlating horizons across the fault to determine fault type
(e.g., normal, reverse/thrust, inversion or strike-slip) and
displacement is not straightforward. Consequently, the experi-
ments generated a range of interpreted fault types (Fig. 8) in both
Pre- and Post-module cohorts. Interpretations are dominated by
normal faults, perhaps reflecting their prevalence in introductory
structural geology textbooks (Fig. 6 and Table 1). The Post-module
interpretations were slightly less dominated by normal fault in-
terpretations, perhaps reflecting the greater diversity in interpre-
tation exercises of different fault types completed as part of the
module, despite similar representation to textbooks of fault types
in the taught (lecture) component of the module (Fig. 8). A greater
influence on model availability would be expected from practical
interpretation exercises in which learning is reinforced by
engagement, rather than pure observation (Anzai and Simon,1979).

Another characteristic observed in the Post-module in-
terpretations is the increase in curved fault interpretations in the
deeper part of the seismic section (depths >2.5 km) (Fig. 4 a and
Fig. 5b and c). This increase suggests a greater appreciation in Post-
module students for a range of fault models extending beyond
planar fault geometries to encompass more complex geometries,
including curved fault planes. Planar fault geometries are exten-
sively used in training material for illustration purposes: as an
example, the fault count carried out in structural geology textbooks
revealed a relatively similar proportion of planar and curved faults
(Table 1; Fig. 9). Planar faults are frequently used to illustrate the
fundamental notions of faulting in the form of block diagrams (e.g.,
Fig. 7a and b). The fault geometries counted in undergraduate
textbooks shows that curved faults appear more often (56.5%) than
planar faults (43.5%) (Fig. 9). A similar proportion is observed in the
masters module materials, where curved faults account for 60% of
the faults interpreted and planar faults 40%. However, planar fault
representations appear mainly in introductory chapters (Fig. 10),
and may be more available than later models to interpreters.

6.3. Availability of fault models

When interpreting data, students learn how to discriminate
different properties of the subject in order tomatch themwith their
own mental models. Since the learning process of these models is
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deeply dependent on the observation of analogue examples (Bond
et al., 2007), careful selection of these examples is of great impor-
tance. Experiments in image interpretation suggest that better re-
sults are achieved when training includes difficult exemplars from
the beginning (Donnelly et al., 2006). Therefore, the use of a greater
range of fault geometries that better represent nature in intro-
ductory teaching materials is strongly encouraged. Similar obser-
vations in two experiments testing the readiness of fold models
document the tendency of geologists to conceptualise folds as an-
ticlines (as opposed to synclines), and to focus on certain properties
of the folds (e.g., hinges instead of limbs) (Chadwick, 1975; Cowan,
2016). These studies also considered experts and non-experts in
geology in their experiments, observing that the tendency to
interpret folds as anticlines is irrespective of the level of expertise.
Cowan (2016) hypothesises that “the antiform bias seen in the re-
sults from the geological community is due to subliminal condi-
tioning caused by the geological education process”. We propose a
similar effect caused by availability bias (Tversky and Kahneman,
1973, 1974) of fault models; textbook and teaching illustrations of
faults dominate conceptualisation of a fault type and geometry, in
this case biasing the interpretations towards normal planar faults.
By providing the students with a greater range of fault models that
were readily available to them, we were able to influence inter-
pretation outcome for the same seismic image. Nevertheless, many
questions remain to be explored regarding the longevity of this
effect, how training builds expertise over time, and what the
impact is, on availability bias, of the interplay between a wealth of
knowledge built up through time, examples that are more recent,
and material exposed to early in knowledge acquisition.

7. Conclusions

We have examined the role of training in the interpretation of
faults on a 2D seismic reflection profile using cohorts of graduate
students before and after a module in structural geology. There are
quantified differences in the students' interpretations in fault type,
geometry, placement and extent, before and after this training.
Normal faults chiefly of planar form dominate Pre-module in-
terpretations. A greater range in fault type and geometry is repre-
sented in Post-module interpretations. These observations suggest
that more experienced interpreters (i.e., Post-module students) use
a greater range of fault models. They are also more likely to extend
interpretations (faults and horizons) into regions of the seismic
data of poorer image-quality. This behaviour may reflect an
increased confidence on the part of the interpreters, as suggested
by the questionnaire returns.

Analysis of training material (textbooks and lecture slides)
suggest that normal faults are dominant, and planar fault geome-
tries are over-represented with respect to more complex fault
patterns in introductory materials. We propose that this unrepre-
sentative dominance of normal-planar faults in introductory
chapters of textbooks influences the conceptual fault models
available to geologists for interpretation of data. Hence we
recommend that both educators and applied geoscientists recog-
nise the potential of available fault models to bias interpretation
and attempt to minimise its effects by exposing students and pro-
fessionals to as wide a set of fault analogues as possible. A move
away from simplistic fault models to more representative fault
types and geometries at all learning levels should create more
effective seismic interpreters. We suggest that the impact of such a
movewill increase the range in fault geometries interpretedmostly
for early career geologists who have likely been exposed to a
smaller range in fault analogues and may have fewer models
readily available. Perhaps the maxim “the best geologist is the one
who has seen the most rocks” (Read, 1957) is not just a clich�e, but
the diversity and examples of the observed rocks seems to be as
important as the quantity.
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