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ABSTRACT

The coronary microvasculature comprises the smallest blood vessels of the cardiac tissue. It
continuously adapts in response to physiological and pathophysiological conditions to meet
tissue demands. Quantitative assessment of the dynamic changes taking place in the coronary
microvasculature is therefore crucial in enhancing our knowledge regarding the impact
of cardiovascular disease on tissue perfusion and on developing efficient angiotherapies.
This thesis focuses on deciphering the structural and functional changes that occur at the
microvascular level, at various stages after myocardial infarction (1, 3, and 7 days following
damage). Towards this aim, we have adopted an interdisciplinary approach which combines
confocal microscopy, fully automated 3D image analysis and mathematical modelling.

We used thick cardiac tissue sections labelled for nuclei, endothelial cell junctions and
smooth muscle cells and we imaged them by confocal microscopy. Firstly, we developed a
novel method for the segmentation of labelled structures from confocal images as well as
an innovative approach for the accurate 3D reconstruction of the microvasculature based on
endothelial cell junction and smooth muscle actin staining. Subsequently, we designed a
fully automated image analysis pipeline to extract parameters that quantify all major features
of the microvasculature, its relation to smooth muscle actin-positive cells and capillary
diffusion regions. The novel pipeline was applied to the analysis of the coronary microvascu-
lature from healthy tissue and also tissue at various stages after myocardial infarction. We
used the pig animal model, whose coronary vasculature closely resembles that of human
tissue. We discovered alterations in the microvasculature, particularly structural changes
and angioadaptation resulting in altered capacity for oxygen diffusion in the aftermath of
myocardial infarction. In addition, we evaluated the extracted knowledge’s potential in terms
of predicting the pathophysiological condition of the tissue. The high accuracy achieved
in this respect, demonstrates the ability of our approach not only to quantify and identify
pathology-related changes of microvascular beds, but also to predict complex and dynamic
microvascular patterns. Lastly, the anatomical data obtained regarding the microvasculature
were used to feed a continuum perfusion model in order to calculate physiologically mean-
ingful permeability tensors. By using this theoretical blood flow modelling approach, we



were able to obtain insights into tissue perfusion and to demonstrate the functional effect of
the structural changes occurring as a result of myocardial infarction.

Overall, this work is a step forward towards increasing our understanding of microvas-
cular alterations after myocardial infarction, modelling microcirculation at different stages
after tissue damage and it also provides an unbiased means for the evaluation of potential
treatments.
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RESUMEN

La microvasculatura coronaria comprende los vasos sanguíneos más pequeños del tejido
cardíaco. Se adapta continuamente en respuesta a las condiciones fisiológicas y fisiopatológi-
cas para satisfacer las demandas de los tejidos. La evaluación cuantitativa de los cambios
dinámicos que tienen lugar en la microvasculatura coronaria es, por lo tanto, crucial para
mejorar nuestro conocimiento sobre el impacto de las enfermedades cardiovasculares en la
perfusión tisular y en el desarrollo de angioterapias eficientes. Esta tesis se centra en descifrar
los cambios estructurales y funcionales que ocurren a nivel microvascular, en varias etapas
después del infarto de miocardio (1, 3 y 7 días después del daño). Con este objetivo, hemos
adoptado un enfoque interdisciplinario que combina la microscopía confocal, el análisis de
imágenes 3D totalmente automatizado y el modelado matemático.

Utilizamos secciones gruesas de tejido cardíaco teñidas para núcleos, uniones de células
endoteliales y células de músculo liso vascular y obtuvimos imágenes mediante microscopía
confocal. En primer lugar, desarrollamos un método novedoso para la segmentación de
estructuras marcadas a partir de imágenes confocales, así como un enfoque innovador para la
reconstrucción 3D precisa de la microvasculatura basada en la unión de células endoteliales
y la tinción de actina de músculo liso. Posteriormente, diseñamos una pipeline de análisis
de imágenes completamente automatizada para extraer parámetros que cuantifican todas las
características principales de la microvasculatura, su relación con las células de músculo
liso que expresan actina y las regiones de difusión capilar. La nueva pipeline se aplicó al
análisis de la microvasculatura coronaria de tejido sano y también de tejido en diversas etapas
después del infarto de miocardio. El modelo animal utilizado fue el cerdo, cuya vasculatura
coronaria se parece mucho a la humana. Descubrimos alteraciones en la microvasculatura,
particularmente cambios estructurales y angioadaptación que resultan en una capacidad
alterada para la difusión de oxígeno después del infarto de miocardio. Además, evaluamos el
potencial del conocimiento extraído en términos de predecir la condición fisiopatológica del
tejido. La alta precisión lograda en este sentido, demuestra la capacidad de nuestro abordaje
no solo para cuantificar e identificar cambios patológicos de lechos microvasculares, sino
también para predecir patrones microvasculares complejos y dinámicos. Por último, los
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datos anatómicos obtenidos para la microvasculatura se usaron para ¨alimentar¨ un modelo
de perfusión continuo con el fin de calcular tensores de permeabilidad fisiológicamente
significativos. Al utilizar este enfoque teórico de modelado de flujo sanguíneo, pudimos
obtener información sobre la perfusión tisular y demostrar el efecto funcional de los cambios
estructurales que ocurren como resultado del infarto de miocardio.

En general, este trabajo es un paso adelante para aumentar nuestra comprensión de las
alteraciones microvasculares después del infarto de miocardio, modelar la microcirculación
en diferentes etapas después del daño tisular y también proporciona un método imparcial
para la evaluación de posibles tratamientos.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Cardiovascular disease (CVD) is the leading cause of deaths worldwide, despite significant
progress having been made in its prognosis, treatment and medical management [76]. The
socio-economic burden associated with CVD, including myocardial infarction (MI) and its
complications such as heart failure [70], has led an important amount of research to focus
on unravelling its causes and developing therapeutic approaches [240]. Dysfunction of the
coronary microvasculature, even after successful reperfusion of coronary arteries, is increas-
ingly being recognized as the decisive factor for inadequate myocardial tissue reperfusion
which can lead to prolonged ischaemia and adverse clinical outcomes [221]. Therefore,
the coronary microvasculature has been proposed as a potential prognostic biomarker and
therapeutic target [159, 28].

The microvasculature represents the anatomy of microcirculation and comprises the
smallest blood vessels of the tissues with diameters of only few microns; capillaries, arterioles
and venules. Its architecture is a major determinant of blood flow, oxygen transport, wall
shear stress and distribution of pressure in microvessels [177, 163]. Nonetheless, its in vivo
visualization in humans remains a bottleneck. For this reason, ex vivo imaging and different
animals models have been used [230, 22, 10, 138, 12, 104]. Among them, the pig animal
model has attracted considerable attention due to the similarity of its coronary network to
that of humans. Pioneering work by Kassab [104] in this area has provided a wealth of data
regarding diameters, length and topology of the porcine microvascular network, through
the use of coronary corrosion casts. These data provided significant insight into porcine
microvascular structure and enabled the subsequent modelling of hemodynamics at basal
conditions [123, 105].

However, the microvasculature is not a static system, but rather a dynamic one and it
continuously adapts in order to meet the tissue demands in response to physiological and
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Splitting 

Angiogenesis

Sprouting 

Angiogenesis

Addition of new vessels Structural

remodelling

PruningInitial state

Fig. 1.1 Schematic illustration of the possible forms of angioadaptation. From right to
left, the initial state of the microvasculature and the possible vascular patterning processes
that can occur during angioadaptation, i.e. sprouting and splitting angiogenesis, structural
remodelling and regression.

pathophysiological conditions, such as MI and other CVD, such as diabetes or hypertension.
Thanks to its dynamic nature, the microvasculature is capable of adding new vessels by
sprouting [32] or intussusceptive (splitting) angiogenesis [48], altering the structure of
existing vessels (remodelling [168]) and pruning of abundant vessels (regression [115]).
These processes of vascular patterning, termed angioadaptation [236] (Fig. 1.1), affect the
architecture of the microvasculature. Despite significant attempts to develop approaches
that would promote therapeutic remodelling or revascularization [221], no drug has so been
approved for clinical use for MI [39, 33]. There is, therefore, a growing quest to develop
a better understanding of the microvascular dynamic changes in MI and how to control
them. Towards this aim, quantitative data on the anatomy of coronary microcirculation in
pathology and not only under basal conditions are essential [229]. These data are the key
challenge for understanding structure-function relation through modelling approaches, and
thus, developing and evaluating more efficient therapeutic approaches. In addition, studies
are expected to recognize the inherently three-dimensional (3D) and complex structure of the
microvasculature.

Obtaining such structural 3D data that span several stages of pathology is nowadays
more feasible than ever thanks to revolutionary advancements in imaging systems, including
x-ray phase-contrast synchrotron radiation-based micro computed tomography [83], knife-
edge scanning [143] and confocal laser scanning microscopy (CLSM) [154]. CLSM has
the advantage over other imaging techniques of being a widely available imaging system
in biomedical laboratories and of allowing the visualization of the microvasculature with
sub-micrometer resolution, at increasing imaging depths. In addition, when combined with

2



1.1 Motivation

fluorescent dyes, it permits the simultaneous study of the microvasculature in relation to
other key players in tissue healing after MI.

However, today’s microscopes, produce a vast amount of data whose complexity preclude
traditional manual and supervised analysis methods [144]. A work-around adapted by the
scientific community during several years has been the assessment of the microvasculature
from 2D slices or maximum intensity projections produced from 3D volumes. Nonetheless,
it is increasingly apparent that this approach might lead to errors, misinterpretations and loss
of important information of biological significance. Therefore, the quest for 3D automated
bioimage analysis tools has steadily increased [58]. This exciting area of research and
development, that forms part of the emerging field of "bioimage informatics" [155], is already
revolutionizing biomedical sciences by offering the possibility to obtain unprecedented
insights into biomedical problems, while dealing with subjectivity problems as well as time
restrictions and labour requirements in both manual and supervised analysis.

In the case of microcirculation, the rise of 3D automatic image analysis approaches has
the additional potential to enable the study of the function of the microvasculature which is
hampered by today’s imaging limitations. More precisely, in vivo measurement of blood flow
or pressure in the smallest microvessels embedded in the deeper layers of organs, such as
the heart, remains a particularly challenging task or it is feasible only for epicardial vessels
[112]. Theoretical models have therefore emerged as a way of going beyond experimental
observations and of obtaining novel insight into perfusion and structure-function relation by
exploiting structural data [206, 82]. Moreover, despite the challenging nature of the task,
reconstruction and quantitative structural information of detailed 3D microvascular networks
promises to allow the transition from modelling based on idealized networks to realistic
modelling based on anatomical data, i.e. image-based modelling [213, 97, 96, 160]. Blood
flow models have been further complemented by models that simulate oxygen transport
[201, 80, 64], structural adaptation [172, 168] and blood flow regulation [197].

Overall, it is crucial to quantitatively assess the coronary microvasculature and its changes
after myocardial infarction since such knowledge will enhance understanding of the mech-
anisms of myocardial infarction as well as the design and objective evaluation of new
angiotherapies. In a clinical context, a thorough and unbiased evaluation of therapy effective-
ness in protecting or restoring the microvasculature can positively affect the management of
MI patients. Toward quantitative assessment of the microvasculature and its infarction-related
functional and structural changes, fully automated image analysis approaches, combined with
mathematical microvascular models, can serve as powerful tools for obtaining unprecedented
conclusions from experimental data, as well as complementary solutions to experimental
approaches.

3



Introduction

 

 
 

3D Automated Image Analysis

Basal

Confocal

Microscopy

7 days post MI

Remote Area

Infarct Area

Remote Area

Infarct Area

3 days post MI1 day post MI

Remote Area

Infarct Area

Quantification

of microvascular 

characteristics,

relation with SMA+ & 

oxygen efficiency

Fig. 1.2 Overview of the study design and goals.

1.2 Objective

The main aim of this PhD thesis is to decipher cardiac microcirculation pathophysi-
ology in infarcted and remote areas after myocardial infarction in an unbiased and
reproducible manner. Towards this aim, we have adopted an interdisciplinary approach
combining confocal microscopy, fully automated 3D image analysis and mathematical mod-
elling approaches. Moreover, we have performed our study using an animal model that bears
close similarities to humans; the pig. We are particularly interested in the early stages after
MI, when tissue salvage might be optimized and maladaptive physiology might be reduced.
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1.2 Objective

Quantitative assessment of structural and functional changes occurring to the microvascula-
ture in infarcted and remote cardiac areas after MI, as well as their evolution during disease
progression, will enhance our understanding of the pathological process. Concomitantly, this
will contribute to the development and efficient evaluation of potential therapeutic approaches
which can assist in the acceleration of the translation of findings from basic research to the
clinic.

The following main objectives and relative sub-tasks had to be fulfilled to achieve the
aim of the thesis:

i. Acquisition of imaging data of cardiac porcine tissue at different stages after my-
ocardial infarction and at basal conditions with adequate resolution to resolve the
microvasculature as well as other cell types.

ii. Design and development of a fully automated 3D image analysis approach that permits
quantification of all major microvascular features and revelation of microvascular
changes in the aftermath of myocardial infarction.

iii. Use of the extracted microvascular features in the prediction of the diseased or healthy
state of complex microvascular patterns.

iv. Modelling of the microvascular behaviour after infarction, and in particular, of its
functional properties, such as blood flow in microcirculation, based on the detailed
structural patterns of the microvasculature, as well as identification of structural-
functional associations.

It is worth noting that this thesis was undertaken as part of the Marie Curie Initial Training
Networks program "Next generation training in cardiovascular research and innovation"
("CardioNext", grant Agreement 608027). "CardioNext" was an innovative program that ran
from 2013 until 2017 with the aim of training the next generation of translational scientists by
combining extensive multi-disciplinary training and innovative individual research projects
focused on ischaemic heart disease. More precisely, as part of "CardioNext", cardiac
ischaemia/reperfusion (I/R), which is an experimental model of myocardial infarction, and
post-infarction remodelling were investigated using the pig preclinical model. The projects
aimed at enhancing our understanding of the response of the heart to I/R and at developing
novel preventive, diagnostic, prognostic and therapeutic strategies.
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1.3 Study design & Strategy adopted

CLSM was selected as the imaging system of this work to acquire images with adequate
spatial resolution to resolve the microvasculature. As noted previously, CLSM offers sub-
micrometer resolution and allows the simultaneous visualization of the microvasculature
with other cell types, such as smooth muscle cells. Here, we used thick slices (∼ 100µm)
of tissue from remote and infarcted areas of porcine hearts. The hearts were obtained from
animals that had suffered MI and had been sacrificed at 1, 3, 7 days following MI. Hearts
were also obtained from animals at basal conditions. The tissues were stained by means
of immunohistochemistry for nuclei, endothelial cell junctions and smooth muscle actin
positive (SMA+) cells. In total, 126 multi-channel confocal images were acquired for these
time-points. Given the impact that microvascular changes at later time points may have in
long-term cardiac remodelling and function, the dataset was later augmented with imaging
data from subjects sacrificed at 45 days post MI, a stage in which cardiac remodelling has
already taken place. It is worth noting that the preclinical experimental model of myocardial
infarction is 30-minute occlusion of the left anterior descending coronary artery followed by
reperfusion. Moreover, the pig animal model was selected due to its high translational value.

To achieve the second objective of the thesis, we designed a 3D fully automatic bioimage
analysis pipeline that allows us to reconstruct the complete microvasculature from stained
endothelial cell junctions and SMA+ cells. Reconstruction of the cardiac microvasculature is
based on a novel multi-scale, multi-level thresholding (MMT) algorithm for the segmentation
of labelled structures from microscopic images and an ad-hoc "filling" approach. The
development of the "filling" approach is of utmost importance because VE-Cadherin is a
marker of endothelial cell junctions and it does not label the vessel lumen. It was selected
as an endothelial marker over other commonly used markers of the vessel lumen due to its
preciseness, even in infarction. However, staining with VE-Cadherin results in the presence
of gaps in the reconstructed blood vessels. The size of these gaps is not homogeneous
and depends on the type of microvessel i.e. capillaries, arterioles or venules. Thus, the
"filling" method was developed to fill gaps of heterogeneous size depending on the vessel
type. Following application of MMT and "filling", an accurate reconstruction of the complete
microvasculature was produced.

The pipeline subsequently extracts essential biological information about all major
characteristics of the microvasculature, the relation with SMA+ and capillary diffusion
regions. This was not possible in the past when using a single software. We demonstrated
that by using confocal microscopy and our pipeline, we are able to reveal fine alterations
of the cardiac microvasculature in the aftermath of MI. The fully automatic nature of the
approach ensures reproducibility, reliable significance and objectiveness of the findings.
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Furthermore, we evaluated the potential of the extracted knowledge to be used for predicting
the pathophysiological condition of unseen tissue. A high accuracy (higher than 80%) in
distinguishing infarcted from basal tissue and in recognizing the stage of the infarcted tissue
was achieved. Lastly, we also investigated the imaging data from the later time point post MI
(45 days) to understand whether early microvascular alterations persist and/or change during
cardiac remodelling.

Towards the last objective of the thesis, we took advantage of the developed bioimage
analysis tools and a continuum perfusion model [205, 56]. We developed an image-based
modelling framework that uses the reconstructed 3D microvasculature and its structural
properties as input and provides us with estimations regarding tissue-scale flow properties,
such as the permeability tensor. The permeability tensor encapsulates the reverse flow
resistivity of the network and can be calculated by volume-averaging the flow solution
over sub-units of spatially periodic networks. In an effort to tackle the spatial periodicity
requirement, a mirroring approach is firstly applied on each fully connected sub-network
of the reconstructed microvasculature. The tensors of the sub-networks are calculated and
they are fused to provide a tensor for all the microvascular network. Following this approach,
we were able to obtain a physiologically meaningful solution for the permeability tensors
by using the anatomical data directly instead of using artificially generated networks. We
then defined the effect of phase separation on the tensors. Lastly, using the permeability
tensors, the expected pressure drop along an arteriole-venule path given data from magnetic
resonance imagining (MRI) as well as the myocardial blood flow assuming constant and
varying pressure drop according to tissue condition. The results of the simulations suggest that
permeability tensors and tissue perfusion can be closely approximated using our image-based
mathematical modelling approach. Moreover, statistical change analysis of the permeability
tensors at different tissue conditions allowed us to reveal the progressive impact of MI at the
microvascular perfusion.

A brief overview of the study’s design and milestones achieved at each step is provided
in Fig. 1.2.

1.4 Document Organization

The current document is organized into six chapters. The current chapter (Chapter 1)
introduces the motivation for the development of this PhD thesis, its principal objectives and
the strategies adopted to achieve them.

Chapter 2 introduces the biomedical background related to the present work. In particular,
the anatomy and physiology of the cardiovascular system, the basics of myocardial infarction
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and the microvasculature are presented. Subsequently, the chapter provides an overview of the
imaging technologies available for the visualization of 3D vascular networks with a particular
focus on CLSM which is the technique used in the present work. Lastly, an introduction
to the basic concepts and the state of the art of the areas of automated image analysis for
achieving quantitative microscopy and of modelling of blood flow in microcirculation is
provided.

Chapters 3, 4 and 5 contain the main contributions of this thesis. More precisely, Chapter
3 firstly provides a detailed overview of the methodology adopted for the acquisition of
the dataset used in this study. Subsequently, the algorithm developed for the accurate
segmentation of microscopic 3D images, which are labelled with fluorescent markers, is
presented. Lastly, we present the pipeline developed to permit the accurate reconstruction of
the complete microvasculature, even in cases where large gaps were present in the labelled
structures.

Chapter 4 describes the 3D fully automated bioimage analysis pipeline that was developed
to obtain quantitative insight into the cardiac microvasculature and the alterations taking
place to it at several stages following MI. The findings obtained by means of the developed
pipeline are presented in detail along with geometric models for describing capillary supply
areas. Moreover, it is demonstrated that the pool of microvascular features extracted can be
incorporated into different classification schemes to predict the healthy or diseased state of
the tissue.

Chapter 5 presents the image-based computational framework developed to model and
analyse blood flow in the cardiac microvasculature, using real anatomical data. Application of
the framework on the imaging data of our dataset and the findings regarding infarction-related
alterations in permeability tensors, pressure drop and tissue perfusion are presented.

Chapter 6 summarizes the conclusions and contributions of the thesis and also outlines the
limitations of the work. Moreover, it provides examples of the application of the developed
approaches in the in-depth analysis of the microvasculature in other biomedical contexts,
such as tumour and cardiac mouse tissue. The chapter concludes with a brief presentation of
possible future research lines.

8



CHAPTER 2

BACKGROUND AND STATE OF THE ART

2.1 Introduction

This chapter provides an overview of the biomedical context that inspired and formed the
basis upon which the present thesis was developed. In addition, it introduces state-of-
art approaches in imaging, bioimage analysis and microvascular mathematical modelling.
Therefore, this chapter allows us to delve further into the biomedical problem posed, the
challenges that need to be tackled and the scientific gaps that need to be bridged by this and
future works.

Firstly, a brief overview of the anatomy and physiology of the cardiovascular system and
its key components at the macroscopic and microscopic levels is provided. In continuation, we
focus on the pathophysiology of myocardial infarction (MI), the main pathology investigated
in this thesis. The focus of the chapter subsequently shifts to the microvasculature, a
major determinant of the outcome of MI, and to its adaptive nature in health and pathology.
Subsequently, we review imaging techniques for the visualization of 3D vascular networks.
State-of-art techniques that can be used to image vascular networks from the epicardial
vessels down to the capillary level are presented, while special attention is paid to confocal
microscopy, the imaging system adopted in this work. We review tools and tasks involved in
bioimage analysis, and particularly in the field of automated analysis of microscopic images,
an indispensable approach in exploiting the huge amount of data produced by imaging
systems in order to extract deep quantitative knowledge. The chapter concludes with a short
summary of the basic rheological events involved in microvascular blood flow and of current
approaches to model blood flow in microcirculation.
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2.2 Biomedical Context

2.2.1 Anatomy and physiology of the cardiovascular system

The cardiovascular system consists of the heart and the circulatory system [1]. The heart is an
organ that functions as a muscular pump which propels blood throughout the body to provide
oxygen and vital nutrients to all cells. The transport of blood is performed by the circulatory
system that is formed of blood and lymphatic vessels [164]. The blood vasculature provides
the pathway for the blood to flow, while the lymphatic vasculature provides the pathway for
extravasated interstitial fluid and macromolecules to return to blood circulation. Hierarchical
networks of arteries and veins form the main components of the blood vasculature. Arteries
transport blood rich in oxygen form the heart to the body, while veins transport de-oxygenated
blood towards the heart. Arteries and veins are connected by a network of smaller arteries,
arterioles, interconnected tiny vessels, i.e. the capillaries, venules and veins. Blood itself
is a mixture of red blood cells (RBC), white blood cells or leukocytes, platelets and blood
plasma, which contains various dissolved proteins, molecules and ions [163].

At the organ level, the heart in mammals consists of four chambers: the right and left
atrium which are the highest chambers and collect blood from the body, and the right ventricle
and the left ventricle which are the lowest chambers and pump blood to the body. More
precisely, the right atrium receives de-oxygenated blood from the upper and lower body
through two large veins; the superior and inferior vena cava respectively. The left atrium
receives oxygen-rich blood from the lungs through the pulmonary veins. Subsequently,
the atria contract and the blood flows from each atrium towards the ventricle of the same
side. Once the ventricles are full, the atrioventricular valves that separate the atria from
the ventricles close and the semilunar valves at the bottom of the aorta and pulmonary
arteries open. Blood in the right ventricle is pumped during the subsequent contraction of the
ventricles through the pulmonary arteries to the lungs where it will be enriched with oxygen.
On the other side of the heart, blood already rich in oxygen in the left ventricle is pumped to
the rest of the body through the aorta.

Contraction of the heart is achieved through its wall which is divided into three layers:
the epicardium which is the outer layer of the heart that protects it, the myocardium which
is the muscular middle layer of the heart, and the endocardium which is the inner most
layer of the heart. The area between the myocardium and the endocardium is known as
subendocardium. Similarly, the area between the myocardium and the epicardium is referred
to as the subepicardium. The wall layers differ in terms of fibre orientation [210] and
perfusion, in both healthy and pathological conditions [41], as well as in terms of the pressure
exerted to them and their susceptibility to myocardial ischaemia, with the subendocardium

10



2.2 Biomedical Context

Table 2.1 Classification of coronary vessels based on their diameters. Data reproduced from
[122]. Ranges are based on reported literature values and the authors have mainly used data
regarding the human heart. Values might be different for other species.

Vessel type Diameter
Major arteries (LAD, RCA etc) 3−5 mm
Arteries > 300 µm
Small arteries 150−300 µm
Arterioles (muscular) 20−150 µm
Terminal (pre-capillary) arterioles 10−20 µm
Capillaries 5−10 µm
Venules 10−50 µm
Small veins 50−300 µm
Veins (muscular) > 300 µm
Greater veins (GCV, MCV etc.) 1−7 mm
Coronary sinus 10 mm

being at higher risk [2]. The three layers of the heart wall are enclosed in a membrane known
as the pericardium.

The heart has its own circulatory system, known as the coronary circulation system [211].
Its function is to provide oxygen and nutrients to the heart tissue itself and to remove waste
products. As in the case of other tissues, the coronary circulation system consists of an
interconnected network of numerous vessels of different types and sizes (Table 2.1). The
coronary vessels can be further categorized based on their size and position within the heart
into epicardial vessels (number less than 10), intramural vessels (number less than 106) and
vessels of the microcirculation (number larger than 109)[142, 122].

Epicardial vessels are the largest vessels of the coronary circulation with diameters
ranging from 500µm up to few mm. As their name implies they can be found at the outer
level of the heart wall, the epicardium. The primary coronary epicardial arteries include
the left main coronary artery (LMCA) and the right coronary artery (RCA) along with their
branches [225, 211] (Fig. 2.1). Both arteries originate from the tricuspid aortic valve located
at the root of the aorta. In particular, RCA typically originates from the right sinus of Valsalva
and branches out to smaller branches, including the right posterior descending artery (PDA)
and the acute marginal arteries. RCA and its branches perfuse the free wall of the right
ventricle, the sino-atrial and atrioventricular nodes and part of the left ventricle. The LMCA
originates from the left sinus of Valsalva and it branches into the left anterior descending
(LAD) and left circumflex (LDx) arteries that further branch off and perfuse the free wall
of the left ventricle (LV) and the septum. The coronary epicardial arteries work as conduit
vessels. At the surface of heart, apart from the major arteries, the greater veins can be found.
The anatomy of the veins might vary, but generally it is formed by the great cardiac vein
(GCV) that initially runs parallel at the start of the LAD artery, the middle cardiac vein
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Fig. 2.1 The heart and the composition of its vessels. (a) Schematic representation of the
human heart with the main epicardial arteries roughly annotated. Dotted white lines depict
the continuation of arteries on the posterior view of the heart. (b) A schematic illustration of
a microvasculature plexus along with the composition of the wall of the different vessels that
comprise the coronary blood circulatory system. Wall composition variability is related to
the distinct function of each type of vessel.

(MCV) that follows the PDA, the small cardiac vein (SCV) that is parallel to the RCA in
the posterior view and the left ventricular posterior vein (LVPV) that follows the LCx artery
[86, 122]. The greater veins (GCV, MGV, SCV, LVPV) join together in the coronary sinus, a
large vessel of diameter 10mm that drains blood low in oxygen to the right atrium. Moreover,
in the anterior orientation of the heart the anterior cardiac veins of the right ventricle, which
drain the right atrium, are found.

Intramural vessels arise as branches of the large coronary arteries and penetrate the
myocardium starting from the epicardium towards the myocardium. These intramural arteries
with diameters within the range of 100− 500µm are usually referred to as pre-arterioles
[28]. Pre-arterioles divide into several orders of smaller arteries until they give rise to the
arterioles (diameters 20−150µm) and subsequently to the terminal arterioles (10−20µm).
Pre-arterioles and arterioles are the main sites of coronary resistance [65]. Pre-arterioles
are responsible for flow and myogenic-dependent auto-regulation which is achieved by
adapting their diameter according to changes in stress and pressure respectively. Arterioles
are responsible for the metabolic regulation of myocardial blood flow. Terminal arterioles are
directly connected to the smallest vessels of the tissue, the capillaries. The capillaries play a
major role in tissue perfusion as they are responsible for oxygen and nutrient transport, as
well as for the removal of waste products, a function that is facilitated by their thin walls.
The capillary bed is connected to the venules on the other side. These are subsequently
connected to small veins. Some of these veins (Thebesian veins) drain directly into the heart
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chambers, while others are connected to the greater veins or posterior veins that drain into
the right atrium as mentioned earlier [85]. Venules and veins function as capacitance vessels
and their walls are hence thinner compared to that of arteries because they have to be able to
resist lower pressure. It is worth noting that the capillaries, along with arterioles and venules,
comprise the microvasculature and are usually referred to as microcirculation, while the rest
of the vessels are referred to as macrocirculation.

At the cellular level, the heart comprises many cell types. The major cell types are
cardiomyocytes (CMs), fibroblasts (FBs), endothelial cells (ECs), and peri-vascular cells,
such as vascular smooth muscle cells (SMCs) [239]. The exact values reported in literature
for the relative percentages of these cells vary depending on the species under investigation
and the method used to count them, i.e stereology or flow cytometry. In fact, although there
is an agreement that the cardiomyocytes occupy 70−85% of the volume of mammalian heart
and their number represents 30−40% of all cells, the relative frequency of non-myocytes
has long been disputed. Based on different studies, Zhou and Pu [239] summarized ratios
of ECs to CMs and of FBs to CMs within the ranges of 0.8−1.9 and 0.4−0.7 respectively.
Elsewhere, the ratio of ECs to CMs has been reported as 3 : 1 [164]. Moreover, recently the
relative frequency of non-myocytes of the mouse and human were revisited using cutting-
edge histology and flow cytometry techniques, as well as modern reagents [161]. The study
confirmed that ECs, and particularly vascular ECs, are among the most abundant cells in the
adult heart, while fibroblasts represent a minor cell population.

The abundance of vascular ECs can be explained by the fact that they line up the interior
of the wall of all blood vessels, forming the endothelium. Apart from endothelium, the wall of
blood vessels consists of other cellular and extracellular components and its exact composition
varies depending on the vessel type (Fig. 2.1)[25, 38, 164]. More precisely, the walls of large
arteries and veins consist of three compartments; the tunica intima, the tunica media and
the tunica adventitia. The tunica intima consists of a continuous monolayer of endothelium,
covered by basement membrane (BM) and an internal elastic layer. The compartment is
surrounded by the tunica media that mainly comprises SMCs but also fibroblasts, connective
tissue and collagen wrapped by external elastic tissue. SMCs determine the vascular tone
of the vessels and play a pivotal role in flow and pressure regulation. In the case of large
arteries, the SMCs layer is thicker than the corresponding layer of veins. The outermost layer
of the large vessels, i.e. the tunica adventitia layer, is formed by connective tissue with elastic
and collagenous fibres and interspersed fibroblasts, macrophages, mast and progenitor cells
among others [139]. It is separated by the media by an external elastic membrane. Arterioles
and venules comprise the endothelium layer encased in the BM and solely one or two layers
of SMCs, in the case of arterioles or few SMCs, in the case of venules. Arterioles have
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additionally internal elastic lamina and their adventitia is of similar thickness to that of their
media and it merges with the surrounding tissue. Venules do not present laminae and their
adventitia merges with surrounding tissue as well. Lastly, capillaries of the heart also consist
of a continuous monolayer of endothelium surrounded by a BM and pericytes. It should
be noted that although the endothelium of capillaries in the heart is continuous, it can be
fenestrated in other organs, i.e. ECs have pores or fenestrae, or discontinuous [164]. It is
also worth highlighting that the aforementioned variety in the thickness of the wall among
the different types of vessels is related to their function. More precisely, the arteries have the
thickest walls to resist high pressure and push the blood, veins have thinner walls compared
to the arteries because they have a capacitance function of collecting blood, while capillaries,
which are responsible for oxygen transportation, have thin walls.

2.2.2 Myocardial infarction

Myocardial infarction (MI) is an acute coronary syndrome that results from the interruption
of blood flow to a part of the heart caused by an abrupt blockage of a coronary epicardial
artery. MI results in inadequate blood supply to the tissue, i.e. ischaemia, which leads to
oxygen deprivation, cardiomyocyte cell death and degradation of the cardiac extracellular
matrix [74]. Clinically it can be manifested either with an ST-segment elevation (STEMI)
or without it, i.e. non-ST elevation MI (NSTEMI) [217]. If ischaemia is left untreated, it
can lead to global left ventricular damage and chronic heart failure. Heart failure is a major
global health problem affecting an estimated number of 38 million people worldwide [20].
Moreover, although the mortality due to acute MI has decreased thanks to techniques such as
timely reperfusion, the incidence of heart failure and the associated socio-economical burden
might be increasing [77, 223, 59, 27]. In fact, the prevalence of heart failure is expected to
further increase as a combination of population ageing and improved survival rates after MI
and other cardiovascular diseases. Therefore, MI continues to contribute as a major health
problem both directly, through its unacceptably still high incidence [179], and indirectly,
through its complications.

Cardiac repair and remodelling after MI can be divided into four phases: (i) cardiomy-
ocyte cell death, (ii) inflammatory, (iv) formation of granulation tissue, and (v) scar formation
[40, 141]. The exact time-course of these phases might differ among different species.
Cardiomyocyte death due to necrosis or apoptosis starts within hours after MI. Cell injury
activates an intense inflammatory response that involves degradation of extracellular matrix,
secretion of pro-inflammatory cytokines and chemokines, infiltration/recruitment of inflam-
matory cells, including neutrophils, lymphocytes, monocytes, macrophages and dendritic
cells. The recruited inflammatory cells remove necrotic cell and extracellular matrix debris
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from the tissue by means of phagocytosis. The first two phases could be considered as a
common phase; the acute inflammatory phase [74, 165]. Transition from inflammation to
repair commences on day four and might last for several days, e.g. up to ten days in the mouse
species. This proliferative phase is characterised by resolution of inflammation and transition
of fibroblasts to myofibroblasts. The latter deposit collagen matrix and granulation tissue
is staring to form. This tissue consists of macrophages, myofibroblasts, new blood vessels
and extracellular matrix proteins. During the final phase, granulation tissue matures into a
fibrous scar. The scar is free of inflammatory cells and rich in cross-linked collagen. This
process lasts from several weeks to a few months and it is accompanied by a thinning of the
scar, dilatation of the left ventricle and activation of interstitial fibrosis. These mechanisms
might initially play a compensatory role, but over time they could contribute to inadequate
healing. This has been linked to the presence of myofibroblasts in areas remote to the infarct
and, at the macroscopic scale, to further dilatation of the heart and to geometrical changes to
its shape [218].

A major determinant of the adverse outcome of the healing process that leads to dete-
riorated cardiac function and heart failure is microcirculation. After successful restoration
of blood flow to the occluded epicardial artery, adequate perfusion of the myocardial tissue
depends on microcirculation which includes the smallest vessels of the tissue [98]. It is
therefore of utmost importance to develop therapies that inhibit microvascular dysfunction in
order to prevent heart failure rather than to just focus on treating it [98, 91, 27]. To achieve
this, the impact of reperfusion on the myocardium should be also taken into account because
reperfusion causes damage to the myocardium, despite being mandatory in terms of salvaging
the myocardium and reducing infarct size [114, 91, 98].

Since microcirculation cannot be assessed in vivo, indirect measures have been used to
assess its functionality in a clinical environment. These measures include invasive or non-
invasive measurement of coronary blood flow velocity, myocardial blood flow and indices,
such as coronary flow reverse that is provided by the ratio of hyperaemic to baseline blood
flow or by calculating microcirculatory resistance indexes during coronary catheterization
[28]. In depth study of the pathophysiology of ischaemia-reperfusion at the microvascular
level, however, requires detailed structural descriptions of microvascular networks. This
knowledge can be acquired by post-mortem studies or more frequently by the use of pre-
clinical animal models which also allow us to test hypotheses regarding the mechanisms of
pathology and of novel therapies.

Pre-clinical models can be divided into small and large. Both types of models have their
pros and cons without any one of them being ultimately the best choice for every scenario
[98]. Small animal models are of paramount importance in the study of the hypothesis and of
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phenomena in basic research. On the one hand, the possibility of directly translating findings
based on these models to the clinics is limited. On the other hand, larger models, such as
swans, dogs or pigs are more expensive and difficult to handle, but their translational value is
higher, particularly in the case of those models that are closer to humans, such as the pig.

2.2.3 Microvasculature in health and disease

The primary function of microcirculation is the supply of oxygen and nutrients to the tissues
to meet their metabolic demands. For this to be achieved and by taking into account that
oxygen, in contrast to other solutes such as glucose, can diffuse only over very short distances
(20−200µm), the microvasculature presents an interconnected and complex structure that
ensures minimal diffusion distance from blood to tissue and maximum surface for exchanges
[174]. Particularly in the case of coronary microcirculation, the microvasculature must
transfer oxygenated blood in very small distances to satisfy the metabolic demands of
individual cardiomyocytes that are high due to their role of facilitating myocardial contraction
and relaxation.

Each organ has different metabolic needs. Organization of the capillary bed might
therefore differ significantly from organ to organ and also within the same organ, in terms of
the morphological characteristics of the microvessels, the angioarchitecture of the network,
the arteriolar-venular pathway length and its segments [175]. Structural heterogeneity is
accompanied by hemodynamic and functional differences. Due to the close link between the
structure and function of the microvasculature, as well as because of difficulties in directly
observing microvascular function, significant amount of work has focused on describing
the structure of the microvasculature as an indirect determinant of its function. Since the
beginning of the 20th century, the structure and arrangement of the coronary microvasculature
has been studied in various animal models, including rats [12], sheep [22], horses [22], cats
[230, 22], rabbits [230, 138], dogs [10, 22], pigs [104], but also in humans in post-mortem
studies [230, 60, 101].

The microvasculature has the unique ability to constantly adapt its structure to satisfy
the changing hemodynamic and metabolic demands of the heart. Angioadaptation occurs
as a response to growth factors, hemodynamic and metabolic stimuli sensed by endothelial
and other cells [236, 39]. The onset of these stimuli, such as oxygen tension, shear stress,
and subsequent angioadaptation, is triggered by physiological conditions like exercise and
growth, but also under pathological conditions, such as ischaemia. Angioadaptation takes
place in short and long term. In the shorter run, the microvasculature can alter the diameters
of its segments to maintain blood flow. In the longer run, it might change the composition of
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its vessels, it can develop novel branches through angiogenesis or intussusception or it might
have its abundant vessels pruned.

Studies describing the altered structure of the microvasculature, following an ischaemic
episode, have reported decreased capillary density and changes in the diameters of the
microvasculature of infarcted areas. [5, 6, 228, 21, 30, 92, 204]. In addition, changes have
also been observed in the investment of vessels with perivascular smooth muscle actin cells
[181, 116, 49] and of the surrounding tissue with non-perivascular smooth muscle actin
expressing cells, i.e. myofibroblasts [49, 218]. More precisely, using a rat animal model and
confocal microscopy [228], a 3D study of the microvasculature immediately after MI reported
that capillaries appeared to have smaller diameters and to be more tortuous after reperfusion.
This resulted in an overall decreased capillary volume, compared to control animals. When
reperfusion did not take place, subsequent changes were similar, albeit more prominent. On
the contrary, other studies reported the opposite effect, i.e. further decrease of the capillary
density in the microvasculature after reperfusion was applied (30 minutes ischaemia followed
by 90 minutes reperfusion), as well as vasodilation [92]. On the same animal model, it was
further reported that 3 days following MI although myocytes appeared enlarged, the capillary
network did not follow the same enlarging trend [6]. On the contrary, decreased laminar
surface and increased diffusion distances for oxygen were noticed, something that points to
worst tissue perfusion and oxygenation [5]. Four weeks after MI, decreased capillarity similar
to those described in earlier studies of human ischaemic cardiomyopathy was observed was
observed in infarcted areas of porcine cardiac tissue [116]. The changes in capillary were
accompanied by a thickening of the smooth muscle actin cells coverage in infarcted areas.
In general, structural changes are more prominent in infarcted areas, but alterations have
also been reported in areas remote from the infarct. For example, similar morphological
changes in terms of reduced diameter and increased tortuosity as in [228] were reported
for capillaries at remote areas of rats suffering from ischaemic congestive heart failure, and
also increased diffusion distances were observed in post-mortem human studies of NSTEMI
[30]. Despite the paramount importance of these studies, overall information regarding the
microvasculature and the progressive changes after MI is sporadic. Moreover in some cases
findings might be contradictory i.e. reperfusion, with only few and simplistic parameters
reported in each study, extracted with human intervention and in some cases based on 2D
slices, which limits the number of images analysed but also might incorporate bias and
misinterpretations. However, nowadays, there is a unique opportunity to revisit the 3D
microvasculature using cutting-edge imaging and automated computational approaches on
large datasets. This will allow us to reach reliable and ground-breaking conclusions on the
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structural "fingerprint" of the microvasculature and its pathology-related adaptation. This
exciting area of research and development is the focus of the present thesis.

2.3 Imaging of 3D vascular networks

Imaging has revolutionized every day clinical practice and biomedical research. Without
doubt, it is an indispensable tool in the diagnosis, treatment and follow-up of patients
and in achieving "P4 medicine: Predictive, Preventive, Personalized and Participatory"
[94, 93] which will change the way healthcare is viewed and provided. In the study of
biological specimens and processes, imaging, also referred to as bioimaging, is one of the
most widely used techniques in biological laboratories [58]. Tremendous technological
advances in physics, engineering, chemistry have led to the development of a plethora
of imaging modalities that permit the structural, functional, static or dynamic study of
systems and biological processes from the organ level down to the molecular level. A
detailed review of the main imaging modalities from the point of view of systems biology
can be found in [109] and, in terms of the source employed for imaging, in [237]. Such
sources include visible light for optical imaging, electrons for scanning and transmission
electron microscopy, x-rays for traditional radiography or the more advanced computed
tomography, radio waves combined with magnetic fields to generate images based on the
magnetic moments of hydrogen atoms for magnetic resonance imaging, positrons emitted by
radionuclides administered to the subject for positron emission tomography and sound waves
for modalities, such as photoacoustic tomography or ultrasonography.

Different bioimaging modalities should be used depending on the size of the object that
we wish to resolve. Leaving aside availability and cost, the final choice of imaging modality
is usually a trade-off between the size of the smallest object that needs to be resolved, or more
precisely expressed, the spatial resolution, i.e. the minimum distance between two objects so
that they can be visualized as separate, and the penetration depth that we wish to arrive to.
In the case of structural imaging of 3D vascular networks with multiscale architecture, we
can roughly categorize the modalities according to the anatomical scale to which the vessels
we wish to visualize belong to. Despite focusing here on coronary networks, multi-scale or
hierarchical imaging approaches are also useful for the 3D visualization of complete vascular
networks in other tissues, such as tumour [110] or the brain [90].

More precisely, in the case of coronary networks and the assessment of the largest vessels
of the system, i.e. the epicardial, methods whose spatial resolution is not high but they
present no depth limitations and permit wide-field views, are preferred. These techniques
which can be applied both in clinics but also in cardiovascular research, include magnetic
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resonance angiography (MRA), computed tomography angiography (CTA), intravascular
ultrasonography (IVUS) and optical coherence tomography (OCT) [122]. Magnetic reso-
nance and computed tomography angiography are techniques used in the 3D visualization
of blood vessels in vivo based on the homonymous techniques, i.e magnetic resonance
(MRI) and computed tomography (CT) imaging respectively. Unlike traditional angiography,
which involves catheterization and intra-coronary administration of a radiopaque contrast
medium to make the vessels visible by x-ray, MRA is non-invasive. It uses radio waves
and magnetic fields to produce blood vessel images without ionizing radiation. Moreover,
MRA can be combined with contrast agents to achieve a brighter appearance of the vessels
in relation to background tissue. In research studies it has been possible to use 11.7T MRI to
visualize the microvasculature of rabbit hearts [26] with resolution of few dozens of µm3.
Similar resolution has been achieved in small animals in studies of other vascular networks,
such as the visualization of glioma (7T MRA) [50] or vasculature of mice brains (9.4T
time-of-flight MRA) [69]. It is worth noting that MRI-based sequences in cardiovascular
research have found wide application not only in the study of blood vessel structure, but also
in the assessment of vessel blood flow, tissue perfusion, metabolism, tissue characterization,
including viability, fibrosis and edema in the case of MI [95, 189]. CTA combines computed
tomography technology with the injection of iodinated intravenous contrast agents to achieve
3D images of the coronary arteries and the heart. CTA achieves higher spatial resolution than
MRA and is therefore preferred in clinics [52], but in cases of advanced calcification it might
be better to substitute CTA with MRA [95]. CT technology has also been used for tissue
characterization [113], but in this respect MRI is generally considered to be more powerful.
In contrast with MRA and CTA, IVUS and OCT are used in the study of the wall of the
vessels rather than their structure and organization. IVUS is an invasive in vivo method based
on a catheter on which an ultrasound transducer is attached. It is used to visualize the interior
of coronary arteries by acquiring serial cross-sectional images that can be used to reconstruct
the artery in 3D. IVUS allows us to distinguish the lumen and the layers, i.e. intima, media
and adventitia, of the vessel wall. OCT is similar to IVUS. However, it uses near-infrared
light to achieve a ten-fold higher spatial resolution than IVUS; 12−18µm compared to that
of IVUS which is 150−200µm [15]. This high resolution has led to consider OCT to be the
optimal technique in the study of the wall of coronary vessels at the microscopic level [137].

Intramural vessels, found in the deeper layers of the heart and having intermediate
diameters, are usually visualized by CTA, cryomicrotome and micro-computed tomography
(micro-CT) [122]. CTA has higher resolution compared to MRA and it could therefore be
used in the visualization of the larger intramural vessels. However, cryomicrotome imaging is
more efficient in obtaining detailed views of the complete organization of intramural vessels.
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a b c

Fig. 2.2 Typical arrangements and components of confocal microscopes, compared to stan-
dard wide-field fluorescent and conventional microscopes (top row) along with an example
image acquired by means of each microscope (bottom row). (a) Confocal microscope per-
mits the illumination of a single point of the sample thanks to an illumination pinhole and a
dichroic mirror. Out-of-focus light (dotted line) does not pass through the confocal pinhole
and it is, therefore, not detected. This allows acquisition of sharp images with cellular
and sub-cellular resolution. The source of illumination is a laser. (b) The arrangement of
wide-field fluorescence microscopes is similar to that of a confocal microscope although
wide-field fluorescence microscopes do not include pinholes. This results in light excited
from out-of-focus areas to be detected by the camera and in the acquisition of blurrier images
compared to images obtained by confocal microscopes. Moreover, visible light is used
instead of a laser light. (c) Conventional light microscopes involve direct illumination of
the sample by a lamp. Emitted light both from the focal plane and out-of-focus planes
is subsequently recorded by the camera resulting in blurry images. All image panels are
reproduced from [102].

Performance of cryomicrotome imaging requires firstly that the coronary vasculature is
injected with a fluorescent plastic replica material which is left to harden [212]. Subsequently,
the heart is frozen and it is sequentially cut into slices using a cryomicrotome device.
Fluorescent imaging is performed on each exposed slice using a high-resolution digital
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camera. It is worth noting that fluorescent imaging is based on the principle that fluorophores,
such as fluorescent dyes or proteins, bond to molecules and when excited by electromagnetic
radiation, i.e. light of specific wavelength, they absorb part of the light. A few nanoseconds
later they emit a higher wavelength light, than that of the light they were excited with.
Therefore, by using appropriate excitation and emission filters, molecular processes or
structures, such as cells and their molecular interactions, location and dynamics of gene
expression etc can be tracked. In episcopic microtome imaging, arrangement of the imaging
components is such that it permits illumination of the sample from above. Cryomicrotome
imaging was developed and used to image the entire coronary tree of a goat heart with
a resolution that permitted visualization of all intramural vessels with diameters up to
25 − 40µm [212, 220]. Cryomicrotome imaging can also be used in conjunction with
fluorescent micro-spheres and computational approaches to study functional properties, such
as coronary flow distribution [107, 222]. Another technique for the 3D visualization of
entire vascular trees including intramural vessels is micro-CT [234, 184]. Micro-CT is a non-
destructive technique based on 2D x-ray projections acquired at multiple angles that can be
combined to reconstruct a 3D image. It can be used in vivo but in order to achieve resolution
smaller than 50µm and at the same time images of various planes, it is recommended to be
used ex vivo to avoid radiation issues. Currently, it is also becoming increasing popular for the
visualization of the microcirculation due to its advantages in terms of increased penetration
depths permitting us to image the entire microvascular network of the rat heart ([120]) or
tumours ([71, 54]) with 8.2µm and 3.4−4.8µm resolution respectively. However, it should
be noted that to achieve optimal resolution, perfusion with a radiopaque contrast agent is
necessary [234]. This renders the technique very expensive in the case of hearts of larger
animal models, such as the pig. Light-sheet microscopy, and, more specifically, Selective
Plane Illumination Microscopy (SPIM), is another fluorescent microscopy technique that,
that when used in conjunction with clearing protocols used to make the sample transparent,
is proving to be promising in imaging 3D vascular networks of small animals using thick
tissue blocks, with image resolution down to a few microns [150]. SPIM and light-sheet
microscopy in general are based on planar illumination of the sample from the side instead
from above as is the case with episcopic imaging. This results in reduced photo-bleaching
and out-of-focus signal.

High resolution optical microscopy remains the gold-standard for the visualization of the
microvasculature in 3D despite continuous improvements in the aforementioned approaches,
as well as the development of novel techniques which, although promising, can be expensive
and not readily available, such as x-ray synchrotron radiation micro-CT [149, 132, 238, 83]
which can reach 1µm resolution without the need to use contrast agents. More precisely,
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Fig. 2.3 The multiple scales of the coronary blood circulation system visualized by means
of different imaging techniques. Panels (a)-(c) are reproduced from [65], and panel (b) is
reproduced from [211]. Different modalities are necessary to visualize vessels of all scales;
(a) Maximum intensity projection (MIP) of micro-CT. (b) MIP of a cryomicrotome image
from a fluorescent labelled cast permitting visualization of intramural vessels of diameter
down to 40µm. (c) MIP of ultra-high resolution micro-CT with resolution of 8µm permitting
to resolve arterioles and part of the capillary bed. (d) MIP of confocal multichannel image
with resolution 0.379x0.379x1.001µm enabling the visualization of all details of the capillary
bed and surrounding smooth muscle actin cells; on top row vessels labelled with VE-Cadherin
and on bottom row cells labelled with smooth muscle actin.

imaging techniques such as knife-edge scanning (KESM) or confocal laser scanning mi-
croscopy (CLSM) yield the higher resolution that might reach 300nm-400nm [229]. This
allows resolution of even the smallest capillaries of the coronary microvasculature. KESM
[143] involves optical imaging of the tissue that is being physically sectioned serially. On the
contrary CLSM [154], does not require physical sectioning of the sample but it rather scans
the specimen using a process known as "tissue sectioning" or "optical sectioning" that is
common among other fluorescent microscopes as well [151]. This process includes shifting
the focus of the lighting source at different depths and acquiring images (z-stacks) from
each focal plane which are subsequently combined to study labelled structures in 3D. Within
each plane, in CLSM, the sample is illuminated point by point. Moreover, the specimen is
usually stained by means of antibodies with more than one fluorescent marker simultaneously.
This allows acquisition of images at cellular and sub-cellular resolutions with up to six
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channels with recent microscopes [55]; one channel per fluorescent marker. The advantage of
confocal microscopy over other wide-field fluorescent microscopes is that it uses single-point
illuminations instead of illuminating the whole sample. Additionally, it erases out-of-focus
emitted signal by using a pinhole that is placed at the same focal position with the point that
the sample is being illuminated. Moreover, the light sources used in CLSM are laser sources,
instead of arc-lamps (or more recently light emitting diodes) used in wide-field microscopes
or halogen lamps used in conventional microscopes. Lastly, the detector in CLSM consists
of photomultiplier tubes instead of conventional cameras used in other systems. It should
also be noted that a computer is indispensable in the control of confocal microscopes by
means of adequate software. The typical arrangement of a confocal microscope, compared
to that of wide-field fluorescent and conventional microscopy, is provided in Fig. 2.2. It
consists of (i) a laser device for the excitation of the sample, (ii) dichroic mirrors that reflect
short wavelengths, but allow longer wavelengths to go through them, (iii) an objective, (iv) a
pinhole that permits emission to reach the detector only from the point of focus, while light
emitted by out-of focus objects is discarded, and (v) the detector. The resolution that can
be achieved is primarily defined by the numerical aperture of the objective and is lower in
z-axis [42]. Application of confocal microscopy to the coronary microvasculature include
the microvasculature of mice [46], rat [121], pig [204] heart, to name a few. In recent
years, the first successful efforts were made in the development of systems that will permit
automated acquisition of relatively large image volumes of several mm3 by means of CLSM
[128, 190, 188]. Furthermore, CLSM can be an extremely useful component of hierarchical
imaging systems due to its exquisite resolution. It could be combined with other cutting-edge
imaging techniques that produce wider field views or for imaging with lower resolution for
faster acquisition of images and subsequently zooming in on areas of interest for higher
resolution. This is similar to recent approaches where, for instance micro-CT and histology,
were combined to visualize murine hind limb vasculature and muscle tissue [193]. Such
approaches could enable visualization of the details of capillaries and exposition of their
relation to potential molecules or cells involved in the processes/diseases, while permitting
larger views and a reduction in the loss of topological information.

Last but not least, it is worth noting that prior to the wide-spread use of these cutting-edge
techniques, early studies of the microvasculature have employed vascular corrosion casting
with dyes (e.g. [22, 138, 230]) and silicone elastomer ([10, 104]. Later studies have adopted
scanning electron microscopy (SEM) which pioneered microvascular research during the
’70s and ’80s [216, 4]. Its widespread use is related to what its name implies: it uses electrons
instead of photons as its source of light. Therefore, by varying the voltage which is inversely
proportional to the wavelength of electrons, it is possible to reach wavelengths a lot lower
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Fig. 2.4 Basic tasks involved in a typical automatic bioimage analysis pipeline to convert
image data into quantitative knowledge.

than that of photons whose visible light at minimum wavelength is around 400nm. However,
obtaining 3D information from SEM remains extremely challenging and difficult [219].

Fig. 2.3 presents images of the 3D multi-scale coronary vasculature with increasing
levels of resolution acquired by means of different imaging modalities. More precisely, a 3D
reconstruction of the porcine vasculature is provided, based on micro-CT images depicting
epicardial arteries down to arterioles, along with a detailed view of intramural vessels which
has been acquired by cryomicrotome imaging. Moreover, images of capillaries visualized
using high resolution (ultra-high) micro-CT and confocal microscopy are presented. Confocal
microscopy resolution allows us to distinguish tiny microvessels by staining the junctions of
the endothelial cells (VE-Cadherin), along with other tissue components, such as smooth
muscle actin positive cells.

2.4 Automated image analysis towards quantitative
microscopy

Imaging is performed with the aim of studying and understanding the system or process
under investigation, as well as of identifying changes that might have occurred in response to
physiological or pathophysiological conditions either for clinical or research applications. To
achieve this, apart from the images per se, quantitative data are of paramount importance to
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accurately interpret image content and compare images of various conditions, of different
subjects or longitudinally. However, the deluge of state-of-the-art imaging data and the infor-
mation that they include render manual and supervised analysis tedious and time-consuming,
if not infeasible and insufficient. This is why automated image analysis approaches have
emerged as an indispensable branch of today’s medical and biological practice. This exciting
and relatively new field, is becoming more and more crucial as the amount of data and their
complexity increases. In fact, automated bioimage analysis has emerged as the sole solution
towards converting qualitative microscopic observations into quantitative data [58, 8] in the
field of biological research where imaging, particularly microscopy, is an everyday tool used
in testing hypotheses and analysing systems and processes with the aim of novel discoveries.
Bioimage analysis is at the core of the emerging "bioimage informatics" field [155, 144].
It involves adapting informatics and computer vision techniques to transform images into
quantitative knowledge and novel scientific insights.

A number of software solutions has been developed over the past years to enable quantita-
tive microscopic image analysis, both proprietary (commercial) and open-source [87, 58, 144].
Popular examples of proprietary software tools include:

• MetaMorph (Molecular Devices) which has been designed for controlling microscopes
during image acquisition and for performing simple analysis tasks on the acquired
images mostly in 2D,

• Volocity (Perkin-Elmer) capable of handling 3D time-lapse volumes,

• Imaris (BITPLANE) known for its interactive environment for quantitative analysis of
microscopic images and increased human intervention,

• Amira (Thermo Fisher Scientific) appropriate for 3D and 4D image analysis of several
modalities including microscopy,

• Definiens Tissue Phenomics Software (Definiens) popular for biomarker extraction
and oncology applications,

• Huygens mostly used for deconvolution purposes, visualization and interactive analy-
sis.

Despite their undeniable utility, commercial software solutions can be expensive and, there-
fore, unattainable under restricted budgets. Furthermore, because the code for proprietary
software is usually not available, the algorithm behind the analysis remains a black-box.
Thus, it is difficult to understand how the analysis is performed and the outcome might be
easily misinterpreted [103]. Furthermore, without having access to the code, computational
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scientists are not able to build upon existing methods and make improvements or adequate
adaptations to the approach based on the needs of the biological problem at hand. The latter
is a very common need since we are far from reaching a universal software solution for all
types of images and scientific problems. Open-source solutions have therefore started to
attract attention and open-source bioimage analysis tools are expected to keep growing in
number [58].

Among the most known open-source solutions are ImageJ, the Java-based cross-platform
evolution of NIH Image, whose functionality can be extended with numerous purpose-specific
functions and plugins, Fiji which is based on ImageJ but includes a number of plugins pre-
installed [194], Icy [43] and Bioimage XD [103] which are based on VTK and ITK libraries
and offer multi-purpose modules, functions and work-flows, as well as Cell Profiler which
includes a comprehensive collection of image processing modules for quantification [34].
Another common solution for quantitative image analysis is the use of collection of modules
with interfaces like Farsight, libraries, for instance OpenCV, ITK, VTK, packages, such
as ImagePy [227], or single modules. Efforts to create repositories for open-source image
analysis tools are also particularly interesting, for example Bio-Image Semantic Query User
Environment (BISQUE) [118] or Open Microscopy Environment Remote Objects (OMERO)
[3].

A list of the aforementioned software tools along with others, which have been the focus
of a series of reviews over the last years [87, 58, 144], is provided in Table 2.2. However,
it should be noted that this list is not exhaustive. Moreover, software development is like
a living organism that constantly keeps growing and evolving. It should also be taken
into account that, apart from the software per se, algorithms for various image analysis
tasks are continuously being published. These are usually the result of significant research
efforts focused on developing novel approaches or improving existing ones before they can
be translated into software or libraries. In fact, the algorithms that are behind a software
functionality might be the result of years of research and constant improvements. This is
demonstrated by the existence of numerous methods for specific image analysis tasks or
work-flows that might not be available as software but are described in scientific papers, as
well as by challenges that take place to compare different approaches [144]. Depending on
the task and biological problem at hand, different algorithms/software might perform better
or worst.

The main tasks that a typical bioimage analysis solution involves are presented in Fig. 2.4.
These can be roughly categorized into pre-processing, segmentation, quantification, statistical
analysis of extracted features/patterns, classification and visualization [87, 144]. The first
step after acquiring an image is usually to enhance its quality by reducing noise and by
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removing unwanted artefacts introduced during the acquisition process. This can be achieved
by applying different pre-processing approaches. These approaches can be divided into: (i)
deconvolution methods that aim at restoring the original signal by removing the blurriness
introduced by microscopes due to out-of-focus signal [191], (ii) denoising methods that
improve signal-to-noise ratio [23], (iii) registration approaches that can correct misalignment
issues between adjacent slices or between tiles of the same slice produced during acquisition
[215], (iv) illumination correction methods that deal with uneven illumination caused by
light scattering, antibody penetration etc [209], and (v) contrast and colour enhancement
approaches. Apart from being used as a pre-processing method, registration can also be used
in building atlases or transforming one image into another by rigid or non-rigid methods with
the purpose of comparing or fusing them. Depending on the microscope or even the sample,
different pre-processing approaches might be more appropriate. For instance, SPIM usually
requires the use of specific denoising approaches which are able to remove stripe artefacts
[66]. On the other hand, deconvolution methods are indispensable for images produced by
wide-field microscopes, while CLSM images often present blobs of dye that must be removed
by morphological operations [186] and so on.

After the image has been pre-processed, segmentation is routinely performed. Segmenta-
tion refers to the separation/assignment of the voxels of an image into two categories (binary
segmentation), i.e. object of interest or background, or more categories (multiclass segmenta-
tion), i.e. background or one of the objects of interest. Developing accurate segmentation
methods is one of the most difficult steps for quantitative analysis [144]. In the case of
vascular networks, a variety of such approaches has been developed and has been extensively
reviewed [111, 129]. These include thresholding which is very popular for fluorescent data,
energy-minimizing deformable models, model-based methods, among others. Despite the
efforts, there exists no segmentation method that is 100 % accurate and applicable to all
image modalities. More often than not, algorithms require extensive fine tuning even for
images of same modality acquired under different conditions.

Quantitative analysis takes place after the object(s) of interest has been segmented. This
task involves calculation of parameters that permit numerical expression of the proper-
ties/features (as well as their distributions) of the object(s) using its segmentation. Such
parameters might include morphological, textural, functional or other characteristics. It
should be noted that in some cases segmentation can be skipped and quantification can be
performed directly on the original or the pre-processed images. Usual example of such
analyses involve intensity-based measurements such as co-localization analysis [51].

Statistical analysis using the quantified parameters is also commonly applied to compare
different groups of images or longitudinal data, and/or with the aim of discovering correlations
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or cause-effect relations (regression). Moreover, the extracted features can be used as
biomarkers to classify images into categories, for example diseased or healthy (supervised
learning), or to uncover relationships, clusters and patterns in the data without pre-specified
categories (unsupervised learning). There exist, however, algorithms that do not require a
pre-definition of the features. These are commonly known as representation learning. Popular
examples of representation-based machine learning algorithms are deep learning approaches,
which can be fed with raw data and automatically extract and learn features from several layers
in order to perform the desired task [119]. Since the high computational requirements of deep
learning are no longer a hurdle, these methods are becoming increasingly popular due to their
higher performance in a variety of tasks compared to classic artificial intelligence methods.
Use of deep learning approaches in biological imaging is not restricted to classification.
In recent years these approaches have also been proposed for performing other tasks, for
instance for the segmentation of biological images by using convolutional neural networks
[185].

Furthermore, visualization of the image itself, of its properties or its segmentation is one
of the most common tasks during several stages of bioimage analysis. This is why although
the majority of software suites used for analysis offer visualization options [67, 154], there
are software suites that have been developed with a particular focus on visualization or
visualization-assisted analysis, such as Vaa3D [157, 156] or the virtual finger [158].

Other tasks that a bioimage analysis pipeline for imaging data with a temporal component
i.e. time-lapse images, that were not listed previously include detection and tracking of
objects, i.e. cells or particles [145, 37].

Taking into account the number and complexity of the aforementioned tasks involved in
converting images into quantitative knowledge, selecting and combining the most appropriate
among them can be challenging. A vast amount of time is usually spent on fine-tuning,
supervising and correcting the intermediate and final results. For this reason and for increasing
reproducibility of biological experiments, the importance of delivering fully automated
methods for every task of the analysis work-flow and of designing modular pipelines without
need of human intervention is becoming increasingly apparent [133]. This is particularly
true in the case of complex systems, such as 3D microvascular networks. Despite the works
on this direction [35, 17, 106, 232], dedicated open source solutions for the 3D analysis of
microvascular networks are very limited [106]. In reality even ground-breaking and novel
biological studies are still based on few traditional parameters and/or metrics extracted
manual or semi-automatically. On the other hand, wide application of the existing for 2D
analysis ones even when providing a limited number of parameters, such as AngioTool
[241], as well as the unprecedented insights offered when 3D approaches are adopted for
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Table 2.2 List of software for quantitative analysis of biological images with a particular
focus on microscopy data. Data are based on [87, 58, 144] among others.

Software License Functionality Website
Image-Pro Commercial Image acquisition and analysis http://www.mediacy.com/imageproplus
MetaMorph Commercial Acquisition, device control, and image analysis of mi-

croscopic images
www.moleculardevices.com

Volocity Commercial 3D image visualization, analysis and processing for
fluorescence images

www.improvision.com

Imaris Commercial Interactive image analysis www.bitplane.com
Amira Commercial Visualization, processing, analysis of CT, MRI, DTI but

also microscopy
https://www.fei.com/software/
amira-for-life-sciences/

Definiens Tissue Phenomics Software Commercial Biomarker extraction and oncology http://www.definiens.com/
Huygens Commercial Deconvolution, visualization, interactive analysis for

bright-field and all types of fluorescence microscope
images

https://svi.nl/HuygensSoftware

ImageJ Open-source Image visualization, analysis and quantification support-
ing the addition of plugins, functions

rhttps://imagej.net/ImageJ

ImageJ2 Open-source Next-generation ImageJ with improved functionalities https://imagej.net/ImageJ2
Fiji Open-source ImageJ based software distribution with pre-installed

plugins
https://fiji.sc/

Icy Open-source Plugins, scripts and protocols to visualize, annotate and
quantify bioimaging data

http://icy.bioimageanalysis.org/

BioImageXD Open-source multi-purpose software for analysis, visualization and
creation of image processing pipelines

http://www.bioimagexd.net/

Cell Profiler Open-source Modular high-throughput quantitative analysis of bio-
logical images

www.cellprofiler.org

Vaa3D Open-source 3D Visualization-assisted analysis http://www.alleninstitute.org/what-we-do/
brain-science/research/products-tools/vaa3d/

KNIME [47] Open-source Visual assembly and interactive execution of image pro-
cessing workflows

https://www.knime.com/

iCluster Open-source Visualization, clustering, statistical analysis and differ-
entiation of high throughput sub-cellular localization
imaging

icluster.imb.uq.edu.au/

FARSIGHT Open-source Toolkit for quantitative analysis of dynamic tissue
micro-environments imaged by optical microscopy

http://www.farsight-toolkit.org/

BISQUE Open-source Bio-image database and analysis https://bioimage.ucsb.edu/bisque
OMERO Open-Source Visualization, organization, analysis and annotation of

microscopic data
http://www.openmicroscopy.org/

Murphy Lab Open-source Management and analysis of bioimage datasets http://murphylab.web.cmu.edu/software/

microvascular networks [18], demonstrate the potential and the impact that 3D automated
image analysis of microvascular networks can have in allowing the subsequent modelling of
functional properties and therefore in deepening our knowledge about complex biological
systems. Furthermore, approaches to identify subtle but biologically significant differences
between even similarly looking networks will be of pivotal importance in increasing our
understanding of the changes occurring in the microvasculature and of the time that these
occurred. This can enhance our understanding of the mechanisms of pathology and can allow
us to identify appropriate time windows for therapeutic interventions to evaluate therapies.
Therefore, in this work we focus on designing a fully automated pipeline that can be used in
the in-depth analysis of the coronary microvasculature and to decipher its changes after MI.
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2.5 Mathematical modelling of blood flow in
microcirculation

Theoretical modelling is a unique tool to study and understand microvascular flow in health
and disease, because detailed measurements of flow properties in the microvasculature
bed are very difficult or infeasible to perform. For this reason, this field has attracted
significant interdisciplinary research over the years. Over the last two decades excellent
reviews have been published that summarize findings regarding microvascular blood rheology
properties [169] and modelling methods [176, 163, 166, 229, 122, 203, 206, 82, 198, 199].
In this section, a brief overview of the key-points and state-of-the art methods in modelling
microvascular blood flow is provided.

The Reynolds number is defined as the ratio of the inertial term to the viscous term
and it can be used in the selection of the most appropriate model for simulating blood
flow. In contrast to macrocirculation, where the Reynolds number is high and, thus, 3D
models of blood flow which take into account turbulent flow are more appropriate [39], in
microcirculation the Reynolds number is low (in the range [0.001,1)) [199, 166]. Therefore,
viscous dominated flow can be assumed and the Stokes equations for an incompressible
fluid can be applied. These models should not be confused with the lumped models where
complete systems are replaced by a single resistance. Lumped models are very important
in systems biology but their oversimplification does not allow the study of microvascular
perfusion.

Assuming laminar steady-flow, pressure-driven flow of the individual vessels of the
network (segments) can be approximated using the Poiseuille equation [162]:

Qi =
π

128
D4

µL
, i = 1, ...,N (2.1)

where N is the number of vessels that the network consists of, while D,L,µ stand for the
diameter, length and viscosity of the segment under investigation respectively.

For the simulation of blood flow the following rheological properties should be taken into
account; (i) the Fahraeus effect [61] and (ii) the Fahraeus-Lindvist effect [62]. In particular,
the Fahraeus effect refers to the increased outflow of RBC per unit time, i.e. the discharge
hematocrit, observed at the exit of a tube in comparison with the total fraction of RBC in
the tube, i.e. the tube hematocrit (tube hematocrit<discharge hematocrit). This phenomenon
occurs due to the preference of RBC to travel to the centre of tubes where they move faster
than other cells/blood. The Fahraeus effect describes different properties when talking about a
single vessel or a complete network. The “vessel” Fahraeus effect is associated with reduced
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hematocrit in microcirculation compared to that of the systemic hematocrit. Furthermore,
the Fahraeus effect is related with the un-even splitting of RBC in branching points such as
bifurcations, trifurcations etc, commonly known as the phase separation effect or plasma
skimming. The phase separation effect results in higher hematocrit in daughter vessels with
higher flow rates, and therefore a higher flow-weighted mean of discharge hematocrit of all
vessels in a microvascular network than the non-weighted mean. The latter is known as the
“network” Fahraeus effect.

The Fahraeus-Lindvist effect refers to the dependence of effective (apparent) blood
viscosity on the vessel diameter. In particular, in ex vivo experiments, it has been observed
that apparent viscosity decreases with decreasing diameter in tubes of diameter smaller
than 300µm. Apparent viscosity reaches its minimum for vessels with diameter 5−7µm
that approximates the dimensions of individual RBC. The phenomenon is attributed to the
rheological properties of blood and more precisely to the tendency of RBC to migrate towards
the centreline of the vessel leaving a cell-free or cell-depleted layer. The thickness of this
layer decreases for vessels smaller than 5−7µm and the viscosity of vessels with diameters
smaller than this threshold value increases with decreasing diameter due to the direct contact
of RBC and the vessel wall. Based on several experimental measurements on RBC velocity,
empirical relationships have been developed that express the relation of in vitro apparent
viscosity with tube diameter and hematocrit [167].

However, in vivo experiments [130, 131] have demonstrated that in vivo blood viscosity
is higher than the in vitro. Several factors are considered to contribute to this effect. These
include the network structure that consists of numerous bifurcations and junctions as well
as the heterogeneity in vessel diameters as they both affect the thickness of cell-free layers.
Another factor associated with the phenomena of elevated in vivo viscosity is the existence
of an endothelial surface layer, or glycocalyx, resembling a polymeric brush which does
not permit plasma flow near the endothelial-cell surface [170] making this way the effective
width of the lumen available for the flow of plasma and RBC smaller. Using the experimental
observations, the modified empirical equations describing these relationships were deduced
[176, 177]:

µapp = µp

[
1+(µ45 −1)

(1−HD)
C −1

(1−0.45)C −1

( D
D−1.1

)2
]( D

D−1.1

)2
(2.2)

where HD and D are the hematocrit and the diameter of the vessel segment as mentioned
earlier, µ45 is the apparent viscosity for hematocrit 0.45 (HD = 0.45) and C is the coefficient
that defines the shape of curve and expresses the dependence on hematocrit. µp is the
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viscosity of blood plasma. µ45 and C are defined by:

µ45 = 6e(−0.085D)+3.2−2.44e(−0.06D0.645) (2.3)

and
C = (0.8+ e−0.075D)

(
−1+

1
1+10−11D12

)
+

1
1+10−11D12 (2.4)

Alternative equations that also take into account the variation of endothelial surface layer
thickness with microvessel diameter can be found at [170].

It is worth noting that both the Fahraeus and the Fahraeus-Lindvist effects have been
observed experimentally. Ιn recent decades they have been also confirmed though computa-
tional models and detailed simulations of RBC migration, arrangement and deformations in
flow which have demonstrated the power of computational modelling to obtain insights into
difficult biological problems [82].

Most discrete microvascular blood flow models are based on that the assumption that
microvessels form a network of resistances in which flow is governed by Poiseuille’s law and
rheological properties are expressed by the aforementioned empirical equations. By applying
conservation of flow, i.e. blood that enters a branching point equals the blood leaving the
point, the system of algebraic Poiseuille-based equations can be solved to predict blood flow
distribution, given adequate boundary conditions (BCs). BCs must be specified in the form of
pressure or flow values for all boundary nodes. Examples of the application of these discrete
models include the study of hemodynamics of microvascular networks in a variety of tissues,
including the rat mesentery [175], brain [136], tumour [213], and heart [105].

Nonetheless, a major challenge in relation to the aforementioned approaches is the
prescription of adequate BCs. Several work-arounds have been adapted such as assigning
constant or scaled pressure values according to the vessel diameter or type [105, 148, 96],
imposing no-flow BCs [180] and more recently optimization methods [75, 153]. However,
the effect of BCs on the estimated blood flow cannot be underestimated. Lorthois et al. [136]
studied this effect and demonstrated the strong dependence of the final flow solution on the
chosen BCs for boundary capillaries using the brain microvascular data reconstructed by
Cassot et al. [35].

The limitation of prescribing adequate BCs to the thousands of nodes usually present
in microvascular networks can be tackled by using continuum flow models (CFMs). CFMs
do not allow simulation of blood flow at individual microvessels. They do, however, permit
prediction of tissue-scale blood flow properties and have, therefore, started to gain increasing
attention as an alternative to discrete models [229]. This type of models is based on Darcy’s
law which describes fluid flow in porous media and defines flow as the product of pressure
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gradient with the permeability of the media [13]. In this context, permeability refers to the
inverse resistivity of flow (network conductivity) and in 3D structures it is expressed by a
tensor. The permeability tensor is a tissue-scale metric that relates the micro-scale topology,
i.e. the topology of the microvascular bed, to the macro-scale flow. Thus, it provides a
way of quantifying the effect of structural changes that occur as a result of microvascular
diseases and of relating these to whole organ flow observations [208]. This, coupled with the
computational efficiency of CFMs and their independence of BCs, make them a powerful tool
in advancing our understanding of tissue perfusion in healthy and pathological conditions
and in elucidating structure-function relations, as well as in scaling-up discrete models,
towards using permeability tensors to parametrise multi-scale models of fluid transport
(volume-averaged flow) in complete organs, such as the heart [206].

Permeability tensors can be efficiently calculated by taking advantage of volume-averaging,
i.e. homogenization, theory. In particular, Shipley et al. [205] adapted homogenization to
develop a continuous model of fluid and drug transport for a tumorous spatially-periodic
leaky capillary bed. The model was later adapted by Smith et al. [208] and was used to calcu-
late physiologically relevant permeability tensors used in the study of transmural variations
in a non-leaky rat myocardium capillary bed, generated statistically from anatomical data
[121], to ensure spatial periodicity. A similar approach was taken by El-Bouri and Payne
[56] to calculate permeability tensors of different sizes of 3D synthetic spatially-periodic
brain microvascular networks leading to a converged permeability tensor that can be used
to scale up larger areas of the brain microvasculature in order to understand whole-organ
vascular flow. Recently, Hyde et al. [97, 96] compared different approaches to parametrise a
continuous multi-compartment model that permits calculation of a flow solution at each com-
partment and integration of the models towards building a multi-scale continuum perfusion
model of the whole heart with applications in the porcine and the canine animal models. The
different parametrisation methods were based in approximations of the permeability tensor
using various degrees of anatomical information. These works represent the first efforts
to use anatomical data instead of idealized structures, statistically or rule-based generated
ones. However, tensors were not calculated explicitly based on Darcy’s law solution on the
anatomical data a rather challenging task of paramount importance in achieving realistic
modelling, which is the focus of the modelling part of this work.
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CHAPTER 3

MICROVASCULAR IMAGING DATA ACQUISITION &

RECONSTRUCTION

This chapter is based mainly on the works [79, 78]

3.1 Introduction

In this thesis, we aim to enrich the knowledge about cardiac microcirculation pathophysiology
with quantitative data spanning different stages following myocardial infarction (MI) (1, 3,
and 7 days), as well as with data from basal conditions, in an unbiased manner. Towards
this aim, the first step was the acquisition of imaging data that permit the resolution of
the microvasculature and its subsequent accurate reconstruction. Since visualization of the
microvasculature with sub-micrometer resolution could not be performed non-invasively or
in vivo, but it would involve tissue sectioning, a preclinical animal model had to be used.
With the aim of increasing the translational value of the findings, for the purposes of the
study we selected the pig animal model of ischaemia-reperfusion (I/R).

We are particularly interested in I/R because it is the experimental model of MI that
best emulates human myocardial infarction, followed by timely restoration of blood flow to
the ischaemic region, i.e. reperfusion, through pharmacological or mechanical approaches,
such as percutaneous coronary intervention. Early reperfusion remains the main strategy
for reducing the impact of infarction and salvaging the myocardium. However, despite its
indisputable role in reducing mortality [179], it is nowadays accepted that reperfusion also
induces injury per se to the myocardium. This injury is commonly known as reperfusion
injury [91, 98]. Moreover, even in the case of successful restoration of blood to the epicardial
coronary arteries, the ultimate determinant of the efficiency or impairment of tissue perfusion
is the microvasculature. This crucial role of the microvasculature is associated with the fact
that it represents the mesoscale of the circulatory system by acting as the interface between
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large scale, i.e. epicardial coronary arteries and smaller scale, i.e. the cardiomyocytes
[98, 202]. For this reason, it is of paramount importance to obtain in-depth knowledge of
changes that occur to the microvasculature after infarction while also taking into account the
reperfusion step.

Furthermore, in this work, the pig was selected over other large animal models as it is
considered to be the most translational and reliable model for the study of I/R [98, 68]. This
high translational value of the pig is related to the similarity of its coronary artery anatomy
and its distribution to that of humans. Moreover, compared to other large animal models, it
has limited pre-existing collateral flow as that observed in humans [89].

In this chapter, we firstly present the method used to induce I/R in the pig animal model.
Subsequently, we describe the procedures deployed for tissue sampling and preparation,
for immunostaining for nuclei, endothelial cell junctions and smooth muscle actin (SMA)
positive cells as well as for imaging by confocal laser scanning microscopy (CLSM). In brief,
we have acquired a large dataset that consists of hundreds of 3D multi-channel confocal
images. Following acquisition of the dataset, the first step was to establish an automated
method for the segmentation of the labelled structures. Thresholding is a popular approach
in segmentation of fluorescent images [187] due to its simplicity, computational efficiency
and speed. However, due to the challenging nature of 3D confocal images derived from
thick samples related to sudden fluctuations in image intensity and/or loss of intensity due to
antibody penetration and other imaging artefacts, traditional thresholding approaches were
proven insufficient [124]. Therefore, we developed a novel, simple yet efficient method, for
the segmentation of labelled structures from microscopic confocal images. The method is
applied to all channels of the acquired image stacks.

In continuation, an innovative new method is presented that permits accurate 3D recon-
struction of the entire microvasculature from the endothelial cell junction- and SMA-stained
thick tissue sections by filling gaps present on the segmented microvessels due to the use of
VE-Cadherin instead of a laminar marker. Development of such an approach is of paramount
importance because it enables the use of VE-Cadherin, an endothelial marker with high
specificity even in infarction, to reconstruct microvessels in this and future studies. Moreover,
the developed approach can allow the simultaneous study of endothelial junctions, SMA+

cells and microvessels through the use of two fluorescent markers (VE-Cadherin, SMA+

cells) instead of three. The latter is noteworthy given the limited number of fluorochromes
that can be imaged simultaneously [55]. It also worth noting that the developed method in-
volves a step of distinguishing between capillaries and arterioles/venules. The importance of
identifying the type of microvessels automatically is not solely limited to this process, but it is
also crucial in the implementation of theoretical modelling approaches [207]. The approach
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Table 3.1 Characteristics of the subjects used in the study.

Subject 1 2 3 4 5 6 7 8 9 10 11
Time after infarction Basal Basal 24 hours 24 hours 3 days 3 days 7 days 7 days 45 days 45 days 45 days
Body weight (Kg) 34 30.50 34 32.50 40 34 47.50 39.50 56.5 53 57
Left ventricle (LV) mass (g) 55.83 60.50 49.95 57.84 71.18 56.65 88.90 60.60 70.89 60.59 56.88
LV end diastolic volume (ml) 82.63 88.00 95.35 117.3 100.08 96.41 117.51 138.51 128.42 134.9 130.47
LV end systolic volume (ml) 43.20 42.70 53 77.87 44.04 59.61 62.22 87.15 83.85 93.9 87.37
Ejection Fraction (%) 47.74 51.40 44.41 33.61 56 38.17 47.05 37.08 34.71 30.39 33.04
Infarct Size (%) 0 0 29 19.17 16.61 31.01 25.38 41.59 33.37 35.41 29.01
Hematocrit (%) 30.2 32.6 31.1 21.8 29.2 28 30.4 29 33.1 32.3 30.4
Blood Flow LW / R a (ml/min/100g) 121.9 86.9 135.5 142.5 N/A b 103.50 114.1 159.40 175.5 139.1 134.8
Blood Flow I c (ml/min/100g) - - 59.7 104.6 N/A b 107.00 58.9 50.90 29.9 79.3 88.1

aLW / R refer to measurements taken from the LV lateral wall (LW) for the control subjects one and two,
and to measurements taken from the remote areas (R) for subjects that have suffered infarction (subjects three
to eleven).

bN/A: Information not available due to missing magnetic resonance imaging (MRI) sequence
cI refers to measurements taken from the infarcted areas (I) for subjects that have suffered infarction.

could be further extended to separate arterioles from venules, given their morphological
characteristics such as branching patterns and tortuosity.

3.2 Microvascular data acquisition

3.2.1 Animals & Myocardial Infarction

All experiments were approved by the Ethical Committee for Animal Experimentation of
CNIC and the Comunidad Autónoma de Madrid in accordance with the Guide for the Care
and Use of Laboratory Animals. Six adult male Large-White pigs weighting 30-40 kg
were anaesthetized with a ketamine/xyzaline/midazolam mixture in continuous intravenous
infusion. Subsequently, acute myocardial infarction was percutaneously induced using an
angioplasty balloon with 30-minute occlusion of the left anterior descending coronary artery
(distal to the first diagonal branch) followed by reperfusion. The pigs were sacrificed 1, 3
and 7 days after infarction, respectively. Furthermore, two more pigs under basal conditions
were sacrificed to serve as the control subjects of the present study.

This work focuses on the microvascular changes occurring at the early time-points after
MI (1, 3 and 7 days post MI) when the potential for therapeutic interventions is higher.
However, after the analysis of the early time-points (Chapter 4), we decided to extend our
analysis at 45 days post MI with the aim of clarifying whether the microvascular changes
observed at the early time points persist and/or deteriorate when no treatment is applied.
For this purpose, we used available tissue from pigs that had been subjected to a similar
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Fig. 3.1 Schematic procedure of tissue harvesting and sampling. Three slices of the heart with
thickness of approximately ∼ 1.5cm were cut. Transmural pieces of tissue were subsequently
cut from each slice clock-wise with a thickness of around 1cm as indicated on slice I. The
infarcted areas, highlighted in yellow on the complete heart and on slice II as an example,
were distinguished by eye as the whitish areas. Right ventricle (orange) and septum (green)
were not used for the analysis. The heart of the diagram belongs to a subject sacrificed at 7
days post MI.

procedure as described above with 40-minute occlusion and sacrificed 45 days following
infarction. All subjects’ structural and functional characteristics are provided in Table 3.1.

3.2.2 Tissue sampling

The porcine hearts were extracted immediately after euthanasia and cleaned with saline.
Subsequently, they were cut into three ∼1.5 cm thick cross-sections, at the basal, mid-
ventricular (papillary muscle) and apical levels. The right ventricle was removed and tissue
samples from both infarcted and remote areas from each left ventricle were collected. It is
worth mentioning that the sample collection was performed by cutting transmural pieces of
around 1cm in a clock-wise manner starting from the leftmost part of the left ventricle. The
areas corresponding to the septum were excluded. Infarcted areas were distinguished by eye
as whitish areas.

3.2.3 Tissue preparation & Immunofluorescence histochemistry

The tissue samples were fixed overnight with 0.4% PFA at 4◦C, washed with PBS, cryopro-
tected with 30% sucrose and embedded in OCT with transmural orientation kept. Thick
slices of 100µm were cut using Leica AM1950 automated cryostat. Immunostaining was per-
formed in flotation using the following procedure; 2 hours permeabilization in 0.3% Triton-X
100, 0.1% Tween in PBS at RT followed by 1 hour blocking with 0.3% Triton-X 100, 4%
FBS in PBS at 4◦C. For the staining of the microvasculature, the slices were incubated in
blocking buffer with primary antibodies anti-VE-Cadherin (Santa Cruz) and anti-α-SMA
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(Sigma) with dilution 1:100 and 1:200 respectively, overnight at 4◦C. After washing with
0.3% Triton-X 100 in PBS, incubation with secondary antibodies donkey anti-goat Alexa
Fluor-568 and chicken anti-mouse Alexa Fluor-647, 1:500 (Molecular probes) and Hoechst
33342, 1:10000 (Life Technologies) was performed for 2 hours in blocking buffer at RT.
After washing, slices were mounted on the glass using Fluoromount G (Southern Biotech).
All incubations were performed on a nutator.

VE-Cadherin stains the endothelial junctions and not the complete endothelial cell or
the lumen of the vessels. This results in gaps in the blood vessels when reconstructed from
VE-Cadherin- labelled tissue. However, VE-Cadherin has been chosen in this work as a
vasculature marker over other commonly used endothelial markers, such as Isolectin B4
or CD31 (PECAM-1), due to its specificity even in infarction. Isolectin tends to stain not
only endothelial cells, but also macrophages [99]. Therefore, its use in infarcted tissue
is not appropriate, especially at early time-points, when the inflammation process occurs.
In our samples large contamination of macrophage staining was observed in infarct zones
when Isolectin was used. A similar problem was presented in the case of CD31 marker,
which is present in endothelial cell junctions but it is also expressed in other cell types, e.g.
platelets, monocytes and macrophages [178]. For those reasons, the use of VE-Cadherin that
is exclusively an endothelial cell marker [224], was preferred.

In this work, we have also used the information from the α-SMA channel for studying
the perivascular and myofibroblastic content of the cardiac tissue as it will be detailed in
the next chapter (Chapter 4). In order to validate our approach regarding myofibroblasts,
we studied the co-expression of α-SMA with other markers expressed by myofibroblasts.
Towards this aim, we used images of tissues simultaneously labelled with α-SMA and
such other markers. The protocol followed for the preparation and immunohistochemical
staining of those tissues is similar to that described earlier for the tissue used for the study
of the microvascular changes. More precisely, 15µm slices of tissue from infarcted areas
from the pigs sacrificed at 7 days following MI were used. After fixation and cutting, the
slices were incubated in blocking buffer with primary antibody anti-CD31 (Abcam) with
dilution 1:100 and one of the following primary antibodies: (i) anti-Vimentin (Sigma) with
dilution 1:100, (ii) anti-Collagen I (Santa-Cruz) with dilution 1:50, or (iii) anti-PDGFRB
(eBioscience) with dilution 1:100, overnight at 4◦C. After washing with 0.3% Triton-X
100 in PBS, incubation with secondary antibodies goat anti-rabbit Alexa Fluor-488 (Life
Technologies) with dilution 1:500 and Alexa Fluor-488 1:500 (Life Technologies), and
Hoechst 33342, 1:10000 (Invitrogen) was performed for 2 hours in blocking buffer at RT.
After washing with 0.3% Triton-X 100 in PBS, the slices were incubated in blocking buffer
with 5% mouse serum for 1 hour at RT. Subsequently, they were incubated with anti-α-SMA-
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Fig. 3.2 MIPs of each channel of three example 3D multi-channel confocal images at different
conditions; basal, remote and infarcted 7 days post MI. The images were acquired by tissue
simultaneously labelled with Hoechst, VE-Cadherin and SMA. Each column represents a
channel; (a) MIP of Hoechst channel pseudo-coloured with blue, (b) MIP of VE-Cadherin
channel pseudo-coloured with red, and (c) MIP of SMA channel in grey. Scale bar (25 µm)
applies to all channels.

Cy3 (Sigma) with dilution 1:300 for an additional hour at RT. After a final wash with 0.3%
Triton-X 100 in PBS, the slices were mounted on the glass using Fluoromount G. In this
case CD31 was used as a marker of the microvasculature instead of VE-Cadherin due to
compatibility issues of the species of primary antibody host.
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Original Gaussian Filtering Median Filtering NLMF Filtering

Fig. 3.3 Image quality improvement after preprocessing. (a) From left to right MIPs of
VE-Cadherin channel without preprocessing, after denoising by means of the application of
Gaussian filter of size [3,3,3], median filter of size [5,5,5] and Non-Local Means Filtering
(NLMF). Yellow windows on the MIPs of the first row denote areas to zoom in. (b) Zoomed
areas of MIPs presented on top row. (c) The zoomed areas provided in the middle row after
the application of contrast adjustment on the original or denoised images respectively. In this
work, NLMF and contrast adjustment have been applied for preprocessing the multi-channel
3D images.

3.2.4 Image acquisition & Pre-processing

Spectral imaging was performed by means of Leica SP5 confocal microscopy using a 40×
oil immersion lens of numerical aperture 1.25. Emissions of 405nm, 561nm, and 633nm
laser lines were used to excite the Hoechst, VE-Cadherin and SMA fluorophores respectively.
Z-stack slices (1024×1024 pixels) were acquired every 1µm and by applying the deepness
correction set-up provided by the microscope. The final number of slices acquired depended
on particular antibody penetration and ranged between 54 and 95µm. The resulting voxel
size was 0.3785µm×0.3785µm×1.007µm, or 0.3142µm×0.3142µm×1.007µm in a few
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Global Thresholding Multi-thresholding Hysteresis Thresholding

Fig. 3.4 Comparative example of three different thresholding algorithms. A slice of a 3D
image (from mouse tissue) with contours of segmented objects by means of Otsu’s global,
multi-level and hysteresis thresholding in green, red and magenta respectively.

cases. In total, 126 multichannel images, 18 per tissue condition (9 per subject), were
acquired and they were used for the analysis at time-points 1, 3, 7 days post MI and under
basal conditions. Additionally, 36 images, 18 from infarcted (6 per subject) and 18 from
remote areas (6 per subject), were acquired in the same manner and they were used for
investigating microvascular characteristics and changes at 45 days following MI. Maximum
intensity projections (MIPs) of the multi-channel z-stacks acquired for three example images
are provided in Fig. 3.2.

The same imaging system and procedure were also used to acquire images from tissue
simultaneously labelled using anti-CD31, anti-SMA and anti-PDGFRB/anti-vimentin. How-
ever, emissions of 405nm, 543nm, 568nm, and 647nm lasers were used to excite the Hoechst,
CD31, SMA and PDGFRB or vimentin fluorophores, respectively. In the case of tissue
simultaneously labelled with anti-CD31, anti-SMA and anti-collagen I, the image acquisition
process followed was the same, with the difference that the Nikon A1R confocal microscopy
was used.

Prior to proceeding with the analysis, after experimentation with different pre-processing
approaches for enhancing the quality of the acquired images, the 3D Non-Local Means
Filtering (NLMF) [24] was adapted due to its higher performance in terms of removing
noise but preserving image information. NLMF is based on non-local averaging of all image
voxels. The resulting 3D denoised image volumes were further adjusted for contrast. An
example of the performance of NLMF in comparison with Gaussian filtering and median
Filtering is provided in Fig. 3.3. Please note all processing and analysis described in this and
subsequent chapters have been performed in 3D. MIPs are used in some of the figures of the
document only for visualization purposes.
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3.3 Segmentation of microscopic imaging data

The first step towards studying the microvasculature and its infarction-related dynamic
changes from 3D confocal images is to automatically segment the labelled structures of the
VE-Cadherin channel. Thresholding is a commonly adapted approach for the segmentation
of fluorescently labelled images. In this work, we initially applied different approaches,
including Otsu’s global and multi-level thresholding [152] and hysteresis thresholding (Fig.
3.4). Apart from the thresholding approaches, we additionally investigated the performance
of Frangi filtering [72], a well known multi-scale vessel enhancement filter broadly used for
the recognition of tubular structures such as vessels. However, the latter required a significant
amount of image specific parameter tuning. Therefore, this approach was discarded. Among
the different thresholding methods, the one performing better was multi-level thresholding
which provided very accurate results for several volumes (Fig. 3.4). However, there were
other cases (Fig. 3.6, bottom row), where the spatial heterogeneity of the intensity within
the 3D volume was very high, with lateral or in-depth abrupt changes in intensity. This is
probably related to photo-bleaching and fluorescent attenuation. In such cases, the algorithm
resulted in very poor segmentations and loss of important vascular information due to over-
segmentation or under-segmentation of the labelled structures in several areas. To tackle these
limitations, we developed a novel algorithm, the 3D multi-scale multi-level thresholding
approach, which accounts for the complex nature of the microvasculature and it is not
hampered by the high heterogeneity of intensity present between different volumes and also
within the same image volume.

3.3.1 3D multi-scale multi-level thresholding (MMT)

3D multi-scale multi-level thresholding (MMT) algorithm is inspired by the box counting
(BC) method [19] and Otsu’s multi-level thresholding method [152].

Grids of varying size e are overlaid onto the image under investigation. Subsequently,
the multi-level thresholding is applied to each box B j(e), j = 1, ...,N(e) of the grid with size
e in order to calculate the M intensity classes that maximize the inter-class variance within
the box. For every grid, N(e) thresholds (tM), as many as the boxes that composed it, are
therefore calculated and applied to the corresponding box. In total, k candidate segmentations
Vi, i = 1, ..,k are produced, one per grid size e, as a mosaic of the application of the N(e)
thresholds on the boxes. Here, only voxels that belong to the two classes with higher intensity
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Fig. 3.5 Overview of MMT method.

(M−1,M) are considered as parts of the microvasculature. Thus,

Vi(u) =

{
1, I(u)≥ t(M−1)(B j(e))
0, I(u)< t(M−1)(B j(e)) .

(3.1)

where voxel u = (x,y,z) ∈ B j(e) and I the original image. It is worth noting that in cases of
other markers only the higher intensity level might be sufficient.

Subsequently, candidate segmentations Vi, i = 1, ..,k have to be fused into a single seg-
mentation. To achieve this, majority rule voting is applied:

V (u) =
∑i=1,..,k wiVi(u)

∑i=1,..,k wi
, (3.2)

where wi are the weights that define the degree to which candidate segmentation Vi will
contribute to the final segmentation. For our dataset, wi were set to 1 considering equal
contribution of all candidate segmentations.

An overview of the MMT method is presented in Fig. 3.5. It is worth mentioning that in
the traditional BC, cubic boxes compose the grid. However, here, boxes of size e× e× ez

with ez = 10 < e = 25, ..,N , were used in order to accommodate for the smaller size of our
images along z-direction and to cover a wide range of scales while ignoring the smaller ones
that provide a very limited region for variance calculation.
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3.3 Segmentation of microscopic imaging data

a Remote

25 m

b Infarcted

Fig. 3.6 Example segmentations by means of MMT method (first row) and of traditional
multi-level thresholding (second row) from remote (a) and from infarcted area (b). The
segmented vessels are presented with red on the slices along x-y, y-z, x-z (right) and on the
3D reconstructions (left). Scale bar (25 µm) applies to all images.

The proposed approach was initially applied to the VE-Cadherin channel of a subset
of our dataset. The subset consisted of fifty-four 3D confocal images that were acquired
from three subjects at 1, 3 and 7 days post MI. This subset formed our initial dataset before
expanding it with the addition of other subjects that had suffered infarction as well as with
subjects, at basal conditions. The outcome of the MMT application was visually evaluated by
an experienced biologist. During evaluation, the segmentations were rated using an ad-hoc
rating scale from one to four. Four represented "excellent" segmentation outcome, i.e. all
microvascular parts were correctly identified. Three represented "good" segmentation, i.e.
the overall pattern/shape of the microvasculature was preserved, but slight over-segmentation
and/or under-segmentation could be observed in certain parts. Two represented "poor, but
acceptable" segmentation, i.e. when the overall pattern/shape was preserved but there were
parts of the vasculature that were highly over-segmented and/or under-segmented. One
represented "poor and unacceptable" segmentation which meant that the overall pattern
had been changed. Only in one case out of fifty-four the segmentation outcome was rated
with one. All the other 53 images were rated with either three or four, and no image was
rated with 2. The image for which the segmentation was evaluated with one due to high
overestimation of the vascular parts resulting in differences between the true and the estimated
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Microvascular imaging data acquisition & Reconstruction

Fig. 3.7 Overview of the proposed approach for the reconstruction of the complete mi-
crovasculature from thick sections of pig heart tissue labelled for VE-Cadherin (endothelial
junctions).

microvasculature, was discarded from subsequent analysis. Moreover, an additional image
was acquired and segmented to retain the size of the dataset.

After confirming the accuracy of MMT for the segmentation of labelled structures from
confocal images, it was subsequently applied in the segmentation of VE-Cadherin channel
of all images. Furthermore, due to the superiority of the proposed method in terms of
performance over other segmentation methods, the approach was applied for segmenting the
other channels, i.e. the Hoechst and SMA+, as well. Lastly, for the VE-Cadherin channel,
segmentation was further improved by excluding possible artefacts, i.e. objects that are
smaller than 100 voxels and do not have a nucleus.

3.3.2 Endothelial cell junction-based 3D reconstruction of the
microvasculature from cardiac tissue

Following the segmentation of structures labelled with VE-Cadherin, major parts of the
microvasculature are reconstructed. However, VE-Cadherin is a marker of endothelial
junctions and not of the vessel lumen or of the complete endothelial cell (see Subsection
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Fig. 3.8 Example segmentations of the SMA+ cells channel and the resulting 3D guidance
maps for the filling procedure for a basal, an infarcted and a remote case. (a) Cross-
sections along x-y-z of the SMA+ cells channel. (b) Cross-sections along x-y-z of the SMA+

segmentations overlaid on the original images. (c) SMA+ segmentations in 3D. (d) 3D
guidance map. Parts of the cardiac microvasculature that are recognized as capillaries are
represented with orange, while those recognized as arterioles/venules are represented with
green.

3.2.3). As a result, there are gaps in the reconstructed blood vessels. The size of these gaps is
not homogeneous but rather depends on the type of microvessels. Smaller gaps are observed
in capillaries and larger ones in larger microvessels, i.e. arterioles and venules. A filling
method was developed to deal with this limitation. The method is applied on top of the
VE-Cadherin segmentation with the aim of reconstructing microvascular parts which had not
been labelled with VE-Cadherin.

An overview of the filling algorithm is provided in Fig. 3.7. The method is based on
two types of information; information regarding the spatial relation of the microvessels with
SMA+ cells and information about the physiology of the different types of microvessels that
form the microvascular network. In particular, taking advantage of the knowledge about
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Fig. 3.9 VE-Cadherin example segmentations and the corresponding reconstructed cardiac
microvasculature for a basal, an infarcted and a remote case. (a) Cross-sections along
x-y-z of the VE-Cadherin channel. (b) Cross-sections along x-y-z of the corresponding
VE-Cadherin segmentations overlaid on the original images presented in column a. (c)
Cross-sections along x-y-z of the 3D reconstructed microvasculature. (d) Reconstructed
microvasculature in 3D. Segmented areas from the VE-Cadherin channel are shown in red,
while areas reconstructed as part of the microvasculature after the application of the filling
pipeline are shown in blue.

the existence of a SMA+ layer that surrounds arterioles and venules [100], Frangi-based
filtering [72] is applied to the SMA+ segmentation to extract tubular elements whose diameter
is in the range of that of arterioles and venules (i.e. larger than the diameter of 7.3µm of
the larger capillary connected directly to an arteriole [104]). This results in a 3D binary
image on which regions that might belong to arterioles/venules are on voxels (voxels of
value one) and regions belonging to capillaries are off voxels (voxels with value equal to
zero). The 3D image is subsequently used to distinguish between microvessels formed by the
VE-Cadherin junctions that are capillaries and those that are possible arterioles or venules.
For this purpose, element-wise multiplication of the VE-Cadherin segmentation and the 3D
image with arterioles and capillaries is performed. The procedure results in the creation of
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3.3 Segmentation of microscopic imaging data

a 3D Guidance Map (Fig. 3.8) containing information about the type of microvessels and
therefore of the size of gaps that should be filled.

Morphological closing is performed using structural elements of various sizes based on
the vessel type, as defined by the 3D Guidance Map. More precisely, in order to fill gaps in
regions of capillaries, a ball structural element is used whose size is equal to the diameter of
the largest capillary (8.2µm) found in the pig animal model [104]. Similarly, in order to fill
gaps in the case of arterioles/venules a larger ball structural element is used whose diameter
is equal to the largest reported arteriole/venule of order 2 (20.6µm). The combination of
filled capillaries and arterioles/venules produced by means of the aforementioned work-flow
results in the reconstruction of the complete microvasculature, including regions that might
not have been labelled with VE-Cadherin, but nonetheless belong to the microvasculature.
Fig. 3.9 allows appreciation of the improved identification of the microvascular network by
using the proposed filling approach. Fig. 3.10 provides representative 3D reconstructions of
the microvasculature at different conditions under investigation (basal, infarcted and remote
at 1, 3, and 7 days following MI respectively) used for subsequent analysis.
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b Infarcted 1 day post MI Remote 1 day post MI
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c Infarcted 3 days post MI Remote 3 days post MI
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d Infarcted 7 days post MI Remote 7 days post MI
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Fig. 3.10 Representative 3D reconstructions of the cardiac microvasculature from tissues
at different pathophysiological conditions. (a) Microvasculature reconstructed from tissues
at basal conditions. (b) Microvasculature reconstructed from tissues at 1 day post MI.
(c) Microvasculature reconstructed from tissues at 3 days post MI. (d) Microvasculature
reconstructed from tissues at 7 days post MI. In panels (b), (c), (d) the first two volumes
correspond to tissues from infarcted areas at the corresponding time-point after MI, while the
third and fourth volumes to tissues from remote ones. Scale bar (25 µm) is the same for all
channels.
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CHAPTER 4

3D AUTOMATED IMAGE ANALYSIS OF MICROVASCULAR

DATA

This chapter is based mainly on the works [79, 78]

4.1 Introduction

Understanding and identifying changes in the 3D structure of the microvasculature not
only requires the use of state-of-the-art imaging techniques, but also the use of unbiased
image analysis methods that allow the translation of qualitative biological observations
into quantitative knowledge. Furthermore, automatic 3D image analysis allows extracting
information not attainable from traditional manual analysis, and at the same time, diminishes
subjectivity problems, time and labour requirements, of both manual and supervised analysis.
Nevertheless, even in the case of automatic analysis, the problem of identifying measures
that can optimally describe highly complex structures, their changes and structural-function
relations remains a challenging task. Traditional analysis regarding diameters and lengths
provide information of paramount importance regarding vessel structure and function, but it is
insufficient when dealing with complex objects [84]. This work is a first effort to standardize
the quantitative assessment of the cardiac microvascular patterns and, thus, identify their
progressive changes during pathology.

More precisely, in this chapter, we present an in-depth study of the coronary microvascu-
lature and of the changes that occur to it at different time-points, after myocardial infarction
(MI), at remote and infarcted regions, and in comparison with the basal condition. To achieve
this, while also accommodating the complex and 3D nature of the microvasculature, we
developed a novel bioimage analysis pipeline that permits the acquisition of novel, quantita-
tive insights into its structure and changes at different stages of pathology. The pipeline is

51



3D automated image analysis of microvascular data

applied to the large dataset of porcine cardiac tissue acquired by confocal microscopy that
was described in Chapter 3.

In brief, the pipeline first makes use of the segmentation and filling methods presented
in Chapter 3 in order to reconstruct the complete microvasculature from stained endothelial
cell junctions and smooth muscle actin-positive (SMA+) cells. It subsequently permits us to
extract parameters that quantify all major features of the microvasculature and its relation to
(SMA+) cells. Combining the biological knowledge extracted and statistical change analysis
we unravel vital infarction-related changes at the microvascular level, particularly structural
changes and angioadaptation in the aftermath of MI. Moreover, we identify geometric
patterns that describe the altered capillary diffusion area into the tissue. Lastly, we evaluate
the potential of the extracted knowledge to be used for predicting the pathophysiological
condition of unseen tissue and we achieve high accuracy (higher than 80%) in the task of
distinguishing infarcted and remote from basal tissue, as well as in recognizing the stage of
the infarcted tissue. This fact demonstrates the ability of our approach not only to describe,
but also to predict complex dynamic microvascular patterns.

Overall, our approach allows for accurate quantification and identification of pathology-
related changes of microvascular beds, as well as for the prediction of the pathophysiological
condition of tissue. This method will provide a deeper understanding of microvascular
alterations in a variety of pathological conditions as MI, diabetes or hypertension, the
evaluation of the outcome of different treatments, and the identification of optimal timing for
angiotherapeutic intervention. At the same time it marks a step forward towards modelling
microcirculation at different stages after pathology.

4.2 Methods

A brief overview of the bio-image analysis pipeline developed in this work is provided in
Fig. 5.2. The first step towards quantifying the microvasculature and its infarction-related
dynamic changes is to automatically segment the labelled structures of the VE-Cadherin,
SMA and of the Hoechst channels. Towards this aim, the multi-scale multi-level thresholding
algorithm (MMT) [79] is applied to every channel of the 3D confocal image as described in
Chapter 3. In the case of the VE-Cadherin channel, the approach of filling gaps is then applied
on the segmented VE-Cadherin channel to reconstruct microvascular parts not labelled by
VE-Cadherin.

After the VE-Cadherin, SMA+ cells, and nuclei are segmented, and the complete 3D
microvasculature is reconstructed, the next step is to quantify the parameters that allow
description of the characteristics of the microvasculature and assessment of infarction-
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Fig. 4.1 Overview of the proposed bioimage analysis pipeline.

related changes. Here we propose to use a variety of parameters that can be roughly
divided into the following categories: (i) parameters at global level that characterize the
morphology and topology of the network, (ii) parameters at the segment/local level that
characterize the angioarchitecture of the network, (iii) parameters that quantify the relation
of the microvasculature with SMA+ cells, (iv) parameters regarding the capacity of the
network for oxygen diffusion. Lastly, we examine novel geometric models to describe the
capillary oxygen supply region. Table 4.1 provides a detailed list of the parameters extracted
to describe the complex microvascular network described in this and following sections.
Statistical analysis of the parameters is performed to identify vital changes that occur at
different stages following MI.

4.2.1 Structure-global level

Parameters based on fractal analysis and on the Minkowski Functionals (MF) are used for
describing the microvasculature as a complete network, and thus, identifying its alterations
after MI at a structure-global level. The concept of fractals was introduced by [140] and
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ever since they have been applied in a variety of image analysis and pattern recognition
problems. Fractal analysis accounts for the multiscale properties of structures that can be
self-similar. In the biomedical field, fractals found great appeal in the study of vascular
networks [135], and fractal-based analysis is a powerful tool in cardiology [31]. In [79],
we presented the first study to apply a complete 3D fractal-based analysis to quantitatively
assess progressive MI-related changes of the microvascular patterns. Here, we follow the
same approach and we use three fractal parameters calculated directly from the 3D volumes;
fractal dimension, lacunarity and succolarity. Fractal dimension provides an estimation of
the morphological complexity of structures. Lacunarity describes the heterogeneity in the
distribution of gap sizes. Gaps in the case of cardiac tissue represent non-vascularized areas.
Succolarity indicates the capacity of a fluid, i.e. blood in the case of the microvasculature,
to flow through the structure. Thus, in biological terms, the higher the fractal dimension,
the higher the morphological complexity is, i.e. the number of microvessels. The higher
the lacunarity, the more heterogeneous the gap distribution and as a result the blood supply
within the tissue is. The higher the succolarity, the larger the amount of blood that can flow
in the vessels, thus the better the oxygenation.

On the other hand, the Minkowski functionals (MF) [127] are morphological descriptors
(volume, surface area, mean integral of breadth and Euler-Poincaré characteristic) that
encompass standard geometric and topological (connectivity) properties of structures. Thus,
a combination of fractal and Minkowski-based parameters, allows obtaining complementary
information regarding the microvascular networks.

4.2.1.1 Fractal-based analysis

Fractal Dimension A variety of methods have been proposed for the calculation of
fractal dimension [134]. Among them, the box counting method (BC), which is the most
popular and widely used approach, was applied in this work. Grids of cubic boxes of size
e are overlaid on the original image. Subsequently, the fractal dimension (Fd) is defined as
the negative slope of the bi-logarithmic plot of the number of boxes ne needed to cover the
microvasculature as a function of the box size e. Thus,

Fd =−lim
ln(n(e))

ln(e)
(4.1)

We subsequently identify the cut-off scales over which the microvascular structures no longer
present self-similarity [14], i.e. can not be considered as fractals. This additional step was
considered necessary because real-life objects, such as the vascular patterns, might not present
self-similarity over an infinite range of scales but rather over finite scales. However, no
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statistically significant difference was observed between the calculation of fractal dimension
with and without cut-offs. This might be explained by the limited physical scales of the
microvascular patterns in our dataset. Consequently, the fractal dimension presented in this
manuscript is without cut-offs.

Lacunarity Lacunarity was calculated by using the gliding box method [84]. Boxes
of various sizes e are glided over the 3D binary volume of the segmented microvasculature
by 1 voxel. For every box size e, the total number of boxes of size e (N(e)) and the number
of vascular voxels (P(n,e)) inside every box n = 1, ..,N(e) are taken into account. The sum
of the number of voxels belonging to the microvasculature in every box n = 1, ...,N(e) is
calculated (Q1 = ∑n=1,..,N(e)P(n,e)), as well as the sum of the square number of vascular
voxels (Q2 = ∑n=1,..,N(e)P(n,e)2). Lacunarity for box size e is then given by:

L(e) =
N(e)×Q2

Q1
2 (4.2)

In order to tackle the dependence of lacunarity on image density and to be able to compare
images of various densities as the ones comprising our dataset, in this work, lacunarity
was subsequently normalized using the lacunarity of the complementary image (cL(e)) by
Lnorm(e) = 1− 1

L(e) −
1

cL(e) . Lacunarity over all scales, i.e. all box sizes, is finally defined as
the mean of the normalized lacunarity of individual scales.

Succolarity Although succolarity (S) was firstly described by Mandelbrot [140], the
first formal definition and method for its calculation, based on an adaptation of BC method,
was proposed recently by [146]. In brief, regions that a fluid can flow are represented by 1
while obstacles to the fluid with 0. Thus, in the case of these study, the areas where blood
can flow through the microvasculature are the vascularized areas, while the non-vascularized
are considered to be obstructing the flow. There are six possible directions of flow in the
case of the 3D microvasculature (Fig. 4.2): horizontal flow from left to right and vice versa,
vertical flow from top to bottom and vice versa, and in-depth blood flow from the upper to
the lower slices and vice versa. The volume of the 3D microvasculature is decomposed in six
3D images, one per flow direction. Each of those images contains only microvascular parts
that would allow a continuous flow, if blood was to enter from that particular direction.

Grids of boxes of different sizes, as in the case of the box counting method, are applied
on the decomposed images. The occupation percentage of vascular voxels (O(n,e)) inside
each box n of size e, as well as an indicator of pressure (PR(e)), are calculated. PR(e) is
calculated based on the coordinates of the centroid of the box along the direction under
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Fig. 4.2 Possible directions of blood flow through the segmented microvasculature; horizontal
flow from left to right (arrow 1) and vice versa (arrow 2), vertical flow from up to down
(arrow 3) and vice versa (arrow 4), and in depth blood flow from upper to lower slices (arrow
5) and vice versa (arrow 6).

investigation. Therefore, in the cases of horizontal, vertical and in depth directions of
blood flow respectively, the pressure is given by the x, y and z coordinates respectively.
A normalized version of succolarity is given by dividing the pressure in the case of 100%
occupation with vascular voxels for all boxes. Therefore,

S(e,d) =

∑
n=1,...,N(e)

OP(n,e)×PR(e)

∑
n=1,..,N(e)

PR(e)
(4.3)

Taking into account all 6 directions, the overall succolarity is calculated by

S =
1
6 ∑

d=1,...,6
∑
e

S(d,e)
N(e)

(4.4)

where N(e) refers to the total number of boxes of size e comprising the grid.

4.2.1.2 Minkowski-based analysis

For an arbitrary object A in the d-dimensional Euclidean space Rd , there exist d + 1 MFs
Mn(A) with n = 1, ..,d+1. Therefore, in 3−D space, there exist four MFs, which are propor-
tional to the commonly known properties volume (M1), surface area (M2), mean integral of
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breadth (M3) and Euler-Poincaré characteristic (M4). The MFs for the 3D microvasculature
are calculated by [127]

M1(V ) = nc

M2(V ) =−6nc +2n f

M3(V ) = 3nc −2n f +ne

M4(V ) =−nc +n f −ne +nv

(4.5)

where nc is the total number of voxels that the microvasculature consists of, n f is the number
of open faces, ne the number of open edges and nv the number of open vertices.

In the present work, we normalize the MFs by the volume of the tissue from which the
microvasculature was reconstructed to obtain density, surface area density, breadth density
and Euler-Poincaré characteristic density. Normalization was performed in order to allow the
comparative analysis of the MFs among different images. This would otherwise have not
been possible due to the variability found in tissue volume among the images of our dataset.

4.2.2 Segment-local level

Metrics at the structure-global level provide us with paramount information regarding the
whole microvascular plexus, but they do not provide insights into the angioarchitecture, i.e.
the morphology and arrangement of the individual microvessels that form the microvascula-
ture, on which the functional properties of microcirculation and their modelling critically
depend [173]. For this reason, we perform a quantitative analysis at the segment level using
the 3D graph-based representation of the microvasculature (Fig. 4.5A), complemented with
information regarding the radius, length, surface and volume of every segment.

4.2.2.1 Graph-based representation and related metrics

In order to convert the microvasculature to a 3D graph that encompasses the topological
information of the network, the reconstructed microvasculature is firstly skeletonised through
the use of a thinning algorithm [125]. The skeleton is converted to a graph consisting of nodes
that represent the branching or end nodes that could be possible sprouts (mean and standard
deviations presented in Table 4.1) of the microvascular network and the edges (i.e. segments)
that represent the skeleton parts between two consecutive nodes [108]. Subsequently, to
eliminate false short spurs produced by the thinning procedure, the 3D image volume with
possible areas of arterioles/venules obtained after Frangi filtering (G) introduced in the
previous chapter, is used. G allows us to guide a local, pruning process during which end
segments (segments defined between a branching node and an ending node) are pruned
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based on their length and type (capillaries or arterioles/venules). More precisely, segments
whose length is smaller than one-and-a-half times the diameter of the smallest capillary
(4.1µm), found in the LV of the pig heart according to [104], are used in areas that the 3D G
indicated that corresponded to capillaries. On the other hand, on those areas that correspond
to arterioles/venules according to G, the segments are pruned when their length is smaller
than one-and-a-half times the diameter of the smallest arteriole/venule of order 1 (8.96µm)
[104]. The pruning procedure is repeated twice to ensure that spur “Y"-shaped segments,
resulting from the thinning process, are entirely pruned. The branching and end-nodes of
the skeleton are extracted as nodes with more than one and only one neighbouring point
respectively by convolving the 3D skeleton of the image with a 3×3×3 sized mask of ones.
Bubble-like nodes resulting as an artefact of the skeletonisation process are replaced by the
central node. The radius of each segment is calculated using the distance of the points on the
skeleton to the closest non-vascular element. Among the distances, the radius is set equal to
the largest one. Every segment of microvasculature between two nodes i, j is subsequently
considered a tube of constant diameter (di j), length (Li j) and the following metrics at segment
level are calculated as in [213]

Vascular segment volume (Vi j) =
π ×d2

i j ×Li j

4
Vascular segment sur f ace (Si j) = π ×di j ×Li j

Tortuosity =
Li j

Euclidean distance between i and j

Vascular length density (Ld) =
1
V
× ∑

i j=1,...,N
Li j

Vascular sur f ace density =
1
V
× ∑

i j=1,...,N
Si j

Vascular volume density (Vd) =
1
V
× ∑

i j=1,...,N
Vi j

Di f f usion distance (D) =
1√

π ×Ld

(4.6)

where V is the volume of the tissue and N is the total number of segments that form part of
the microvasculature.

4.2.3 Nuclei-Based refinement & Nuclei counting

The number of nuclei first had to be calculated in order to calculate the number of α-SMA+

and endothelial cells. For this purpose, 3D watershed transformation [147] is applied to the
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Fig. 4.3 Watershed results for nuclei segmentation. (a) 3D Segmentation of nuclei channel by
means of MMT. The volume is colour-coded to highlight nuclei that do not overlap neither
with the microvasculature or α-SMA+ staining (blueish green) and those that do (orange). (b)
Watershed segmentation for separation of individual nuclei represented in (a) with orange.
Errors in the separation of nuclei can easily be spotted, but the segmentation was considered
acceptable for the purposes of this work.

segmentation of the Hoechst channel in order to separate merged nuclei. Nuclei belonging to
α-SMA+ were considered to be the ones with simultaneous staining of α-SMA and Hoechst.
Nuclei belonging to endothelial cells were considered to be the ones that were overlapping
with the surface of microvessels.

It should be noted that although watershed transformation is a popular approach for nuclei
segmentation, it also tends to produce errors, such as over- or under-estimation of nuclei (Fig.
4.3). However, as development of novel tools for nuclei segmentation was beyond the scope
of this work, watershed performed reasonably well for our approach and we, therefore, just
adapted it for the task at hand. Nonetheless it is noted that the number of nuclei in this work
might, therefore, not be precise.

4.2.4 Assessment of oxygen efficiency & Super-ellipsoids as
descriptors of capillary supply area

In an effort to identify a geometric pattern that would describe the area of capillary diffusion
so that it closely matches the relative frequency distributions observed in our volumes, we
used a super-ellipsoid model. Super-ellipsoids allow description of a variety of shapes,
ranging from cylinders (such as in the Krogh model) to more complex ones, by varying only
a small number of parameters. They are a type of 3D geometric shape that belongs to the
same, more general family of geometric shapes named superquadrics [9]. Super-ellipsoids
are implicitly defined by
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where a, b, c are scale factors for axis x, y and z respectively, Cx, Cy, Cz represent the centre
of the super-ellipsoid, and e1, e2 control the shape of the super-ellipsoid. e1 controls the
squareness along z-axis and e2 the squareness along plane x-y. Therefore, a variety of shapes
can be determined by varying e1 and e2; e1 < 1,e2 < 1 result in cuboids, e2 = 1 and e1 < 1
in cylindroids, e1 = 1, e2 < 1 in pillow shapes, e1 or e2 larger than 2 in pinched shapes, e1

or e2 equal 2 in flat-bevelled shapes.
Our aim was to identify a shape that the frequency distribution of distances of points inside

the shape to the closest capillary (estimated distribution) best matches a given frequency
distribution of maximum extravascular distances (target distribution). Toward this aim, the
capillary was first approximated by a cylinder whose diameter was considered equal to the
minimum extravascular distance observed. The length of the vessel was arbitrary chosen
(100µm). We subsequently set Cx, Cy, Cz as the coordinates of the centre of the vessel, b
as the maximum extravascular distance observed, and c as length of the capillary, while
the set of parameters a, e1, and e2 as the unknowns to be defined through optimization.
The target of optimization was to minimize the mean square error between estimated and
target distributions. The parameters were initialized so as to produce a cylinder (i.e. e1 = 1,
e2 = 0.2) whose length is equal to that of the vessel (c = 100µm) and whose diameter (i.e.
a,b) is equal to that of the maximum extravascular distance. In each step of the minimization
procedure, a new set of parameters and, therefore, a new shape was defined by varying
the unknown parameters in predefined ranges. In particular, parameter a was allowed to
vary in the range between the minimum and maximum extravascular distance of the target
distribution. Parameters e1, and e2 were allowed to vary between [0,3] and, therefore, cover
all ranges of possible shapes. The minimization procedure stopped after a minimum was
achieved in the root mean square error. It should be noted that a simplified version of
the target distribution (10 bins) was used. Optimization is based on fmincon MATLAB
(Mathworks) solver and sequential quadratic programming.

4.2.5 Classification of microvascular patterns

The quantitative information about the cardiac microvasculature and SMA+ cells obtained by
our pipeline was evaluated with the task of predicting the condition of previously unseen tissue
based on the characteristics of the microvascular bed. Towards this aim, we incorporated the
parameters at structure level, at segment level as well SMA+ related metrics (metrics 1−28
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of Table 4.1) into a classification scheme. Multi-class classification was performed to predict
the time that elapsed since the onset of MI for infarcted tissue and remote tissue (“Infarcted
over time", and “Remote over time" respectively in Table 4.2). In all other cases, binary
classifications were performed. 9-fold cross-validation repeated 10 times was used. k-fold
validation is a common model approach in machine learning that helps to avoid over-fitting
the training set and it is usually repeated a multitude of times to ensure different separation
of folds. The idea behind k-fold cross-validation is to divide the sample in k equal folds of
which k-1 are used for training and one is kept for testing.

In this work, three different classifiers were employed [233]. K-nearest neighbours
classifier (Knn) assigns an unseen object to a class, based on the labels of the k-nearest
training objects that are closest (or more similar) to the object under investigation. Here, we
used 1-Knn classifier, e.g. the tissue is classified according to the label of the closest training
tissue. The distance metric used was euclidean distance.

Support vector machines (SVMs) are inherently binary classifiers. Standard SVMs define
a hyperplane function that guaranties optimum separation, e.g. largest margin, between
the (training) data of the two classes. A new object is subsequently assigned to one or the
other class based on whether the predefined hyperplane function is positive or negative for
that particular object. The idea of reducing the multiclass classification problem to binary
classification problems has been introduced and different approaches have been developed
in order to perform multi-class classification with SVMs. In this work, we adapted the one-
versus-one strategy according to which SVMs are built for all possible pairwise comparisons.
Each class is, therefore, compared to each other separately.

Adaboost is based on a cascade of weak classifiers (learners) used to create a strong
classifier which has higher accuracy that single classifiers. During each iteration of the
training procedure, a learner is added so as to weight higher misclassified examples of
the previous iteration and, therefore, to redirect the focus of subsequent weak learners in
those examples. The strong classifier produced by a weighted sum of the weak learners is
responsible for the assignment of labels to unseen objects. In this paper, we used Knn weak
classifiers.

4.2.6 Statistical analysis

Statistical significance of differences in medians for pairwise comparisons was assessed by
non-parametric, two-sided Wilcoxon rank sum tests. P-values were corrected for multiple
testing with the Benjamini-Hochberg false discovery rate procedure which was applied to
the fifteen pairwise tests performed per each quantified parameter. The number of samples
per tissue category remained the same throughout the chapter and it equals to 18. Two
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sample Kolmogorov-Smirnov tests were performed to evaluate the statistical significance of
differences in distributions.

4.2.7 3D Visualization

Visualization of 3D volumes (reconstructions, skeletons, distance maps) was performed with
open-source softwares Paraview (http://www.paraview.org/) and ITK-SNAP (http://www.
itksnap.org/).

4.2.8 Code availability

The code for all modules of the image processing pipeline presented in this work is open-
source (https://bitbucket.org/xenia_gk/microvasculatureanalysis_gkontra_et_al_2018), along
with the supporting documentation to run the modules separately or the complete pipeline
at once. The statistical analysis and the creation of the comparative plots per metric was
performed with an additional module of our pipeline, which is also available. Code/libraries
from previous works necessary to run the pipeline are also provided and the creators have
been credited accordingly. The code was written in MATLAB (Mathworks).

4.3 Results

4.3.1 Myocardial infarction decreases 3D complexity, integrity, and
connectivity of the coronary microvasculature while it leads to
altered capacity and heterogeneity of blood flow

The fractal parameters demonstrate significant differences in terms of multi-scale characteris-
tics of the microvascular networks in the infarcted areas, over time (Fig. 4.4a). In particular,
when comparing infarcted areas at 1, 3, and 7 days, we noted that the morphological com-
plexity (fractal dimension) and capacity of blood flow (succolarity) of the microvasculature
decreased, while the heterogeneity in the distribution of the non-vascularized areas (lacunar-
ity), increased. The reverse relationship between morphological complexity and heterogeneity
has been observed in earlier studies [84, 79]. Moreover, the distribution of non-vascularized
areas affects blood flow. Thus, higher heterogeneity, as observed here, is expected to result in
higher heterogeneity in blood flow within the tissue, and could therefore denote the existence
of regions with lower perfusion. Furthermore, complexity and heterogeneity in the infarcted
areas at 1 and 7 days are statistically different than in the corresponding remote areas (1
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Fig. 4.4 Myocardial infarction decreases 3D complexity, integrity, and connectivity of the
coronary microvasculature while it alters heterogeneity in the distribution of non-vascularized
areas and capacity for blood flow. (a) 3D fractal-based parameters; Fractal Dimension, Lacu-
narity, and Succolarity. (b) Parameters based on the Minkowski functionals calculated for
complete microvasculature (capillaries, arterioles, venules); Vascular Density, Surface Area
Density, Breadth Density, Euler-Poincaré Characteristic Density. (c) Parameters based on the
Minkowski functionals calculated for capillaries exclusively; Capillary Volume Density, Cap-
illary Surface Area Density. In all figures of the manuscript, the bars show mean values, while
error bars represent standard deviation. Furthermore, *, ** and *** represent p-value< 0.05,
0.01 and 0.001 respectively. The p-values were calculated by means of Wilcoxon rank-sum
tests and corrected with the Benjamini-Hochberg procedure for multiple testing. The number
of samples compared is 18 per tissue condition.

and 7 days respectively). In terms of all multi-scale characteristics, the differences of the
microvasculature from infarcted areas at 7 days post MI are significant compared with that at
basal conditions. It is worth also noting that at infarcted areas 1 day post MI the tendencies
compared with basal conditions are opposite to 7 days: higher morphological complexity
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Fig. 4.5 Microvascular angioadaptation occurs in response to MI. (a) Example graph-based
representation of a microvascular structure. Microvascular angioadaptation occurs in re-
sponse to MI. (a) Example graph-based representation of a microvascular structure. Each
microvessel, i.e. segment from branching node to branching/ending node, is considered
as a tube of constant radius. (b) Analysis of the characteristics of the microvessels in the
pig infarcted heart in terms of vascular segment radius, vascular segment length, vascular
segment surface, and vascular segment volume. (c) Analysis of vascular length density,
vascular surface density, and vascular volume density.

and blood flow instead of lower, and lower lacunarity instead of higher. This could be linked
to the first response of the system to MI and the poorer contractility of cardiomyocytes at day
1. Moreover, in contrast with the changes observed in microvascular networks from infarcted
areas, no significant differences are found in the remote areas over time and compared with
the basal case.

The reduction in the morphological complexity of the microvasculature in infarcted
areas can be further explained by the progressive loss of microvascular volume that occurs
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Table 4.1 List of the parameters (mean ± standard deviation) that are extracted automatically
for the characterization of the cardiac microvasculature, its interactions with SMA+ cells and
remodelling due to MI. I1MI, I3MI, and I7MI, refer to infarcted areas at 1 day, 3 and 7 days
post MI respectively. Similarly, R1MI, R3MI, and R7MI refer to the corresponding remote
areas.

Basal I1MI I3MI I7MI R1MI R3MI R7MI
Fractal-Based Metrics
1. Fractal Dimension 2.22±0.03 2.26±0.05 2.22±0.04 2.15±0.04 2.24±0.04 2.23±0.03 2.22±0.05
2. Lacunarity (×10−2) 76.92±5.15 72.75±3.85 78.08±5.52 83.98±2.96 76.33±4.58 73.64±2.73 76.1±4.03
3. Succolarity (×10−2) 0.33±0.14 0.49±0.23 0.28±0.13 0.19±0.11 0.32±0.16 0.3±0.16 0.3±0.2
Minkowski-Based Metrics
4. Vascular Volume Density (%) 6.75±0.85 8.9±2.82 6.46±1.06 5.04±0.92 7.21±1.34 6.14±1.29 6.64±1.83
5. Surface Area Density (×10−3) (µm2/µm3) 48.36±7.05 55.06±12.86 46.45±6.95 27.15±4.05 48.2±6.25 47.1±6.62 45.04±11.28
6. Breadth Density (×10−3) (µm/µm3) 1.47±0.29 1.43±0.27 1.42±0.28 0.64±0.11 1.37±0.19 1.52±0.23 1.27±0.32
7. Euler-Poincaré Characteristic Density (×10−5)(1/µm3) -4.32±1.78 -4.84±3.1 -3.36±1.38 -0.05±1.49 -3.5±1.62 -4.06±1.69 -3.56±2.64
8. Capillary Volume Density (%) 6.07±0.9 8.04±2.63 5.7±1 4.34±0.85 6.55±1.17 5.43±1.22 5.7±1.97
9. Capillary Surface Area Density (×10−3) (µm2/µm3) 46.94±7.15 53.47±12.69 44.5±7.15 25.34±4 46.62±6.19 45.11±6.63 42.5±11.91
Graph-Based Metrics
10. Vascular length density (×10−3)(µm/µm3) 3.51±0.85 4.13±1.43 3.51±0.82 1.65±0.3 3.37±0.58 3.54±0.74 3.18±1.21
11. Vascular surface density (×10−3)(µm2/µm3) 38.87±6.87 51.79±18.71 38.05±7.24 24.37±4.63 40.35±7.75 36.94±8.29 36.94±13.86
12. Vascular volume density (×10−2)(µm3/µm3) 3.94±0.66 6.16±2.75 3.92±0.93 3.33±0.87 4.48±1.3 3.59±1.11 3.94±1.68
13. Vascular segment radius (µm) 2.65±0.31 2.91±0.33 2.62±0.3 3.25±0.29 2.79±0.33 2.48±0.26 2.74±0.26
14. Vascular segment length (µm) 18.85±2.64 16.09±2.83 17.65±2.22 15.74±2.77 18.15±2.96 19.89±3.21 17.59±2.77
15. Vascular segment surface (µm2) 215.3±49.14 200.75±35.27 193.63±27.74 231.67±35.76 218.53±42.92 207.73±33.87 206.2±34.89
16. Vascular segment volume (µm3) 224.15±71.59 234.5±54.3 200.87±46.54 313.63±59 241.77±63.37 200.19±42.08 220.22±50.23
17. Tortuosity (µm/µm) 1.39±0.01 1.38±0.02 1.4±0.03 1.38±0.04 1.38±0.02 1.39±0.02 1.39±0.03
18. Vascular segments (×105)a 1.91±0.6 2.77±1.48 2.02±0.57 1.09±0.3 1.91±0.49 1.86±0.68 1.9±0.97
19. Vessels of diameter <= 6.9 (µm) (%) 94.56±2.94 90.14±5.45 93.02±4.1 83.92±6.01 92.14±5.02 95.56±2.93 92.94±3.03
20. Vessels of diameter between 6.9 and 8.2 (µm) (%) 3.01±1.46 4.88±2.02 3.54±1.83 8.46±2.31 3.92±2.06 2.21±1.38 3.9±1.52
21. Vessels of diameter > 8.2 (µm) (%) 2.42±1.57 4.98±3.56 3.44±2.62 7.62±4.21 3.94±3.07 2.23±1.68 3.16±1.74
22. Branching nodes (×104)a 10.14±3.43 14.79±8.12 10.74±3.33 5.48±1.58 9.94±2.71 9.79±3.84 9.85±5.31
23. Blind-ends/sprouts (×104)a 5.08±1.42 7.47±3.93 5.37±1.3 3.44±0.89 5.64±1.47 4.95±1.75 5.49±2.38
24. Branching nodes b 30.02±4.03 35.1±6.26 31.29±4.76 32.91±5.61 30.54±5.22 28.58±4.57 31.11±5.37
25. Blind-ends/sprouts b 18.22±5.81 19.46±4.52 16.52±3.41 20.47±4.18 18.99±4.59 16.92±4.32 21.04±6.56
SMA+ related metrics
26. Vessels covered with SMA (%) 80.05±11.57 67.32±19.45 69.34±7.81 54.03±9.82 73.82±9.71 74.5±15.59 78.01±14.33
27. SMA+ layer thickness (µm) 2.43±1.15 2.32±0.77 4.13±2.4 10.23±1.76 2.7±0.69 2.75±0.8 3.31±1.37
28. Damage Index 0.01±0.01 0.01±0.01 0.02±0.02 0.14±0.06 0.01±0.01 0.02±0.01 0.02±0.02
29. Myofibroblasts (×104)a 1.04±0.51 0.9±0.56 0.96±0.42 2.12±0.77 0.64±0.32 0.77±0.34 0.67±0.44
30. SMA+ perivascular cellsb 31.71±11.34 24.58±12.6 24.83±8.48 45.72±17.49 30.95±6.76 22.68±7.48 26.19±10.53
Efficiency in oxygen diffusion
31. Maximal Extravascular Distance (µm) 27.35±6.76 28.29±4.52 33.72±6.8 46.22±8.26 30.37±5.13 28.32±3.71 29.69±4.42
32. Median Extravascular Distance (µm) 14.57±3.56 15.07±2.38 17.92±3.58 24.51±4.35 16.16±2.7 15.08±1.95 15.8±2.33
33. Capillary Density c 1236.16±714.07 1226.84±567.85 1101.16±525.2 394.24±211.98 1091.95±452.94 1053.55±781.83 1059.93±514.7
34. Intercapillary Distance (µm) 16.91±2.08 16.93±1.84 17.44±2.46 25.54±4.44 17.68±1.62 17.17±1.85 19.51±3.64
35. Diffusion Distance (µm) 9.77±1.43 9.1±1.38 9.72±1.17 14.07±1.38 9.83±0.83 9.63±1 10.55±2.17
Additional cell-related metrics
36. Endothelial cells (×105)d 22.85±6.83 19.19±5.19 19.36±3.82 18.31±5.97 19.18±4.5 19.17±3.74 15.12±2.76
37. Endothelial cells b 44.14±8.53 40.93±8.16 35.97±5.78 55.47±16.91 40.44±6.09 33.1±4.75 33.13±7.98

aNumber per mm3 of tissue
bNumber per mm vascular length
cNumber per mm2 of tissue
dNumber per mm3 vascular volume

in the infarcted areas as revealed by the decreased vascular volume density (Fig. 4.4b)
observed in those areas. Furthermore, the microvasculature appears reduced in the infarcted
areas, with less breadth and smaller surface area for the exchange of oxygen and nutrients,
while it is progressively converted from a strongly connected network to a less connected
one (progressively increasing Euler-Poincaré characteristic). The reduced connectivity and
volume are related to the lower capacity of blood flow and probably to its heterogeneity
described earlier. An unexpected observation is the significant decrease of the microvascular
volume density at remote areas at 3 days post MI compared with remote 7 day post MI and
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basal. Further exploration of the lost vascular volume (capillary volume or arteriole/venule
volume) led to the observation that the loss is associated with the loss of capillary volume
(Fig. 4.4c). Lastly, as with the fractal parameters, in terms of all metrics the infarcted area 7
days post MI presents significant differences with basal areas, as well as with corresponding
remote areas.

4.3.2 Myocardial infarction promotes microvascular angioadaptation

The most profound changes are observed at infarcted areas 7 days after MI. By examining
Fig. 4.5b it is obvious that the microvascular segments of those regions present larger radius
than those of tissues from infarcted areas at earlier time-points, remote areas at 7 days post
MI and at basal conditions, despite the reduction of the overall microvasculature described
in the previous subsection. This results in segments with significantly larger volume than
segments from the other areas, while their surface area is significantly larger than that of
segments from infarcted areas at 3 days post MI and their length is shorter than segments
from basal conditions. In contrast, the microvessels in both the infarcted and remote areas
3 days post MI become significantly smaller in terms of radius compared to those of the
infarcted areas from earlier and later time-points under investigation, indicating a possible
vasoconstriction at this time-point. The radii of microvessels from infarcted and remote
tissue 1 day following MI, as well as from remote areas 7 days post MI, seem to remain
unaffected. No significant difference among any tissue categories is observed in terms of
tortuosity and the relative plot was, therefore, omitted. However, the corresponding mean
and standard deviations are provided in Table 4.1.

Length, surface and volume density (Fig. 4.5c) calculated by means of the graph-based
representation of the microvasculature confirm the microvascular changes revealed by the
corresponding Minkowski-based metrics (breadth, surface and volume density). This fact
demonstrates that the latter are sufficient in describing those characteristics of microvascular
networks and it is therefore feasible to avoid exhaustive extraction of centerlines when
characteristics of the individual microvessels are out of interest.

Subsequently, segments were divided into three classes based on the morphological data
of [104] in order to study the size of microvessels at each tissue condition. The maximum
diameters found in the left ventricle of the pig heart according to the published data are 7.3
µm for capillaries fed directly by arterioles (Coa), 8.2 µm for capillaries drained directly by
venules (Cov), and 6.9 µm for cross-connecting capillaries (Ccc) and capillaries connected to
Coa and Cov types (Coo). Thus, the three classes created are (i) segments with diameter smaller
or equal to 6.9 µm corresponding to Ccc and Coo capillaries, (ii) segments with diameter
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Fig. 4.6 Changes in the number and percentages of microvessels in the infarcted pig heart
according to their radius and to the physiological condition of the tissue. On the left (a), an
example microvascular volume color-coded according to the size of its segments. On the
right, (b) analysis of the number of microvascular segments per mm3 of tissue for the different
tissue conditions. Analysis of the percentage of vascular segments with diameter smaller
than 6.9µm (c) , with diameter between 6.9 and 8.2µm (d) and with diameter larger than
8.2µm (e). I1, I3, I7, R1, R3, R7 stand for infarcted areas and remote areas at 1, 3, 7 days
post MI respectively. Note that statistical hypothesis testing in (b) refers to the comparison
of the overall number of vascular segments i.e. the sum of the three categories.

between 6.9 and 8.2 µm corresponding to Coa and Cov capillaries, and (iii) segments with
diameter larger than 8.2 µm representing arterioles or venules.

A gradual decrease in the overall number of microvascular segments per mm3 of tissue is
observed at the infarcted areas (Fig. 4.5d). The decrease becomes profound and statistically
significant at 7 days post MI compared with all other conditions. The reduced number of
segments explains the reduced morphological complexity, vascular volume density, surface
area and breadth density of this area expressed by the fractal dimension and the Minkowski
metrics (Fig. 4.4). Furthermore, a higher number of vascular segments can be also observed
in the infarcted area 1 day post MI compared to the basal tissue. This difference, although not
significant, matches the higher density and morphological complexity on this tissue category
described in the previous subsection (Fig. 4.4).

Looking further into the percentage of vessels in each radius range (Fig. 4.6) the
percentage of microvessels with diameter larger than 8.2 µm, i.e. arterioles/venules, and
“medium"-sized capillaries of the categories Coa and Cov (6.9 and 8.2 µm) are increased in
infarcted areas 7 days post MI. On the contrary, the smallest vessels (Ccc and Coo) are reduced
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compared to the healthy tissue, infarcted tissue at earlier stages after MI as well as with the
corresponding remote area. This fact demonstrates a regression of smaller microvessels and
probably dilation or even arterialization of the remaining vessels in infarcted tissues from
7 days following MI. The smallest microvessels from infarcted tissue 1 day post MI are
significantly decreased as well, while the percentage of capillaries Coa and Cov (6.9 and 8.2
µm), is increased when comparing to microvessels belonging to basal tissue, which implies
a possible vasodilation effect. Interestingly, at remote areas 3 days post MI the number of
smallest capillaries is increased compared with the remote areas at other time-points, and in
contrast, the percentage of “medium"-sized vessels is reduced.

Information from the α-SMA channel and its relation to the microvasculature (Fig.
4.8a) is quantified through an additional module of the analysis pipeline in order to study
perivascular cells stained by α-SMA, i.e. pericytes and smooth muscle cells. We are
particularly interested in the coating of microvessels by layer(s) of α-SMA expressing cells
as this could be an indicator of vessel maturation [49, 73] and denote the end of a plasticity
window for intervention [181]. A significantly lower percentage of vessels coated with
α-SMA+ cells is observed in infarcted areas 3 and 7 post MI compared to the basal tissue as
well as to the corresponding remote area for the second case (Fig. 4.8b). However, the layers
of α-SMA+ perivascular cells on those days, i.e. 3 and 7 days post MI, are significantly
thicker than in the basal case as shown in the same panel. Furthermore, the thick layer of
α-SMA+ at the infarcted area 7 days post MI consists of significantly more cells than in the
infarcted areas of previous time-points, the basal and remote area 7 days post MI as indicated
by the increased number of α-SMA+ perivascular cells per mm of vascular length (Fig. 4.8c).
Thus, we have a proliferation of the perivascular α-SMA+, and not a dilation of the cells.

We also noticed, mainly in infarcted areas, α-SMA+ regions that were not associated with
microvessels, i.e. they were not localized in the perivascular layers of microvessels. Given
that myofibroblasts are non-vascular cells that produce extracellular matrix indispensable
for healing after MI and have contractile properties related to their expression of α-SMA
[218], we considered those α-SMA+ regions corresponding to myofibroblasts. We further
complemented their characterization by their concomitant expression of other markers, such
as platelet-derived growth factor receptor beta (PDGFRB)[63], vimentin and collagen I[81]
(Fig. 4.7). We then decided to extract quantitative information regarding the myofibroblasts
based on the α-SMA+ staining. For this purpose, a damage index was defined for the tissue
as an estimator of the presence of myofibroblasts. Precisely, the index is given by the ratio
of the volume of myofibroblasts over the volume of all α-SMA+ regions. Furthermore, the
number of the myofibroblasts is quantified as the number of simultaneously stained nuclei by
Hoechst and α-SMA.
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Fig. 4.7 SMA+ cells co-express other myofibroblast markers. (a) Tissue simultaneously labelled using
anti-CD31, anti-SMA and anti-PDGFRB, a marker that is expressed in fibroblasts, myofibroblasts, perivascular
smooth muscle cells and that increases during myocardial fibrosis. (b) Tissue simultaneously labelled with
anti-CD31, anti-SMA and anti-vimentin, or (c) anti-collagen I. Both markers are expressed in fibroblasts and
myofibroblasts during cardiac remodelling. In all cases, the first three columns provide the maximum intensity
projections of the original channels (upper row of the panels) and of the resulting segmentations of the channels
(lower rows of the panels). In the case of SMA+ cell segmentation, yellow represents areas automatically
recognized as SMA+ perivascular regions, while green the SMA+ myofibroblast region. In the last column, 3D
reconstructions showing non-perivascular SMA+ myofibroblast areas that are positive or negative for the other
marker in grey or green respectively. Perivascular SMA+ area is highlighted in yellow with double-positive
regions for other markers in blue.
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Fig. 4.8 Changes in SMA+ perivascular cells and myofibroblasts in the aftermath of MI. (a)
Example of 3D reconstructions of the microvasculature (red) merged with the segmentation
of the SMA+ cells channel (grey) in a basal and an infarcted 7 days post MI case. (b) Changes
in SMA+ related metrics, i.e. the percentage of vessels with a SMA+ coat along with the
corresponding thickness of the coat. (c) Analysis of the number of SMA+ cells of which the
SMA+ coat covering the microvessels consists. (d) Analysis of the cardiac tissue by means
of indicators of tissue fibrosis, i.e. the Damage Index (percentage of SMA+ volume that are
not associated with vessels), and number of myofibroblasts per mm3 of tissue.

Damage index (Fig. 4.8d) demonstrates a non-significant increase in the presence of
myofibroblasts in infarcted tissues at the first time-points after MI (1 and 3 days) followed
by a significant increase at the later time point (7 days post MI). This observation is in
accordance with findings in the healing human tissue [231], and rat tissue after MI [226]. A
lack of increase in the damage index in the remote areas compared to the basal case denotes
no increase of myofibroblasts, and thus, no inappropriate deposition of extracellular matrix
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Table 4.2 Accuracy (%) in classifying the distinct vascular patterns using different classifiers:
(1) Knn, (2) SVM, (3) Adaboost, and 9-fold cross-validation, repeated 10 times. Metrics of
1−28 of Table 4.1 are used as features for performing the classification.

Classifier 1 2 3 Classifier 1 2 3
Infarcted - Basal 77 81 74 Remote - Basal 68 72 75
I1MI - Basal 82 75 59 R1MI - Basal 61 70 61
I3MI - Basal 66 77 47 R3MI - Basal 65 63 57
I7MI - Basal 100 100 94 R7MI - Basal 63 59 70
Infarcted over time 75 89 72 Remote over time 48 50 40
I1MI - I3MI 71 84 64 R1MI - R3MI 61 66 57
I1MI - I7MI 100 100 97 R1MI - R7MI 53 60 56
I7MI - I3MI 93 97 93 R7MI - R3MI 56 64 56
Infarcted - Remote 67 71 56
I1MI - R1MI 53 68 69
I3MI - R3MI 62 60 42
I7MI - R7MI 97 100 88

in remote areas [218]. As far as the absolute number of myofibroblasts per mm3 of tissue is
concerned, the trends presented in infarcted areas are similar with that of the damage index.
However, additionally a decrease of myofibroblasts in remote areas at 1 and 7 days post MI
compared with the basal case can be observed.

4.3.3 3D microvascular characteristics predict the healthy or diseased
status of the cardiac tissue

The proposed approach achieves high accuracy in the range 74%−81% in differentiating
between infarcted and basal tissue, as well as in recognizing the day after MI that the infarcted
tissue belongs to (72%−89%). The accuracy in classification drops to levels of 68%−75%
and 56%−71% in differentiating between remote and basal tissue, and between remote and
infarcted tissue respectively. This is expected taking into account the lack of significant
differences in the majority of metrics between those categories. It is worth noting that, for
the same reason, the worst levels of accuracy in classification (40%−50%) are achieved in
terms of recognizing which day following MI the remote tissue belongs to.
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Fig. 4.9 Capillary diffusion distances support altered oxygen diffusion in the infarcted
cardiac tissue. (a) Example of 3D extravascular distance maps for a basal and a 7 days
post MI case. (b) Histograms of the extravascular diffusion distances for all volumes of the
dataset colour-coded according to the tissue condition. (c) Kolmogorov-Smirnov statistical
tests for identifying significant differences in the mean relative frequencies of diffusion
distances between the different tissue categories. (d) Analysis of the maximum and median
extravascular diffusion distances at the different tissue conditions based on all volumes of
the dataset. (e) Analysis of metrics traditionally related to oxygen-diffusion distances, i.e.
capillary density, and inter-capillary distance calculated from 2D slices of the 3D volume,
and of the diffusion distance calculated by using the length density, instead of the detailed
3D maps of panel.
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4.3.4 Structural changes of the microvasculature support altered
oxygen diffusion in the post-infarcted cardiac tissue

The diffusion of oxygen from the microvascular network to the tissue critically depends on
the density and the arrangement of the microvascular bed [174]. Simple metrics, such as
capillary density, intercapillary distance, diffusion distance as derived from vascular length
density, and 3D extravascular distances (EDs), have been proposed in the literature as indices
of oxygen diffusion, with the latter having been proven more efficient [35].

In this work, 3D maps of EDs were calculated by getting the distance of every point
to the closest vessel (Fig. 4.9a) and they were used to calculate the relative frequency
distributions (Fig. 4.9b). From the comparative plot, the most striking difference that we
can observe among the different tissue conditions is a long-tail in the distribution of EDs at
the infarcted areas 7 days following MI. This tail implies longer diffusion distances, which
are associated with longer diffusion times, and thus worst oxygenation [174]. Two sample
Kolmogorov-Smirnov tests were used to compare the mean relative frequencies of each
tissue category (Fig. 4.9c). The outcome verified the statistical significance of the difference
in the shape of the distributions. The median and maximal EDs, calculated as the 50% and
95% quartile respectively [35], also confirm significantly increased diffusion distances in
the infarcted areas 7 days post MI. However, significant differences in both metrics in the
infarcted areas 3 days following MI, compared to the basal and corresponding remote tissue,
highlight that the increase in the EDs had already started in the infarcted areas from day 3
following MI. Moreover, the EDs at remote areas at 1 and 7 days after MI are also affected
and are significantly different from that of the basal tissue.

EDs calculated directly from the complete 3D volumes are expected to be more accurate
than capillary density and intercapillary distance which are calculated in 2D, or the diffusion
distance which is derived from the vascular length density. However, for the sake of complete-
ness and for facilitating comparison with past and future works, these metrics are provided in
Fig. 4.9d. According to the plots, the capillary density is affected and reduced in infarction,
with the reduction becoming significant at 7 days post MI in infarcted area. On the other hand,
the intercapillary distance which is associated with an inverse relationship with capillary
density, is increased in the infarcted areas at 7 days following MI. The diffusion distance
calculated directly from the length density follows the same trend as the EDs calculated from
the 3D distance maps, although an underestimation of the distances can be observed.

Lastly, we contrasted the mean relative frequency distributions of 3D EDs for each
tissue category with the ones that would be provided by equivalent Krogh cylinder models
[117]. The Krogh cylinder model assumes the supply of oxygen by every capillary to a
cylindrical region whose radius equals half the intercapillary distance. As a result, the
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relative frequency distributions in the Krogh cylinder model are monotonically increasing
to the maximum distance to the closest vessel (Fig. 4.10) and are far from describing the
distributions observed in the cardiac tissue studied in this work. In an effort to identify a
geometric pattern that would describe the area of capillary diffusion so that it closely matches
the relative frequency distributions observed in our volumes, we used a super-ellipsoid model.
Super-ellipsoids allow description of a variety of shapes, ranging from cylinders (such as
in the Krogh model) to more complex ones, by varying only a small number of parameters
(see Section 4.2.4). Thus, we formulated a question of finding a set of parameters that would
define super-ellipsoids that match simplified versions of our distributions (10 bins) as an
error minimization problem between the observed relative frequency distributions and the
ones corresponding to different super-ellipsoids (Fig. 4.11). Root mean squared error in
the range of 0.0027−0.0073 between the relative frequency distributions of extravascular
distances in the super-ellipsoid models and the target ones demonstrate the superiority of
the super-ellipsoid model over the Krogh cylinder model to represent the region of capillary
diffusion in the cardiac tissue studied here.

4.3.5 Changes in the microvasculature and in the diffusion of oxygen
persist and intensify at later time-points post MI

We next analysed, by means of our image analysis pipeline, the microvascular characteristics
of porcine tissues from infarcted and remote areas 45 days post MI (Fig. 4.12) to examine
whether the observed microvascular alterations during the first week post MI persisted
at later time-points and whether additional changes occurred. The results, which have
been summarized in Table 4.3 point to the persistent nature of the extensive microvascular
remodelling that takes place 7 days post MI in infarcted areas together with a deterioration
in certain metrics at 45 days post MI. Changes, which had been slightly observed at remote
areas 7 days post MI, also intensified and became evident at remote areas 45 days post MI.

Both infarcted and remote areas at 45 days post MI present the same increasing or de-
creasing trends in those parameters which describe the microvasculature (fractal-, minkowski-
and graph-based metrics) as the corresponding tissue 7 days post MI compared to earlier
time-points post MI and basal conditions. There are several metrics, however, where in-
creases or decreases are so prominent that statistically significant differences are observed
between the tissues examined 7 and 45 days post MI. More precisely, infarcted areas at
45 days post MI have less vascular surface, breadth and length density, while they present
a higher heterogeneity in distribution of non-vascularized areas compared to 7 days post
MI. Concomitantly, there were fewer smaller and more medium and larger microvessels
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Fig. 4.10 Equivalent Krogh cylinders and histograms of diffusion distances per tissue cate-
gory; basal, infarcted and remote 1, 3, 7 days following MI. (a) Equivalent Krogh cylinders
pseudo-coloured according to the distance of each point to the central capillary (represented
with grey in all sub-figures). The radius of the central capillary for each tissue condition
was set equal to the mean vascular segment radius calculated for the particular condition.
Similarly, the length of the central capillary, and thus, of the corresponding Krogh cylinder is
set equal to the mean vascular segment length of the tissue condition. Finally, the radius of the
Krogh cylinder is set equal to the half the intercapillary distance which was measured from
capillary centre to capillary centre using 2D slices of the volumes of each tissue condition.
(b) Histograms of relative frequencies of distances of the tissue points to the central capillary
calculated for the equivalent Krogh cylinders of panel a.
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Fig. 4.11 3D super-ellipsoids are adequate geometrical models to represent the capillary diffusion area.
(a) 3D super-ellipsoids estimated to best fit the mean distributions of extravascular distances extracted from
histograms of 10 bins for the different tissue conditions (one per row; basal, infarcted and remote 1, 3, 7
days following MI) from x-y (first column), x-z (second column) and y-z views (third column). The tissue
points inside the 3D shapes are pseudo-coloured according to the distance to the central capillary (represented
with grey in all sub-figures). The radius of the central capillary for each tissue condition was set equal to the
minimum extravascular distance found for the particular case. (b) Accuracy of the fitting between the mean
distributions of extravascular distances for the different tissue conditions (target represented with red) and the
distributions produced using the estimated 3D super-ellipsoids of panel a to best fit them (represented with
blue). RMSE stands for the root mean square error, while a,b,c,e1,e2 are the estimated parameters that define
the 3D super-ellipsoids. In particular, a,b,c, are the scale factors for axis x, y and z respectively, and e1, e2

control the shape of the super-ellipsoid.
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XZ

25 m

XZ XZ XZ

Fig. 4.12 Representative 3D reconstructions of the cardiac microvasculature from tissues at
45 days post MI. The first two volumes correspond to tissues from infarcted areas, while the
third and fourth volumes to tissues from remote ones.

with increased intercapillary and diffusion distances at 45 days. Altogether this remodelling
indicates worse vascular perfusion and oxygen supply in infarcted areas at late time-points.
In the remote areas at 45 days similar changes were observed for the microvasculature which
was characterized by a further loss of its morphological complexity, breadth and connectivity.
These changes are accompanied again by enlarged vessels, reduction in smaller and increase
in larger microvessels along with higher heterogeneity in the distribution of non-vascular
areas as well as a trend to poorer diffusion. Moreover, the SMA+ perivascular layer is thinner,
while the number of myofibroblasts decreases in both remote and infarcted areas compared to
day 7 post MI. This suggests deceleration or termination of extracellular cardiac remodelling
at this late stage.

4.4 Discussion

The link between the anatomy of microcirculation and CVDs’ onset and progression had led
to considerable efforts in unravelling the fine perturbations of the microvascular networks.
This is particularly true in the case of MI were an amount of important works had been
performed prior to our work [6, 181, 49, 228, 21, 30, 116, 92, 204]. However, there is a
high variability among the quantification methods used in those studies, with each study
reporting a different set of parameters to characterize the anatomy of microcirculation and
some of them being based on the 2D analysis. Works more closely related to ours [204] do
not provide the wealth of data which are indispensable in describing the complications of MI,
but are rather based on only a few traditional metrics.

This work was designed to deal with these shortcomings by allowing the in-depth study of
all major characteristics of the microvasculature in 3D through a single pipeline. Our pipeline
consists of modules that permit translation of image information to quantitative biological
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Table 4.3 Mean ± standard deviation of all parameters for tissue from infarcted and remote
areas at 45 days following MI and their change (increase or decrease) with respect to infarcted
and remote areas at earlier time-points after MI and under basal conditions. I1MI, I3MI, I7MI,
and I45MI refer to infarcted areas at 1 day, 3, 7 and 45 days post MI respectively. Similarly,
R1MI, R3MI, R7MI and R45MI refer to the corresponding remote areas. Up-arrows and
down-arrows indicate increase and decrease respectively of the parameter value at 45 days
post MI in infarcted (columns 2 to 5) or remote areas (columns 7 to 10) compared with
the tissue category under investigation. Red (for increase) and blue (for decrease) colours
are used to denote that the difference is statistically significant. *, ** and *** represent
p-value< 0.05, 0.01 and 0.001 respectively. The p-values were calculated by means of
Wilcoxon rank-sum tests and corrected with the Benjamini-Hochberg procedure for multiple
testing. The number of samples compared is 18 per tissue condition.

I45MI I45MI I45MI I45MI R45MI R45MI R45MI R45MI
I45MI vs vs vs vs R45MI vs vs vs vs

I1MI I3MI I7MI Basal R1MI R3MI R7MI Basal
Fractal-Based Metrics
Fractal Dimension 2.12±0.06 ↓∗∗∗ ↓∗∗∗ ↓ ↓∗∗∗ 2.17±0.04 ↓∗∗∗ ↓∗∗∗ ↓∗∗ ↓∗∗
Lacunarity (×10−2) 89.17±4.05 ↑∗∗∗ ↑∗∗∗ ↑∗∗∗ ↑∗∗∗ 85.17±5.52 ↑∗∗∗ ↑∗∗∗ ↑∗∗∗ ↑∗∗∗
Succolarity (×10−2) 0.14±0.08 ↓∗∗∗ ↓∗∗ ↓ ↓∗∗∗ 0.24±0.16 ↓ ↓ ↓ ↓
Minkowski-Based Metrics
Vascular Volume Density (%) 4.88±1.24 ↓∗∗∗ ↓∗∗∗ ↓ ↓∗∗∗ 7.03±1.11 ↓ ↑∗ ↑ ↑
Surface Area Density (×10−3) (µm2/µm3) 21.48±5.33 ↓∗∗∗ ↓∗∗∗ ↓∗∗ ↓∗∗∗ 39.94±5.92 ↓∗∗ ↓∗∗ ↓ ↓∗∗
Breadth Density (×10−3) (µm/µm3) 0.5±0.13 ↓∗∗∗ ↓∗∗∗ ↓∗∗ ↓∗∗∗ 1.05±0.15 ↓∗∗∗ ↓∗∗∗ ↓∗ ↓∗∗∗
Euler Characteristic Density (×10−5) (1/µm3) 0.97±0.99 ↑∗∗∗ ↑∗∗∗ ↑ ↑∗∗∗ -1.98±0.91 ↑∗∗ ↑∗∗ ↑∗ ↑∗∗∗
Capillary Volume Density (%) 4.45±1.22 ↓∗∗∗ ↓∗∗ ↑ ↓∗∗∗ 6.01±1.33 ↓ ↑ ↑ ↓
Capillary Surface Area Density (×10−3) (µm2/µm3) 20.78±5.36 ↓∗∗∗ ↓∗∗∗ ↓∗∗ ↓∗∗∗ 38.23±6.44 ↓∗∗ ↓∗∗ ↓ ↓∗∗
Graph-Based Metrics
Vascular length density (×10−3)(µm/µm3) 1.18±0.39 ↓∗∗∗ ↓∗∗∗ ↓∗∗ ↓∗∗∗ 2.51±0.62 ↓∗∗ ↓∗∗∗ ↓ ↓∗∗
Vascular surface density (×10−3)(µm2/µm3) 21.09±6.38 ↓∗∗∗ ↓∗∗∗ ↓∗ ↓∗∗∗ 35.68±8.84 ↓ ↓ ↓ ↓
Vascular volume density (×10−2)(µm3/µm3) 3.56±1.02 ↓∗∗ ↓ ↑ ↓ 4.61±1.24 ↑ ↑∗ ↑ ↑
Vascular segment radius (µm) 3.89±0.29 ↑∗∗∗ ↑∗∗∗ ↑∗∗∗ ↑∗∗∗ 3.28±0.21 ↑∗∗∗ ↑∗∗∗ ↑∗∗∗ ↑∗∗∗
Vascular segment length (µm) 14.38±3.24 ↓ ↓∗ ↓ ↓∗ 16.38±1.88 ↓ ↓∗ ↓ ↓∗
Vascular segment surface (µm2) 261.44±64.16 ↑∗ ↑∗∗ ↑ ↑ 232.39±25.64 ↑ ↑ ↑∗ ↑
Vascular segment volume (µm3) 444.73±119.39 ↑∗∗∗ ↑∗∗∗ ↑∗∗∗ ↑∗∗∗ 299.56±40.88 ↑∗ ↑∗∗∗ ↑∗∗∗ ↑∗∗
Vascular segments (×105)a 0.88±0.41 ↓∗∗∗ ↓∗∗∗ ↓ ↓∗∗∗ 1.56±0.46 ↓ ↓ ↓ ↓
Vessels of diameter <= 6.9 (µm) (%) 67.49±7.19 ↓∗∗∗ ↓∗∗∗ ↓∗∗∗ ↓∗∗∗ 86.02±4.61 ↓∗∗ ↓∗∗∗ ↓∗∗∗ ↓∗∗∗
Vessels of diameter between 6.9 and 8.2 (µm) (%) 12.77±3.2 ↑∗∗∗ ↑∗∗∗ ↑∗∗∗ ↑∗∗∗ 7.09±1.9 ↑∗∗∗ ↑∗∗∗ ↑∗∗∗ ↑∗∗∗
Vessels of diameter > 8.2 (µm) (%) 19.75±7.09 ↑∗∗∗ ↑∗∗∗ ↑∗∗∗ ↑∗∗∗ 6.9±3.05 ↑∗ ↑∗∗∗ ↑∗∗ ↑∗∗∗
SMA+ related metrics
Damage Index 0.13±0.06 ↑∗∗∗ ↑∗∗∗ ↓ ↑∗∗∗ 0.01±0.01 ↓ ↓ ↓ ↓
Vessels covered with SMA (%) 54.87±13.87 ↓ ↓∗∗ ↑ ↓∗∗∗ 81.53±8.04 ↑ ↑ ↑ ↑
SMA+layer thickness (µm) 9.44±4.39 ↑∗∗∗ ↑∗∗∗ ↓ ↑∗∗∗ 2.21±0.51 ↓ ↓∗ ↓∗ ↓
Myofibroblasts (×104)a 1.51±0.88 ↑∗ ↑ ↓∗ ↑ 0.38±0.18 ↓∗ ↓∗∗∗ ↓∗ ↓∗∗∗
SMA+ perivascular cellsb 52.78±31.2 ↑∗∗ ↑∗∗ ↑ ↑∗ 29.89±8.79 ↑ ↑∗ ↑ ↓
Efficiency in oxygen diffusion
Maximal Extravascular Distance (µm) 56.32±11.2 ↑∗∗∗ ↑∗∗∗ ↑∗ ↑∗∗∗ 30.91±3.43 ↑ ↑∗ ↑ ↑∗∗
Median Extravascular Distance (µm) 29.82±5.9 ↑∗∗∗ ↑∗∗∗ ↑∗ ↑∗∗∗ 16.45±1.8 ↑ ↑∗ ↑ ↑∗∗
Capillary Density c 482.47±190.43 ↓∗∗∗ ↓∗∗ ↑ ↓∗ 770.16±450.86 ↓ ↓ ↓ ↓
Intercapillary Distance (µm) 32.19±8.52 ↑∗∗∗ ↑∗∗∗ ↑∗ ↑∗∗∗ 19.54±2.28 ↑∗ ↑∗∗ ↑ ↑∗∗
Diffusion Distance (µm) 17±2.43 ↑∗∗∗ ↑∗∗∗ ↑∗∗ ↑∗∗∗ 11.51±1.47 ↑∗∗ ↑∗∗∗ ↑ ↑∗∗

aNumber per mm3 of tissue
bNumber per mm vascular length
cNumber per mm2 of tissue

knowledge regarding (i) the multiscale and geometric properties of the microvasculature,
(ii) topological characteristics and biologically important morphological information about
the segments the microvascular structure consists of, (iii) the microstructural relationship
with SMA+ cells, which comprise myofibroblasts -key players in tissue healing after MI-
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as well as perivascular cells -relevant for vessel maturation and stabilisation-, and (iv)
diffusion efficiency of the microvascular bed and adequate geometric models of the capillary
supply region. We show that each class of parameters offers complementary information in
understanding the effects of MI and that it is indispensable to study all classes in order to
understand changes to a system as complex as the microvasculature.

Among the main findings is an intensive structural remodelling of the microvasculature
at 7 days post MI, which persists and even deteriorates 45 days post MI, in combination
with an abundant presence of myofibroblasts, a higher percentage of microvessels which
lacked a SMA+ coating, but with the coated ones having a thick SMA+ layer. The latter
might mark the end of the plasticity window for intervention [181]. By quantifying the effect
of the structural remodelling in functional terms, we were able to identify a low capacity for
blood flow (succolarity) and long diffusion distances which is linked with worse oxygenation.
This might be related to the regression of vessels non-coated with SMA+ resulting in a less
complex and connected network that, as a result, requires longer diffusion times. Moreover,
despite the decrease in the capacity of blood flow at the tissue level, observed also at organ
level (Table 3.1) at infarcted areas 7 days post MI, the larger diameter of the individual
microvessels and the SMA+ hyperplasia, together with increased number of endothelial
cells per length (Table 4.1), likely reflects adaptation to persistent/chronic high flow in
these remaining vessels. Interestingly, in terms of structural characteristics (density, size
of microvessels) the infarcted area at 3 days post MI, seems closer to the basal one than at
1 or 7 days post MI. This could indicate a normalization of the effect of infarction 3 days
following MI after a first inflammatory response at day 1 and, therefore, it denotes a time
window for therapeutic intervention around day 3 post MI when the microvasculature is not
structurally so different from the basal but functionally it already starts the misadaptation as
implied by the larger extravascular distances and higher heterogeneity in non-vascularized
areas observed in infarcted areas 3 days post MI. Moreover, our results imply a connection
between the appearance of constriction or dilation and the time which elapsed following
MI. In particular, we observed a tendency for an initial dilation of the vessels in infarcted
area at 1 day post MI, a subsequent constriction at 3 days, followed by possible pruning of
microvessels, and maybe dilation/arterialization of the remaining microvessels at day 7. It is
also worth noting that apart from the vasodilation effect the structural changes at infarcted
areas at 1 day post MI are opposite to that of 7 days. Specifically, an increased number
of microvessels, vascular density and complexity at infarcted areas at 1 day post MI were
described. Thus, we cannot rule out angiogenesis (either sprouting or intussusceptive) at that
time-point but it is clear that there is an overall loss of microvasculature afterwards, mostly
of capillaries. In addition, as expected [40], changes at remote areas are not significant or
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they are milder than the ones found in the infarcted areas, but they are not entirely absent as
pathology progresses.

In conclusion, our fully automated image analysis pipeline permitted the accurate re-
construction of the 3D microvasculature and subsequent acquisition of novel, quantitative
insights into its structure and changes at different stages after MI. The study was performed
in the pig model, whose coronary microvasculature bears strong similarities to that of hu-
mans. Our method also provides an automated and unbiased means of evaluating therapeutic
approaches and of diagnostic classification of unseen cardiac tissue. Furthermore, the wealth
of quantitative data on the anatomy of microcirculation provided can serve as reference for
comparisons for future studies in the field of cardiac microvascular research as well as enable
modelling microcirculation at different stages of pathology. Lastly, the open-source nature of
our approach makes it reusable in future studies of the cardiac microvasculature, but also
in the study of other diseases and tissue types for which the microvascular structure and its
changes are in focus.
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CHAPTER 5

IMAGE-BASED MATHEMATICAL MODELLING OF THE

INFARCTED HEART RESPONSE AT THE MICROVASCULAR

LEVEL

5.1 Introduction

Despite the crucial role of blood flow in microcirculation, its assessment is hampered by
today’s imaging limitations. Although advances in imaging systems, in combination with
computational image analysis approaches, have facilitated the reconstruction of detailed 3D
microvascular networks [35, 101, 121, 78], in vivo measurement of blood flow or pressure
in cardiac microvessels remains a challenging task [112]. Mathematical models of blood
flow in microvascular networks have emerged as a complementary solution to experimental
approaches, in an attempt to go beyond experimental observations. These models have the po-
tential of offering unprecedented insight into microvascular blood flow and structure-function
relation by exploiting structural data. Blood flow models have been further complemented
by models that simulate oxygen transport [201, 80, 64], structural adaptation [172, 168] and
blood flow regulation [197].

As described in Chapter 2, microvascular blood flow models can be roughly categorized
into discrete and continuum flow models (CFMs). Models within the first category provide
important information regarding distribution of hemodynamics. However, they require
prescription of adequate boundary conditions, i.e. flow or pressure, at all boundary nodes
of the network. This is why continuum perfusion models have emerged as complementary
solutions. CFMs do not allow simulation of blood flow at individual microvessel level.
They do, however, permit prediction of tissue-scale blood flow properties and they have,
therefore, been gaining increased attention as an alternative to discrete models [229]. These
types of models are based on Darcy’s law. CFMs coupled with homogenization theory
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permit calculation of permeability tensor by solving the tissue scale fluid mechanics problem
(Darcy’s law) on spatially periodic networks.

We have adapted a CFM approach to assess the effect of myocardial infarction (MI) and
its subsequent progression (1, 3 and 7 days post MI) on microvascular perfusion. Our aim is to
unravel functional implications of microvascular structural changes which occur in response
to MI by calculating permeability tensors. In this respect, we used anatomical data from thick
slices of cardiac tissue extracted from the pig animal model. We subsequently introduced a
mirroring approach that allowed us to deal with the spatial periodicity requirement of previous
CFM in order to obtain a physiologically meaningful solution by using anatomical data and
not statistically or ruled-based generated networks. Furthermore, the phase separation
effect was incorporated into the calculation of the permeability tensors and its effect was
quantified. We subsequently used the calculated permeability tensors and values from
magnetic resonance imaging (MRI) data to estimate the expected pressure drop along
an arteriole-venule path. Lastly, we calculated the myocardial blood flow (MBF) in two
scenarios: (i) assuming the same pressure drop for all tissue conditions, and (ii) pressure
drop values defined according to the condition of the tissue. In the first case, the pressure
drop was adapted from literature values. In the second case, we used the mean value of the
previously calculated pressure drop per tissue condition. The simulation results indicate the
existence of alterations in the permeability tensors, in pressure drop and therefore in MBF
related to the structural remodelling and altered angioarchitecture of the microvasculature
after MI. We also investigated whether these changes persisted 45 days following MI.

Overall, the computational tools developed as part of this work and their application to a
porcine myocardial infarction ischaemia-reperfusion (I/R) model allow a deeper understand-
ing of microvascular alterations in MI by modelling of microcirculation at different stages
after pathology. To the best of our knowledge, this is the first study where tissue scale blood
flow properties have been predicted at different stages following MI and compared to tissue
from basal conditions based on real 3D anatomical data with sub-micrometer resolution and
on a continuum homogenization model. The permeability tensors extracted as a result of
this work can additionally be used to parametrise organ scale models of the heart at different
time-points after MI. Future work could include combining the continuum model with a
discrete model in order to explore changes taking place in the distribution of hemodynamics,
something that is not possible to measure on individual microvessels with today’s imaging
systems.
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5.2 Methods

5.2.1 Continuum blood flow modelling

Acquisition and processing of the 3D image data used in this work were described in detail in
Chapters 3 and 4 respectively. In a nutshell, we used thick slices of cardiac tissue ( ∼ 100µm)
that had been harvested from the left ventricle of pigs in basal conditions and of pigs that had
been sacrificed 1, 3 and 7 days following MI. In the case of subjects that had suffered MI,
tissues were obtained from infarcted and non-infarcted (remote) areas. These samples were
subsequently stained for cell nuclei (Hoechst), endothelial junctions (anti-VE-Cadherin) and
smooth muscle cells (anti-α-SMA) and were imaged by confocal microscopy.

The confocal images were subsequently segmented by using the multi-scale multi-
thresholding (MMT) algorithm [79]. The filling approach from [78] was applied on top of the
segmentations of the VE-Cadherin channel in order to accurately reconstruct the complete
microvasculature from the endothelial junctions. Lastly, the graph-based representation of
the microvasculature, along with the radii and length of the microvessels, were extracted
from every connected sub-network that made up the network.

It should be noted that a sub-set of the complete dataset, which has been described in
previous chapters, was used. The subset contains solely images of tissue samples that belong
to the myocardium, excluding images of samples from the endocardium and the epicardium,
as the orientation of vessels [126] in those areas would render simulations meaningless.
Therefore, the subset used in this work consists of 12 3D images in basal conditions, 13
images of infarcted condition on days 1 and 3 post MI respectively, 15 images of infarcted
conditions 7 days post MI, 16 images for remote condition on day 1 post MI, 11 images of
remote areas 3 days post MI, and 9 images of remote areas 7 days post MI. The dataset was
enriched with data from infarcted and remote areas 45 days post MI that had been acquired
and analysed in a similar manner. It should be noted that the categorization of the volumes
into the three regions of the heart was performed by two experts biologists post-acquisition
and based on the orientation of the vessels on the images.

5.2.1.1 Calculation of permeability tensors and perfusion in microvascular networks

Calculation of permeability tensors was performed by applying a continuous two-phase
porous perfusion model that has been adapted from [56]. Well-separated micro- (microvas-
cular network) and macro- (tissue) scales are assumed, as well as non-leaky vessels. At the
micro-scale, it is additionally assumed that the tissue consists of spatially periodic micro-cell
units that contain two phases; (i) the microvasculature, which permits the blood to flow and,
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(ii) the interstitium, which consists of cells and extravascular matrix and behaves as a porous
medium. Furthermore, blood flow of the microvessels is considered incompressible and
dominated by viscous forces (Stokes flow). Taking these assumptions into account and the
fact that volume averaged tissue-scale blood velocity equals the surface mean blood velocity
(us) [7], the homogenization technique of [205] is applied and the volume averaged form of
Darcy’s law is deduced to:

us =−K(I)∇p (5.1)

where K(I) is the permeability tensor of the image volume I and given the 3D nature of I it
is of size [3×3]. ∇P stands for the pressure gradient applied on the tissue, while us is the
surface mean blood velocity and it is thus given by:

us = Qs/S (5.2)

where S is the area of the surface and Qs represents the sum of the flow rates of the capillaries
on that surface.

By combining equations 5.1 and 5.2, the elements of each row of the permeability tensor
can be then calculated by applying a pressure gradient along one of the three possible
directions, i.e. x-direction, y-direction or z-direction in Cartesian coordinates, and by
calculating the sums of flow rates on the surfaces of the image volume in each case. The
diagonal elements account for the link between the flow rate in one direction and the pressure
gradient in the same direction, while the off-diagonal elements capture the link between the
flow rate in other directions (cross flow) and the pressure gradient in the one direction. More
precisely, each element of the permeability tensor with position (i, j) is calculated by:

Ki j(I) =
∑

M j
m=1 q j

m

S j∇pi , i, j = 1,2,3 (5.3)

where ∇pi stands for the pressure gradient applied at direction i, M j is the number of vessels
on the outflow surface at the direction j, and S j is the surface area of the outflow surface
at direction j. q j

m stands for the blood flow rate of vessel m = 1, ..,M j at direction j. By
assuming axial flow, the flux at each microvessel can be calculated according to the Poiseuille
law by:

qm =
πr4

m∆Pm

8µmlm
(5.4)

where rm, lm, µm and ∆Pm represent the length, radius, viscosity and pressure drop respec-
tively of microvessel m. When constant hematocrit is assumed for all vascular segments,
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Fig. 5.1 Mirroring of the original image colour-coded with light green (7). 2D slices along
x,y and z directions of the 3D resulting mirrored image that contains 8 copies of the original
image and periodic boundaries on opposites faces.

viscosity is calculated according to equations of [176, 177]. It is, however, a fact that due
to the uneven splitting of red blood cells in branching points, the hematocrit is not uniform
in all segments of microvascular networks. It is rather heterogeneous with higher values in
daughter vessels with higher flow rates and lower ones in those with lower flow rates. This
effect is known as phase separation effect or plasma skimming (Section 2.5). In order to take
it into account, Pries and Secomb [166] have established equations that allow calculation of
the varying hematocrit of each microvessel segment to be subsequently used for calculating
segment viscosity, as described in Chapter 2.

Lastly, taking into account the relation between perfusion and the permeability ten-
sors, and the relation between perfusion and MBF, the latter can be calculated using the
permeability tensors by:

MBF(mL/min/100g) =
kii ×∆p×0.133×10−3 ×60×100

ρ × l2 (5.5)

where ∆p stands for the pressure drop in mmHg over a microvascular path of length l µm, ρ

represents myocardial density (ρ), while 0.133×10−3, 60 and 100 are conversion factors for
pressure units from mmHg to kgµm−1s−2, minutes to seconds, and 1g to 100g respectively.
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5.2.1.2 Dealing with real anatomical data: Mirroring & The complete pipeline

Completely connected networks are required in order to perform blood flow simulations.
Therefore, when dealing with anatomical data the first issue that needs to be tackled is the
presence of disconnections in microvascular networks due to sample preparation, imaging
and/or reconstruction processes. In recent years, different algorithms have been proposed for
correction of missing vascular connectivity [182, 195, 11]. These algorithms are adequate
when dealing with data from healthy tissues and they have even been used in tumour models
where usually the networks present high connectivity. Nonetheless, when dealing with
the cardiac microvasculature post MI, safe assumptions cannot be made for recovering
connectivity as the disconnections that are present might be pathology-related and they
should, therefore, be preserved. For this reason, a different approach has been developed.
This approach uses connected components analysis which is applied to the microvasculature
to label the fully connected sub-networks that comprise it. Sub-networks that represent at
least 15% of the complete vascular density are retained, while the rest are not considered in
subsequent simulations. Permeability tensors could then be calculated separately for each
connected sub-network. However, additional issues must be overcome prior to the calculation
of the permeability tensors.

Firstly, anatomical data do not present spatial periodicity, as assumed by CFM. In an
effort to tackle this limitation, previous works have either used synthetic networks that had
been generated by the anatomical data based on statistics in a manner that assured periodicity
[208, 56], or, alternatively, parametrisation methods were deployed instead [97]. This work
presents a novel mirroring solution that permits direct use of continuum perfusion models on
anatomical data without there being a need for the use of the aforementioned approaches.
More precisely, the initial volume I of size [Nx,Ny,Nz] which contains a fully connected
microvascular sub-network is firstly mirrored along x-direction. The resulting volume is
then mirrored along y-direction and, lastly, mirroring of the already-mirrored volume, along
the first two dimensions takes place along z-direction. This procedure results in an image
volume of size [2×Nx,2×Ny,2×Nz] that contains 8 flipped duplicates of I. Nodes on the
opposite face of I along all directions are thus periodic (Fig. 5.1).

Furthermore, blind-ends, i.e. branches connected to only one branch and do not touch
volume borders, were eliminated from the microvascular networks. This was done because
blind-ends were possible sprouts that would not contribute to the permeability tensors or
were imaging/skeletonisation artefacts. It should be noted that, prior to this pruning step, end-
branches located within a small distance from volume borders were elongated to reach the
border and to thus avoid being pruned as blind-ends. This additional step was incorporated
into the process to avoid discrepancies in imaging and skeletonisation procedures that lead
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Fig. 5.2 Overview of the proposed pipeline for the calculation of the permeability tensors
and MBF from microvascular 3D anatomical data.

to branches that do not touch image borders, but rather end within a few micrometers from
them.

After the skeletons of the components have been mirrored and non-contributing blind-
ends have been removed, the permeability tensors of each sub-network are calculated and they
are subsequently fused to produce the permeability tensors of the volume. After examining
different approaches of fusing the permeability tensors, we concluded that the weighted
average of the components, corrected for overlapping areas among the components, would
physiologically be the most accurate approach. More precisely, i.e.

ki j(I) = ∑
cc=1,..,m

wi j(cc)ki j(cc) (5.6)

where ki j(cc) stands for the permeability tensor element i, j = 1, ..,3 of the sub-network cc
and m is the number of all sub-networks that comprise the image volume I. The weights
wi j(cc) are defined by taking into account the surface of the sub-network and the complete
surface of the image that contains sub-networks:

wi j(cc) =
S j(cc)

∑
cc=1,...,m

S j(cc) − ∑
n, k=1,...,m

k>n

S j(n)∩S j(k) (5.7)
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Fig. 5.3 Dependency of the permeability tensor on Representative Volume Element. Three
different sizes were investigated: 256×256× Nz, 512×512× Nz, 1024×1024× Nz voxels,
with Nz standing for the size of the image along z-axis. The original image volume was
therefore decomposed into 16, 4, and one volume(s)/unit(s) respectively depending on
the unit size used. Tensors for the sub-volumes under investigation were calculated by
applying the proposed approach for the calculation of permeability tensors from anatomical
data on each sub-volume. The asterisk size is proportional to the volume of the units
normalized by a volume size of 0.0074mm3 corresponding to 1024×1024×50 voxels of
size [0.379,0.379m,1007]. The different asterisk sizes are due to the fact that the resulting
connected network inside the unit might be smaller than the initial unit to which the image
was decomposed. For each time point, the plots on the left show the maximum element of
the permeability tensor in relation to volume size of the sub-networks of all images available
in our dataset. On the right, there are plots for every image (one line per image) after fusing
the tensors of the units in which it was decomposed. The permeability tensor here is given as
the median of the different sub-volumes for simplicity reasons.

where S j(cc) stands for the outflow surface of the sub-network cc along direction j. These
weights will be scaled further using the resulting vascular volume of the fully connected
sub-network (V (cc)) and the actual vascular volume in the same region (Vinit(cc)), as will be
described in Section 5.3.1.

In the case of confocal data, volume orientation compared with heart orientation is lost.
Therefore, in order to compare different images, the direction i = 1 is considered to be the
direction of maximum flow, direction i = 2 is the direction with medium flow and i = 3 is the
direction with the lowest flow among the three. To achieve this, elements K11,K22,K33 are
firstly sorted in descending order. The rest of the elements of the tensor are then rearranged
accordingly.

Figure 5.2 provides an overview of the complete pipeline.
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5.3 Results

5.3.1 Analysis of the proposed framework

Firstly, we studied the permeability tensors in relation to the size of the resulting sub-
networks, after they had been adequately processed for subsequent simulations. This was
done to identify sizes of volumes below which calculation of permeability tensors could
lead to errors. Such a step is important because application of homogenization techniques is
valid only when the length of the micro-cell unit is large enough to permit calculation of a
converged permeability tensor that remains constant within the volume. In fact, the smallest
size of spatially periodic units that results in the calculation of the converged/effective
permeability tensor is known as the Representative Elementary Volume (REV) [13]. In [160],
a hybrid model was developed and applied on cubic volumes of brain microvascular data. It
was observed that errors increased with decreasing ratio of length of volume side per capillary
length and stabilized at a ratio of about four, which corresponds to volumes of size 200µm.
In [207] increased permeability tensor values for micro-cell units with length smaller than
200µm were also observed, while in [56] the REV was estimated at 375µm.

To define this cut-off size, we considered the capillary bed of each volume as the
mesoscale which is homogeneous inside smaller areas of itself. More precisely, the volume
was divided into smaller microscopic units with a size of 256×256× Nz, 512×512× Nz,
1024×1024× Nz voxels, where Nz stands for the size of the original image I along z-axis (in
voxels). We applied the developed framework at each unit to calculate permeability tensors
for each one of the them. We concluded that the permeability tensor for volumes below 512
were frequently overestimated, with the larger element of the permeability tensor being an
order higher than values reported in literature [207] (Fig. 5.3). Therefore, in our subsequent
analysis, we excluded connected components whose size was smaller than this cut-off limit.
This means that the permeability tensor of a 3D image was calculated as the weighted sum
of the connected components whose side was larger than 170 µm prior to application of the
mirroring procedure.

We then investigated different forms of fusing the permeability tensors of the sub-
networks which comprise the microvasculature of the image volume being studied to produce
the equivalent permeability tensor of the image. The fusing methods can be adapted from
developments for heterogeneous media. More precisely, although theoretically, homogeniza-
tion theory assumes a homogeneous medium, this is rarely the case with real life objects. In
fact, the medium can be heterogeneous and consist of several phases. This is why different
methods have been developed to scale-up from the permeability tensors based on the tensors
of individual phases [192]. Such approaches include the harmonic average for serial flow,
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the weighted average for parallel flow, geometric average for random flow among the most
popular. Here, we have adapted a weighted average because the flow inside a volume is
considered to be the sum of the flow of the sub-networks present in the image volume and
independent from each other, while the contribution of each sub-network depends on the
surface area it covers over the surface occupied by all sub-networks. An alternative approach
that provided similar solutions was the use of median flow. This is expected when taking into
account the similarity of sub-networks within our relatively small volumes.

We observed components, where deletions of the blind-ends resulted in extremely over-
simplified versions of the network compared to the original, with the final one representing
only 15% of the original vascular network within the volume occupied by the sub-network.
We therefore performed correlation and regression analysis and discovered a statistically
significant relation of the permeability tensor to the ratio of sub-network vascular volume
(V (cc)) to the vascular volume in the corresponding volume of the image (Vinit(cc)) prior to
any post-processing having taken place. More precisely, the radii and length of all vascular
segments, prior and after repetitive elimination of the blind-ends until the microvascular
network under investigation is fully connected and has no blind-ends, had already been
calculated. Therefore, we used them to calculate the two volumes, i.e. V (cc) and Vinit(cc),
by considering each microvessel as a tube of constant radius. Using the basal condition, we
plotted the permeability tensor as a function of the ratio of volume of the sub-network prior
and after the elimination of the blind ends, and we calculated the Kendall’s Tau coefficient
which was equal to 0.47 (p-value= 0.008) and 0.66 (p-value = 8× 10−5) for k11 and k22

respectively. We subsequently performed regression analysis and found that we could fit
a model, for instance a linear one (y ∼ β0 +β1x, with β0 = −8.3× 10−4 (p-value= 0.13),
β1 = 5.95×10−5 (p-value=3.59×10−9)) could describe the dependency of the permeability
tensor on the ratio. We finally decided to apply a scaling factor equal to the reverse of
the ratio ( V (cc)

Vinit(cc)) to the permeability tensors in order to adjust them on the basis of this
dependency. The scaling factor was incorporated by multiplying the weights wi j(cc) by it.
Following application of the scaling factor, permeability could no longer be predicted by

V (cc)
Vinit(cc) (y ∼ β0, β0 = 4×103 (p-value= 9.49×10−28)).

Furthermore, we validated that our mirroring approach did not affect calculation of
the permeability tensors. We performed a second mirroring of the mirrored volumes to
achieve that and tensors for the two cases were compared. This resulted in volumes of size
[4×Nx,4×Ny,4×Nz], where [Nx,Ny,Nz] are the dimensions of the original columns and
[2×Nx,2×Ny,2×Nz] of the mirrored volumes. The results indicate that the permeability
tensors are almost identical in both cases, indicating the appropriateness of the approach
in dealing with the lack of periodicity in anatomical data and in also paving the way to
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Table 5.1 Mean and standard deviation of diagonal elements of permeability tensors, pressure
drop and MBF according to k11, k22 or k33

I1MI I3MI I7MI I45MI R1MI R3MI R7MI R45MI Basal
k11 0.0052±0.003 0.0033±0.0024 0.0043±0.0019 0.0098±0.0068 0.003±0.0025 0.0022±0.001 0.0032±0.0022 0.0061±0.0023 0.0035±0.0032

(mm3 s kg−1)
k22 0.0026±0.0013 0.0013±0.0021 0.0019±0.0014 0.0039±0.0033 0.0011±0.0007 0.0009±0.0004 0.0016±0.0014 0.0024±0.0013 0.001±0.0008

(mm3 s kg−1)
k33 0.0013±0.0012 0.0006±0.0011 0.0007±0.0008 0.0014±0.0016 0.0005±0.0004 0.0004±0.0003 0.0007±0.0008 0.0013±0.0008 0.0006±0.0005

(mm3 s kg−1)
MBFK11 295.72±167.16 186.66±133.4 242.59±107.91 550.63±383.62 169.19±139.06 121.7±56.24 182.31±124.75 341.27±130.64 197.66±179.11

(ml/min/100g)
MBFK22 149.3±74.15 71.42±117.29 106.86±78.7 219.27±188.57 63.78±39.05 48.16±21.97 87.65±77.65 133.04±74.75 57.07±45.98

(ml/min/100g)
MBFK33 73.06±66.09 31.17±59.56 39.4±45.2 78.38±91.84 27.28±20.63 19.81±15.6 38.69±43.52 72.4±47.7 34.54±28.93

(ml/min/100g)
DP 7.16±4.13 16.94±10.81 5.1±2.83 2.85±1.84 23.18±12.86 21.31±13.36 20.41±11.78 9.88±4.27 26.31±25.9

(mmHg)

blood flow simulations by using continuum Darcy flow models in the case of such datasets.
Moreover, it should be noted that, theoretically, the direction of mirroring (left/right) does
not have an impact on the results. Only slight differences might be observed due to boundary
segments that are connected to the same node.

5.3.2 Altered permeability tensors, pressure drop and myocardial
blood flow after myocardial infarction

Following formulation of a complete framework for image-based microvascular perfusion
modelling, we applied the proposed approach to the porcine cardiac volumes described
previously. Images for which the permeability tensor was not computed resulted in additional
images being excluded from subsequent analysis, for instance images where no component
represented more than 15% of the image vascular density or images for which the resulting
size of all of its sub-networks were smaller than 170 µm. Therefore, the final number of
images comprising our dataset was 12 in basal conditions, 11, 12, 9 and 10 for infarcted
areas 1, 3, 7 and 45 days post MI respectively. 13, 7, 8 and 12 images were included from
remote areas 1, 3, 7 and 45 days post MI respectively.

Mean and standard deviation of the main elements of the permeability tensor for each
tissue condition are provided in Table 5.1. For simplicity reasons, and similarly to the
previous chapter, images corresponding to tissue from infarcted and remote areas, 1, 3, 7 and
45 days post MI respectively were abbreviated as I1MI, R1MI, I3MI, R3MI, I7MI, R7MI and
R45MI on tables of the current Chapter. In basal conditions, the permeability tensor element
along the direction of maximum flow is (3.5±3.2)×10−3mm3 s kg−1. This indicates that
permeability tensors estimated by means of our proposed framework is within physiological
ranges according to previous work, and, in particular, is of the same order to those estimated
for the rat myocardium, where k11 was found equal to (3.3±0.8)×10−3mm3 s kg−1 [207].
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Fig. 5.4 Permeability tensor elements after sorting directions by larger permeability. *, ** and
*** represent p-value< 0.05, 0.01 and 0.001 respectively. Calculations have been performed
considering constant hematocrit of 0.4 in all vessel segments. The p-values were calculated
by means of Wilcoxon rank-sum tests and corrected by the Benjamini—Hochberg procedure
for multiple testing. The same annotations apply to all figures of the chapter.

Smaller values have been, however, calculated for the brain (4.28×10−4) [56]. Permeability
tensor elements along the direction of medium (k22) and lower (k33) flow direction are
between less than half of k11 and an order smaller, therefore, confirming that there is a
preference of flow along a main direction. This is in accordance with previous findings
regarding the myocardium of rats where permeability in the same direction as longitudinal
capillaries was estimated 10.8 larger that the direction of cross-connecting capillaries [207].
It should also be noted that variability among the volumes is particularly high. However,
this is expected taking into account the heterogeneity of the microvasculature and therefore
microvascular flow between different regions of the heart [41]. The off-diagonal elements of
the permeability tensor are practically zero, therefore, confirming that cross flow is minimal.

It is worth noting that the direction of maximum flow was the direction along the z-axis
only on one volume. This is expected since orientation of capillaries in the myocardium
is longitudinal and not transversal. Moreover, even if orientation was lost during tissue
harvesting, effort was made during acquisition to acquire images of areas where orientation
of vessels was longitudinal and not transversal. This way we ensured a larger field of view
of the vessels and their cross-connections, which would otherwise be more limited given
that the maximum depth of our volumes is about 100µm, while it is 387.50µm along x-y the
length of our volumes.

Moreover, with a view to quantifying alterations, statistical change analysis was per-
formed in the same manner as in the case of the image-based features described in the previous
chapter (Section 4.2.6), i.e. by means of Wilcoxon rank sum tests (Fig. 5.4). The permeability
tensor elements along all directions at infarcted areas 1 day post MI have increased compared
to the basal condition and also to the corresponding remote area. In case of k22 element the
differences become statistically significant. These findings in conjunction with the increased
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Fig. 5.5 Altered pressure drop after myocardial infarction. Pressure drop was calculated
using the larger element of the permeability tensor and different arteriole-venule path length.
Pressure drop for a path length 349µm (a), 512µm (b) and 675µm (c).

vascular density and complexity produced during the early vascular response to MI described
in the previous chapter, point to a possible reaction of the network to the ischaemic event
and subsequent reperfusion. Permeability at infarcted areas on day 7 seems to increase to
levels close to the one of the basal case. Taking into account vessel dilation described in
the previous chapter, we conclude that this is possibly a system mechanism to compensate
lack of adequate oxygen by increasing flow. However, since the distribution of the network
does not permit adequate oxygen diffusion as indicated by the large extravascular distances
(Fig. 4.9), it appears that increased flow cannot compensate for proper heart function. An
adequate angioarchitecture is necessary instead as described in [174]. It should be noted
that when analysing these results, we have to take into account the high dependence of the
permeability tensors on vessel diameters (fourth power). Remote areas seem closer to the
basal and infarcted 3 days post MI. A single value regarding MBF at the organ level cannot
express microvascular blood flow variability. Nonetheless, we can use such measurements
-for instance, measurements provided by MRI systems- to estimate the expected pressure
drop along arteriolar-venular paths whose flow properties are encapsulated by permeability
tensors. Therefore, we used MRI-based data regarding MBF (Table 3.1) of each subject and
we calculated the pressure drop (equation 5.5) for different arteriolar-venular pathways, each
described by the permeability tensor of an image volume of the corresponding subject of
our dataset. In an earlier work on the pig animal model [104], the path length was found
to be equal to 512±163µm when defined as a linear distance between the centre of mass
of the arteriolar mass and the venular domains. Since deviation from the mean was large
and the path length has an important effect on pressure drop, we estimated the pressure drop
for three possible lengths: (i) 349µm (mean-standard deviation), (ii) 512µm (mean) and (iii)
675µm (mean+standard deviation) (Fig. 5.6). Moreover, due to lack of MRI data for one of
our subjects regarding day 3 post MI, we have used data from the other subject at the same
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Fig. 5.6 Myocardial blood flow calculated using sorted k11, k22 or k33. (a) MBF considering
constant pressure drop of 19.5mmHg and a path length of 512µm independently of the tissue
condition. (b) MBF considering varying pressure drop according on the tissue condition
and a path length of 512µm. The pressure drop for these simulations are the mean values
presented in Table 5.1. In both cases, calculations have been performed considering constant
hematocrit of 0.4 in all vessel segments.

time-point. It should be noted that, if the path length during pathological conditions changes,
then the resulting pressure drops would have been different. However, due to lack of such
data, we assume that path length between arteriolar and venular domain of a network remains
unchanged.

Estimated pressure drops in remote areas were close to the ones in basal areas. On the
contrary, pressure drops in infarcted areas 1 and 7 days post MI infarction were very low and
significantly different than those at basal areas. This indicates non physiological values on
those conditions. It should be noted that pressure drop on day 3 post MI was closer to the
estimated values for volumes in basal conditions. This indicates a possible normalization
effect at this specific time-point, as demonstrated in the previous chapter by means of other
biomarkers. When grouping values by subject, pressure drops in basal conditions for the
smallest ones was very close to expected values for pressure drops in healthy conditions, i.e.
5-20mmHg according to [163]. In addition, high variability was observed in the estimated
values, something that was expected taking into account the variability of the permeability
tensor elements among different volumes.
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We subsequently calculated the MBF using the main elements of the permeability tensors.
Initially, we assumed the same pressure drop (19.5mmHg) under all tissue conditions. We
noticed high MBF on day 1 compared to MBF in basal conditions or in the corresponding
remote (k22). A similar increasing trend might be observed day 7 in infarcted areas. Although
the difference is not significant, the increasing trends indicates that if we could control the
pressure drop between the arteriolar-venular path and retain the pressure drop on day 7 to
levels as high as that prior to ischeamia then MBF could return to levels close to basal.
In an effort to incorporate varying pressure drop per tissue condition, we also calculated
MBF by using the mean pressure drop estimated previously for each time-point. In this
case, contrary to when using constant pressure drop, infarcted areas 7 days post MI have
statistically significant lower MBF as calculated using k11. The trend is similar when using
k11 and k33 although it is not significant.

Lastly, we analysed permeability tensors for volumes 45 days post MI. Permeability
tensors calculated 45 days post MI were even higher than the ones calculated for volumes
7 days post MI. The results are presented in Table 5.1. Structurally, 45 days post MI, the
volumes of infarcted areas are more similar to those 7 days post MI compared to the ones
in basal conditions or in earlier times after MI. Nonetheless, microvascular networks have
been further remodelled and have even larger diameters and a further decreased number of
small segments (capillary rarefaction) compared to basal microvascular networks (see section
4.3.5). Moreover, remodelling of the remote areas 45 days post MI is also noticeable as
expressed by statistically significant differences in several features compared to the ones from
basal and other remote areas (Table 4.3). Networks are more disconnected, as demonstrated
by the elevated Euler characteristic number, compared with basal conditions, corresponding
to the one for the remote and infarcted areas at earlier times. This resulted in small sub-
networks being used for calculation of permeability. Therefore, given the strong dependency
of permeability tensors on diameter, along with the smaller size of volumes 45 days post MI,
due to disconnections, it is possible that permeability tensors might be overestimated for 45
days.

For comparison purposes, the aforementioned blood flow properties when calculated
without the application of the scaling factor to account for the simplification of the network
after deletion of blind-ends are provided in Table 5.2.

5.3.3 Effect of phase separation phenomenon on permeability tensors

We then sought to incorporate the phase separation effect into the calculation of the per-
meability tensors in an effort to define the effect on its calculation. For this reason, we
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Table 5.2 Mean and standard deviation of diagonal elements of permeability tensors, pressure
drop and MBF according to k11, k22 or k33 when the scaling factor to account for the
oversimplification of the network is not applied.

I1MI I3MI I7MI I45MI R1MI R3MI R7MI R45MI Basal
k11 0.0037±0.0023 0.0018±0.0012 0.0022±0.0009 0.0038±0.002 0.0017±0.0021 0.001±0.0006 0.0021±0.0017 0.004±0.0018 0.0028±0.0027

(mm3 s kg−1)
k22 0.0019±0.0011 0.0006±0.0009 0.0009±0.0006 0.0017±0.0014 0.0006±0.0004 0.0004±0.0002 0.001±0.001 0.0016±0.0011 0.0008±0.0007

(mm3 s kg−1)
k33 0.0009±0.0009 0.0002±0.0004 0.0004±0.0004 0.0006±0.0007 0.0003±0.0003 0.0002±0.0002 0.0005±0.0006 0.0008±0.0006 0.0005±0.0004

(mm3 s kg−1)
MBFK11 210.04±129.1 101.54±69.18 121.55±50.69 211.79±112.97 93.38±116.72 57.41±34.83 116.12±94.79 225.27±102.69 159.5±152.62

(ml/min/100g)
MBFK22 107.25±61.7 35.68±48.67 53.46±34.88 95.48±81.25 34.33±25.08 23.07±13.29 57.34±57.52 89.47±59.42 44.1±41.68

(ml/min/100g)
MBFK33 50.52±49.15 13.77±19.89 21.41±21.93 34.02±37.01 15.11±14.61 10.35±8.84 26.06±32.72 47.71±32.96 26.75±24.74

(ml/min/100g)
DP 12.09±11.06 31.18±19.23 10.35±6.06 6.77±4.27 54.05±30.46 50.2±34.12 39.43±31.56 16.24±9.12 44.99±52.12

(mmHg)

incorporated an iterative procedure in the calculation of the tensors for each sub-network as
show in Fig. 5.7.

In brief, a constant hematocrit (0.4) was initially assumed and used along with the
morphological data of the network after post-processing with our framework had taken
place in order to calculate the permeability tensor along the x-direction. The pressure
solution that resulted in the calculation of the permeability tensor elements k11, k12, k13 was
used as an input to an iterative publicly available algorithm (https://physiology.arizona.edu/
people/secomb/netflow) for the calculation of varying hematocrit when separation effect
on junction points is taken into account [171]. Once the solution converges or reaches the
maximum number of permitted iterations (100), the permeability tensors are calculated with
the new varying values of the hematocrit. Once the new permeability tensors differ less than
2×10−17mm3 s kg−1 in all elements from the last iteration, the procedure is considered as
converged and the calculated tensor as the final one. Due, to convergence not reached for
some volumes, we additionally set a limit of 300 iterations, that would be reached for few
volumes.

Simulations under basal conditions point to a change in the calculated sub-networks
tensors when phase separation is incorporated. When comparing the permeability tensors
after their fusing for each volume, the percentage change of the diagonal elements of the
permeability tensor k11, k22 and k33 was −23.51±49.22%, −24.89±44.71% and −40.77±
20.59%. This is in accordance with earlier studies that have found an effect of the varying
hematocrit incorporation on blood flow rates of 20% [214]. Therefore, it demonstrates the
importance of incorporating non-Newtonian properties in the calculation of permeability
tensors.
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Fig. 5.7 Overview of the approach for incorporating the phase separation effect in the
calculation of permeability tensors.

5.3.4 Unravelling the effect of vascular remodelling on permeability
tensors

Earlier studies on statistically generated and synthetic networks have confirmed that changes
in diameter have a severe effect on the permeability tensors as theoretically expected if one
takes into account the dependency of tensors on fourth power of diameters. In this work, we
have also observed the effect of structural changes on the microvasculature after MI, in terms
of permeability tensors. However after MI, as described in the previous chapter, several forms
of vascular remodelling take place simultaneously: changes in vessel diameters, pruning of
microvessels, alterations in the connectivity of microvessels among others. Therefore, in an
attempt to isolate the effect of dilation or constriction of vessel diameters as well as pruning
of immature vessels,the following case scenarios were studied:

i. dilation of all microvessels by incrementing their diameter by 10%, 20%, 30%,

ii. dilation of 10%, 20% and 30% of the microvessels by incrementing their diameter by
30%,

iii. constriction of all microvessels by decreasing their diameter by 10%, 20%, 30%,

iv. constriction of 10%, 20% and 30% of the microvessels by decreasing their diameter
by 20%,
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v. pruning of 10%, 20% and 30% of the microvessels with the smallest radii

For our study, we used volumes under basal conditions and applied the aforementioned
remodelling scenarios to the major sub-network of the image. We subsequently calculated the
permeability tensor for the sub-network for the different remodelling scenarios and compared
the result with the tensor obtained without applying remodelling. Dilation of all vessels of
the network by only 10% produced a major increase to the elements of the permeability
tensor. More precisely, an increase of 99.64±117.77%, 159.24±384.30%, 73.10±43.29%
was observed for k11, k22 and k33 respectively. An additional increase of the diameters by
10% the k11, k22 and k33 increase by 520.41±441.2, 704.54±1300% and 363.46±129%
respectively, with the tensors of few images changing order of magnitude and other being
close. When the percentage reached 30% the increase was so high that the tensors of all
images changed order of magnitude. These results demonstrate that vessel dilation has a
major impact on the permeability tensors. When the change is applied to a percentage of
vessels, the permeability tensor always increases, but does not arrive 10-fold increase as it
does when all vessels are enlarged.

Constriction of diameters of all microvessels by 10%, resulted in a decrease of the
diagonal elements (k11, k22, k33) by a mean percentage of 24.97%, 1.35% and 26.20%
respectively. Further constriction of the vessels by an additional 10% led to a decrease of
the elements by 67.34%, 50.40% and 67.10% respectively. When constriction reached 30%,
the decrease of the permeability tensor values was almost 100% for all three elements (
k11 : 95.78± 1.66%,k22 : 94.12± 8.88%,k33 : 95.63± 1.47%). When 20% constriction is
applied to a varying percentage of vessels randomly chosen, the direction of the change
expressed by the mean remains the same, i.e. the tensor is decreasing. However, interestingly,
there are volumes where the tensor has increased. This indicates that there are cases where
constriction in certain vessels could cause an increase in blood flow.

In the case of pruning of a percentage of the smallest vessels of the microvasculature,
the results were highly variable and the direction of the change of the permeability tensors
was either positive or negative depending on the angioarchitecture of the network. This
implies that by pruning either effect, i.e. increase or decrease of the tensors depending
on the location and the pruned vessel, could be attained. Nonetheless, the mean values of
percentage of change were positive. For instance, pruning of 10% of the microvessels resulted
in increase for k11, k22, k33 equal to 1.40± 101.63%, 144.59± 348.61% , and 44.2200±
100.56% respectively. Pruning of 20% of the microvessels produced a 106.77±286.96%,
239.88±577.49%, and 56.2600±106.24% increase to the diagonal elements. Lastly, when
the 30% of the smallest microvessels were pruned, the tensor diagonal elements increased by
517.65±990.66% 240.04±467.50%, 48.99±161.30%.
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Fig. 5.8 provides an example image following remodelling on the basis of the afore-
mentioned scenarios and the resulting diagonal elements of the permeability tensor. k11,
k22 and k33 before any remodelling taking place were 3.7× 10−3, 1.59× 10−4, 1.55×
10−4mm3 s kg−1 respectively.

5.4 Discussion

Advancements in imaging technologies, combined with automated image analysis approaches,
are nowadays making acquisition of detailed structural data of microvascular networks
feasible. Therefore, the development of frameworks that permit a move from simulations on
idealized networks to image-based simulation of microvascular perfusion is of paramount
importance, if we are to take full advantage of these novel tools to advance our knowledge
regarding microvascular blood flow and how this relates to whole organ measurements. In
an effort to bridge this gap, we present the first study of microvascular perfusion based on
performing simulations using 3D detailed anatomical data of the cardiac capillary bed in
healthy conditions and spanning several stages after MI. The data span both remote and
infarcted areas.

In this work, we adopted a CFM to perform perfusion simulations. The potential and
strengths of such models have already been demonstrated and discussed in innovative studies
of coronary [180, 207, 96] and brain microvasculature [56, 57, 160]. As previously noted,
these models do not permit simulation of blood flow at the individual vessel level. Their
advantage lies in that the final solution is independent of boundary conditions and their output
can contribute to enhancing our understanding of structural-functional relation as well as
of measurements at organ level. According to Darcy’s law, the permeability tensor can be
defined by dividing fluid velocity with pressure gradient. When homogenization techniques
are adopted, the permeability tensor is calculated by solving Darcy’s law on spatially periodic
assumed sub-units. In this work, we have adopted this approach for every sub-network
forming part of the microvasculature captured in a confocal image z-stack. The tensor of the
image under study is approximated by properly fusing the tensors of the sub-networks that
comprise it.

The developed framework allowed us to simulate blood flow at different time points. We
discovered increased values for all diagonal elements of the permeability tensor 1 day post MI.
This increase is related to the altered angioarchitecture of the network and particularly, to the
network diameters. More precisely, the highly complex and slightly dilated microvasculature
of infarcted areas on day 1 post MI is accompanied by increased permeability. On the
contrary, constricted vessels on day 3 post MI resulted in reduced permeability tensor values,
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while dilated vessels on day 7 show a tendency for increased permeability tensor values. The
latter might be a possible mechanism to compensate for tissue damage.

Estimated MBF values imply that capillary rarefaction and the intense vascular remod-
elling occurring in infarcted areas 7 days post MI do not limit the capacity for blood flow
if the pressure drop is kept at the same level as that prior to MI. Nonetheless, non reduced
blood flow 7 days post MI contradicts our findings by means of succolarity. Succolarity, as
introduced in the previous chapter, encapsulates fluid capacity to flow within a network and
was found to be reduced in infarcted areas 7 days post MI. This unexpected difference could
be related to the fact that, during calculation of succolarity, blood rheological properties and
the strong dependence of blood flow on diameter are not taken into account. However, it is
also possible that it is related to the fact that the pressure drop used to calculate MBF was
not proper. This is also implied by the fact that when using pressure drop adjusted to the
time point and area post MI, we found that MBF 7 days post MI would decrease compared
with basal areas or the corresponding remote. Unfortunately, lack of topological information
and measurements at voxel-level in our MRI data did not permit a direct validation of the
approach and subsequent necessary adjustments. However, literature values regarding MBF,
although variable, show that the estimated MBF values by means of our approach (Table 5.1)
are generally close to reported values. Moreover, earlier studies on MBF confirm that a high
variability and different trends post MI should be anticipated depending on the transmural
layer, i.e. myocardium to epicardium, the anterior or posterior position as well as the level
from base to apex of the heart [41, 53].

More precisely, using micro-spheres the MBF was estimated in pigs in a recent study
[196]. Mean and standard deviation for MBF was found to be 122 ± 92 and 99 ± 31
ml/min/100g using 1.5 Tesla ad 3 Tesla MRI respectively during rest. The correspond-
ing values during hyperaemia were 221±167 and 208±0.81, while during reduced flow
(half-flow) were 0.56± 0.37 and 0.55± 0.26. It is worth noting that similar values could
be calculated with contrast-enhanced cardiac MRI. In [29], data from photon emission to-
mography (PET) studies on healthy humans were summarized with the highest reported
MBF values being 120±30 at baseline and 440±90 ml/min/100g during hyperaemia. In
an effort to reduce variability in MBF reported in literature, in [36] a large cohort of human
volunteers was used. Mean and standard deviation for baseline MBF corrected for workload
was calculated equal to 133± 31.6 ml/min/100g, with values ranging from 73.6 to 242.8.
Using the dog animal model, a study with microspheres injected at 15 second, 15 minutes,
4 hours and 3 days post 2-h coronary occlusion and reperfusion as well as control subjects
demonstrated that immediately after reperfusion the MBF was increased and even higher
than in non-infarcted subjects, but 3 days post MI the flow reduced [41]. Moreover, there
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was a high variability on the estimated values depending on the region from the epicardium
towards myocardium. In the same animal model, a study of 5-minutes repetitive occlusion
and subsequent reperfusion found that 1 week post MI the MBF returned to normal levels in
both infarcted and remote areas [45].

There are some limitations to this work that could be addressed by future research. Firstly,
due to the challenging nature of the task of simulating perfusion with anatomical data and the
particular nature of our relatively small volumes, several simplifications were necessary to
be made in the post-processing of the volumes to convert the initial microvascular data into
fully connected networks without blind-ends. Another important limitation of the present
study is that the opportunities for validation are limited. It would be of particular interest
to study the relation of the presented results with measurements from MRI. However, to
achieve this, information regarding volume topology would be required along with voxel level
measurements from MRI. Also, the voxel size of a typical MRI is of the order of millimetre
or sub-millimetre, which means that resolution would not be enough to resolve volumes of
300µm length. Nonetheless, it might be possible for future studies to apply the developed
framework to obtain insights to the relation between blood flow at micro-scale and macro-
scale, by uniting several sequential volumes. This would be of paramount importance in
clinics as it could lead to translation of measurements at organ scale to conclusions regarding
alterations of the microvasculature, a major determinant of the outcome after successful
reperfusion of the epicardial arteries, as detailed in previous chapters. In addition, we used
the same pressure drop under all conditions for MBF estimation. However, it is possible
that this assumption does not reflect reality, as indicated by the estimated pressure drop per
tissue condition (Fig. 5.6) calculated using the permeability tensors and the MRI-based data
that we had available for our subjects. In an effort to address this shortcoming, we have also
performed simulations using the mean pressure drop that was previously estimated. However,
this is not an ideal approach because pressure drop calculation had already been based on the
permeability tensor. Lastly, high variability in the estimated values and the small number of
samples after exclusions of several images of our dataset reduce the power of statistics and
possible statistical significant differences might not have been detected.

Overall, this work marks the first effort to simulate tissue-scale properties of blood
flow using anatomical data directly and not idealized or statistically generated data. We
used data from basal conditions and from different time-points after MI, and both from
infarcted and remote areas from a highly translational animal model. The permeability
tensors calculated for the basal condition are within the physiological limits according to
previous work. Concomitantly, the estimated pressure drop using MBF obtained from MRI
points to an altered function of the microvasculature on day 1 and 7 days post MI. In addition,
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according to data 45 days does not improve without the application of therapy. Despite
the presence of increased blood flow, the remodelling compensatory mechanisms are not
adequate enough to allow efficient oxygenation. It should be noted that permeability values
presented here can be used in future studies to parametrise multi-scale models of coronary
blood perfusion, where it is not feasible to simulate flow in the complete capillary bed or to
achieve image resolution that permits visualization of both capillaries and large epicardial
vessels.
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a Diameter increase in all microvessels

K11=6.52x10-3(75.78%) K22=3.09x10-4(92.99%)

K33=3.36x10-4(116.62%)

. K11=1.99x10-2(435.3%) K22=1.23x10-3(665.94%)

K33=1.11x10-3(615.20%)
K11=5.99x10-2(1514.5%) K22=4.2x10-3(2522.6%)
K33=3.5x10-3(2178.6%)

b 30% increase of diameter of randomly selected vessels

K11=4.94x10-3(33.23%) K22=2.27x10-4(41.93%)
K33=2.36x10-4(52.38%)

K11=8.17x10-3(120.16%) K22=4.05x10-4(153.19%)
K33=4.13x10-4(166.34%)

.K11=1.12x10-2(201.80%) K22=7.18x10-4(348.54%)
K33=6.25x10-4(302.67%)

c Diameter decrease in all microvessel

.K11=2.36x10-3(-36.46%) K22=9.45x10-5(-40.90%) 
K33=1.16x10-4(-25.07%)

.K11=1.05x10-3(-71.68%) K22=3.89x10-5(-75.66%)
K33=5.35x10-5(-65.54%)

.K11=1.22x10-4(-96.71%) K22=4.34x10-6(-97.29%)
K33=6.44x10-6(-95.85%)

d 20% decrease of diameter of randomly selected vessels

K11=4.05x10-3(9.23%) K22=1.64x10-4(2.72%)

K33=1.90x10-4(22.12%)
K11=5.04x10-3 (35.75%) K22=2.62x10-4(63.63%)
K33=2.26x10-4(45.92%)

.K11=4.33x10-3(16.73%) K22=1.89x10-4(17.88%) 
K33=2.21x10-4(42.38%)

e Pruning of inmature vessels

K11=4.65x10-3 (25.29%) K22=6.92x10-5(-56.76%)
K33=2.46x10-4(58.42%)

K11=5.07x10-3(36.80%) K22=6.64x10-4(-100%)
K33=2.80x10-4(80.95%)

K11=3.70x10-3(-0.36%) K22=0(-100%)
K33=2.25x10-4(45.24%)

Fig. 5.8 Example image with modified radii and number of segments used in the study of the effect of vessel
dilation, constriction and pruning on the permeability tensors. (a) From left to right, increase by 10%, 20%,
30% of vessel diameter of all microvessels that comprise the microvasculature. (b) 30% increase of vessel
diameter applied to the 10%, 20% and 30% of vessels. (c) Decrease of vessel diameter of all microvessels or,
(d) a percentage of them: 10%, 10% and 30% (from left to right). (e) Pruning of 10%, 20% and 30% of the
capillaries with the smallest radius. Below each image, the diagonal permeability tensor elements are provided.
In parenthesis, the percentages of decrease (negative sign) or increase (positive sign) in respect with the original
values. i.e. without any remodelling. Image corresponds to tissue from basal conditions. Some example cases
of remodelled vessels (b, (d)) or areas of pruned vessels (e) are highlighted inside yellow circles.

103





CHAPTER 6

CONCLUSIONS

6.1 Contributions

This PhD thesis offers contributions both in terms of the development of innovative computa-
tional approaches for the analysis and modelling of microvascular data as well as in terms of
novel biological findings. In terms of development of computational approaches, the main
contributions of this thesis are:

• A novel 3D multi-scale multi-level thresholding (MMT) approach for segmenting
labelled structures from confocal images.

• A novel algorithm for the reconstruction of the complete microvasculature by using
information regarding endothelial junctions and smooth muscle actin+ cells.

• A simple, yet efficient, approach to distinguish between capillaries and arterioles/venules.

• An innovative open-source bioimage analysis pipeline for the in-depth study of mi-
crovascular networks after myocardial infarction (MI) that is scalable to other diseases
and tissue types.

• A scheme that allows recognition of microvascular tissue condition to serve as a
powerful tool for the diagnosis of tissue condition in biopsies, as well as in the
evaluation of the outcome of potential therapeutic approaches.

• A framework for modelling blood flow in microcirculation based on anatomical 3D
imaging data.

In terms of biological significance, the main contributions of this thesis are:

• Enrichment of the database of knowledge about microcirculation physiology with
quantitative data spanning different stages after MI.
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• Quantification of the changes occurring in the cardiac microvasculature in an unbiased
and reproducible manner respecting its inherently 3D and complex structure:

– The cardiac microvasculature progressively loses its integrity and complexity in
infarcted areas.

– Intensive structural remodelling of microvessels 7 days post MI, in combination
with thicker smooth muscle cell layer might mark the end of the plasticity window
for therapeutic intervention.

– As expected, structural remodelling of the infarcted area 7 days post MI leads to
a deterioration in microcirculation and also adversely affects efficiency in oxygen
supply.

– Infarcted area 3 days post MI appears closer to the basal compared to 1 or 7 days
post MI. This finding indicates a normalization of the effect of infarction on day
3 post MI.

– Existence of a possible relation between the appearance of dilation or constriction
of microvessels and the time that has lapsed since infarction. In particular, we
observe a tendency for an initial dilation of the vessels in infarcted areas 1 day
post MI, a subsequent constriction 3 days post MI followed by possible pruning
of microvessels and dilation of the remaining microvessels.

– As expected, changes at remote areas are not significant or they are milder than
the ones observed in the infarcted areas, but as pathology progresses they appear
intensified.

– Changes at later time points following MI (45 days) persist and intensify in
infarcted but also remote areas when no therapy is applied.

• Identification of an optimal time frame for therapeutic interventions about 3 days post
MI.

• The first microvascular data on permeability tensors, pressure drop and tissue perfusion
before and following MI obtained through image-based simulations.

6.2 Impact

The response of the microvasculature to tissue injury is crucial to limiting damage and
promoting repair. Nonetheless, therapies involving manipulation of the microvasculature
have been found to have limited, if any, effectiveness and applicability in the clinic. This
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is particularly true in the case of Cardiovascular Disease (CVD). Failure of such methods
is in part related to a lack of knowledge about the profound changes that occur in the
microvasculature in response to CVD. To overcome this limitation, an important component
is imaging data, that permit detailed visualization of the microvasculature, coupled with
computational methods for unbiased quantitative analysis and subsequent modelling of the
biological processes or of properties that cannot be measured experimentally.

In an effort to advance this exciting area of science and cover the knowledge gap regarding
the microvasculature with quantitative and reliable data, we presented an in-depth study of
the coronary microvasculature based on a newly developed fully automated image analysis
pipeline. The pipeline permits the 3D reconstruction of the microvasculature and subsequent
acquisition of novel, quantitative insights into its structure and into changes occurring at
different stages of pathology. The pipeline was applied on a model of MI, one of the leading
complications of CVD. The findings reached by the quantitative analysis were complemented
with image-based computational simulations of tissue scale blood flow properties. This
permitted us to go beyond experimental measurements.

Previous studies in the quantification of microvascular changes after MI have relied
merely on a few traditional metrics extracted manually or via supervised analysis from
a limited number of images, 2D sections or 2D maximum intensity projections. On the
contrary, the fully automated nature of our approach ensures that reliable and reproducible
conclusions can be reached while respecting the inherently 3D nature of the microvasculature.
This would have been infeasible or would have required a tremendous amount of time and
effort if manual or supervised analysis had been applied instead. In addition, the outcome
would have been susceptible to subjectivity and human error. Therefore, studies based on
fully automated approaches are of pivotal importance in the growing quest for quantitative
biology and reproducible findings.

Moreover, the tools and data provided within this work are of interest to computational
and experimental scientists but also to medical researchers. In particular, the quantitative
data can serve as reference and basis for comparisons for future studies in the field of cardiac
microvascular research, as well as for studies modelling microcirculation at various stages
of pathology. In addition, the permeability tensors of this work can be used to parametrise
multi-scale models of coronary microvascular perfusion and also to obtain unprecedented
insight into myocardial blood flow and its relation to the microvasculature.

Lastly, although our study was performed in a model of MI, the applicability of the
developed open-source solutions for the reconstruction, analysis and recognition of complex
3D microvascular networks is not limited to this field, but could also facilitate the in-depth
study of any condition that has an impact on the microvasculature and impairs tissue perfusion,
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including brain disease, tumours and diabetes. In fact, our automated image analysis pipeline
or its modules have been successfully applied in other biomedical problems, while other
novel applications are under investigation. More precisely, by means of our developed tools
we have analysed the following:

• Breast tumor microvasculature to elucidate the effect of different stromal Caveolin-1
(CAV1) expression levels in Triple Negative Breast Cancer.

In-depth characterization of tumor xenograft vasculature labelled with CD31 and im-
aged by confocal microscopy was performed by means of our 3D fully automated
image analysis pipeline to achieve unbiased quantification of microvascular networks.
We analysed images under different stromal CAV1 expression levels and acquired
by different microscopes. The pipeline, as described in this thesis, permits quantifi-
cation of the major features of the vascular networks, including their morphology
and angioarchitecture, without human intervention. Here, we solely used modules
of the pipeline that permit the extraction of parameters with physiological meaning
with regard to tumour vasculature which only partially consists of functional vessels.
Adequate modifications/additions to the pipeline regarding the segmentation method
were developed. Necessary relevant adaptations of the pipeline and results can be
found at [44].

• Mouse microvasculature after MI with and without applying a therapeutic approach.

The application of our pipeline permitted identification of subtle, yet biologically
significant, changes in the microvasculature after a novel angiotherapy was applied.
Modifications and an additional module have been incorporated to the pipeline to
account for the differences in behavior of the staining markers between mouse and
porcine tissue, and for the particular nature of the mouse microvasculature. The
adaptations and the subsequent results of this work can be found at [235].

• Comparison between microvascular networks in regenerating skeletal muscle 5 and 7
days post injury from wild-type and knock-out mice lacking p38α in myeloid cells.

3D confocal images of blood vessels labelled by ICAM2 have been analysed. The
images were acquired by using different imaging systems. The work is currently under
development.
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6.3 Limitations

Despite the importance of our findings, there are some limitations to the current work. One
of the strengths of this study is the choice of the highly translational porcine animal model,
as mentioned earlier. However, due to the cost of and difficulty in handling large animals, we
were able to use only a limited number of subjects.

Furthermore, the chosen ischaemia model might influence the microvascular changes
described in this study. This means that the same changes may not be necessarily anticipated
in other ischaemia models, such as permanent coronary artery ligation or ischaemia with
longer duration. Nonetheless, this limitation could motivate future research as the presented
quantitative analysis approach paves the way for standardized analysis and future comparison
of different experimental ischaemia set-ups.

Another limitation of the present work is the loss of precise topological information at
the organ level during tissue processing and confocal microscopy imaging. Also, in spite
of the fully automated and un-biased analysis pipeline, human bias could potentially be
introduced in terms of selecting the areas to be imaged by confocal microscopy and of
adjusting microscope settings.

In addition, since no automated method can ensure 100% accuracy in terms of segmen-
tation, the exact metric numbers might deviate slightly from reality, although the trends
would remain uninfluenced given that the same method was applied to all images. Moreover,
although the improvement provided by our developed segmentation algorithm was confirmed
visually, it would be interesting to have compared our automated segmentations to manual
segmentations so as to have a quantitative metric of the deviation between both approaches.
However, given the amount of work and time required for such a comparison and as the im-
provements provided by our method were so obvious, such a comparison was not considered
cost and time efficient.

It should also be noted that running the complete image analysis pipeline on large
images can be computationally and time demanding, but this drawback can be balanced out
because it does not requires human intervention and it, therefore, minimizes costs and labour
requirements while facilitating calculation of complex metrics.

Some additional limitations exist in terms of the modelling framework. These are similar
to those of theoretical models in general, i.e. we have had to make a series of assumptions in
order to perform the simulations. Nonetheless, when possible we tried to make sure that the
effect of our assumptions was minimal. Such examples include the assumption that deletion
of blind-ends has minimal effect on the calculation of the permeability tensors as well as the
assumption of independent flow among sub-networks, the cut-off size of sub-networks to
be excluded etc. Lastly, we have assumed steady laminar flow. Although the assumption
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Fig. 6.1 Software under development for the open-source bioimage analysis pipeline pre-
sented for the analysis of microvascular data.

stands true due to the very small Reynolds number in microcirculation, it would have been
interesting to have also incorporated pulsatile flow.

6.4 Future work

Directions for future research have been, in part, indirectly described by the contributions,
impact and limitations of the present thesis, but they are also summarized in this section. An
area of future work involves the application of the proposed computational tools in image
analysis and image-based microvascular perfusion modelling in future studies of MI and
other biomedical problems. As mentioned previously, the approaches developed as part
of this thesis can be applied to any biomedical problem where the microvasculature is a
diagnostic or therapeutic target. Research in this direction has already been initiated, as noted
in section 6.2.

Moreover, within the context of research related to MI, an area for future work in
terms of quantitative image analysis could involve evaluation of possible angiotherapies,
as stated earlier. The first effort in this direction was the evaluation of the response of the
microvasculature to a combined VEGFA/S1P gene-cell therapy to promote revascularization
and microvascular salvage after MI in mice [235].

Furthermore, it would be interesting to increase the number of subjects used in this
work to further strengthen the findings and to enable comparison of the estimated blood
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flow properties at subject level. It would be also particularly interesting to combine the
developed quantitative analysis approaches with multi-scale study of the microvasculature.
This could be achieved by combining imaging modalities that permit wide field-views such
as micro-CT, with confocal microscopy for the assessment of particular regions of interest
with higher resolution. Such an approach would further enlighten our knowledge of the
coronary microvasculature and its microvascular response after MI. Furthermore, a deeper
understanding could be achieved by performing a detailed study of different regions within
the same heart. Towards this, the areas could be sampled by the use of surgical biopsy punch
during sample collection, as it was done for the study of tumorous networks [183]. Such an
approach would permit preservation of rough topological information.

In addition, although the pig animal model was the focus of this work, another exciting
area of future research could be the application of the developed methods on other animal
models to perform a comparative, quantitative study of the microvascular response of MI
in different preclinical animal models . Our method could be also deployed in the study
of different experimental models of MI, e.g. permanent coronary artery ligation, versus
ischaemia with perfusion, so as to further advance our knowledge regarding MI. Moreover,
the approach could be used to compare the effect of ischaemia duration and cardioprotective
strategies, such as preconditioning [88].

Regarding specifically the modelling framework of this work, it would be of paramount
interest to compare the tissue perfusion results with measurements from magnetic resonance
imaging (MRI) data. This would be a challenging task because the voxel size of a typical
MRI is larger than the volume that can be visualized by a confocal system and due to the
loss of the topological information during acquisition. However, if we could overcome
these limitations, the comparison between modelling results and MRI measurements would
enable us to enhance our understanding of how microvascular flow is related to whole organ
measurements. In this respect, retaining part of the topological information by biopsy punch
during acquisition, as described earlier, could be helpful. Moreover, several areas could be
imaged to cover a voxel or sub-voxel of an MRI.

Another area for future research could include extension of the developed image-based
mathematical modelling framework to simulate blood flow in individual vessels of the porcine
cardiac tissue volumes of our dataset. To achieve this, we would have to tackle the lack
of functional data for setting appropriate boundary conditions at the inlet and outlet nodes
of the network. For this purpose, we envision to use the output of the continuum model
and, more precisely, the estimated myocardial blood flow, to solve an optimization problem
[75] for estimating boundary conditions, such as pressure or flow, given the tissue scale
blood flow properties. Combination of such an optimization routine with a discrete blood
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flow model, similarly to [213], will enable subsequent simulation of hemodynamics of each
segment of the microvasculature and it would therefore allow us to study their distributions.
Furthermore, structural information, combined with blood flow simulations, at segment level
would allow detailed simulation of transport of oxygen at the cardiac tissue spanning several
stages after MI. Once blood flow and oxygen will have been simulated, a step further would
have involved theoretical simulations of angiogenesis, structural adaptations and pruning
[200], to unravel the mechanism or combination of mechanisms that control the ischaemic
tissue phenotype or that could be applied as a therapeutic approach to reverse the effect
that MI has had on the tissue. Moreover, future integration of imaging data regarding the
microvasculature with the molecular information obtained by omics analysis performed
within "CardioNext" [16] can revolutionize our understanding of MI by shedding light to
phenotypic and molecular mechanisms.

Last but not least, the development of a graphical user interface for the algorithms
developed within this work is another interesting area of future work. The automated image
analysis pipeline code is open-source and freely available at https://bitbucket.org/xenia_gk/
microvasculatureanalysis_gkontra_et_al_2018 in order to enable application and adaptations
of the pipeline in future research. The code is organized in modules and documented in detail.
However, the lack of a graphical interface precludes its use by users without programming
experience. For this reason, a software suite for the image analysis pipeline is currently being
developed. The general design of the software is provided in Fig. 6.1. The code will remain
publicly available in order to enable potential adaptations and extensions that are usually
necessary to tackle other biomedical problems. Efforts will also focus on improving the
speed and computational requirements of the initial code. This, along with its open-source
nature, will enhance applicability and extensibility of our approaches for future studies.
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