SUPPLEMENTARY INFORMATION

Influence of carburization time on the activity of Mo₂C/CNF catalysts for the HDO of guaiacol

E. Ochoa, D. Torres, J.L. Pinilla¹, I. Suelves

Instituto de Carboquímica, CSIC, C/ Miguel Luesma Castán 4, Zaragoza 50018, Spain

¹ Corresponding author: José Luis Pinilla (jlpinilla@icb.csic.es)

EXPERIMENTAL

Formulas used for the calculation of specific surface area of Mo_2C , guaiacol conversion, yield and specific yield to a product i, HDO ratio and carbon balance.

• Surface area-weighted diameter of Mo₂C ($d_{\bar{s}}$):

$$d_{\bar{s}}(cm) = \frac{\sum_{i} N_{i} \cdot d_{i}^{3}}{\sum_{i} N_{i} \cdot d_{i}^{2}}$$

Where, d_i is the diameter of Mo₂C nanoparticles and N_i is the number of those Mo₂C measured from STEM images.

• Specific surface area of Mo_2C on the catalyst (S_{Mo_2C}) :

$$S_{Mo_2C}\left(\frac{cm^2}{g}\right) = \frac{6}{8.9 \cdot d_{\bar{s}}} \cdot \frac{g_{Mo_2C}}{g_{cat}}$$

Where, 8.9 is the Mo₂C density (g/cm³), $d_{\bar{s}}$ is the surface area-weighted diameter calculated as described above and g_{Mo_2C}/g_{cat} is the mass of Mo₂C per gram of catalyst.

• Guaiacol conversion (X_{Gua}):

$$X_{Gua} (\%) = \frac{n_{0,Gua} - n_{f,Gua}}{n_{0,Gua}} x \ 100$$

Where, $n_{0,Gua}$ and $n_{f,Gua}$ are the initial and final moles of guaiacol in the feedstock and in the liquid product, respectively.

• Yield to a product *i* (*Y_i*; where *i* represents any of the products obtained from the guaiacol):

$$Y_i (wt.\%) = \left(\frac{m_i}{m_{0,Gua}}\right) x \ 100$$

Where, m_i is the final weight of a product *i* in the reaction liquid and $m_{0,Gua}$ is the initial weight of guaiacol in the feedstock.

• Specific product yield (*SPY_i*; where *i* represents any of the products obtained from the guaiacol):

$$SPY_i\left(\frac{mol_i}{mol_{Mo}}\right) = \frac{n_i}{n_{Mo}}$$

Where, n_i and n_{Mo} are the final moles of a product *i* in the reaction liquid and the moles of Mo in the catalyst, respectively.

• *HDO ratio* as the amount of oxygen removed from guaiacol:

HDO ratio (%) =
$$\left(\frac{n_{0,OX} - n_{f,OX}}{n_{0,OX}}\right) x \ 100$$

Where, $n_{0,Ox}$ are the initial moles of oxygen in the feedstock and $n_{f,Ox}$ are the moles of oxygen in the product.

• Carbon balance of all products, including the non-reacted guaiacol:

$$C(\%) = \frac{n_{f,C}}{n_{0,C}} x 100$$

Where $n_{f,C}$ are the moles of carbon in the product and $n_{0,C}$ are the moles of carbon in the guaiacol in the feedstock.

Yield (wt. %)	Carburization time (h)				
	1	2	4	6	18
Cyclohex.+Benzene	3.95	15.18	8.53	10.83	24.52
Anisole	3.14	11.23	5.22	2.41	1.98
Phenol	12.65	12.13	11.23	18.24	4.43
Methylcyclohexanol	1.59	1.79	1.45	2.68	12.47
Cresol	1.86	0.61	1.12	0.77	2.95
Xylenol	1.13	0.00	0.00	0.00	0.00
Catechol	3.04	3.27	0.54	0.44	2.76
Others	10.92	28.55	26.61	37.73	31.12

Table S1. Product yield (wt. %) of the products measured in the liquid phase by GC after the HDO of guaiacol (conditions: $300 \,^{\circ}$ C, $20 \,^{\circ}$ bar of H₂ and 2 h).

Figure S2. EDX performed to catalyst carburized at different times.

Figure S3. Mo₂C crystallite size distribution of the catalysts carburized at 1, 2, 4, 6, and 18h.

