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Retinal degenerative diseases are a group of heterogeneous diseases that include

age-related macular degeneration (AMD), retinitis pigmentosa (RP), and diabetic

retinopathy (DR). The progressive degeneration of the retinal neurons results in a severe

deterioration of the visual function. Neuroinflammation is an early hallmark of many

neurodegenerative disorders of the retina including AMD, RP and DR. Microglial cells, key

components of the retinal immune defense system, are activated in retinal degenerative

diseases. In the microglia the interplay between the proinflammatory/classically activated

or antiinflammatory/alternatively activated phenotypes is a complex dynamic process

that occurs during the course of disease due to the different environmental signals

related to pathophysiological conditions. In this regard, an adequate transition from the

proinflammatory to the anti-inflammatory response is necessary to counteract retinal

neurodegeneration and its subsequent damage that leads to the loss of visual function.

Insulin like-growth factor-1 (IGF-1) has been considered as a pleiotropic factor in

the retina under health or disease conditions and several effects of IGF-1 in retinal

immune modulation have been described. In this review, we provide recent insights of

inflammation as a common feature of retinal diseases (AMD, RP and RD) highlighting the

role of microglia, exosomes and IGF-1 in this process.
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ROLE OF IGF-1 IN RETINAL INFLAMMATION AND
DEGENERATION

Neuroinflammation is currently considered as an early event in the pathophysiology of many
neurodegenerative disorders because despite its essential role in protecting tissues during the early
steps of disease, the continuous presence of proinflammatory stimuli induces cellular damage
(Glass et al., 2010; Arroba et al., 2016a; Arroba and Valverde, 2017). It is widely accepted that in
the central nervous system (CNS) astrocytes and microglia are the cells that play a critical role in
neuroinflammation that precedes the neurodegenerative diseases (Cherry et al., 2014; Arroba et al.,
2016a). In this scenario, activated microglia and reactive astrocytes participate into the release of
different inflammatory mediators including cytokines, chemokines, reactive oxygen species (ROS),
and nitric oxide (NO), all of them contributing to the maintenance of a chronic neuroinflammatory
milieu that ultimately may be responsible of neurotoxic damage in the CNS (Cuenca et al., 2014).

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://doi.org/10.3389/fnagi.2018.00203
http://crossmark.crossref.org/dialog/?doi=10.3389/fnagi.2018.00203&domain=pdf&date_stamp=2018-07-05
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:anaarroba@gmail.com
mailto:avalverde@iib.uam.es
https://doi.org/10.3389/fnagi.2018.00203
https://www.frontiersin.org/articles/10.3389/fnagi.2018.00203/full
http://loop.frontiersin.org/people/546784/overview
http://loop.frontiersin.org/people/355596/overview
http://loop.frontiersin.org/people/575723/overview
http://loop.frontiersin.org/people/72436/overview


Arroba et al. IGF-I, Inflammation and Retinal Neurodegenerations

Insulin-like growth factor-I (IGF-1) is the ligand of the IGF-1
receptor (IGF-1R) which belongs to the tyrosine kinase receptor
superfamily and regulates normal developmental growth through
endocrine and autocrine/paracrine-mediated mechanisms (Bates
et al., 1995). IGF-1 is also a potent survival factor for many
tissues (Heemskerk et al., 1999). Particularly, IGF-1 is a
neurotrophic peptide in the CNS where it promotes synaptic
plasticity, enhances nerve growth and triggers antiapoptotic-
mediated signaling cascades (Carro et al., 2003). All these
IGF-1 functions are critical for the protection of nerve cells
against neurodegenerative processes (Varela-Nieto et al., 2013;
Yamamoto et al., 2014). Deficiency in the IGF1 gene in humans
is related with neuronal disorders such as microcephaly, mental
retardation, and bilateral sensorineural deafness (Woods et al.,
1996; Walenkamp et al., 2005; Netchine et al., 2009).

In several pathologies such as type 1 diabetes mellitus (T1DM)
antiinflammatory properties have been attributed to the IGF-
1/IGF-IR system in the CNS by counteracting the inflammatory
milieu triggered by microglial activation in the hypothalamus
(Zhang et al., 2016). However, controversial effects of this
peptide have been described regarding its proinflammatory effect
in other pathological contexts. In a recent study, IGF-1 was
overexpressed in hepatic stellate cells of mice deficient in the
Abcb4 gene, a preclinical model for chronic cholangiopathy.
The authors of this work found a higher stimulation of the
fibrogenic processes in these double mutant mice which was
accompanied by the increased expression of proinflammatory
markers together with the presence of infiltrating macrophages
in the liver (Sokolovic et al., 2013). Regarding this duality
of IGF-1 effects in inflammation, a recent study in zebrafish
has evidenced that growth factors including IGF-1 and insulin
together with cytokines activate common signaling pathways that
are necessary for the reprogramming of Müller glial cells and
retinal regeneration upon injury (Wan et al., 2014).

The retina has been considered as a projection of the CNS and,
in this tissue, neuroinflammatory processes occur in a similar way
as in the brain. In fact, retina and brain share similarities due to
their common neuroectodermal origin and derivation from the
anterior neural tube and, therefore, both tissues respond similarly
to the proinflammatory insults. Based on that, it is conceivable
to integrate the retina as a part of the brain (MacCormick et al.,
2015).

Retinal degenerative diseases are heterogeneous pathologies;
among them, age-related macular degeneration (AMD), retinitis
pigmentosa (RP), and diabetic retinopathy (DR) have a high
incidence and prevalence in humans (Hernandez et al., 2016;
Narayan et al., 2016; Shaw et al., 2017). In fact, a plethora
of factors including genetic alterations, aging, vascular defects,
chemical insults, oxidative stress, or light-induced damage
are responsible of the development of retinal degeneration
(Semeraro et al., 2015; van Norren and Vos, 2016). In
the pathologies associated to retinal degenerative diseases,
progressive degeneration of the retinal neurons, predominantly
in photoreceptors, retinal ganglion cells (RGCs), and cells
of the retinal pigment epithelium (RPE), results in a severe
deterioration of the visual function that in many cases leads to
a complete blindness (Nazari et al., 2015).

Inflammatory responses contribute to the pathophysiology
of numerous ocular diseases (Dick, 2017). In this regard, RPE
cells play a critical role in mediating immune responses to
stressing agents such as bacterial endotoxins or proinflammatory
cytokines. In fact, persistent inflammation can induce a severe
damage in the RPE, thereby contributing to the activation
of choroidal neovascularization (CNV), which is observed in
more advanced forms of AMD (Chen et al., 2017). In RP,
anti-retinal antibodies are associated with the development of
cystoid macular edema (Nishikawa et al., 2017) and there
are several studies suggesting that the systemic inflammatory
profile is altered and may contribute to disease progression
(Li et al., 2015; Mori et al., 2017). In addition, recent work
supports the involvement of two key factors linking type 2
diabetes mellitus (T2DM) with neurodegeneration; the elevation
of proinflammatory cytokines and the onset of insulin/IGF-
1 resistance. Moreover, in T2DM, proinflammatory cytokines
could be responsible of the disruption in the insulin/IGF-
1 signaling pathways in peripheral tissues and the pancreas
(Feve and Bastard, 2009). Likewise, accumulation of peripheral
proinflammatory mediators, some of which can cross the blood-
brain barrier, likely triggers insulin/IGF-1 resistance in the CNS
that results in the attenuation of their neuroprotective signaling
pathways, thus contributing to the onset of neurodegenerative
diseases (Arroba et al., 2011).

Many studies have shown that insulin and IGFs play a
relevant role in modulating the balance between growth and
survival of the retinal cells (Hernandez-Sanchez et al., 1995;
Frade et al., 1996; Alarcon et al., 1998). In the retina, IGF-
1 is a potent proangiogenic factor that is present in the
neovascular membranes from AMD patients (Lambooij et al.,
2003). Moreover, in those patients, elevated concentrations of
IGF-1 in plasma have been detected (Machalinska et al., 2011).
Likewise, in the majority of experimental models of RP the loss
of visual function parallels photoreceptor cell death (Chang et al.,
1993; Sancho-Pelluz et al., 2008). In this regard, in the rd10
experimental mouse model of RP proinsulin delays the death
of photoreceptors and prolongs visual function (Corrochano
et al., 2008) and, importantly, IGF-1 also decreases apoptosis of
photoreceptors in both genetic and experimentally induced RP
models (Arroba et al., 2009).

During aging, bioactive IGF-1 circulating levels are reduced, a
trend that has been associated with human frailty and cognitive
decline (Vestergaard et al., 2014). In the retina, controversies on
the beneficial or deleterious effects IGF-1/IGF-1R levels on aging-
related degenerative diseases have been reported. Regarding
deleterious effects, elderly onset patients with diabetes have lower
prevalence of proliferative DR (PDR) than those younger onset
patients for similar diabetes duration, which may be related
with lower serum IGF-1 levels detected in the older patients
(Zhang et al., 2017). Thus, less stringent glycemic control in older
onset patients with diabetes may not increase the prevalence
of PDR. On the other hand, the evaluation of mice lacking
the Igf1 gene by electroretinography and selective labeling of
retinal cells has evidenced an age-related accelerated loss in
visual function accompanied by a significant loss of cell contacts
between photoreceptors and their postsynaptic cells that may be
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related to the physiopathology of human IGF-1 deficiency and
resistance (Rodriguez-de la Rosa et al., 2012).

EFFECTS OF IGF-1 ON MICROGLIA IN
RETINAL DISEASES ASSOCIATED TO
NEURODEGENERATION

The neural retina contains a barrier system, the blood-retinal
barrier (BRB), with two components: the inner BRB formed
by tight junctions responsible of sealing neighboring capillary
endothelial cells, and the outer BRB with tight junctions that
restrict the paracellular trafficking between the retinal pigment
epithelial cells (Spadoni et al., 2017). Thus, the increase in the
permeability of the BRB results in the leak of plasma components
into the retina (Eshaq et al., 2017). Importantly, both layers
ensure an immune-privileged status of the eye and are also
essential for regulating retinal homeostasis and visual function.
In this regard, the BRB creates an immunosuppressive milieu
that inhibits the activation of immune cells as they cross the
barrier and promotes immune privilege (Forrester and Xu, 2012).
The outer BRB also expresses immunoregulatory molecules that
inhibit lymphocyte activation while the RPE of the BRB secretes
immunomodulatory mediators into the aqueous humor that
restrain the immune and inflammatory responses within the eye
(Sohn et al., 2000). Therefore, under physiological conditions,
immune cells of the circulation are not able to enter into the
retina to combat with endogenous insults. Instead, the retina has
an unique immune defense system consisting of innate immune
cells (microglia, perivascular macrophages, and dendritic cells)
and the complement system (Ramirez et al., 2017). The function
of these cells suggests that they are “gatekeepers” of the
retina. Thus, the importance of the research aimed to dissect
the function of the different inflammatory processes in the
retina and, especially the contribution of microglial-mediated
neuroinflammation that antecedes neurodegeneration, could
provide useful knowledge for the implement of challenging
therapies.

IGF-1 has been associated with the pathogenesis of BRB
breakdown. In mice, high intraocular IGF-1 due to its
overexpression in the retina increased IGF-1R-mediated
signaling resulting in the accumulation of VEGF, up-regulation
of vascular intercellular adhesion molecule I and retinal
infiltration by bone marrow-derived microglial cells. Altogether
these alterations increased vessel paracellular permeability to
both low and high molecular weight compounds and correlated
with the loss of vascular tight junction integrity. In contrast,
mice with chronically elevated serum IGF-1 did not show
alterations in the retinal vasculature structure and permeability,
indicating that circulating IGF-1 cannot initiate BRB breakdown.
Importantly, in human retinas of patients with marked gliosis a
strong up-regulation of the IGF-1R was detected, suggesting that
therapeutic interventions aimed to counteract local IGF-1 effects
may prove successful to prevent BRB disruption (Haurigot et al.,
2009).

In 1932 Pio del Rio-Hortega characterized microglial cells, a
component of the retinal immune defense system that constitutes

approximately 5–12% of the total cells of the CNS, as an exclusive
cell type in the brain with phagocytic functions that differs from
glial and neuronal cells in morphology (Ginhoux et al., 2013). In
the retina, microglial cells are distributed in the inner plexiform
and outer plexiform layers (IPL and OPL, respectively), ganglion
cell layer (GCL), and nerve fiber layer (NFL), showing highly
motile protrusions that survey the surrounding environment
(Cheng et al., 2002). Activated microglia has the capacity to move
in all directions, but this movement is not accompanied by soma
migration. Moreover, under specific circumstances microglia
may be translocated to the different retinal layers where the injury
is located (Lee et al., 2008; Arroba et al., 2016a; Arroba and
Valverde, 2017).

Under physiological conditions, microglial cells are
maintained in a resting state characterized by a small cell
body and long thin dendrites (Ginhoux et al., 2013) and
immunolabelling for Cd-11b. However, microglial cells are
chronically activated in retinal diseases such as AMD, DR, and
RP (Penfold et al., 2001; Arroba et al., 2011, 2016a) and, as
occurs in with the immune cells of the periphery, this activation
contributes to boost retinal damage and to accelerate disease
progression. Classically, microglial cells coexist in two states,
resting and activated (Nayak et al., 2014). The traditional states
or definitions of microglia are currently being modified based
on new knowledge about their role in pathogenesis. Therefore,
microglia can develop a number of different phenotypes and
functions aimed to preserve retinal homeostasis in health
and disease, mainly depending on their specific environment
(Herrera et al., 2015; Du et al., 2017).

Results from in vitro experiments have shown that, as
occurs with macrophages, activated microglia cells coexist
in two distinct phenotypes depending on the stimuli;
proinflammatory/classically activated (M1) immunolabelling
Iba-1+/iNOS+ or antiinflammatory/alternatively activated (M2)
immunolabelling Iba-1+/Arginase-1+. M1/proinflammatory
microglia releases neurotoxic and/or inflammatory mediators
including TNF-α, interleukin-1β (IL-1β), IL-6, and glutamate
and increases the expression of inducible nitric oxide synthase
(iNOS), all of them exacerbating the death of retinal neurons
(Varnum and Ikezu, 2012; Gonzalez et al., 2014). By contrast,
M2/immunoregulatory microglia induces retinal repair
and regeneration, as well as secretes growth factors and
antiinflammatory cytokines aimed to resolve inflammation and
ensure the survival of the retinal neurons (Arroba et al., 2011,
2016a,b; Li et al., 2015; Arroba and Valverde, 2017). Under the
M2 phenotype, microglia releases the typical antiinflammatory
cytokines such as IL-4, IL-13, IL-10, transforming growth factor
(TGF)-β and neurotrophic factors such as IGF-1 (Jung and Suh,
2014). To add more complexity to the diversity of microglia
polarization stages, several subclasses of M2/immnunoregulatory
activation have been identified. The M2a participates in
attenuation of inflammation whereas the M2c is involved in
restoring or repairing the tissue once the M2a response has
effectively completed its participation (Gordon et al., 2003;
Chang et al., 2009; Sica and Mantovani, 2012). Finally, a subtype
of microglia named M2b is referred to a component involved
in the memory immune response which is also able to elicit
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both pro- and responses (Edwards et al., 2007; Barilli et al.,
2014). However, as stated above, this concept initially came
from in vitro experiments with defined ligands and, therefore,
it is difficult to translate to the in vivo context where many
overlapping phenotypes in inflamed tissues coexist.

As recently reviewed (Labandeira-Garcia et al., 2017), IGF-
1 is a mitogenic factor for microglia which also modulates the
neuroinflammatory responses frommicroglial cells by promoting
a switch toward the microglial phenotype. Furthermore, the
decrease in IGF-1 that occurs with aging has been proposed to
contribute to the loss of the capacity of microglia. Therefore, a
tight modulation of IGF-1 levels is necessary for the regulation
of the neuroinflammatory responses of the microglia since,
as stated above, IGF-1 is likely be involved in inflammation
in a context-dependent manner (Hotamisligil et al., 1993;
Bluthe et al., 2006). Several studies in the retina have found a
direct relationship between microglial activation and increased
neuronal injury in experimental models of RP, glaucoma, light-
induced photoreceptor degeneration, DR, and AMD (Zeng
et al., 2005; Glybina et al., 2010). Regarding this issue, recent
work of our laboratory and others has provided new insights
on the effect of Igf1 deficiency during aging in the blockade
of autophagic flux in the retina which is closely related to
neuroinflammation. By using an experimental mouse model
of Igf1 deficiency we demonstrated for the first time that
in these mice aging concurs with retinal neuroinflammation.
Importantly, in retinas from aged Igf1-deficient mice, the
inflammatory process concurred with the blockade of the
autophagic flux (Arroba et al., 2016c). At the molecular level,
we identified elevations in the phosphorylation of mTORC1,
as well as in the levels of the autophagy substrate p62, in
whole retinal extracts. The corroboration of these results was
evidenced by transmission electronic microscopy analysis in
which we detected an accumulation of autophagosomes in the
INL and OPL layers of the retina in Igf1−/− mice at the
age of 12 months. Since it was previously reported that in
these layers the neural synapsis were disrupted (Rodriguez-de
la Rosa et al., 2012), we hypothesized that autophagy might
be a necessary process in the neuronal cells of the INL and
OPL layers of the retina to preserve photoreceptor connectivity
(Shen et al., 2016), a process which is likely negatively affected
by the proinflammatory milieu. Remarkably, in these layers the
accumulation of autophagosomes concurred with the presence
of activated amoeboid microglia (Iba-1+) (Arroba et al., 2016a).
As stated above, these are the critical layers where the cells
responsible for the amplification of the synaptic transmission,
which are highly sensitive to the inflammatory environment,
are located (Noailles et al., 2016). Altogether, the results of
our work in Igf1-deficient mouse model have identified for
the first time autophagy as an adaptive response against the
chronic activation of the inflammasome in microglial cells of
the retina during aging. In this regard, we and others have
proposed that autophagy can be considered as a relevant defense
against deterioration of the retinal synapses and visual function
(Noailles et al., 2014; Arroba et al., 2016c). In this concept, in
Igf1 deficientmice, themalfunction ofmicroglia during aging can
lead to the establishment of a chronic low-grade inflammatory

environment, favoring the onset and further progression of
retinal degeneration.

Aged-Related Macular Edema
AMD is the progressive damage in the macular region of
the retina. Although the exact mechanisms involved in its
pathogenesis have not been completely elucidated, chronic
inflammation together with oxidative stress play a major role
(Kauppinen et al., 2016). The infiltration of macrophages
from the peripheral circulation is a unique and interesting
component of the inflammatory component of AMD (Funk
et al., 2009; Lavalette et al., 2011). In this regard, one of the
characteristics of atrophic or “dry” AMD is the accumulation
of microglia/macrophages in the outer retina and subretinal
space (Penfold et al., 1987, 2001). Previous investigations
have reported that eyes of patients with AMD have elevated
concentrations of proinflammatory cytokines that modify the
activity of CNV (Hageman et al., 2001). Histological studies
have revealed that chronic inflammation occurs at the retinal
pigment epithelial/choroidal interface in eyes with early signs
of AMD such as drusen (Hernandez-Zimbron et al., 2018).
Furthermore, in exudative AMD a higher up regulation
of inflammatory cytokines/chemokines from RPE cells and
macrophages/monocytes positively and negatively control CNV
activity (Kauppinen et al., 2016). Regarding the involvement
of the IGF-1 system in AMD, a case-control study involving
962 subjects showed that in non-diabetic individuals from the
Age-Related Eye Disease Study (AREDS) Genetic Repository
the SNP rs2872060 in the IGF-1R was significantly associated
with the risk for advanced AMD and this association remained
significant after patient stratification by the two types of the
disease: neovascularization and geographic atrophy (Chiu et al.,
2011). Interestingly, the risk allele (G) showed an additive
effect and a significant interaction with BMI on the risk for
neovascularization, but not for geographic atrophy. On the
other hand, another study has reported increased levels of
insulin-like growth factor binding protein 2 (IGFBP-2) and
IGF-1 in exudative AMD eyes, indicating that defects in the
expression of IGF-related molecules may be involved in the
disease pathogenesis for exudative AMD (Cha et al., 2013).

Retinitis Pigmentosa
RP belongs to a retinal degenerative group of inherited
diseases that affects about 2.5 million people worldwide and
is characterized by a progressive photoreceptor cell death that
ultimately leads to a severe vision loss (Dias et al., 2018). Initially,
the cell death affects only to photoreceptor cells; however,
during the progression of the disease abnormalities in the RPE
and the cones are detected (Campochiaro and Mir, 2018). In
addition to mutations in 70 different genes, a proinflammatory
component is also a hallmark of the pathogenesis of RP [http://
www.retnet.org (latest entry 2017)] (Gupta et al., 2003; Whitcup
et al., 2013; Yoshida et al., 2013; Eandi et al., 2016). In
fact, the levels of proinflammatory cytokines have been found
markedly elevated in both the vitreous and aqueous humor from
RP patients (Yoshida et al., 2013), supporting the interaction
between photoreceptor cell death and intraocular inflammation.
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In this context, hyperactivation of microglial cells has been
demonstrated to play an important role in the photoreceptor
neurodegeneration in animal models of RP (Peng et al., 2014). A
recent study using on live-cell imaging in the rd10 mouse model
of RP has identified that during the early stages of the disease
microglia is able to migrate, interact with, and phagocyte non-
apoptotic photoreceptors, after which it becomes hyperactivated
and promotes the loss of non- and apoptotic photoreceptors
(Zhao et al., 2015). The authors of this study propose that
primary microglial phagocytosis could be a potential cellular
target for therapy. Remarkably, microglial activation mediates
photoreceptor loss not only in RP, but also in AMD and DR
in both preclinical animal models as well as in human patients
(Zhao et al., 2015). In this regard, the emerging therapeutic
strategies to combat degenerative diseases of the retina are
focused in the attenuation of microglial activation (Karlstetter
et al., 2015). However, to achieve this purpose more research
is needed to decipher new molecular mechanisms involved in
microglial activation during retinal degenerative diseases.

The effect of IGF-1 as a neuroprotective factor has been also
demonstrated during RP progression. In this regard, our previous
work has found a beneficial effect of IGF-1 since it attenuated
reactive gliosis and apoptosis in ex vivo retinal explants from
rd10 mice (Arroba et al., 2011). Importantly, the elimination of
retinal microglia by using of clodronate-filled liposomes reduced
the efficacy of IGF-1 on photoreceptor viability. Likewise, IGF-
1 was not able to inhibit the reactive Müller gliosis in absence
of microglial cells. Altogether, these results indicate that the
beneficial effects of IGF-1 are mediated, at least in part, by the
microglia (Arroba et al., 2011, 2014). These findings suggest first
a critical role of the crosstalk between microglia and Müller glial
cells during neuroprotection (Arroba et al., 2014) and, second,
that microglia is necessary for the neuroprotective effects of
IGF-1 in the dystrophic retina (Arroba et al., 2011).

Diabetic Retinopathy
Among the microvascular complications of diabetes, DR is
the most undesirable one. DR is a progressive retinal disease
and a leading cause of blindness in diabetic patients due to
degeneration of both the retinal vasculature and retinal neurons
(Hernandez et al., 2016). DR is broadly classified into two stages:
non-proliferative DR (NPDR) and proliferative DR (PDR). This
classification is determined by the presence of neovascularization
in the retina (Nentwich and Ulbig, 2015). NPDR typically
precedes PDR and is divided into the following stages: mild,
moderate, severe, and very severe based on the probability of
disease progression to PDR. PDR is defined by the presence
of neovascularization and is divided into the following stages:
early, high risk, and severe neovascularization. Growing evidence
suggests that neuroinflammation plays an early role in mediating
neuronal and vascular pathology in DR (Oellers and Mahmoud,
2016).

During DR progression, the retina is affected by both external
signals such as high glucose, advanced glycation-end products
(AGEs) and circulating proinflammatoty cytokines (Dong et al.,
2014), as well as by intrinsic signals (Sappington et al., 2006;
Legacy et al., 2013). In the context of neuroinflammation,

high levels of proinflammatory cytokines are detected in the
retina in different animal models of DR (Li and Puro, 2002)
and in retinas from diabetic patients (Arroba et al., 2016a;
Hernandez et al., 2016). We have recently reported that during
DR progression in diabetic db/db mice there is a switch from
antiinflammatory to proinflammatory polarized microglia in
parallel to the deterioration of visual function (Arroba et al.,
2016a). In addition, in this mouse model, retinal gliosis was also
detected suggesting that in addition to microglia, macroglia likely
contributes to this switch boosting inflammation and promoting
reactive gliosis and this scenario concurs with the death of retinal
cells by apoptosis (Bogdanov et al., 2014). Whether IGF-1 is able
to modulate the dynamics of microglia polarization in the setting
of DR is still unknown. This is a controversial issue due to the
opposite effects of IGF-1 reported in the retina with deleterious
effects on the retinal vasculature (Hellstrom et al., 2002), but
positive effects in the survival of retinal neurons (Kermer et al.,
2000). Villacampa and co-workers have generated a transgenic
mice overexpressing Igf1 in photoreceptors to evaluate the
deleterious effects of the persistent elevation of intraocular IGF-1
on retinal functionality (Villacampa et al., 2013). They showed
a progressive decline in the electroretinogram amplitudes in
Igf1 transgenic animals, leading to a complete loss of response
with aging. Importantly, markers of retinal stress, gliosis, and
microgliosis were already present at early stages of the disease
before the detection of major vascular alterations. Despite these
interesting findings, the translation of this study to the human
retinal diseases deserves further research.

IGF-1 AND INTERCELLULAR
COMMUNICATIONS IN RETINAL
DISEASES ASSOCIATED TO
NEUROINFLAMMATION: INVOLVEMENT
OF EXTRACELLULAR VESICLES

Extracellular vesicles (EVs) have been related to some pathologies
since they are involved in a variety of immune activities having
protective or detrimental properties. It is also well known that
EVs have a heterogeneous molecular composition including
DNA, mRNAs, micro RNAs (miRNAs), integrins, cytokines,
bioactive lipids, and organelles, being these molecules similar
to those of their parental cells (Colombo et al., 2014). EVs
can be detected in biological fluids such as plasma (Sharma
et al., 2018) and the cerebral spinal fluid (McKeever et al.,
2018). Of relevance, microglial EVs retain many features of the
original cells where they come from and, consequently, they are
considered as a “liquid biopsy” that provide relevant information
about the status of activation of their microglial parental cells
during the course of the neurodegenerative processes (Kalani
et al., 2014; Nigro et al., 2016). Furthermore, the EVs cargo
is modulated by the pathophysiological environment in a way
that they become vehicles loaded with pathogenic cargo such
as aggregating proteins in neurodegenerative diseases (Schneider
and Simons, 2013), oncoproteins in cancer (Nakano et al.,
2015), or inflammatory cytokines in neuroinflammatory diseases
(Verderio et al., 2012; Prada C. E. et al., 2013).
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EVs present a small size (<1,000 nm for microvesices and
<100 nm for exosomes) which favors the migration from the
site of discharge and allows the communication between distant
cells (Mulcahy et al., 2014). In the brain, EVs released from the
surface of reactive microglia provoke glial activation due to the
induction of an inflammatory reaction in target glial cells, both
microglia and astrocytes in an autocrine and paracrine manner,
respectively (Antonucci et al., 2012). The inflammatory reaction
induced by microglial cells-derived EVs is related to their ability
of transferring mRNAs encoding inflammatory cytokines such as
IL-1β (Prada I. et al., 2013). However, little or no uptake of EVs
or exosomes occurs in astrocytes, and there are no evidences for
microglia to astrocyte transfer of nucleic acids through EVs. It
should be noted that EVs production is not exclusively restricted
to microglial cells because, as it will be detailed below, the RPE is
proactive secreting EVs.

Recent investigations have described that EVs from the
aqueous humor of patients with AMD present specific proteins
suggesting that EVs could be used as predictor biomarkers of this
retinal disease (Biasutto et al., 2013; Kang et al., 2014; Tong et al.,
2016). In another study, the molecular processes associated to
aged RPE have revealed increased in autophagy and exocytotic
activity that was associated with the presence of autophagic EVs
markers (Atienzar-Aroca et al., 2016; Kannan et al., 2016). In
this regard, it has been demonstrated that RPE cells release EVs
under oxidative stress environment and this is accompanied with
a high expression of VEGFR in their membrane and increased
VEGFR mRNA cargo (Wang et al., 2009). Moreover, EVs can
transport proteins related with essential signaling pathways such
as mitogen-activated protein kinase (MAPK), nuclear factor
kB (NFKB), and protein kinase B (AKT), as well as miRNAs
(i.e., miR-294 or miR-302) into retinal microvascular endothelial
cells (Tong et al., 2016). These miRNAs and proteins play
important roles in processes associated with cell proliferation
and, taking this into account, it has been suggested that RPE
cells-derived EVs could contribute to the development of CVN
(Tong et al., 2016). Beside the active role of RPE cells in
exosomes secretion, the Hajrasouliha’s study has revealed that
exosomes from retinal astrocytes from non-pathologic mouse
contain several antiangiogenic factors (PEDF and endostatin)
that block the development of CNV in a laser-induced mouse
model by targeting both macrophages and vascular endothelial
cells (Hajrasouliha et al., 2013). Altogether, these results strongly
suggest that, in the eye, exosomes derived from different ocular
cells may play an important role for modulating the balance of
anti- and pro-angiogenesis and the integrity of vision function.

EVs have also been involved in photoreceptor cells of the
vertebrate retina which are continuously renewed by the addition
of membranes at the base of the outer segments (OS) and removal
of the older discs form the distal end (Besharse et al., 1977).
Studies in retinas of other species such as Xenopus have shown
that OS-bound proteins are continuously sorted and trafficked
from the endoplasmic reticulum and trans-Golgi network as
cargo in EVs from the inner segment toward the OS (Papermaster
et al., 1985). The existence of interactions between EVs cargo
proteins and proteins involved in the transport machinery is
supported by several studies in animal models demonstrating

that a defect in only one of these proteins can lead to a total loss
of polarity in the protein trafficking resulting in photoreceptor
death (Hagstrom et al., 1999; Deretic, 2006).

Actually, there are no studies in RP retinal degeneration
disease linked to EVs secretion. Only a recent study which
analyzes RP in combination with hearing loss describes a
novel syndrome caused by biallelic mutations in the “exosome
component 2” (EXOSC2) gene (Giunta et al., 2016). This
study was performed in three patients from two German
families without any relationship that were affected by a
Mendelian disorder characterized by a progressive sensorineural
hearing loss, childhood myopia, early onset RP, short stature,
hypothyroidism, premature aging, recognizable facial gestalt, and
mild intellectual disability. The exome sequencing identified
homozygous or heterozygous missense variants in the EXOSC2
gene in all three patients. EXOSC2 encodes the “ribosomal RNA-
processing protein 4” (RRP4), one of the core components of
the RNA exosome. The phenotype associated to EXOSC2 was
characterized by only a minimal overlap with previously reported
diseases associated with mutations in the RNA exosome core
component genes EXOSC3 and EXOSC8 (Giunta et al., 2016).
The clinical consequences of altered RNA exosome function
during RP is a novel condition which deserves further studies.

Although the role of EVs in the IGF-1 system in the
retina is still unknown, it has been recently reported that
mesenchymal stem cells-derived exosomes activate several
signaling pathways which are involved in wound healing (AKT,
MAPK, and STAT3) and are able to induce the expression
of IGF-1 among other growth factors (Shabbir et al., 2015).
In another study, exosomes derived from cardiomyocytes of
a type 2 diabetic rat GK (GK-exosomes) inhibited mouse
cardiac endothelial cells proliferation, migration and tube-like
formation, whereas all these parameters were promoted by
exosomes from non-diabetic rats (WT-exosomes) (Wang et al.,
2014). Mechanistically, GK-exosomes encapsulated higher levels
of miR-320 which functionally down-regulated target genes
in mouse cardiac endothelial cells, one of which was IGF-1.
Altogether these results conclude that in an experimental model
of T2DM cardiomyocytes have an antiangiogenic function which
is mediated by IGF-1 and involves the participation of exosomes
in the transference of the miR-320 into endothelial cells. More
research will be necessary to unravel cellular interactions via EVs
within the retina and the processes modulated by IGF-1.

EMERGING INSIGHTS ON THE ROLE OF
IGF-1 IN TARGETING INFLAMMATION IN
RETINAL DISEASES

It has been reported that in the brain the antiinflammatory
effects of some compounds rely in their capability to guide the
polarization of microglia toward an antiinflammatory phenotype
(Chio et al., 2015). In animal models of several diseases associated
to inflammation, including neurodegenerative diseases, it has
been described how microglia changes the polarization state
under treatment with omega-3 polyunsaturated fatty acids by
decreasing the production of neurotoxic and proinflammatory
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molecules (Calviello et al., 2013; Serini and Calviello, 2016).
Based on that, activation of microglial cells toward the
antiinflammatory response and the subsequent reduction of
proinflammatory cytokines are promising approaches for retinal
neuroprotection in several models of retinal degeneration such
as AMD, DR, and RP. In fact, several compounds from distinct
origins elicit protective effects against inflammation, ischemia,
light-, oxygen-, and age-associated pathologies of the neural
retina in animal models (SanGiovanni and Chew, 2005; Tuo
et al., 2009; Dornstauder et al., 2012) by their ability to
resolve inflammation; all this effects being essential to avoid
the progression of these retinal diseases. Not only the anti-
inflammatory microglia is directly responsible of the protection
against neuroinflammation since it has been described that
microglia can elicit indirect effects. In this regard and, as stated
above, we have demonstrated the requirement of the presence
of microglia for the neuroprotective effect of IGF-1 in a mouse
model of RP (Arroba et al., 2011).

AMD progression concurs with chronic and
pathophysiological low-grade inflammation associated with
a high cellular metabolism which contributes to generate ROS,
oxidized lipoproteins, advanced glycation end-products, and
apoptotic cells (Xu et al., 2009). Interestingly, in early AMD,
microglia acts mainly with scavenger and antiinflammatory

properties. However, in late AMD in diabetic rats, microglia
promotes the angiogenic activity by increasing the expression of
VEGF among different growth factors as well as ROS (Ma et al.,
2007).

Recently, Cotter’s laboratory and ours have reported that
different kind of compounds (progesterone, sp2-iminosugar
dodecylsulfoxide or chemical inhibitors of protein tyrosine
phosphatase 1B) are able to act on microglial cells to reduce
the proinflammatory milieu by decreasing TNF-α, IL-1β, and
iNOS levels and stimulate the antiinflammatory phenotypes
by increasing CD206/MRC1 and arginase-1 in mouse models
of models of RP (rd10) or DR (db/db), respectively (Arroba
et al., 2016a; Roche et al., 2016). Regarding DR, the treatment
of retinal explants from db/db mice with the sp2-iminosugar
derivative compound R-DS-ONJ ameliorated the reactive
gliosis already detected in those retinas, as well as increased
the antiinflammatory marker arginase-1, thereby reflecting a
regression toward an early stage of DR (Arroba et al., 2016a).
In this study, we also achieved the mechanism of action of
the R-DS-ONJ compound by performing in vitro cell-based
approaches aimed to mimic the proinflammatory environment
associated to DR. By using Bv.2 mouse microglia cells stimulated
with LPS, a proinflammatory stimulus that resembles the in
vivo situation in db/db mice in the course of DR, we found

FIGURE 1 | Schematic representation of changes in microglia during retinal neurodegeneration and the role of IGF-1 in this process. IGF-1 levels decrease along

aging and in some neurodegenerative diseases and this is associated to a switch in microglia polarization toward a proinflammatory status. In this context, exosomes

participate into cell-to-cell communications as vehicles which transport anti- or proinflammatory miRNAS.
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that the co-treatment of LPS with IL4/IL3 (M2 cytokines) or
the sp2-iminosugar dodecylsulfoxide R-DS-ONJ ameliorated the
microglial proinflammatory phenotype induced by endotoxemia,
as reflected by marked decreases in the levels of nitrites, iNOS
mRNA and protein expression as well as by reductions in
mRNAs encoding proinflammatory cytokines. At the molecular
level, a cocktail of antiinflammatory cytokines or R-DS-ONJ
reduced LPS-mediated activation of stress kinases (JNK and
p38 MAPK) and prevented the degradation of IkBα and the
nuclear translocation of the proinflammatory transcription factor
NFκB. These two studies have provided new insights on targeting
neuroinflammation in the retina by potentiating the polarization
state of microglia that might be a promising therapeutic strategy
to delay and/or prevent the deterioration of visual function in
patients. This interesting issue deserves further research.

Although a direct role of IGF-1 as a potential therapy
for targeting the polarization of microglia in the retina
has not been reported, there are indirect evidences of its
involvement in the dynamics of microglia polarization stages.
For instance, mitochondrial toxins inhibited part of the IL-
4-induced alternative activation in primary cultures of mouse
microglia including the induction of arginase-1 and IGF-1 and,
therefore, the counteraction of the LPS induced cytokine release
was abolished (Ferger et al., 2010). Also, it is well known that
IGF-1 actions are slowed during aging (Lee et al., 2013) and, as
we have mentioned above, under this condition the deficiency
of Igf1 in mice reflects an unbalanced anti-inflammatory vs.
proinflammatory response in the retina that parallels the retinal
degeneration (Arroba et al., 2016a). In addition, new concepts
on the modulation of microglial polarization by mitochondrial
metabolism have emerged (Orihuela et al., 2016) and in this
regard IGF-1-mediated metabolic actions may also play a key
role. Future research in the field of neuroinflammation will
provide new insights on this important issue.

CONCLUDING REMARKS

The progression of retinal degeneration is mediated by the
dynamics of microglia polarization in the early steps of
almost all retinal diseases. In this context, and as schematized
in Figure 1, in the retina the immune responses must be
tightly controlled since they are responsible for a better or
worse prognostic of diseases such as DME, RP, or DR. Thus,
targeting neuroinflammation through the IGF-1/IGF-1R system
and/or additional pharmacological strategies might conduct the
regression of retinal degeneration and represents a challenging
therapeutic strategy.
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