Aqueous Exfoliation of Transition Metal Dichalcogenides Assisted by DNA/RNA Nucleotides: Catalytically Active and Biocompatible Nanosheets Stabilized by Acid-Base Interactions

Miguel Ayán-Varela\textsuperscript{a}, Oscar Pérez-Vidal\textsuperscript{a}, Juan I. Paredes\textsuperscript{a}, José M. Munuera\textsuperscript{a}, Silvia Villar-Rodil\textsuperscript{a,}\textsuperscript{*}, María Díaz-González\textsuperscript{b}, César Fernández-Sánchez\textsuperscript{b}, Virgilia S. Silva\textsuperscript{c}, Mónica Cicuéndez\textsuperscript{d}, Mercedes Vila\textsuperscript{e}, Amelia Martínez-Alonso\textsuperscript{a}, Juan M.D. Tascón\textsuperscript{a}

\textsuperscript{a}Instituto Nacional del Carbón, INCAR-CSIC, Apartado 73, 33080 Oviedo, Spain
\textsuperscript{b}Instituto de Microelectrónica de Barcelona, IMB-CNMI (CSIC), Campus UAB, 08193 Bellaterra, Barcelona, Spain
\textsuperscript{c}CESAM & Department of Biology. University of Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal
\textsuperscript{d}TEMA-NRG, Mechanical Engineering Department & CICECO-Aveiro Institute of Materials, Department of Chemistry. University of Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal
\textsuperscript{e}TEMA-NRG, Mechanical Engineering Department. University of Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal

\* Corresponding author: silvia@incar.csic.es

\textbf{Keywords:} two-dimensional (2D) material, transition metal dichalcogenides (TMDs), colloidal dispersion, nucleotide, DNA, catalyst, hydrogen evolution reaction (HER).
Abstract

The exfoliation and colloidal stabilization of layered transition metal dichalcogenides (TMDs) in aqueous medium using functional biomolecules as dispersing agents have a number of potential benefits towards the production and practical use of the corresponding two-dimensional materials, but such a strategy has so far remained underexplored. Here, we report that DNA and RNA nucleotides are highly efficient dispersants in the preparation of stable aqueous suspensions of MoS$_2$ and other TMD nanosheets at significant concentrations (up to 5–10 mg mL$^{-1}$). Unlike the case of common surfactants, for which adsorption on 2D materials is generally based on weak dispersive forces, the exceptional colloidal stability of the TMD flakes was shown to rely on the presence of relatively strong, specific interactions of Lewis acid-base type between the DNA/RNA nucleotide molecules and the flakes. Moreover, the nucleotide-stabilized MoS$_2$ nanosheets were shown to be efficient catalysts in the reduction of nitroarenes (4-nitrophenol and 4-nitroaniline), thus constituting an attractive alternative to the use of expensive heterogeneous catalysts based on noble metals, and exhibited an electrocatalytic activity towards the hydrogen evolution reaction that was not impaired by the possible presence of nucleotide molecules adsorbed on their active sites. The biocompatibility of these materials was also demonstrated on the basis of cell proliferation and viability assays. Overall, the present work opens new vistas on the colloidal stabilization of 2D materials based on specific interactions that could be useful towards different practical applications.
1. Introduction

Two-dimensional (2D) solids are currently at the forefront of research developments in materials science, with potentially important ramifications in many relevant technological areas including electronics, photonics, energy conversion and storage, catalysis, chemical sensing or biomedicine.\textsuperscript{1-4} Aside from the well-known example of graphene, a considerable number of 2D materials have become in recent years the focus of intense interest from the scientific community. In particular, layered transition metal dichalcogenides (TMDs), such as MoS\textsubscript{2}, WS\textsubscript{2}, MoSe\textsubscript{2} or MoTe\textsubscript{2}, are probably at present the most extensively investigated 2D solids beyond graphene.\textsuperscript{2,5-7} Although in their bulk form layered TMDs have been studied for decades, the emergence of new or enhanced properties and phenomena that arise when their dimensions are downscaled to the single- and few-layer level (due to, \textit{e.g.}, quantum confinement effects or greatly increased surface areas), as well as the prospect of capitalizing on such phenomena from an applied viewpoint, have driven the current surge of activity around layered TMDs in 2D form.\textsuperscript{5,6,8-11}

Similar to the case of any novel nanostructured material, a critical step towards the practical implementation of 2D TMDs concerns the availability of methods for their production in large quantities and with characteristics that are specifically tailored to each intended application. In this regard, research efforts have focused so far on three main production strategies: (1) chemical vapor deposition (CVD) of inorganic precursors onto suitable substrates,\textsuperscript{12} (2) chemical exfoliation of bulk TMD crystals based on the intercalation of Li, either by reaction with organolithium reagents (\textit{e.g.}, \textit{n}-butyllithium) or by electrochemical means,\textsuperscript{13,14} and (3) direct liquid-phase exfoliation of bulk TMDs assisted by ultrasound or shear forces.\textsuperscript{15,16} CVD growth methods have been shown to afford large-area, single- and few-layer films of some TMDs (mainly MoS\textsubscript{2}
and WS$_2$) that could be useful in high-end electronics or photonics applications, but the need of high synthesis temperatures and relatively sophisticated transfer processes as well as the relatively poor structural quality of the films currently limit their wider utility.\textsuperscript{6} Regarding chemical exfoliation, its main attraction lies in the very high exfoliation yield and degree (mostly single-layer flakes are obtained) that is usually associated to such a method.\textsuperscript{17} However, the required Li intercalation process can trigger a structural phase transition and induce the generation of defects (e.g., pinholes and cracks) in the resulting exfoliated products,\textsuperscript{18} which can be detrimental to their performance when used in certain materials and devices.

On the other hand, ultrasound- or shear-induced exfoliation of TMDs in the liquid phase can yield large amounts of few-layer flakes that generally preserve the structural quality of the parent layered solid.\textsuperscript{15,16} While the exfoliation yield provided by this approach is usually low (< 5 wt%), its simplicity and versatility, together with the fact that it naturally leads to colloidal suspensions of the 2D flakes, make it the production method of choice when large quantities of solution-processable nanosheets are required to access a range of useful materials, such as thin films, coatings or composites.\textsuperscript{16} Broadly speaking, to be effective in the exfoliation and colloidal stabilization of 2D TMD flakes, solvents have to satisfy certain surface energy requirements.\textsuperscript{15,19} In practice, this means that only certain single-component solvents, most notably N-methyl-2-pyrrolidone, are efficient in this task. Unfortunately, such successful solvents tend to be relatively toxic and possess a high boiling point, which complicates their widespread use. For environmental, safety and other practical reasons, working in aqueous medium would be preferable, but water alone is inefficacious in dispersing TMDs, which are rather hydrophobic materials. Very recent work based on the analysis of surface energies has revealed that mixtures of water and a low boiling point co-
solvent (e.g., isopropanol or acetone) are effective in exfoliating and dispersing TMDs, but the fraction of co-solvent required is very large (~50-80 vol%).

Alternatively, colloidal dispersions of 2D TMD flakes can be prepared in water with the aid of some stabilizers of amphiphilic nature, such as surfactants and certain polymers. During the last years a number of synthetic dispersing agents, including those of cationic, anionic and non-ionic nature, have demonstrated their utility towards this purpose. On the other hand, the use of stabilizers of natural origin (i.e., biomolecule-based dispersants) has recently emerged as a particularly attractive option, because it offers some potential advantages over the use of synthetic amphiphiles. Such assets include a greater sustainability and environmental friendliness associated to the production process, an improved biocompatibility of the 2D materials, or the possibility of (bio)chemical functionalization of the 2D flakes on the basis of well-established protocols for the biomolecules in question. In addition to bile salts (mostly sodium cholate), which have been used as benchmark surfactants in the development of direct liquid-phase exfoliation of TMDs, a range of other biomolecules, mainly polysaccharides and plant extracts (cellulose, chitosan, lignin, tannic acid, etc) but also proteins (bovine serum albumin and gelatin) or DNA, have been successfully tested in recent years towards the exfoliation and dispersion of TMDs in aqueous medium. As a particular example of the benefit of using biomolecule-based stabilizers versus synthetic ones, prior work has demonstrated that MoS$_2$ flakes exfoliated and stabilized by bovine serum albumin exhibit a much higher degree of biocompatibility with respect to fibroblast cells than flakes stabilized by polyacrylic acid or polyvinylpyrrolidone.

Even though significant progress in the use of biomolecules as exfoliating/dispersing agents for TMDs has been attained over the last few years, this
research area is still in an incipient stage. For instance, with the exception of bile salts, small functional biomolecules have remained essentially untapped towards such an endeavor. This is particularly the case with nucleotides, including DNA/RNA nucleotides. In addition to their wide availability, biocompatibility and environmentally friendly character, we hypothesize that the rich chemistry associated to DNA/RNA and other nucleotides could be put to good use to promote their role as efficient dispersants of TMDs (e.g., by exploiting specific nucleotide-TMD interactions). However, to the best of our knowledge no previous study has addressed this topic. Indeed, only the non-DNA/RNA nucleotide flavin mononucleotide (FMN) has been used so far in the exfoliation and stabilization of 2D materials, and only for the case of graphene.\textsuperscript{40,41} In that prior work, encouraging results were obtained concerning the performance of FMN as a colloidal dispersant.

We have investigated the use of DNA/RNA nucleotides as exfoliating/dispersing agents of TMDs in aqueous medium, the results of which are reported here. Unlike the case of graphene, these nucleotides are shown to be highly effective stabilizers for a range of TMDs, including MoS\textsubscript{2}, WS\textsubscript{2} and MoTe\textsubscript{2}, affording aqueous dispersions of 2D flakes at considerably high concentrations (up to \(\sim 5-10\) mg mL\(^{-1}\)). Significantly, we provide experimental evidence indicating that the colloidal stabilization of the flakes relies on specific, relatively strong nucleotide-flake interactions rather than just on the weak dispersive and hydrophobic forces commonly associated to the use of many surfactants. We investigate the origin of the strong adsorption of the nucleotides on the 2D TMD flakes and conclude that it arises from Lewis acid-base interactions. Concerning the potential practical utility of these aqueous dispersions, we demonstrate that the nucleotide-stabilized MoS\textsubscript{2} flakes obtained here are efficient catalysts in the reduction of nitroarenes and display a good electrocatalytic activity towards the
hydrogen evolution reaction (HER). Finally, with a view to their prospective use in biomedicine, we have also carried out a preliminary investigation into the proliferation and viability of murine pre-osteoblasts and human sarcoma osteoblasts in the presence of nucleotide-stabilized MoS₂ flakes, suggesting that these materials possess a high biocompatibility.

2. Results and discussion

2.1. Nucleotide-assisted exfoliation and dispersion of MoS₂ in aqueous medium

Nucleotides, the building blocks of nucleic acids (including RNA and DNA), are organic molecules that comprise a heterocyclic base, a five-carbon sugar and one or more phosphate groups. As individual entities, nucleotides are expected to possess a certain amphiphilic character that could be exploited towards the colloidal stabilization of hydrophobic substances, such as TMDs, in aqueous medium. More to the point, the nucleobase component is a planar, aromatic and essentially hydrophobic moiety that could intercalate and adsorb in the interlayer space of layered TMDs, acting as a molecular wedge and thus promoting their exfoliation, whereas the appended phosphorylated sugar has a polar, anionic nature that should favor the colloidal stability of the exfoliated layers through electrostatic repulsion. Recent theoretical calculations have indicated that DNA and RNA nucleobases (i.e., adenine, thymine, guanine, cytosine and uracil) are physisorbed on the basal surface of MoS₂ and WS₂ through van der Waals interactions, thus providing a rational basis for the use of the corresponding nucleotides as exfoliating/dispersing agents of TMDs. We therefore set out to investigate the performance of a number of nucleotides towards such a purpose, the chemical structures of which are shown in Fig. 1. Specifically, we mainly selected the four nucleotides of DNA, namely deoxyadenosine monophosphate (dAMP),
deoxyguanosine monophosphate (dGMP), deoxythymidine monophosphate (dTMP) and
deoxycytidine monophosphate (dCMP), as well as the non-DNA/RNA nucleotide flavin
mononucleotide (FMN). In the following, we will mainly focus on the exfoliation of
MoS$_2$ with dAMP and dGMP because of the particular relevance of MoS$_2$ among
TMDs$^6$ and because the aforementioned theoretical report suggested that adenine and
guanine adsorb more strongly on the MoS$_2$ and WS$_2$ surface than thymine and cytosine
do, so that they are expected a priori to be more effective in their role as dispersants for
these materials. However, we will also show further below that the results obtained for
the dAMP- and dGMP-MoS$_2$ systems are generally extensible to both other TMDs and
the three other nucleotides depicted in Fig. 1, which has relevant implications in the
specific modes of interaction that are in place between the nucleotides and the TMDs.
Figure. 1. Chemical structures of the four nucleotides of DNA, namely deoxyadenosine monophosphate (dAMP), deoxyguanosine monophosphate (dGMP), deoxythymidine monophosphate (dTMP) and deoxycytidine monophosphate (dCMP), as well as the non-DNA/RNA nucleotide flavin mononucleotide (FMN).

Bath sonication of MoS$_2$ powder in aqueous solutions of either dAMP or dGMP followed by a mild centrifugation step (see Supporting Information, SI for details) typically led to supernatant dispersions that exhibited an opaque, dark green tone, as can be noticed from the digital photographs shown in the inset to Fig. 2a (dAMP-MoS$_2$) and b (dGMP-MoS$_2$), and remained colloidally stable and homogeneous to the naked eye for months. Such an appearance was consistent with the presence of exfoliated MoS$_2$ particles in the dispersions.$^{22,31,37}$ Indeed, the UV-vis absorption (or extinction, to be more precise) spectra recorded for these suspensions (red plots in Fig. 2a and b for dAMP-MoS$_2$ and dGMP-MoS$_2$, respectively) revealed peaks located roughly at 670, 610, 450 and 400 nm that could be ascribed, respectively, to the A, B, C and D excitonic bands characteristic of this TMD.$^{31,44,45}$ Additional sharp peaks in the 200–300 nm wavelength range (UV region) were observed in the spectra, which were attributed to absorption features of the nucleotides. As a matter of fact, these very same peaks were present in the spectra of aqueous dAMP and dGMP solutions in the absence of MoS$_2$ (black plots in Fig. 2a and b). The nucleotide-only solutions displayed negligible absorbance at wavelengths above ~300 nm.
**Figure 2.** UV-vis extinction spectra obtained for dispersions of (a) dAMP-MoS$_2$ (b) and dGMP-MoS$_2$ as prepared (red plots) and after two sedimentation/re-suspension cycles (green plots). The black plots correspond to UV-vis absorption spectra of solution of the corresponding nucleotides in the absence of MoS$_2$. Insets: digital photographs of as-prepared (left) and ten-fold diluted (right) dispersions of (a) dAMP-MoS$_2$ and (b) dGMP-MoS$_2$.

We note that sonication and subsequent centrifugation of MoS$_2$ powder in water alone did not yield any significant amount of TMD material in the supernatant, as expected, and also that complete sedimentation via high-speed centrifugation of the MoS$_2$ material suspended in the presence of either dAMP or dGMP left behind a supernatant with a nucleotide concentration lower than that of the starting aqueous solution (as evidenced by the decreased intensity of the characteristic absorption peaks). The supernatant solutions prepared in the presence of nucleotides were thus concluded to be comprised of exfoliated MoS$_2$ particles colloidally stabilized by adsorbed nucleotide molecules as well as of free, non-adsorbed nucleotides. However, the latter could be removed to a large extent by iterative cycles of sedimentation of the MoS$_2$ fraction using high-speed centrifugation and re-suspension of the sedimented material in
pure water, as detailed in the SI. For example, the green plots in Fig. 2a and b show typical extinction spectra for the MoS$_2$ dispersions after two sedimentation/re-suspension cycles, where it is clearly noticed that the intensity of the peaks ascribed to the nucleotides decreased markedly relative to that of the MoS$_2$ excitonic peaks. For a limited number of iterative purification cycles (typically up to 3 or 4), the resulting MoS$_2$ suspensions were seen to retain their original colloidal stability. However, additional cycles usually led to agglomeration of the dispersions, probably due to an excessive desorption of nucleotides from the MoS$_2$ particles that caused them to be colloidal unstable.

The effect of nucleotide concentration on key features of the exfoliated nanosheets, such as their average lateral size and thickness, was also investigated and rationalized, the detailed results being gathered in the SI. Summing up, the average lateral size and thickness of the exfoliated flakes in the nucleotide-stabilized aqueous dispersions were seen to be markedly dependent on the dispersant concentration (in a range between 0.5 and 10 mg mL$^{-1}$), smaller and thinner flakes being present at higher dispersant concentrations. Rather than arising from differences in the exfoliation pattern, such an outcome could be attributed to a better colloidal stability of small/thin flakes compared to large/thick ones: although similar populations of exfoliated flakes (in terms of lateral size and thickness distributions) are generated at the different nucleotide concentrations, large/thick flakes become colloidal unstable at higher nucleotide concentrations, thus selecting dispersions towards small/thin objects.

Additional and more direct evidence of the attainment of exfoliated MoS$_2$ flakes in aqueous suspension assisted by the dAMP and dGMP nucleotides was gathered by a number of microscopy and spectroscopy techniques, including scanning transmission electron microscopy (STEM), atomic force microscopy (AFM), X-ray photoelectron
spectroscopy (XPS) and Raman spectroscopy. Fig. 3a and b shows typical STEM images recorded for MoS$_2$ flakes from aqueous dispersions stabilized by 1 and 10 mg mL$^{-1}$, respectively, of the dAMP nucleotide. In all cases, the observed flakes exhibited an irregular polygonal shape. However, in agreement with the UV-vis extinction spectroscopy results (see Fig. S2c in the SI), their lateral size tended to be larger in the 1 mg mL$^{-1}$ suspensions (200–400 nm) compared to their 10 mg mL$^{-1}$ counterparts (100–200 nm). Similarly, AFM imaging revealed generally thicker flakes in MoS$_2$ dispersions prepared from 1 mg mL$^{-1}$ nucleotide solutions (apparent thicknesses of ~5–9 nm, Fig. 3c) than those from 10 mg mL$^{-1}$ solutions (apparent thickness of ~2–4 nm, Fig. 3d). Considering that the thickness of a MoS$_2$ monolayer as measured by the AFM technique is usually between 0.7 and 1 nm,$^{15,46}$ these values were also consistent with those estimated from extinction spectroscopy (see Fig. S2d in the SI). XPS and Raman spectroscopic characterization of the exfoliated MoS$_2$ flakes is described in detail in the SI. Taken together, the microscopy and spectroscopy results confirmed that the nucleotide-stabilized MoS$_2$ dispersions were made up of few- to several-layer flakes that largely retained the chemical and structural integrity of their bulk parent material.
Figure 3. Typical STEM images recorded for MoS\textsubscript{2} flakes from aqueous dispersions stabilized by (a) 1 and (b) 10 mg mL\textsuperscript{-1} of the dAMP nucleotide. AFM images for MoS\textsubscript{2} flakes from aqueous dispersions stabilized by (c) 1 and (d) 10 mg mL\textsuperscript{-1} of the dAMP nucleotide.

Besides MoS\textsubscript{2}, other TMDs could be successfully exfoliated and dispersed in aqueous medium with the aid of the dAMP and dGMP nucleotides as stabilizers. This possibility is illustrated in Fig. 4 for the case of WS\textsubscript{2} (a), MoTe\textsubscript{2} (b) and NbSe\textsubscript{2} (c) suspensions that were prepared using 1 mg mL\textsuperscript{-1} of either dAMP (left vials) or dGMP (right vials). In agreement with previous reports from the literature\textsuperscript{30}, their corresponding UV-vis extinction spectra (Fig. 4d, obtained with dAMP) exhibited features that were characteristic of exfoliated flakes of each material. Furthermore, all the prepared nucleotide-stabilized TMD dispersions were seen to possess long-term colloidal stability, appearing homogeneous to the naked eye at least for several months.
Figure 4. Digital photographs of (a) WS$_2$, (b) MoTe$_2$ and (c) NbSe$_2$ suspensions that were prepared using 1 mg mL$^{-1}$ of either dAMP (left vials) or dGMP (right vials). (d) UV-vis extinction spectra for the suspensions obtained with dAMP: WS$_2$ (red trace), MoTe$_2$ (blue) and NbSe$_2$ (green).

Besides, the exfoliated flakes were shown to be biocompatible by studies of proliferation and viability of murine pre-osteoblasts and human sarcoma osteoblasts in the presence of nucleotide-stabilized flakes (see SI). It is also worth mentioning that replacement of these DNA nucleotides by their RNA counterparts, i.e. use of adenosine monophosphate (AMP) and guanosine monophosphate (GMP) instead of dAMP and dGMP, respectively, did not have any noticeable effect on the characteristics of the resulting dispersions, as could be probably anticipated for such a minor change in the chemical make-up of the nucleotides.

2.2. Mechanism of colloidal stabilization of MoS$_2$ with DNA/RNA nucleotides

Based on general knowledge on the use of surfactants for the colloidal stabilization of 2D as well as other nanostructured materials$^{16,47}$ and on previous work on the interaction of DNA nucleobases with such materials,$^{43}$ we have assumed that nucleotides adsorb on the TMD surface through weak, non-specific interactions of a dispersive (van der Waals) nature. However, as we show in the following, experimental evidence obtained in the present work strongly suggested that such an assumption is not correct. Drawing from basic notions of adsorption,$^{48}$ we note that the adsorption of nucleotide molecules from the aqueous phase on the TMD flake surface can be expected to be a dynamic process, whereby adsorbed nucleotides desorb from the surface at a certain rate and are then replaced by new molecules from the reservoir of free molecules
in the surrounding solution. In the equilibrium state, the surface of the exfoliated flakes will be covered by a given constant density of nucleotides, which will afford the flakes to be colloidally stable provided that such a coverage density is sufficiently high. In turn, this density will be determined by two main factors: (1) the concentration of free nucleotides in the solution, so that the higher the nucleotide concentration, the higher their coverage density on the flakes and thus the better their colloidal stability; and (2) the strength of the nucleotide-flake interaction, in such a way that, for a given concentration of free nucleotides in the solution, the higher the interaction strength, the higher the coverage density and hence the better the colloidal stability of the flakes. According to these ideas, the nucleotide-flake interaction strength can be qualitatively put to the test by preparing the corresponding aqueous suspensions in the presence of a sufficiently low concentration of free nucleotides. Under such circumstances, the colloidal stability of the flakes should be critically dependent on the magnitude of the nucleotide-flake interaction, and so we would expect to observe significant differences between the suspensions if different nucleotides interact with the flakes with differing strengths (e.g., we would expect higher dispersed concentrations and/or slower sedimentation profiles for stronger nucleotide-flake interactions).

We prepared a set of aqueous MoS$_2$ dispersions with the 5 nucleotides shown in Fig. 1 (i.e., dAMP, dGMP, dCMP, dTMP and FMN) using a starting nucleotide concentration of 3 mM in all cases, equivalent to mass concentrations slightly above or below 1 mg mL$^{-1}$ depending on the specific nucleotide. The as-prepared dispersions were then subjected to two cycles of sedimentation via centrifugation and re-suspension in pure water (see SI) to decrease markedly the concentration of free nucleotides in the solution. Finally, the dispersed amount of MoS$_2$ was measured by UV-vis extinction spectroscopy and the suspensions were stored to monitor their sedimentation behavior.
with time. For comparison purposes, the same protocol was applied to prepare aqueous suspensions of graphene flakes using graphite powder as starting material. The histogram shown in Fig. 5a depicts the concentration of graphene flakes stabilized by the different nucleotides, which was measured immediately after their preparation. FMN was seen to afford the highest dispersed amount, followed closely by dAMP and dGMP. By contrast, dCMP and dTMP exhibited a rather poor dispersing ability. Furthermore, the graphene dispersions prepared with the latter two nucleotides precipitated altogether in a matter of 1–2 days, those prepared with dAMP and dGMP did so in a longer timeframe (2–3 weeks), whereas their FMN counterpart did not show visible signs of substantial precipitation over the course of at least several months. These results suggested that the interaction of graphene with FMN was the strongest among the investigated nucleotides, the interaction with dCMP and dTMP was the weakest, whereas that with dAMP and dGMP was somewhere in between in strength. Such an outcome could be rationalized by assuming that the nucleotides interact with the graphene surface exclusively through dispersive forces arising between their nucleobase moiety and the 2D material (mainly via \( \pi-\pi \) stacking). In this scenario, the interaction strength would be expected to increase with the number of aromatic rings present in the nucleobase, so that it should follow the trend FMN (three rings) \( \approx \) dAMP \( \approx \) dGMP (two rings) \( > \) dCMP \( \approx \) dTMP (one ring), which was indeed in agreement with the results of the dispersion experiments using the different nucleotides.
Figure 5. Histograms of the concentration of (a) graphene and (b) MoS$_2$ flakes stabilized by the different nucleotides measured immediately after their preparation. UV-vis absorption spectra of (c) dAMP and (d) dGMP aqueous solutions obtained as supernatants of nucleotide-stabilized MoS$_2$ dispersions that were first sedimented and then acidified (green traces) or first acidified and then sedimented (red traces).
Schematic illustrating the different mechanisms of stabilization of colloidal dispersions of graphene (e) and MoS$_2$ flakes (f) with DNA/RNA nucleotides.

On the other hand, the results obtained for MoS$_2$ were not consistent with the idea of nucleotide adsorption (and hence colloidal stability of the MoS$_2$ flakes) relying exclusively on dispersive interactions. If that was the case, we would expect the dispersion behavior of MoS$_2$ with the nucleotides to be similar to that observed for graphene. In contrast, as noticed from Fig. 5b, the following trend was found: FMN ≈ dAMP ≈ dGMP ≈ dCMP > dTMP. Furthermore, different to the case of graphene, visual inspection revealed that MoS$_2$ dispersions prepared with any of these nucleotides retained their colloidal stability for months without showing significant signs of aggregation. We then have to conclude that the ability of at least some of the nucleotides (particularly those with one or two rings in their nucleobase) to colloidally stabilize MoS$_2$ flakes in aqueous medium must rest to a critical extent upon another, more specific type of interaction. As schematically depicted in Fig. 5e and f we believe Lewis acid-base interactions to be the main driving force behind the enhanced dispersibility of MoS$_2$ with DNA nucleotides compared to the case of graphene. Support for such a hypothesis was obtained on the basis of the following observations.

First, although relatively weak in magnitude, DNA nucleobases are known to possess a basic character.\textsuperscript{42} Second, the actual degree of basicity of a nucleobase depends sensitively on the specific substituents present in the purine or pyrimidine unit that makes up the scaffold of the nucleobase (\textit{e.g.}, electron donating amine groups increase the nucleobase basicity, whereas electron withdrawing carbonyl substituents decrease its basicity). More specifically, adenine, guanine and cytosine exhibit a similar degree of basicity: the pK$_a$ values of their corresponding conjugate acids, pK$_{aH}$, are 4.3,
3.3 and 4.6, respectively, which are substantially higher than that of thymine (pK_{aH} < 1.3). Therefore, compared with dTMP, the nucleotides dAMP, dGMP and dCMP should be able to establish stronger acid-base interactions with prospective acidic sites on MoS_{2}. Significantly, the three latter nucleotides were seen to be much more efficient as dispersants for MoS_{2} flakes than dTMP was (Fig. 5b). Third, if the hypothesis of nucleotide adsorption on the MoS_{2} flakes relying to a large extent on acid-base interactions is correct, then we would expect to observe significant desorption from the flakes when such nucleotide-flake interactions are suppressed, for example by protonating the nucleobase moiety at a sufficiently low pH value.

To test this idea, we prepared aqueous MoS_{2} dispersions using either dAMP or dGMP (1 mg mL^{-1}) as a stabilizer, which were then subjected to four cycles of sedimentation via centrifugation and re-suspension in pure water to drastically reduce the concentration of free, non-adsorbed nucleotide molecules. Subsequently, the dispersions were divided into two aliquots. The pH of one aliquot was decreased to a value of ~2 by addition of HCl to ensure protonation of the nucleobases in the nucleotides, and the acidified dispersion was centrifuged at 20000 g for 2 h to completely sediment the MoS_{2} fraction. The other aliquot was first centrifuged at 20000 g for 2 h and then the pH of the resulting supernatant was adjusted to ~2. If nucleotides desorb from the MoS_{2} flakes upon acidification of the aqueous dispersion as a result of acid-base interactions being suppressed, then the nucleotide concentration in the supernatant from the aliquot that was first acidified and then centrifuged should be higher than that in the supernatant from the aliquot that was first centrifuged and then acidified. To compare the nucleotide concentrations we used UV-vis extinction spectroscopy, as shown in Fig. 5c and d for the case of dAMP and dGMP, respectively. It was consistently observed that the absorption peaks associated to the nucleotides
[e.g., the peak at \( \sim 260 \) (255) nm for dAMP (dGMP)] were more intense in the supernatants from aliquots that were acidified in the first place (red traces in Fig. 5c and d) relative to those that were acidified after centrifugation (black traces). This result provided strong indication that acid-base interactions play a significant role in the adsorption of nucleotides on MoS\(_2\) flakes and would explain, for instance, the different dispersing ability of dTMP compared to the other three DNA nucleotides: the much weaker basic character of dTMP should lead to its having weaker adsorption on MoS\(_2\) and finally to its poorer dispersing ability for this material, as it was actually observed (Fig. 5b).

Finally, we note that the hypothesis of acid-base interactions arising between MoS\(_2\) and the nucleotides obviously requires the presence of acidic sites on the former. Acidic sites do indeed exist in MoS\(_2\) in the form of sulfur vacancies, which in turn are known to be a common type of defect for this material. Indeed, it has been demonstrated that natural MoS\(_2\) samples\(^{49}\) as well as MoS\(_2\) flakes and sheets produced either by micromechanical cleavage, \(^{50,51}\) direct liquid-phase exfoliation\(^{52,53}\) or CVD methods\(^{51,54}\) contain significant concentrations of sulfur vacancies as a result of their relatively low formation energy. In our case, XPS analysis of the nucleotide-exfoliated MoS\(_2\) samples revealed S/Mo atomic ratios of \( \sim 1.9 \) thus suggesting a sulfur vacancy concentration of \( \sim 5\% \). Furthermore, prior studies from the field of catalysis have established that the coordinately unsaturated molybdenum sites associated to sulfur vacancies possess a Lewis acid nature, so that basic molecules such as pyridine and ammonia adsorb selectively onto these sites.\(^{55}\) It is therefore quite likely that the enhanced colloidal stability of MoS\(_2\) flakes afforded by DNA nucleotides stems from Lewis acid-base interactions between the basic nucleobases of the nucleotides and the acidic sulfur vacancies of MoS\(_2\). Likewise, in this scenario the sugar moiety of the nucleotide does
not appear to play a critical role in the colloidal stabilization of the MoS\(_2\) flakes, so it is not surprising that use of the DNA or RNA version of a given nucleotide (e.g., dAMP vs. AMP) yielded dispersions with virtually the same characteristics.

2.3. **Catalytic activity of nucleotide-stabilized MoS\(_2\) flakes in the reduction of nitroarenes**

Very recent work has demonstrated that nanosheets/nanostructures of MoS\(_2\) and other TMDs prepared by different means are catalytically active towards a number of reduction reactions (most notably, nitroarene reduction) carried out in the aqueous phase with sodium borohydride as the reductant.\(^{56-59}\) MoS\(_2\) nanosheets obtained by the lithium intercalation/exfoliation approach were seen to be particularly efficient in such a role, probably due to the structural transformation from the semiconducting 2H phase to the metallic 1T phase that is induced by intercalation.\(^{56}\) However, lithium-exfoliated MoS\(_2\) nanosheets are known to lack long-term colloidal stability in water (they tend to agglomerate and precipitate in a few weeks altogether), which seriously limits their practical utility as catalysts for the mentioned reactions. In this regard, MoS\(_2\) flakes produced in aqueous dispersion by direct exfoliation methods using suitable dispersants, such as the present nucleotides, could be an attractive alternative, but their catalytic activity has not yet been tested. We therefore investigated the ability of our nucleotide-stabilized MoS\(_2\) suspensions to catalyze the room-temperature reduction of two nitroarenes, namely the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) and of 4-nitroaniline (4-NA) to \(p\)-phenylenediamine (\(p\)-PDA) with sodium borohydride. Both reactions are thermodynamically downhill but kinetically hampered by relatively large activation barriers, so they require the use of suitable catalysts to proceed rapidly at room temperature.\(^{60}\) In addition to their status as model reactions to probe the
performance of many catalysts (mainly metal-based), these reduction reactions are relevant from a practical point of view, for instance, as important steps in the synthesis of certain drugs and polymers.\textsuperscript{60,61} As detailed elsewhere,\textsuperscript{41,56} the kinetics of both reactions can be readily followed using UV-vis extinction spectroscopy, specifically by monitoring the evolution of the intensity of bands that are characteristic of each substrate (\textit{i.e.}, bands at \textasciitilde400 and 382 nm for 4-NP and 4-NA, respectively) and thus reflect their concentration in the reaction medium.

Fig. 6a and b shows typical kinetic profiles measured for the reduction of 4-NP (a) and 4-NA (b) with MoS\textsubscript{2} flakes that were prepared with two different concentrations of dGMP, namely 1 (blue traces) and 10 (red traces) mg mL\textsuperscript{-1}. An induction period of several minutes, which can be ascribed to dissolved oxygen in the solution being depleted by sodium borohydride or to the catalytic sites being conditioned by the reactants\textsuperscript{62,63} was usually observed. After the induction period, the reduction reaction proper set in, which was reflected in a continuous decrease in the extinction values (and hence in the concentration) associated to both 4-NP and 4-NA. Because the kinetic profiles could be fitted to exponential decay functions and sodium borohydride was used in a large excess relative to either 4-NP or 4-NA, the reduction reactions were concluded to obey a pseudo-first-order kinetic behavior with respect to the substrate concentration, so that

\[
\frac{d[subs]}{dt} = -k_{app}[subs]
\]

(1)

, where [subs] is the substrate (4-NP or 4-NA) concentration and \(k_{app}\) is the apparent reaction rate constant. It was also determined that the exfoliated MoS\textsubscript{2} flakes were the catalytically active element in the as-prepared, nucleotide-stabilized aqueous dispersions rather than any molecular species that could be present in such dispersions (\textit{e.g.}, the nucleotide itself or species leached from the MoS\textsubscript{2} flakes). Indeed, when the
flakes were removed from the as-prepared MoS$_2$ dispersions by means of centrifugation (20000 g, 2 h) and the resulting supernatants were added to the reaction medium instead of the full-fledged MoS$_2$ dispersions, no reduction was seen to take place.

**Figure 6.** Typical kinetic profiles measured for the catalyzed reduction of 4-NP (a) and 4-NA (b) with MoS$_2$ flakes prepared with two different concentrations of dGMP, namely, 1 (blue traces) and 10 (red traces) mg mL$^{-1}$.

A comparison of the catalytic activity (calculated as the number of substrate moles converted per unit time per mole of catalyst used) of the present dGMP-stabilized MoS$_2$ flakes for both 4-NP and 4-NA reduction to that of other catalysts recently reported in the literature for the same reactions is provided in the SI (see Table S1 and the accompanying text for a detailed discussion). Overall, we conclude that nucleotide-stabilized MoS$_2$ flakes can be competitive catalysts for the reduction of nitroarenes, as they strike a good balance between catalytic activity, simplicity and environmental friendliness of their preparation (compared to, e.g., reduced graphene oxide or lithium-exfoliated MoS$_2$) and cost-effectiveness (compared to noble metal-based catalysts).
2.4. Electrocatalytic activity of nucleotide-stabilized MoS$_2$ flakes towards HER

MoS$_2$ and other TMDs are known to possess a considerable electrocatalytic activity towards the HER, and are currently investigated as a prospective, non-noble metal-based replacement for the highly effective but very scarce and expensive Pt-based electrocatalysts for such a purpose.$^{64,65}$ It has also been demonstrated that, at least in the case of MoS$_2$, the catalytically active sites are located at edges and chalcogen vacancies of the layered structure, so that different nanostructuring strategies aimed at increasing the fraction of edges and defects in TMDs have been pursued in recent years as a way to enhance their HER performance.$^{64,66}$ In this context, the direct liquid-phase exfoliation of TMDs can be regarded as a straightforward and efficient nanostructuring methodology towards HER because it can afford exfoliated flakes of a relatively small lateral size and thus with a relatively large fraction of edges.$^{67}$ However, for the MoS$_2$ flakes investigated here we have concluded that the nucleotides are strongly adsorbed at coordinately unsaturated molybdenum sites (i.e., at sulfur vacancies but also probably at edges) through acid-base interactions, so there is the possibility that their HER activity is impaired by the adsorbed nucleotides blocking their active sites. It was therefore important to evaluate the HER electrocatalytic performance of these nucleotide-stabilized MoS$_2$ samples. To this end, we deposited different MoS$_2$ dispersions onto the surface of glassy carbon electrodes (GCEs) at a constant MoS$_2$ amount of ~35 $\mu$g cm$^{-2}$ and then tested their electrocatalytic activity towards HER by linear sweep voltammetry (LSV) in a 0.5 M H$_2$SO$_4$ solution.

Fig. 7a shows typical polarization curves obtained for MoS$_2$ flakes prepared with the nucleotides dAMP and dGMP at two different concentrations (1 and 10 mg mL$^{-1}$) and deposited onto a GCE. As could be expected, lower values of onset potential (defined as the potential required to attain a current density of -1 mA cm$^{-2}$) were
observed for MoS$_2$ samples comprised of flakes with smaller average lateral size, \textit{i.e.} samples prepared at a nucleotide concentration of 10 mg mL$^{-1}$ (average size $\sim$130–150 nm compared to $\sim$260–280 nm for a nucleotide concentration of 1 mg mL$^{-1}$). Specifically, the following onset potentials were measured: -0.44 V (1 mg mL$^{-1}$ dAMP), -0.39 V (10 mg mL$^{-1}$ dAMP), -0.43 V (1 mg mL$^{-1}$ dGMP) and -0.37 V (10 mg mL$^{-1}$ dGMP). These values were similar to those previously reported for liquid-phase exfoliated MoS$_2$ flakes of comparable size and deposited on the working electrode at amounts similar to those used here. For example, MoS$_2$ flakes exfoliated in water with sodium cholate as a dispersant having a mean lateral size of $\sim$190 nm and deposited at an amount of 30 µg cm$^{-2}$ yielded an onset potential of about -0.43 V,\textsuperscript{31} whereas it was -0.34 V for flakes with an average size of $\sim$122 nm and deposited at $\sim$60 µg cm$^{-2}$\textsuperscript{68} Tafel plots (\textit{i.e.}, plots of overpotential vs log of current density) for the different nucleotide-stabilized samples are given in Fig. 7b. The corresponding Tafel slopes, which indicate the increase in overpotential required to raise the current density by one order of magnitude, were (in mV per decade) 178 for 1 mg mL$^{-1}$ dAMP, 158 for 10 mg mL$^{-1}$ dAMP, 132 for 1 mg mL$^{-1}$ dGMP and 127 for 10 mg mL$^{-1}$ dGMP. On one hand, we note that for a given nucleotide concentration the Tafel slopes were smaller (indicative of better HER performance) for MoS$_2$ flakes prepared with dGMP compared to dAMP, even though the average flake lateral size and thickness obtained using these two dispersants were very similar (see Fig. S2c and d in the SI). This observation suggests that some blockage of the catalytically active sites by the nucleotides (especially in the case of dAMP) could indeed take place. On the other hand, the Tafel slopes derived here lay for the most part within the range of values that have been typically documented for liquid-phase exfoliated MoS$_2$ flakes of comparable or not very different size (115–164 mV per decade for flakes with average sizes between 75 and 146 nm) and
more generally for 2H MoS$_2$ materials (between ~100 and 150 mV per decade).\textsuperscript{32,67,68}

Therefore, although a certain degree of active site blockage by the nucleotides should not be ruled out, we can conclude that such an effect must be rather limited so that the HER performance of the MoS$_2$ flakes does not become seriously affected.

\textbf{Figure 7.} (a) Typical polarization curves obtained for MoS$_2$ flakes prepared with the nucleotides dAMP and dGMP at two different concentrations (1 and 10 mg mL$^{-1}$) and deposited onto a GCE. (b) Tafel plots for the different nucleotide-stabilized samples with indication of the corresponding Tafel slopes. The color code is: GCE (black trace), dAMP at 1 mg mL$^{-1}$ (orange), dAMP at 10 mg mL$^{-1}$ (red), dGMP at 1 mg mL$^{-1}$ (cyan), and dGMP at 10 mg mL$^{-1}$ (blue).

\textbf{3. Conclusions}

We have demonstrated that DNA and RNA nucleotides are highly efficient dispersants towards the exfoliation and colloidal stabilization of MoS$_2$ and other transition metal dichalcogenides (TMDs) in aqueous medium at significant concentrations (up to ~5-10 mg mL$^{-1}$). This behavior was in contrast to the case of graphene, for which the DNA/RNA nucleotides were shown to be rather mediocre dispersants. The results of a
suite of experiments suggested that the remarkable ability of these nucleotides to colloidally stabilize the MoS\(_2\) flakes relies on the establishment of relatively strong, specific nucleotide-flake interactions, which were believed to be of Lewis acid-base nature, in such a way that the nucleobase moiety of the nucleotide molecule is preferentially adsorbed onto the Lewis acidic sites associated to sulfur vacancies in MoS\(_2\). Furthermore, the average lateral size and thickness of the exfoliated flakes in the nucleotide-stabilized aqueous dispersions were found to be notably dependent on the dispersant concentration, smaller and thinner flakes being present at higher dispersant concentrations. The nucleotide-stabilized MoS\(_2\) flakes were also demonstrated to possess a remarkable catalytic activity in the reduction of nitroarenes (4-nitrophenol and 4-nitroaniline), which was comparable to that of many non-noble and even noble metal-based catalysts documented in the literature. Likewise, their electrocatalytic performance towards the hydrogen evolution reaction was not significantly impaired by the possible presence of nucleotide molecules adsorbed on the active sites of MoS\(_2\) (edges, sulfur vacancies). A high biocompatibility of the nucleotide-stabilized MoS\(_2\) flakes towards murine pre-osteoblasts and human sarcoma osteoblasts was deduced from preliminary studies as well. Finally, in addition to the more direct benefits of using DNA/RNA nucleotides as dispersants for TMD flakes (simplicity, environmental friendliness, biocompatibility, etc), we note that the knowledge generated here could open new avenues for the exploitation of these flakes. For instance, because cancer cells are usually associated to low pH values, one can envisage small MoS\(_2\) flakes as drug delivery vehicles where the molecular cargo is loaded by taking advantage of acid-base interactions with the flakes and then released selectively at the cancer tissue as triggered by its acidic environment.
**Supporting Information.** Materials and methods. XPS and Raman characterization of the exfoliated MoS\(_2\) flakes. Investigation on the effect of nucleotide concentration on the average lateral size and thickness of the exfoliated nanosheets. Comparison of the catalytic activity of the nucleotide-stabilized MoS\(_2\) flakes for both 4-NP and 4-NA reduction to that of other catalysts recently reported in the literature for the same reactions. Demonstration of the biocompatibility of nucleotide–stabilized MoS\(_2\) dispersions on the basis of cell proliferation and viability assays carried out with murine pre-osteoblasts and human sarcoma osteoblasts.

**Acknowledgements**

Financial support from the Spanish Ministerio de Economía y Competitividad (MINECO) and the European Regional Development Fund (ERDF) through project MAT2015-69844-R is gratefully acknowledged. Partial funding by Plan de Ciencia, Tecnología e Innovación (PCTI) 2013-2017 del Principado de Asturias and the ERDF (project GRUPIN14-056) is also acknowledged. M.A-V. and J.M.M. are grateful to MINECO and the Spanish Ministerio de Educación, Cultura y Deporte (MECD), respectively, for their pre-doctoral contracts. O.P-V. acknowledges funding of his contract by the European Social Fund (ESF). M.C. is grateful to FCT (Fundação para a Ciência e a Tecnologia) for financial support through the post-doctoral grant SFRH/BPD/101468/2014, co-financed by national funds from the Portuguese Ministry of Education and Science and the ESF. The authors also thank Prof. Paula P. Gonçalves (CESAM & Department of Biology, University of Aveiro) for providing the necessary conditions for carrying out the experimental work in the laboratory.
References


(45) Li, B. L.; Zou, H. L.; Lu, L.; Yang, Y.; Lei, J. L.; Luo, H. Q.; Li, N. B. Dependent Optical Absorption of Layered MoS2 and DNA Oligonucleotides Induced Dispersion


Table of contents entry

- Acid–base interaction
- Enhanced colloidal stability
- Catalytically active (nitroarene reduction)
- Biocompatible
- Electrocatalytically active (HER)