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Abstract: This work presents an in-depth kinetic study of the thermal degradation of recycled
acrylonitrile-butadiene-styrene (ABS) polymer. Non-isothermal thermogravimetric analysis (TGA)
data in nitrogen atmosphere at different heating rates comprised between 2 and 30 K min−1 were
used to obtain the apparent activation energy (Ea) of the thermal degradation process of ABS
by isoconversional (differential and integral) model-free methods. Among others, the differential
Friedman method was used. Regarding integral methods, several methods with different
approximations of the temperature integral were used, which gave different accuracies in Ea.
In particular, the Flynn-Wall-Ozawa (FWO), the Kissinger-Akahira-Sunose (KAS), and the Starink
methods were used. The results obtained by these methods were compared to the Kissinger
method based on peak temperature (Tm) measurements at the maximum degradation rate.
Combined Kinetic Analysis (CKA) was also carried out by using a modified expression derived from
the general Sestak-Berggren equation with excellent results compared with the previous methods.
Isoconversional methods revealed negligible variation of Ea with the conversion. Furthermore,
the reaction model was assessed by calculating the characteristic y(α) and z(α) functions and
comparing them with some master plots, resulting in a nth order reaction model with n = 1.4950,
which allowed calculating the pre-exponential factor (A) of the Arrhenius constant. The results
showed that Ea of the thermal degradation of ABS was 163.3 kJ mol−1, while ln A was 27.5410 (A in
min−1). The predicted values obtained by integration of the general kinetic expression with the
calculated kinetic triplet were in full agreement with the experimental data, thus giving evidence of
the accuracy of the obtained kinetic parameters.

Keywords: thermal degradation; acrylonitrile-butadiene-styrene (ABS); thermogravimetric analysis
(TGA); model free kinetics (MFK); combined kinetic analysis (CKA)

1. Introduction

Thermal degradation of polymers is a topic of great relevance. On one hand, due to their high
sensitivity to temperature, degradation or aging at moderate temperatures is responsible for a dramatic
loss in overall performance [1,2]. On the other hand, thermal degradation at high temperatures,
studied by thermogravimetric analysis (TGA), gives a sound idea of the thermal stability of polymers
and composites [3,4]. In addition to conventional analytical techniques, theoretical studies are
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being conducted in order to elucidate the main parameters governing the thermal degradation of
polymers [5].

Acrylonitrile-butadiene-styrene (ABS) is a commodity plastic widely used at the industrial level
due to an excellent combination of processability, chemical and light resistance, balanced mechanical
properties, and a competitive cost. In addition, ABS is recyclable and compatible with most styrenic
polymers and some technical polymers, such as polycarbonate (PC) and polyamides (PAs) [6–8].
All these features make ABS the optimal selection for a wide variety of applications, such as electric
and electronic equipment, cases and components for electrical appliances, parts and components for
the automotive industry, toys, and more recently, as a base material for 3D printing due to the moderate
processing temperatures and the excellent surface finish that can be accomplished [9]. ABS consists
of a poly(acrylonitrile-co-styrene) (SAN) matrix, in which a rubber phase of poly(butadiene) (BR) is
finely dispersed and partially grafted, leading to a drop-like structure that positively contributes to
increasing toughness [10].

Regarding its thermal stability, as with many other polymers, ABS is highly sensitive to
thermo-oxidative processes [11,12]. In addition, at moderate temperatures in the range of 220–240 ◦C,
it undergoes some cross-linking phenomena due to the presence of C=C double bonds in the BR
phase [13]. As reported by Polli et al. [14], different analysis of the thermal degradation of ABS can
be found in the literature using different thermal programs and atmospheres [15]. As is generally
established, degradation of ABS, as similar to other vinyl polymers, proceeds by end-chain and
random-chain scissions [14,16–18]. In this sense, Perez-Maqueda et al. [19] reported the scission
mechanism of atactic poly(styrene) (PS) and validated a method that describes accurately the
polymer chain breakage and evaporation of the broken sub-units as a function of the reaction
fraction. Despite the complexity of the degradation process, degradation of ABS typically occurs in a
single-step process. It has been reported that ABS degradation occurs in several overlapped processes,
one corresponding to the styrenic phase and the other corresponding to the butadiene component as
validated by Fourier-transform infrared (FTIR) spectroscopy. Each of these processes is governed by an
activation energy. Nevertheless, in dynamic TG with constant heating rate, it is impossible to separate
them. As it has been reported Luda di Cortemiglia et al. [20], the SAN phase of ABS degrades in a single
volatilization process with a maximum rate at 425 ◦C, and chain fragments, NH3, HCN, and aromatic
compounds are generated. With regard to the butadiene phase, it degrades at higher temperatures
in a two-step process. The first stage represents about 20% weight loss and involves formation of
chain fragments and condensable gaseous hydrocarbons, while the second stage is related to the
major weight loss and also non condensable gases such as H2 and CH4 are evolved. These processes
occur as a single weight loss step in TGA of ABS, thus indicating it can be analyzed as an overall
degradation process with one “apparent” activation energy. The apparent activation energy, Ea that
has been reported in the literature cover the range comprised between 134 to 190 kJ mol−1 [21]. In a
previous work, our research group reported Ea values for the thermal degradation of recycled ABS in
the 140–160 kJ mol−1 range, depending on the selected kinetic method [22]. The autocatalytic reaction
model was proposed as the best model since it gave good accuracy between the experimental data
and the values predicted by this reaction model, showing values of Ea = 163.14 ± 3.51 kJ mol−1, ln A
= 28.0543 ± 0.5778 (A in min−1), and f(α) = αm(1−α)n with n = 1.7157 ± 0.2970 and m = 0.56 ± 0.1823.

This work originally presents a systematic approach to the kinetic study of the thermal
degradation of recycled ABS polymer under nitrogen atmosphere by using several model-free kinetic
methods (MFK) with their corresponding accuracies and corrections. Moreover, the usefulness of the
Combined Kinetic Analysis (CKA) methodology is assessed by comparing the obtained Ea values
with those obtained with conventional isoconversional model-free kinetic methods. Finally, the work
deals with the elucidation of the reaction model f (α), by calculating the corresponding y(α) and z(α)
functions and comparing them with some master curve plots.
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2. Theoretical Background

Kinetic studies are based on the following general kinetic expression:

dα

dt
= k f (α) (1)

This expression indicates that the reaction or conversion rate (dα/dt) is directly related to the rate
or kinetic constant (k), and a function of the conversion f (α), which takes several forms, depending on
the main mechanism, and subsequently, is representative for the reaction model. The rate constant (k)
is temperature-dependent and it is assumed to follow the Arrhenius equation in thermally activated
reactions in the solid state (Equation (2)):

k(T) = A exp(−E a /RT) (2)

where A (in min−1) corresponds to the pre-exponential or frequency factor, Ea (in J mol−1) stands
for the apparent activation energy, R is the gas constant (8.314 J mol−1 K−1), and T is the absolute
temperature (in K).

By combining Equations (1) and (2), the following expression is obtained:

dα

dt
= A exp(−E a /RT) f (α) (3)

As Equation (3) suggests kinetic analysis assists on determining the kinetic triplet: A, Ea, f (α).

2.1. Isoconversional Methods

Isoconversional methods have been extensively used to estimate Ea accurately by using differential
or integral methods (in either isothermal or non-isothermal conditions). Differential methods are based
on Equation (3), which can be used for whatever thermal program. This time-domain expression can
be converted into a temperature-domain by assuming the heating rate (β).

β =
dT
dt

(4)

Then, by substituting Equation (4) in Equation (3) yields Equation (5). This temperature-
dependent equation is applicable to dynamic thermal programs.

β
dα

dT
= A exp(−Ea/RT) f (α) (5)

Equation (5) can also be represented in its integral form to give Equation (6), which is the base for
the integral methods. ∫ α

0

dα

f (α)
=

A
β

∫ T

T0

exp(−E a /RT) dT (6)

Isoconversional methods derive from the basic isoconversional principle that assumes that the
reaction rate at a constant conversion (αc) is only dependent on temperature. By taking natural
logarithms on both sides of Equation (1), it yields:

ln
dα

dt
= ln k(T) + ln f (α) (7)
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Then, by taking partial derivatives with respect to (1/T) on Equation (7) at a constant α = αi,
the following expression is obtained:∂ ln

(
dα
dt

)
∂ T −1


αi

=

[
∂ln k(T)

∂ T −1

]
αi

+

[
∂ln f (α)

∂ T −1

]
αi

(8)

In isoconversional conditions, at a constant α value αi, its corresponding f (α) value is also
constant, and therefore, the second term on the right-hand side of Equation (8) equals zero. The first
term on the right-hand side of Equation (8) can be obtained by taking the partial derivative of the
natural logarithmic form of Equation (2) with respect to 1/T. Therefore, the following expression can
be obtained: [

∂ln k(T)
∂ T −1

]
αi

=

[
∂ln A exp(−E a /RT)

∂ T −1

]
αi

=
−Ea,αi

R
(9)

Then, by combining Equation (9) and Equation (8), the isoconversional methods are based on the
fact that it is possible to obtain an estimation of Ea (at a particular αi = constant) without assuming
any reaction model, as shown in Equation (10). Thus, these methods are habitually called Model-Free
Kinetic methods (MFK). These methods are widely used to study the apparent activation energy of
thermal activated processes (degradation and cross-linking) [23].∂ ln

(
dα
dt

)
∂ T −1


αi

=
−Ea,αi

R
(10)

Although isoconversional methods can give quite accurate values of Ea by using differential
methods, such as Friedman, or integral methods, such as the Flynn-Wall-Ozawa (FWO),
Kissinger-Akahira-Sunose (KAS), and Starink, among others, no additional information is obtained
about the reaction model and further methods are then required.

2.1.1. Differential Isoconversional Methods

The Friedman method is a differential method based on Equation (5). By taking natural logarithms
and re-arranging terms, Equation (11) is obtained, which suggests that a plot of ln

(
β dα

dT

)
against 1/T,

at a constant α, for different heating rates β, gives a linear plot whose slope is Ea
R . As f (α) is constant

at a constant α value, and A is also a constant, this approach can give an accurate value of Ea without
assuming any particular reaction model.

ln
(

β
dα

dT

)
= ln A f (α) − Ea

RT
(11)

2.1.2. Integral Isoconversional Methods

Integral methods are based on the integration of Equation (6) to give the integral form, g(α) of the
reaction model, f (α).

g(α) =
∫ α

0

dα

f (α)
=

A
β

∫ T

T0

exp(−Ea /RT) dT (12)

The temperature integral (right-hand side) does not have an analytical solution, so that if
we consider the reduced temperature as x = Ea/RT, a polynomial P(x) must be obtained by
numerical methods.

g(α) =
AEa

βR
P(x) (13)
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As indicated previously, by taking x = Ea/RT as the reduced temperature, a series expansion can
give different approximations of P(x). Asymptotic expansions after a single integration-by-parts are
interesting approximations of P(x) [24].

P(x) =
e−x

x2

[
1+

2!
−x

+
3!

(−x)2 +
4!

(−x)3 +. . .

]
(14)

Another asymptotic expansion series is that proposed by Schlomilch, as shown in Equation (15):

P(x) =
e−x

x(1 + x)

[
1− 1

(2 + x)
+

2
(2 + x)(3 + x)

− 4
(2 + x)(3 + x)(4 + x)

+. . .
]

(15)

Or the Lyon’s expansion shown in Equation (16) [25]:

P(x) =
e−x

x(2 + x)
[1+

2
x(2 + x)

− 8

x(2 + x)2 + O(x−4) + . . . ] (16)

There are several integral methods which use different solutions of the temperature integral,
such as the Broido method [26]. The Flynn-Wall-Ozawa (FWO) method allows estimating the apparent
activation energies (Ea) over the entire α range from TGA data at different heating rates (β). This method
is widely used because it provides an accurate value of Ea for a particular α (isoconversional) value.
The FWO method is an integral method that uses the Doyle’s approximation of the temperature
integral P(x). The empirical equation proposed by Doyle for the temperature integral is shown in
Equation (17) [27–30]:

P(x) =7.03 × 10−3 e x B(x) (17)

where B(x) is comprised between −1.195 and −1.034 over the x domain. Usually, an average value of
−1.052 is used for integral methods for x values comprised between 10 and 60 with a relatively low
error. By substituting Equation (17) in Equation (13), it yields:

g(x) =
AEa

βR
7.03 × 10−3e−1.052x (18)

By taking natural logarithms on both sides of the equality and rearranging terms, Equation (19) is
obtained. This equation is the base of the FWO integral method:

ln(β) = ln
(

AEa
R

)
− ln(g(α)) − 4.9575 − 1.052 Ea

RT

ln(β) = Constant − 1.052 Ea
RT

or log(β) = Constant − 0.4567 Ea
RT

(19)

As it can be seen from Equation (19), a plot of log(β) versus 1/T (or ln(β) versus 1/T) allows a
linear fit, whose slope is directly related to the Ea at that particular α value [31].

Different approximations give different expressions, which can be useful to estimate the values
of Ea. The FWO method is not the most accurate, as it makes use of a quite essential approximation
of P(x). Among others, the Kissinger-Akahira-Sunose method (KAS) employs the Murray and White
approximation of P(x) as indicated in Equation (20), which gives more accurate results:

P(x) ∼=
e−x

x2 (20)
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By using the KAS method (Equation (21)), a plot representation of ln
(

β

T 2

)
versus 1/T for a

particular conversion α, gives a straight line with a slope consisting on Ea/R [32].

ln
(

β

T 2

)
= ln

(
AR
Ea

)
− ln (g(α))− Ea

RT

ln
(

β

T 2

)
= Constant − Ea

RT

(21)

Another approximation is that given by Starink [24] in Equation (22), which allows an even more
accurate estimation of Ea.

ln
(

β

T1.92

)
= Constant − 1.0008

Ea

RT
(22)

As one can realize, Equation (19), Equation (21), and Equation (22) show similar mathematical
structures as Starink [24] already demonstrated, thus leading to a generalized expression:

ln
(

β

T B

)
= Constant − C

Ea

RT
(23)

where B and C are experimental values related to a particular approximation of the temperature integral,
so that Doyle’s approximation considers B = 0 and C = 1.052. The Murray and White approximation
leads to B and C values of 2 and 1, respectively.

2.2. Combined Kinetic Analysis (CKA)

The above-mentioned methods allow estimating the apparent activation energies without any
assumption of the reaction model. As it has been described previously, kinetic analysis offers several
tools to determine the so-called kinetic triplet, that is, Ea, A, and f(α). One interesting approach to
get more information and simultaneously obtain Ea and A is the Combined Kinetic Analysis (CKA).
Equation (3) can be written in the following form by taking natural logarithms on both sides and
rearranging terms:

ln

 β ( dα
dT

)
f (α)

 = ln A − Ea

RT
(24)

By choosing the appropriate kinetic model, f (α), a plot of the left-hand side of Equation (24)
versus 1/T, allows determining Ea from the slope of the linear fit while the pre-exponential factor, A,
can be obtained from the intercept once Ea has been obtained. Obviously, the quality of the linear fit
will depend on the selected reaction model, f (α). Table 1 summarizes several kinetic models with their
typical f (α) functions and their corresponding integral forms, g(α).
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Table 1. Algebraic expressions for g(α) and f (α) for some of the mechanisms of solid state processes,
activated by temperature.

Code Reaction Model f(α) g(α)

P2 Power law 2α1/2 α1/2

P3 Power law 3α2/3 α1/3

P4 Power law 4α3/4 α1/4

A2
Nucleation and growth

(Avrami Equation 1) 2(1−α)[−ln(1−α)]1/2 [−ln(1−α)]1/2

A3
Nucleation and growth

(Avrami Equation 2) 3(1−α)[−ln(1−α)]2/3 [−ln(1−α)]1/3

A4
Nucleation and growth

(Avrami Equation 3) 4(1−α)[−ln(1−α)]3/4 [−ln(1−α)]1/4

R1

Controlled reaction on the
surface (motion in one

dimension)
1 α

R2
Controlled surface reaction

(contracting cylinder) 2(1−α)1/2 [−ln(1−α)]1/2

R3

Controlled reaction on the
surface (migration volume;

contracting sphere)
3(1−α)2/3 [−ln(1−α)]1/3

D1 Diffusion in one dimension (1/2)α −1 α2

D2
Diffusion in two dimensions

(Valensi Equation ) − [ln(1−α)]−1 (1−α) ln(1−α) + α

D3
Diffusion in three dimensions

(Jander Equation ) (3/2)[1−(1−α)1/3]−1(1−α)2/3 [1 − (1−α)1/3]2

F1

Random nucleation with one
nucleus of individual particle.

Mample first order.
(1−α) −ln(1−α)

F2
Random nucleation with two
nuclei of individual particle (1−α)2 (1−α)−1

F3
Random nucleation with three

nuclei of individual particle (1/2)(1−α)3 (1−α)−2

Fn nth order (1−α)n [(1−α)1−n−1]/(n−1)

ePT
Bna

Extended Prout-Tompkins (1− α)n α m No analytical
solution

In addition to the correct selection of the kinetic model, experimental data can deviate from the
theoretical kinetic models due to sample size, geometry, shape, and so on. These drawbacks can be
overcome or minimized by the procedure described by Perez-Maqueda et al. [33], which suggests
the use of a generic equation derived from the generalized Sestak-Berggren equation shown in
Equation (25) [34]. Depending on the combination of the superscripts, m, n and p, Equation (25)
can represent almost any reaction model.

f (α) = αm (1− α)n[− ln(1− α)]p (25)

The generalized expression proposed by Perez-Maqueda et al. [33] is shown in Equation (26),
and as it has been demonstrated, it can fit most of the typical reaction models by simply adjusting the
c, m, and n parameters.

f (α) = c αm (1− α)n (26)



Polymers 2019, 11, 281 8 of 23

If Equation (26) is included into Equation (24) and the terms are rearranged, it gives Equation (27).
An optimization of the Pearson’s linear correlation coefficient can be considered as the objective
to obtain the optimum m and n values that allow a linear fit between the left-hand side part of
Equation (27) against 1/T. Once m and n are obtained, the Ea and ln cA values can be obtained from the
slope and intercept of the optimum linear fit, respectively, as reported by Sánchez-Jiménez et al. [35].

ln

 β ( dα
dT

)
αm(1− α)n

= ln c A − Ea

RT
(27)

2.3. Criado and Maqueda Method

Criado-Maqueda methodology is based on the use of master plots corresponding to different
reaction models (Table 1). By comparison with experimental data, it is possible to elucidate the reaction
model if it is unique, or in some cases, if it is based on two or more consecutive reaction models,
depending on the conversion, α. As previously stated, isoconversional models allow estimating the Ea

in an accurate way but they do not give any information about the reaction model. Once Ea has been
obtained, a y(α) function can be defined as shown in Equation (28), with x = Ea/RT representing the
reduced temperature:

y(α) =

(
dα
dt

)
e−x (28)

Substituting Equation (5) in Equation (28) and rearranging terms, it yields Equation (29). Since A
is a constant value, the plot of the second member in Equation (29) against α should be proportional
to f (α). Therefore, y(α) gives the geometry of f (α) and it can be very useful to elucidate the reaction
model. It is possible to normalize y(α) to enable comparison with the normalized theoretical functions
in Table 1.

y(α) =

 β ( dα
dT

)
exp(− Ea /RT)

 = A f (α) (29)

To give more consistency to this method, Criado-Maqueda also proposed the use of a z(α)-type
function to represent the master curves corresponding to different reaction models that take into
account both f (α) and its integral form g(α). The z(α) function is defined in Equation (30), in which
π(x) is related to the Arrhenius temperature integral:

z(α) =
dα
dt
β

π(x) T (30)

As observed in Equation (14), Equation (15), and Equation (16), the approximations of the
temperature integral are defined by a series of asymptotic functions. Nevertheless, all these equations
can be expressed for a particular expansion, as indicated in Equation (31):

P(x) =
e−x

x
π(x) (31)

Senum and Yang have proposed different approximations of π(x) in a rational form,
as summarized in Table 2 [36]. Perez-Maqueda et al. [37] validated the accuracy of these approximations
up to eight degrees and they concluded that a π(x) rational approximation with a fourth degree gives
an error lower than 10−5, therefore the fourth degree is enough for kinetic studies although they have
demonstrated increasing accuracy with increasing degree. Table 2 shows the corrected value for the
first power x term of the numerator of the fourth degree of 86 instead of 88 as reported by Flynn [38].
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Table 2. Rational approximations for the temperature integral with different degrees.

Degree P(x)

1 e−x

x ·
1

(x+2)

2 e−x

x ·
(x+4)

(x 2 +6x+6)

3 e−x

x ·
(x 2 +10x+18)

(x 3+12x2 +36x+24)

4 e−x

x ·
(x 3+18x2 +86x+96)

(x 4+20x3+120x2 +240x+120)

Then, by substituting Equation (3) and Equation (31) in Equation (30), the following expression
is derived:

z(α) = f (α)·g(α) (32)

As the Ea of thermally activated processes can be determined by several non-isothermal tests
independently of the reaction mechanism f (α), the theoretical master plots obtained by Equation (32)
for different well-established reaction mechanisms, as summarized in Table 2, can be easily obtained.
These plots can be very useful in determining the main reaction mechanism or even the existence of
overlapped reaction mechanisms, as the z(α) corresponding to experimental results can be calculated
by using Equation (33), which is derived from including π(x) from Equation (31) on Equation (20) and
considering x = Ea/RT.

z(α) =
dα

dt
Ea

βR
exp(

Ea

RT
)P(x) (33)

Or by taking into account the heating rate, β, Equation (33) can be written as:

z(α) =
dα

dT
Ea

R
exp(

Ea

RT
)P(x) (34)

As in the case of y(α), a comparison of the calculated z(α) from the experimental data using
Equation (33) or Equation (34) and the different normalized z(α) master plot curves corresponding
to different reaction mechanisms for solid state reactions, as described in Table 2, and calculated by
Equation (32), can be very useful to assess the reaction model or a combination of them.

3. Materials and Methods

3.1. Materials

A recycled acrylonitrile-butadiene-styrene (ABS) obtained from waste electric-electronics
equipment (WEEE) was used as the base material for kinetic analysis. This ABS grade is a binary blend
of SAN and BR. Its characteristic glass transition temperature (Tg) is located at 104.4 ◦C. The melt flow
index (MFI) is 7.7 g/10 min, measured at 210 ◦C and a load of 5 kg, and 20.5 g/10 min, measured
at 230 ◦C and a load of 5 kg in a ATF Faar S.p.A. melt flow index (MFI) (Novegro-Tregarezzo, Italy).
Scheme 1 shows a plot of the structure of this polymer blend.
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Scheme 1. Schematic plot of the acrylonitrile-butadiene-styrene (ABS) structure, mainly composed of
poly(styrene-co-acrylonitrile) (SAN) and poly(butadiene) rubber (BR).

3.2. Thermal Degradation Analysis

Kinetic analysis of the thermal degradation of recycled ABS was carried out by using dynamic
thermogravimetry (TGA). To this end, a TGA/SDTA 851 thermobalance from Mettler-Toledo
(Schwerzenbach, Switzerland) was used. An average sample mass of 8–10 mg was subjected to a
dynamic program from 30 ◦C up to 700 ◦C at different heating rates (2, 5, 10, 15, 20, 25, and 30 K min−1)
in nitrogen atmosphere with a constant nitrogen flow of 80 mL min−1. Nitrogen atmosphere was
selected to simulate typical “pyrolysis” conditions, which could be helpful for practical uses, such as
energy valorization of plastic wastes. Standard graphite crucibles were used. The conversion α at each
temperature was calculated using Equation (35):

α =
w0 − wT
w0 − w f

(35)

where w0 denotes the initial mass of the sample, wf stands for the residual mass, and wT represents the
mass at a particular temperature (T).

4. Results and Discussion

4.1. Determination of the Apparent Activation Energy of the Thermal Degradation of ABS

The typical conversion curves for the degradation of recycled ABS are shown in Figure 1a with
varying α. Figure 1b shows the corresponding (dα/dT) plots versus T, including the characteristic
temperatures for the maximum degradation rates (Tm). A simple method to obtain the Ea from a set of
experiments at different heating rates is the Kissinger method [32]. This is widely used because of its
simplicity, and it is based on the assumption that d

dt

(
dα
dt

)
= 0 at Tm. It is assumed that the conversion

at the maximum degradation rate, αm, is almost constant for a series of heating rates, β. Derivation of
Equation (3) gives the following expression:

d
dt

(
dα

dt

)
=

{
A exp(−E a /RT)

Ea

RT 2

(
dT
dt

)
f (α) +

(
d f (α)

dα

)(
dα

dt

)
A exp(−E a /RT)

}
(36)
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Figure 1. (a) Plot of the conversion α vs. temperature for the degradation of acrylonitrile-butadiene-
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Taking into account the definition of the heating rate β, as indicated in Equation (4),
arranging terms in Equation (36) and considering the definition of

(
dα
dt

)
in Equation (3), Equation (36)

can be written as:

d
dt

(
dα

dt

)
=

(
dα

dt

){
βEa

RT 2 +

(
d f (α)

dα

)
A exp(−E a /RT)

}
(37)

As indicated previously, the Kissinger methods is based on the assumption d
dt

(
dα
dt

)
= 0, therefore,

by considering Equation (37) and rearranging terms, the following expressions are obtained:

βEa

RT 2
m

+

(
d f (α)

dα

)
A exp(−E a/RTm) = 0 (38)

β

T 2
m

= −AR
Ea

(
d f (α)

dα

)
exp(−E a/RTm) (39)

Then, by taking natural logarithms on both sides of Equation (39), it yields:

ln
(

β

T 2
m

)
= ln

(
AR
Ea

)
+ ln

(
−d f (α)

dα

)
− Ea

RTm
(40)

For many reaction models, the second term in the right-hand side of Equation (40) is constant [39],
thus suggesting that a simple plot of ln

(
β

T 2
m

)
versus 1/Tm, at different heating rates β, yields a linear

plot whose slope is −Ea/R. If the term
(
−d f (α)

dα

)
is dependent on the heating rate, then the linear

relationship cannot be inferred, which represents a limitation of this method [40]. Table 3 summarizes
the main results obtained in relation to Tm and the conversion for each Tm value (αm). As it can be
seen, the conversion at the peak temperature is almost identical with an average value for the different
heating rates of 0.531 ± 0.004.
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Table 3. Summary of the thermal parameters corresponding to the temperature for the maximum
degradation rate or peak maximum (Tm), and their corresponding conversion (αm) and conversion rate
(dα/dT)m values, for the thermal degradation of recycled ABS at different heating rates β.

Heating Rate β (K min−1) Tm (K) αm (dα/dT)m

2 655 0.526 0.01454

5 675 0.535 0.01373

10 690 0.529 0.01314

15 699 0.525 0.01280

20 706 0.528 0.01256

25 711 0.524 0.01238

30 716 0.531 0.01223

As one can observe in Figure 2, the correlation between ln
(

β

T 2
m

)
versus 1/Tm is very accurate and

it allows for estimating a single value of Ea. In particular, the Ea value obtained was 163.1±1.0 kJ mol−1

with a correlation coefficient r = −0.9998. One of the assumptions of this method is that f (α) does
not change with α. In fact, it is giving Ea at a particular conversion αm = 0.531. The Kissinger method
gives a reliable value of Ea if αm does not change in a significant way with the heating rate, β. On the
other hand, the systematic error decreases with increase of the reduced temperature x = Ea/RT. In this
particular case, x was comprised between 27.40 and 29.95 for the corresponding Tm values. As it has
been reported, x values higher than 10 lead to an error of less than 5% in Ea [41,42].
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degradation of recycled acrylonitrile-butadiene-styrene (ABS) at different heating rates β.

On the other hand, due to its simplicity, the Kissinger method can only represent a single-step
kinetic process as it is derived from Equation (3). Additional tests are needed to validate the
applicability of the Kissinger method. In particular, as indicated by Farjas et al. [43], the peak width
of the degradation rate dα

dT , is a very sensitive parameter to the existence of multiple transformations.
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As indicated, all the thermo-analytical curves differ by a time scale factor τ, which can be defined as
the inverse of the Arrhenius constant that is shown in Equation (41):

τ ≡ 1
k(T)

≡ 1
A exp(−E a /RT)

(41)

There is a direct relationship between the peak width, measured as the time corresponding to the
full width at half maximum (∆tFWHM) of the

(
dα
dT

)
curve that is shown in Figure 3a, and the time scale

factor corresponding to the peak temperature (Tm), τm (Equation (42)).

∆tFWHM= ∆t′FWHM·τm (42)

where ∆t′FWHM represents the full width at half maximum of a curve obtained when time is normalized
to τm = 1. Therefore, ∆t′FWHM depends only on the reaction model and is a constant value, as reported
by Farjas et al. [43] Then, substituting τm in Equation (42), applying natural logarithms and rearranging
terms, Equation (42) results in Equation (43), which suggests a linear relationship between ln ∆tFWHM
and 1/Tm. If ABS degradation follows a single-step kinetic process, then the Ea value obtained by
Equation (43) must be similar or identical to that obtained by the Kissinger method. Otherwise,
the assumptions of the Kissinger method would not be appropriate for this particular system.

ln ∆tFWHM=
Ea

RTm
+ ln

∆t′FWHM
A

(43)
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vs. T curve at a constant

heating rate of 15 K min−1. (b) Plot of ∆tFWHM vs. 1/Tm to check the occurrence of a single-step
degradation process.

The Ea value obtained after the linear fit between ∆tFWHM vs. 1/Tm at different heating rates
was 163.7 ± 1.1 kJ mol−1, which is in total agreement with the Ea value obtained by applying the
Kissinger method. Then, it can be concluded that ABS degradation occurs in a single-step process and
the assumptions of the Kissinger method are appropriate, thus giving a reliable Ea value.

Although the premises of the Kissinger method have been checked and the Ea value was accurate,
it represents the Ea for a particular conversion αm = 0.531. To evaluate the possible changes in the
reaction model during the conversion, isoconversional methods were applied at different conversion
values, since they can give much more information about the variability (or not) of Ea with the
conversion, α. Figure 4 shows the typical linear fit plots corresponding to different isoconversional
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methods, both differential and integral. For all the four methods, isoconversional values ranged
between α = 0.05 and α = 0.95 at an increasing step of ∆α = 0.05. Figure 4a shows the linear fits in the
above mentioned α range according to the Friedman method, which is a differential method. In contrast
to the integral methods, which rely on some approximation of the temperature integral, the Friedman
method seems to be more accurate, since it does not need any approximation. By using the Friedman
method (see Equation (11)), the slope of the linear fit corresponds to −Ea/R. The average Ea obtained
by the Friedman method was 162.9 ± 1.3 kJ mol−1, which indicates a very low variability of Ea with α.
All the Pearson’s correlation coefficients for the linear fits were at least −0.9995. This narrow value of
Ea, however, does not necessarily means that ABS degradation is a simple degradation process. In fact,
it is a complex process consisting of numerous overlapped consecutive and competitive reactions,
though the overall process can be considered as a single-step process with unique leading “apparent”
activation energy.Polymers 2019, 11, x FOR PEER REVIEW 13 of 21 

 

  
(a) (b) 

  
(c) (d) 

Figure 4. Linear plots corresponding to fitting of experimental data in isoconversional conditions: (a) 
Friedman method showing a plot of ln β dα

dT
 vs. 1/T; (b) Flynn-Wall-Ozawa (FWO) method showing 

a plot of ln (β) vs. 1/T; (c) Kissinger-Akahira-Sunose (KAS) method showing a plot of ln β
T 2  𝑣𝑠. 1/T; 

and (d) Starink method showing a plot of ln β
T 1.92  vs. 1/T. 

As previously indicated, differential methods do not need any approximation, so that in the first 
instance they could seem more accurate than integral methods. Nevertheless, the application of these 
methods to integral data, such as those obtained by TGA, involves calculating the first derivative by 
numerical methods, with the corresponding inaccuracy being due to its noisy signal. With regard to 
integral methods, although they use more or less accurate approximations of the temperature 
integral, they can help in obtaining reliable values for Ea [44]. As indicated by Nikolaidis et al. [45], 
application of differential and integral methods usually gives differences in Ea but the integral 
methods become more accurate as the accuracy of the temperature integral increases. The FWO is 
one of the widely used integral methods, though it uses a quite rude approximation of the 
temperature integral. As indicated in Equation (19), by using the FWO method, the linear fit of ln (β) 
vs. 1/T yields a straight line whose slope is −1.052 Ea/R. Using this equation, the average Ea obtained 
was 165.7 ± 0.8 kJ mol−1 (with good Pearson’s correlation factor r of at least −0.9998), which is in total 
accordance with the previous results. As the FWO method uses a quite rude approximation of the 
temperature integral, different corrections have been proposed [24,46–48]. As indicated by Venkatesh 
et al. [49], the Doyle’s approximation can lead to an error of more than 10% in the Ea values. If Ea is 
independent of the conversion α, the FWO method gives similar values to those obtained by the 
Friedman method. As pointed out by Flynn [48], the error related to the Doyle’s approximation is 
less than 1% for reduced temperature values, x = Ea/RT, comprised between 21 and 81. The reduced 
temperature values x for the average temperatures corresponding to an isoconversional α value at 
different heating rates were between 27 (αiso = 0.95) and 31 (αiso = 0.05), so that the expected error in 

Figure 4. Linear plots corresponding to fitting of experimental data in isoconversional conditions: (a)

Friedman method showing a plot of ln
(
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)
vs. 1/T; (b) Flynn-Wall-Ozawa (FWO) method showing

a plot of ln(β) vs. 1/T; (c) Kissinger-Akahira-Sunose (KAS) method showing a plot of ln
(

β
T 2

)
vs. 1/T;

and (d) Starink method showing a plot of ln
(

β
T1.92

)
vs. 1/T.

As previously indicated, differential methods do not need any approximation, so that in the first
instance they could seem more accurate than integral methods. Nevertheless, the application of these
methods to integral data, such as those obtained by TGA, involves calculating the first derivative by
numerical methods, with the corresponding inaccuracy being due to its noisy signal. With regard to
integral methods, although they use more or less accurate approximations of the temperature integral,
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they can help in obtaining reliable values for Ea [44]. As indicated by Nikolaidis et al. [45], application
of differential and integral methods usually gives differences in Ea but the integral methods become
more accurate as the accuracy of the temperature integral increases. The FWO is one of the widely used
integral methods, though it uses a quite rude approximation of the temperature integral. As indicated
in Equation (19), by using the FWO method, the linear fit of ln(β) vs. 1/T yields a straight line
whose slope is −1.052 Ea/R. Using this equation, the average Ea obtained was 165.7 ± 0.8 kJ mol−1

(with good Pearson’s correlation factor r of at least −0.9998), which is in total accordance with the
previous results. As the FWO method uses a quite rude approximation of the temperature integral,
different corrections have been proposed [24,46–48]. As indicated by Venkatesh et al. [49], the Doyle’s
approximation can lead to an error of more than 10% in the Ea values. If Ea is independent of the
conversion α, the FWO method gives similar values to those obtained by the Friedman method.
As pointed out by Flynn [48], the error related to the Doyle’s approximation is less than 1% for reduced
temperature values, x = Ea/RT, comprised between 21 and 81. The reduced temperature values x for
the average temperatures corresponding to an isoconversional α value at different heating rates were
between 27 (αiso = 0.95) and 31 (αiso = 0.05), so that the expected error in the FWO method was less
than 1%. By applying the corrections described by Flynn [48], the corrected activation energy Ea was
163.4 ± 0.8 kJ mol−1, which is close to the value given by the Friedman method. The KAS method
(Figure 4c) uses a more accurate solution for the temperature integral, thus, in a first instance it gives
more accurate values. In a similar way to the above-mentioned methods, the KAS gave an almost
independent Ea value with the conversion α, with an average value of Ea of 163.0 ± 0.8 kJ mol−1,
with r values close to −0.9999 for all isoconversional α values considered. The value obtained for Ea

is in total agreement with the previous values reported by the Friedman method and it is almost the
same value than that obtained by using the Starink method, which uses an even better approximation
for the temperature integral. In fact, the linear fits using the Starink method (Figure 4d) resulted in
an average value of Ea = 163.3 ± 0.8 kJ mol−1 (r values equal or better than −0.9998), thus giving
more consistency to the previous differential and integral methods. In addition, the non-dependency
observed for Ea with the conversion suggests that although the degradation reactions could be quite
complex, the overall degradation takes place in a single-step process, and then all the assumptions
that have been previously made with the different methods lead to coherent values.

It is not easy to elucidate the reaction model by using isoconversional methods. Huang [50] used
the Coats and Redfern integral method with different g(α) functions and this allowed an approach to
the reaction model. Nevertheless, in the last years, with the development of advanced computational
methods, new approaches have been proposed. One of them is the so-called Combined Kinetic Analysis
(CKA) proposed by Criado-Maqueda [33,35,51–55]. This method makes it possible to obtain the Ea

value by assuming a general expression for f (α) and maximizing the linear fit between ln
(

β ( dα
dT )

αm(1−α)n

)
as a function of 1/T as indicated in Equation (27). As the slope of these linear fits is negative, then the
goal has been minimizing the Pearson’s correlation factor (r) by varying the n and m exponents.
The results obtained by using this optimization process are summarized in Table 4. It is worthy to
note that the linear fit has been applied in a wide conversion range, comprised between α = 0.01 and
α = 0.99, and the optimization procedure was possible by using the “minimize” function in MathCad
15 from PTC (Boston, MA, USA).
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Table 4. Summary of the main parameters of the Combined Kinetic Analysis (CKA) of the thermal
degradation of recycled ABS as indicated in Equation (27).

Heating Rate β (K min−1) Ea (kJ mol−1) ln A c r n m

2 163.9 27.6810 −1.0000 1.4920 0.0024

5 163.9 27.6660 −1.0000 1.4930 0.0024

10 163.8 27.6510 −1.0000 1.4930 0.0024

15 163.5 27.5890 −1.0000 1.4920 0.0044

20 163.7 27.6220 −1.0000 1.4930 0.0032

25 163.6 27.6160 −1.0000 1.4930 0.0032

30 163.4 27.5810 −1.0000 1.4920 0.0044

Figure 5 shows the typical plots, which suggest an excellent linear fit (r = −1.0000) between the
combination of experimental data β( dα

dT ) and a generic mathematical expression that covers almost
all potential reaction models in thermally activated processes (cαm(1− α)n). It is worthy to note that
the average Ea obtained by Combined Kinetic Analysis (CKA) is very similar to those obtained with
the previous methods (Ea = 163.7 ± 0.2 kJ mol−1). Although the use of this modified Sestak-Berggren
equation (Equation (26)) is only considered for mathematical purposes, the obtained results for
n = 1.4926 ± 0.0005 and m = 0.0032 ± 0.0009 suggest that the (1−α)n term of this mathematical
expression contributes in a major extent than the αm term. Therefore, although this method is based
only on a mathematical expression that covers all the possible (or a wide variety of) reaction models,
it can also suggest the reaction model for the thermal degradation of recycled ABS. One can considerer
the nth reaction model as the main reaction model. The extremely low SD obtained for Ea, is also
representative for its independency from the heating rate, β, which indicates increased consistency to
the assumptions of the model, and subsequently, the obtained results are representative. In fact, the Ea

value given by the CKA is within the same range of all isoconversional methods and the Kissinger
method as well.
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Figure 5. Linear fits corresponding to the Combined Kinetic Analysis (CKA) of the thermal degradation
of recycled acrylonitrile-butadiene-styrene (ABS) at different heating rates, β, using Equation (27).
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4.2. Determination of the Reaction Model of the Thermal Degradation of ABS

As previously indicated, all the above-mentioned methods give coherent and almost identical Ea

values from different approaches. Nevertheless, one step beyond includes determining the remaining
kinetic parameters to give a complete kinetic triplet (Ea, A, f (α)) that will be helpful to predict the
thermal degradation of recycled ABS and also to check the accuracy between the experimental data and
the values predicted by the given kinetic model. To this end, the Criado-Maqueda method [17,56–58]
was employed. This considers a comparison of the calculated y(α) and z(α) plots with several
well-known reaction models. For this purpose, y(α) and z(α) were calculated as indicated in
Equations (28) and (34), respectively. These functions have been calculated for each heating rate
and are shown in Figures 6 and 7. As it can be seen in Figure 6, corresponding to y(α) curve plots,
the maximum αM for this plot is close to 0 and its geometry suggests a nth order reaction model.
Moreover, the different y(α) curves for the different heating rates are almost coincident; y(α) suggests
a nth reaction model and the plot of z(α) corroborates this, as can be seen in Figure 7. For a nth order

reaction model, the maximum for the z(α) plot, α∞
p is located at 1− n( 1

1−n ) [59], which resulted in an
average theoretical n value of 1.4810 by using the values described in Table 5.

Table 5. Experimental values corresponding to the maximum of the calculated y(α) and z(α) plots for
the thermal degradation of recycled ABS at different heating rates.

Heating Rate β (K min−1) αM α∞
p

2 0.0005 0.5547

5 0.0006 0.5621

10 0.0006 0.5556

15 0.0005 0.5635

20 0.0005 0.5333

25 0.0005 0.5611
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By assuming a nth order reaction model, with f (α) = (1−α)n, both the reaction order and ln A
values can be simultaneously obtained by linear fit of ln y(α) as a function of ln(1−α). In fact, the slope
of this linear fit corresponds to the reaction order n, while the slope represents ln A. In addition to the
nth reaction order, the conditions for an autocatalytic process are covered by the calculated y(α) and
z(α) plots with αM > 0 and α∞

p > αM, using the characteristic peak values shown in Table 5. For this
reason, the n and m values of the autocatalytic reaction model were calculated by the non-linear fitting
of ln y(α) as a function of the conversion α (curve fitting to k + m ln α + n ln(1−α)). Table 6 summarizes
the results obtained for both reaction models and their corresponding fitting processes. Application
of both reaction models suggests that the nth order reaction model is the best. In fact, when the
autocatalytic reaction model is applied, the autocatalytic exponent, m was very low. This can be clearly
observed in Figure 8, which shows a comparison of the calculated y(α) functions for different heating
rates with different normalized master plots. Figure 8a shows a comparison with typical master plots of
the nth order reaction model with different n values from 1.00 (linear) to 2.00 (curved line). The master
plot for n = 1.5 gave high coincidence with the calculated y(α) plots. With regard to the autocatalytic
master plots, Figure 8b shows different exponent combinations (with n + m = 1.5). As one can observe,
if n = m, the maximum is located at a conversion α of 0.5. If m > n, the maximum is moved to higher α

values thus indicating prevalence of the autocatalytic term. On the contrary, if m < n, the maximum
is displaced to lower α values, thus indicating a minor effect of the autocatalytic contribution. As m
becomes lower (e.g., n = 1.4995, m = 0.005), the characteristic plot looks like the typical master plot of
the nth order reaction model.
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Table 6. Main kinetic parameters obtained for the thermal degradation of recycled ABS by using the
nth order (linear fit) and the autocatalytic (non-linear curve fit) reaction models obtained for different
heating rates.

Heating Rate β
(K min−1)

nth order: (1−α)n autocatalytic: αm(1−α)n

n ln A r n m ln A R2

2 1.4958 27.5423 0.9999 1.4929 0.0050 27.5659 1.000

5 1.4957 27.5419 1.0000 1.4935 0.0048 27.5655 1.000

10 1.4951 27.5411 1.0000 1.4938 0.0046 27.5649 1.000

15 1.4949 27.5408 1.0000 1.4939 0.0045 27.5646 1.000

20 1.4947 27.5405 1.0000 1.4941 0.0044 27.5644 1.000

25 1.4945 27.5403 1.0000 1.4942 0.0044 27.5643 1.000

30 1.4943 27.5402 1.0000 1.4952 0.0069 27.5684 1.000
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Once the kinetic triplet was obtained, integration of the conversion rate with the corresponding
parameters was carried out and its results are shown in Figure 9. The integration was carried out in
Mathcad using the fourth-order Runge-Kutta fixed-step method for both nth order and autocatalytic
model. Figure 9a shows a comparison plot of the experimental data and theoretical (model) curves
obtained by integration of the kinetic model using the nth reaction model with average values obtained
from Table 6: n = 1.4950 ± 0.0002, ln A = 27.5410 ± 0.0011. Regarding the autocatalytic model (actually
a nth order model too), the average parameters used for the integration were: n = 1.4939 ± 0.0002,
m = 0.0050 ± 0.0009, and ln A = 27.5654 ± 0.0009. As it can be seen, there is very good accuracy of
the experimental data with both models (actually, the nth order reaction model since the autocatalytic
model has a very low contribution of the autocatalytic component).
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5. Conclusions 

This work shows a systematic kinetic study of the thermal degradation of recycled ABS in 
nitrogen atmosphere. The obtained data by dynamic TGA at different heating rates, comprised 
between 2 and 30 K min−1, were used to apply different model-free kinetic methods (MFK) based on 
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approach obtained by CKA gave an Ea value of 163.7 ± 0.2 kJ mol−1, which is in total agreement with 
other isoconversional methods, thus giving clear evidence of the consistency of the CKA method. 
Once the consistency of the Ea values was confirmed, the other kinetic parameters were obtained by 
calculating the y(α) and z(α) characteristic plots and comparing them with the master curve plots. 
Both y(α) and z(α) plots suggested a nth order reaction model. Then, both n and ln A were obtained 
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2 1.4958 27.5423 0.9999 1.4929 0.0050 27.5659 1.000 
5 1.4957 27.5419 1.0000 1.4935 0.0048 27.5655 1.000 
10 1.4951 27.5411 1.0000 1.4938 0.0046 27.5649 1.000 
15 1.4949 27.5408 1.0000 1.4939 0.0045 27.5646 1.000 
20 1.4947 27.5405 1.0000 1.4941 0.0044 27.5644 1.000 
25 1.4945 27.5403 1.0000 1.4942 0.0044 27.5643 1.000 
30 1.4943 27.5402 1.0000 1.4952 0.0069 27.5684 1.000 

 

  
(a) (b) 

Figure 8. Comparison of calculated y(α) plots with the master plots corresponding to (a) the nth order 
reaction model and (b) the autocatalytic reaction model, with different exponent parameters. 
Normalized y(α) functions for different heating rates β: □ 30 K min−1, ● 25 K min−1, △ 20 K min−1,▼ 
15 K min−1, 10 K min−1,◀ 5 K min−1, and ▻ 2 K min−1. 

Once the kinetic triplet was obtained, integration of the conversion rate with the corresponding 
parameters was carried out and its results are shown in Figure 9. The integration was carried out in 
Mathcad using the fourth-order Runge-Kutta fixed-step method for both nth order and autocatalytic 
model. Figure 9a shows a comparison plot of the experimental data and theoretical (model) curves 
obtained by integration of the kinetic model using the nth reaction model with average values 
obtained from Table 6: n = 1.4950 ± 0.0002, ln A = 27.5410 ± 0.0011. Regarding the autocatalytic model 
(actually a nth order model too), the average parameters used for the integration were: n = 1.4939 ± 
0.0002, m = 0.0050 ± 0.0009, and ln A = 27.5654 ± 0.0009. As it can be seen, there is very good accuracy 
of the experimental data with both models (actually, the nth order reaction model since the 
autocatalytic model has a very low contribution of the autocatalytic component). 

2 K min−1. Considering different reaction models (a) nth order and (b) autocatalytic.

5. Conclusions

This work shows a systematic kinetic study of the thermal degradation of recycled ABS in nitrogen
atmosphere. The obtained data by dynamic TGA at different heating rates, comprised between
2 and 30 K min−1, were used to apply different model-free kinetic methods (MFK) based on the
isoconversional principle. With regard to the differential methods, the Friedman approach gave
an Ea value of 162.9 ± 1.3 kJ mol−1, which is quite similar to those obtained by applying several
integral methods, such as FWO (Ea = 163.4 ± 0.8kJ mol−1), KAS (Ea = 163.0 ± 0.8 kJ mol−1), and the
Starink method (Ea = 163.3 ± 0.8 kJ mol−1). In addition, the variation of Ea with the conversion α

was almost negligible, thus suggesting the degradation process of ABS takes place in a single-step
process. A different approach obtained by CKA gave an Ea value of 163.7 ± 0.2 kJ mol−1, which is in
total agreement with other isoconversional methods, thus giving clear evidence of the consistency of
the CKA method. Once the consistency of the Ea values was confirmed, the other kinetic parameters
were obtained by calculating the y(α) and z(α) characteristic plots and comparing them with the
master curve plots. Both y(α) and z(α) plots suggested a nth order reaction model. Then, both n
and ln A were obtained by linear fitting resulting in n = 1.4950 ± 0.0002 and ln A = 27.5410 ± 0.0011
(A in min−1). Therefore, an excellent agreement between the experimental data and the values
predicted by the kinetic model was found. In addition, the autocatalytic reaction model was
tested, and the corresponding n and m exponents were: n = 1.4939 ± 0.0002, m = 0.0050 ± 0.0009,
and ln A = 27.5654 ± 0.0009. These results indicated that the autocatalytic component has a very
low contribution in the reaction model (extremely low m values) and it also corroborated the good
agreement with a simple nth order reaction model.
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