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Coexistence of stable dark- and bright-soliton Kerr combs in normal-dispersion resonators
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Using the Lugiato-Lefever model, we analyze the effects of third-order chromatic dispersion on the existence
and stability of dark- and bright-soliton Kerr frequency combs in the normal dispersion regime. While in
the absence of third-order dispersion only dark solitons exist over an extended parameter range, we find that
third-order dispersion allows for stable dark and bright solitons to coexist. Reversibility is broken and the shape of
the switching waves connecting the top and bottom homogeneous solutions is modified. Bright solitons come into
existence thanks to the generation of oscillations in the switching-wave profiles. Temporal oscillatory instabilities
of dark solitons are suppressed in the presence of sufficiently strong third-order dispersion, while bright solitons
are never found to oscillate in time. As a result of third-order dispersion both bright and dark solitons are found
to move with a velocity that depends on their width.
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I. INTRODUCTION

The Lugiato-Lefever [1] equation (LLE) has attracted a lot
of interest in the last few years for describing the generation of
Kerr frequency combs in high-Q microresonators driven by a
continuous-wave (CW) laser [2,3]. These frequency combs can
be integrated on chips [4] and used to measure time intervals
and light frequencies with a exquisite accuracy, leading to
numerous key applications [5–9]. In this framework a Kerr
frequency comb corresponds to the frequency spectrum of a
temporal dissipative structure, such as patterns or solitons,
circulating inside the cavity [10,11]. While most theoretical
studies have focused on the anomalous second-order group
velocity dispersion (GVD) regime [12–14], where the typical
dissipative states are bright solitons, the normal GVD regime
has recently attracted interest due to the difficulty of obtaining
anomalous GVD in some spectral ranges. In contrast to the
anomalous regime, dark solitons are found in the normal
GVD regime, i.e., low-intensity dips embedded in a high-
intensity homogeneous background. The bifurcation structure
and temporal dynamics of these dark solitons, also called
“platicons”, have been recently studied [15–17], and their
origin is intimately related to the locking of switching waves
(SWs) connecting coexisting homogeneous state solutions of
high and low intensity [16–18]. Such dissipative localized
structures have also been studied in spatial systems, both in
one and two dimensions, with different nonlinearities [19,20].
The generation of dark pulse Kerr frequency combs has been
achieved experimentally by several groups [21–23].

In the anomalous GVD regime it was shown that high-
order chromatic dispersion effects can modify the dynamics
and bifurcation structure of solitons in the LLE [24,25].
In particular, third-order dispersion (TOD) generates the
emission of dispersive waves that can lead to the suppression of
dynamical regimes such as oscillations and chaos [26,27]. As
TOD also breaks reversibility, solitons move with a constant
velocity [26–30]. While recent work has numerically shown
that TOD induces similar dispersive waves in dark solitons

in both normal and anomalous dispersion regions [31], a
complete understanding of the influence of TOD on the
dynamics and bifurcation structure of dark pulse Kerr fre-
quency combs is still lacking. The influence of TOD on
single-pass, conservative systems that can be described by a
generalized nonlinear Schrödinger equation has been studied
before [32–34]. However, optical cavities are dissipative by
nature such that the temporal structures arising here are
fundamentally different to those appearing in conservative
systems, and results cannot be gleaned from conservative
systems in a straightforward way. Therefore, in this paper,
we present a detailed analysis of the bifurcation structure of
soliton Kerr combs (Kerr combs corresponding to a soliton
circulating in the cavity) in the normal dispersion regime in
the presence of TOD. In particular, we show that stable bright
and dark solitons coexist over an increasingly wide parameter
range for increasing values of TOD, and we explain such
soliton stabilization by analyzing the shape of SWs whose
locking lies at the heart of this phenomenon. Moreover, we
show that bright and dark solitons are stable in the presence of
sufficiently strong TOD, and that solitons move with a velocity
that depends on their width.

II. SOLITONS IN THE LUGIATO-LEFEVER MODEL
WITH THIRD-ORDER DISPERSION

Using the normalization of [12,35], the LLE reads

∂tA = −(1 + iθ )A + iA|A|2 + ρ − i∂2
τ A + d3∂

3
τ A, (1)

where t is the slow time describing the evolution of the
intracavity field A(t,τ ) on the time scale of the cavity photon
lifetime, and τ is the fast time that describes the temporal
structure for the field on the time scale of the resonator round
trip L. The first term on the right-hand side describes cavity
losses (the system is dissipative by nature); ρ is the amplitude
of the homogeneous (CW) driving field or pump; θ measures
the the cavity frequency detuning between the frequency
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FIG. 1. Solution profile at t = 150 (black) after time evolution in the LLE (1) of an initial dip in the top HSS At or a bump on the bottom
HSS Ab (red) in the (a) absence or (b) presence of TOD. Left panels show the time profile, while the right panels show its associated comb
spectrum. Parameter set: (a) (θ,ρ,d3) = (4,2.175,0); (b) (θ,ρ,d3) = (4,2.3,0.7).

of the input pump and the nearest cavity resonance; ∂2
τ models

the GVD (here assumed to be normal at the pump frequency);
the sign of the cubic term is set so that it corresponds to the
self-focusing Kerr nonlinearity; and d3∂

3
τ models the TOD and

d3 is its strength. The parameter d3 can be determined from
the physical parameters of the system using the relation

d3 ≡ β3

3|β2|

√
2α

|β2|l , (2)

where α = π/F is half the percentage of power lost per
round trip, F is the cavity finesse, l is the length of the
cavity, and β2 (β3) is the second (third)-order dispersion
coefficient. Typical values of these parameters have been
listed in [27] for three different physical systems, namely,
crystalline magnesium fluoride (MgF2) and silicon nitride
(Si3N4) microresonators, as well as cavities consisting of
standard and dispersion-shifted optical fibers. While fiber
resonators are much longer than microresonators ( l ≈ 102

m vs l ≈ 10−4–10−2 m), decreasing d3, their cavity losses are
generally also much higher (α ≈ 10−1 vs α ≈ 10−5–10−2),
leading to an increase of d3. This shows that decreasing the
strength of second-order dispersion β2 is critical to increasing
the effective strength of TOD (d3). Using the normalization (2),
it was shown that the absolute value of d3 can realistically range
anywhere from 0 to approximately 2. Here, we will consider
values of d3 up to 0.7.

The homogeneous steady state (HSS) solutions A0 are given
by the classic cubic equation of dispersive optical bistability,
namely,

I 3
s − 2θI 2

s + (1 + θ2)Is = ρ2, (3)

where Is ≡ |A0|2. For θ <
√

3, Eq. (3) is monovaluate and
hence the system is monostable. However, for θ >

√
3, three

HSS solutions exist: At (a stable HSS of higher intensity), Am

(an unstable saddle HSS of intermediate intensity), and Ab (a
stable HSS of lower intensity). The different branches meet at

saddle-nodes SNhom,1 and SNhom,2 located at

Ib,t = 2θ

3
± 1

3

√
θ2 − 3. (4)

Figure 1 illustrates how the system can relax into different
stable structures depending on the initial condition. In the
absence of TOD, Figure 1(a) shows that a dip in the high-
intensity HSS At (red) can evolve into a stable dark soliton
(black), while a bump on the low-intensity HSS Ab (red)
relaxes back to Ab. This observation that dark solitons exist,
but bright solitons do not, is general [15–17]. Reference [16]
discussed that dark solitons exist due to the locking of
overlapping oscillatory tails in the profile of SWs connecting
the upper state At to the bottom state Ab. As such oscillations
are absent in SWs approaching the upper state At , bright
solitons do not exist (apart from at one single value of the
pump, called the Maxwell point ρM [16]). Figure 1(b) shows a
similar numerical simulation, but now in the presence of TOD
(d3 = 0.7). The initial condition corresponding to a dip still
evolves to a dark soliton, which now has an asymmetric profile
that moves at velocity v1 while stably maintaining its temporal
shape and corresponding frequency spectrum. However, in
contrast to the case without TOD, an initial bump now no
longer relaxes to the HSS Ab, but it forms a bright soliton
corresponding to a fixed profile moving at velocity v2.

III. ADDITIONAL OSCILLATORY TAILS LEAD
TO BRIGHT SOLITONS

As already suggested, analyzing the shape of the SWs
connecting HSSs At and Ab is the key to understanding why
dark and bright solitons can stably coexist in the presence of
TOD. Any steadily drifting dark or bright soliton is a solution
of the time-independent LLE

− (1 + iθ )A + iA|A|2+ρ + v∂τ ′A − i∂2
τ ′A + d3∂

3
τ ′A = 0,

(5)

where τ ′ ≡ τ − vt and the velocity v is computed as part
of the solutions of Eq. (5). Defining a six-dimensional phase
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FIG. 2. Switching waves (a) Su and (b) Sd , in each case for
d3 = 0 (top panel, red) and d3 = 0.7 (bottom panel, blue). The
spatial eigenvalues corresponding to At and Ab are shown in (c)
and (d), respectively, both for d3 = 0 (red crosses) and d3 = 0.7 (blue
diamonds). (θ,ρ) = (4,2.325).

space by variables u1 = Re[A], u2 = Im[A], u3 = dτ ′Re[A],
u4 = dτ ′Im[A], u5 = d2

τ ′Re[A] and u6 = d2
τ ′Im[A], Eq. (5) can

be recast to the following dynamical system:

dτu1 = u3.

dτu2 = u4.

dτu3 = u5.

dτu4 = u6.

dτu5 = d−1
3 [−u4 − vu3 + u1 − θu2 − u2Is − ρ],

dτu6 = d−1
3 [u3 − vu4 + u2 − θu2 − u1Is],

(6)

with Is = u2
1 + u2

2, and where we have omitted the prime (′).
In this framework any SW connecting Ab and At or vice versa
corresponds to a heteroclinic trajectory connecting these HSSs
in the phase space, and the shape of the SWs is determined
by the linearization of Eq. (6) around both Ab and At , and
therefore by the spatial eigenvalues satisfying

d2
3λ6 + a4λ

4 − 2d3λ
3 + a2λ

2 − 2vλ + a0 = 0, (7)

where a4 = 2vd3 + 1, a2 = −4Is + 2θ + v2, and a0 =
4Isθ − 3I 2

s − θ2 + 1 [36,37]. Alternatively, one can perform
a linear stability analysis directly on Eq. (5) as shown in the
Appendix. Figure 2(a) shows the shape of an up-switching
wave Su connecting the low-intensity HSS Ab to the high-
intensity HSS At , both in the absence (red) and presence (blue)

of TOD. Figure 2(b) similarly shows the profile of the opposite
down-switching wave Sd , connecting the high-intensity HSS
At to the low-intensity HSS Ab.

Figures 2(c) and 2(d) plot the corresponding spatial
eigenvalues that are solutions of the characteristic polynomial
equation (7). Close to the top HSS At , the eigenvalues in
Fig. 2(c) show how the switching waves approach (Su) and
leave (Sd ) the HSS At , both with (blue) and without (red)
TOD. Such approach (departure) to (from) the top HSS At can
be approximated linearly as follows

Su,d (τ ) − At ∝ eλ
−,+
t τ , (8)

where λ−
t (λ+

t ) is the spatial eigenvalue with the smallest abso-
lute value of the real part, which is the one determining how this
approach (departure) occurs asymptotically. Similarly, close to
the bottom HSS Ab, the approach to and departure from Ab is
approximated by

Su,d (τ ) − Ab ∝ eλ
−,+
b τ . (9)

Without TOD, the system is reversible under the transforma-
tion τ → −τ . As a consequence spatial eigenvalues (red) come
in pairs and are symmetric with respect to both axes Re[λ] = 0
and Im[λ] = 0. This means that both Su [Fig. 2(a)] and Sd

[Fig. 2(b)] approach and leave At and Ab in the same way. The
top HSS At is always approached or left in a monotonic way,
explained by the corresponding purely real spatial eigenvalues
λt . In contrast, the bottom HSS Ab is always approached or
left in an oscillatory fashion, because its corresponding spatial
eigenvalues (λb) are complex. The damping rate q and the
frequency 
 of these oscillatory tails around Ab correspond
to the real and imaginary parts of the spatial eigenvalues λb.
Such oscillations can interlock around Ab to form stable dark
solitons, but the absence of similar oscillations around At

prevent stable bright solitons to form.
When adding TOD, the dynamics around the HSSs are

described by six eigenvalues instead of four, and they are no
longer symmetric. The shapes of the SWs change in such a
way that they now approach the HSS At in an oscillatory way
(complex λ−

t ). Therefore locking can occur not only in the
bottom HSS Ab, but also in the top At , forming bright solitons.

IV. MODIFICATION OF THE BIFURCATION STRUCTURE
OF THE SOLITONS

The steadily drifting soliton solutions of Eq. (5) can
be found numerically, and with arbitrary precision, using
a Newton-Raphson method. Next, continuation techniques
can be used to track those solutions as parameters are
varied [38,39]. In this way it is possible to build up bifurcation
diagrams, which help to understand the bifurcation structure
and the organization of the different solutions that exist in
the system.

However, in order to solve Eq. (5), one also needs to
calculate the velocity v as part of the solution, which can be
done by adding an extra condition in the form of a constraint
Q[A] = 0. Here, we choose the maximum of the structure
to be at a fixed position τ0, which can be described by
the equation

Q[A] ≡ ∂τ (|A|2)τ0 = 0. (10)
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Alternatively, one can also use integral phase conditions as
done in [40]. Therefore, for any set of parameters, the solution
of the system formed by both Eqs. (5) and (10) gives both the
steadily drifting soliton and its velocity. In this work, we have
discretized the domain using a grid of N = 1024 points, such
that Eq. (5) then becomes a set of coupled algebraic equations.

The stability of all steady-state solutions is indicated by
solid (stable) or dashed (unstable) lines. We determined the
stability by calculating the eigenspectrum of the linear operator
L[A(τ )] associated with Eq. (5), i.e., solving the eigenvalue
problem

L[As(τ )]ψ = σψ, (11)

with ψ the eigenmode associated with the eigenvalue σ , both
depending on the parameters of the system. If Re[σ ] < 0(>0),
the states are stable (unstable), and if for a given set of
parameters Re[σ ] = 0 the system undergoes a bifurcation.
Equation (11) has to be solved numerically. Hence, the
linear operator corresponds to the Jacobian matrix associated
with the coupled algebraic equations that originate from
discretizing Eq. (5).

In blue, the three HSS solutions are shown: the stable
top (At ) and bottom (Ab) HSS, and the unstable middle
HSS (Am). The three HSS solutions are connected by two
saddle-node bifurcations. In the neighborhood of the saddle-
node bifurcation of the upper HSS (indicated by SNhom,2), an
analytical asymptotic soliton solution of Eq. (5) is known for
d3 = 0. It has the form A(τ ) − At = Csech2(Bτ ), with C and
B depending on the control parameters θ and ρ [17]. We used
this solution as an initial guess in the continuation algorithm
to track these structures to any value of the parameters θ and
ρ (and later also d3) far from SNhom,2.

The resulting bifurcation diagram is shown in Fig. 3, where
we plot the mean energy

‖A‖2 ≡ L−1
∫ L/2

−L/2
|A|2dτ (12)

of HSSs and solitons as a function of the pump amplitude ρ for
d3 = 0 and increasing values of d3. In black, the bifurcation
diagram of dark solitons is shown for d3 = 0 and has been
discussed in detail in [16,17]. Unstable dark solitons originate
from the saddle-node point SNhom,2 and acquire stability at
the next turning point when increasing the pump amplitude.
Dark solitons of increasing width, corresponding to branches
with lower mean energy, exist over a parameter range ρ that
becomes narrower and narrower, eventually collapsing to the
Maxwell point of the system at ρM . These dark solitons
are connected by unstable solution branches that serve to
add additional spatial oscillations in their profiles, leading to
the broadening of the dark states. This type of bifurcation
structure is called collapsed snaking [16,17,41,42], which is
significantly different from the homoclinic snaking appearing
for dissipative solitons associated with subcritical patterns.
Such homoclinic snaking, where many solutions coexist over
a fixed parameter range around the Maxwell point, is probably
better known and has been widely studied in physics [43,44]
and optics [13,45–47].

When TOD is taken into account, Su gradually develops
oscillations when increasing d3, which allows bright solitons

Pump

d3= 0 0.3 0.5 0.7

M M M M

Dark Solitons

Bright Solitons

Ab

Am

At

SNhom,2

FIG. 3. Bifurcation diagrams of HSSs (blue) and dark and bright
solitons for θ = 4 and increasing values of d3= 0 (black), 0.3
(yellow), 0.5 (green), 0.7 (red). Solid (dashed) lines correspond to
stable (unstable) states.

to come into existence. This can be seen in Fig. 3(b) in
yellow (d3 = 0.3), and bright solitons now exist over a narrow
range of pump values ρ. Increasing d3 further, the spatial
oscillations in Su become stronger, leading to the existence
of bright solitons over a wider range of pump parameters
[d3 = 0.5 (green), 0.7 (red)]. Figure 3(a) shows that also the
dark solitons exist over a wider range of parameters, and
the Maxwell point ρM (around which the collapsed snaking
structure is organized) shifts to higher values of the pump
ρ. Typical solution profiles of solitons corresponding to
different branches are plotted in Fig. 4 for d3 = 0.7 (red).
In the presence of TOD, both dark [Figs. 4(i)–4(iii)] and
bright [Figs. 4(iv)–4(vi)] solitons exist over an increasingly
narrow parameter range as they increase their width. As the
solitons become wider by incorporating additional oscillations,
their corresponding frequency comb spectrum also becomes
more complex and modulated. This complexity in the comb
spectra is associated with the oscillatory profile close to each
HSS (At and Ab). The comb width, however, is not largely
affected because it is mainly controlled by the sharpest and
most pronounced feature in the soliton profile, being the fast
switching between both HSSs, which remains approximately
the same for all soliton solutions.

V. SUPPRESSION OF TEMPORAL SOLITON
INSTABILITIES

For d3 = 0, at higher values of the detuning θ , dark
solitons have been shown to undergo Hopf instabilities and
period doubling bifurcations starting a route to temporal
chaos [16,17]. This scenario is similar to the one regarding
bright solitons in the anomalous dispersion regime [12,13]. In
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FIG. 4. Temporal profiles [left; Re(A) in blue, |A| in red] and
spectral intensities (right, in dB) of asymmetric dark and bright
solitons corresponding to the locations (i)–(iii) and (iv)–(vi) in Fig. 3.
(θ,ρ,d3) = (4,2.232,0.7).

the anomalous dispersion regime, such temporal oscillations,
also called “breathers”, were experimentally first observed in
fiber resonators [12] and have recently also been measured
in microresonators [48–50]. In the anomalous regime, it was
furthermore shown that TOD, which leads to drift instabilities,
could suppress such oscillatory and chaotic temporal dynamics
of bright solitons [26,27].

We found that this mechanism of stabilization is also present
in the normal dispersion regime. We characterized the Hopf
bifurcations leading to temporal oscillations by calculating
numerically when the eigenspectrum has a pair of purely
imaginary complex conjugate eigenvalues σ = ±iω. At such
Hopf bifurcation, solitons start to oscillate in amplitude with
frequency ω. We then tracked these Hopf bifurcations in
parameter space to find the oscillatory regions and to see how
they change when modifying d3.

To illustrate this we first show the bifurcation diagram
for θ = 5 and d3 = 0 in Fig. 5(a). Narrow dark solitons are
unstable between the Hopf bifurcations H1 and H2 leading
to temporal oscillations. When d3 	= 0, the Hopf bifurcations
shift in such way that the oscillatory region shrinks for increas-
ing values of TOD until it disappears [see Figs. 5(b)–5(d) for
d3 = 0.2,0.3 and 0.7, respectively). While for d3 = 0.2, dark
solitons between H1 and H2 oscillate and drift, for d3 = 0.3 and
0.7 the oscillatory instabilities have been suppressed and only
a drifting soliton remains. The direction in which the soliton
drifts is not obvious by looking at its profile and changes with
the pump ρ. In Fig. 5, solid purple (green) lines correspond to
dark solitons with positive (negative) velocity, while the solid
red lines (for d3 = 0) indicate zero velocity. By increasing
the strength of TOD, the parameter range of solitons with

FIG. 5. Bifurcation diagrams for θ = 5 at different values of
d3 = 0 (a), 0.2 (b), 0.3 (c), 0.7 (d). H1,2 correspond to Hopf bifur-
cations (black dots). Solid (dashed) lines stand for stable (unstable)
states. In solid purple (green) lines we refer to states with positive
(negative) velocity. Solid red lines (for d3 = 0) and red dots indicate
zero velocity.

negative velocity shrinks. Although bright solitons could in
principle also undergo oscillatory instabilities and experience
similar stabilization with increasing TOD, for the parameter
range considered in this work, no such oscillations of bright
solitons have been found. Despite the absence of oscillatory
instabilities, both bright and dark solitons drift with positive
or negative velocity whenever d3 	= 0, which we explore in
more detail in the next section. Whereas temporal oscillations
in the soliton profile also lead to an oscillating frequency comb
spectrum, a steady soliton drift does not affect the comb profile,
which remains stable in time.

VI. SOLITON VELOCITY

When d3 	= 0, the system is no longer τ reversible due to
the introduction of an odd derivative in the right-hand side of
Eq. (1). Due to this broken reversibility, the solutions of Eq. (1)
are asymmetric with respect to the center of the structure, let
us say τ = 0, and they drift with a constant velocity v. The
breaking of the reflection symmetry causes a modification of
the solution profile related to the shape of the Goldstone mode,
which induces a permanent shift of the solution (i.e., a drift),
and an asymmetry of such a state [51]. In the linear regime
it is possible to show, using perturbation theory, that v ∝ d3,
although this result is only valid for small values of TOD, i.e.,
(d3 
 1) [40].

However, as mentioned in Sec. IV, the velocity can also
be calculated via the Newton-Raphson method as part of the
solution of the system formed by Eqs. (5) and (10). This
velocity is shown for θ = 4 (no oscillatory instabilities) in
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FIG. 6. (a) Velocity of dark solitons as a function of the width
at half minimum � for θ = 4 and d3 = 0.3,0,5,0.7. The velocity
changes in a damped oscillatory way as a function of �. The
stable (unstable) dark solitons correspond to the solid (dashed) lines.
(b) Velocity of the bright solitons for the same parameter values.

Fig. 6 for both dark [Fig. 6(a)] and bright [Fig. 6(b)] solitons
as a function of its width at half minimum and/or maximum
�. For dark solitons Fig. 6(a)], one can see how the velocity
of the dark solitons oscillates in � for three different values
of TOD (d3 = 0.3,0.5,0.7). In all three cases, the difference
between the minimum and maximum velocity of a soliton
decreases as it gets wider, approaching a constant value for
very wide dark solitons (large �). This constant velocity in
the limit of very wide structures increases with the TOD. In
the case of bright solitons [Fig. 6(b)], the velocity oscillates
similarly with �. In this case, however, the oscillation period
in � is smaller, as the spatial oscillations are faster than for
the dark solitons. This difference in spatial oscillations can be
clearly seen in the solution profiles in Fig. 4. The calculated
velocity shown in Fig. 6 is to be interpreted as a drift in the
fast time scale of the resonator round trip (where τ is scaled by√

2α/
√|β2|l) per time unit t (where t depends on the photon

lifetime as t × α/tr with tr the round-trip time) [12,35]. This
drift velocity thus strongly depends on α and l, which can
change significantly from device to device (see, e.g., [27]).

As solitons of different widths travel at different speeds,
they eventually collide in a periodic domain and are forced
to interact with one another. This is illustrated in Fig. 7 for
two dark solitons traveling in opposite directions. As these
solitons are dissipative structures, they do not come out of
such a collision unchanged such as the classical solitons in
conservative systems. A number of outcomes are possible.
In Fig. 7(a) we show the formation of a bound state, while
in Fig. 7(b) we illustrate how they merge to form a new
wider soliton. Note that even if the solitons travel in the same
direction, but with different velocity, they will interact in a
similar way. For bright solitons, similar types of behavior are
found. It is a priori not obvious to know which type of structure
will emerge from the collision. A detailed characterization of
such interactions is beyond the scope of this work. For a more

R
e[

]
R

e[
]

t
A

A

A
A

(a) (b)

FIG. 7. Time evolution of two dark solitons traveling at dif-
ferent speeds for (a) (θ = 4,d3 = 0.3,ρ = 2.55) and (b) (θ = 5,

d3 = 0.2,ρ = 2.55).

in-depth theoretical and experimental study of bound states
of solitons in the presence of TOD in the Lugiato-Lefever
equation, we refer to [52,53]. In these works, solitons interact
through their oscillatory tails and bound states can form as
a result of the stable locking of such tails. We note that
the interaction illustrated in Fig. 7 is initially driven by the
inherent velocity of each soliton, whereas the final formation
of bound states is controlled by the interacting oscillatory
tails and soliton cores. Such interaction of solitons over very
long distances has also been shown experimentally, where the
soliton movement was induced via acoustic waves rather than
TOD [54].

VII. CONCLUSIONS

In summary, we have presented a bifurcation analysis of
solitons and their corresponding Kerr combs in the normal
group velocity dispersion regime in the presence of third-order
chromatic dispersion. Bright solitons have been shown to
coexist with dark solitons over a wide parameter region due
to the locking of switching waves. Third-order dispersion
induces oscillatory tails in the switching waves close to the
high-intensity homogeneous solution, allowing bright solitons
to form over an extended range of pump powers, which was
not possible without third-order dispersion. Both dark and
bright solitons are organized in a collapsed snaking bifurcation
diagram, such that broader solitons always exist over a more
narrow parameter region. Furthermore, third-order dispersion
can suppress oscillatory instabilities of dark solitons in a
similar fashion as for the anomalous case. No oscillatory
instabilities were found for bright solitons in the parameter
range considered in this work. Finally, we have shown that dark
and bright solitons of different widths propagate at different
velocities, and multiple different solitons in a resonator thus
eventually collide inelastically to form new solitons.
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APPENDIX

The spatial eigenvalues can be obtained by inserting
u1(τ ) = Us + εU (τ ) and u2(τ ) = Vs + εV (τ ) into Eq. (5),
where Us and Vs correspond to the real and imaginary

parts of the HSS solutions Ab or At , and with the Ansätze
U (τ ) = aeλτ , V (τ ) = beλτ , and λ ∈ C. Then the system
of two ordinary differential equations obtained for U (τ )
and V (τ ) has a nontrivial solution if the next determinants
satisfy

∣∣∣∣∣ d3λ
3 + vλ − (1 + 2UsVs) λ2 + θ − 3V 2

s − U 2
s

−λ2 − θ + 3U 2
s + V 2

s d3λ
3 + vλ − (1 − 2UsVs)

∣∣∣∣∣ = 0, (A1)

which yields the same characteristic equation (7). Nonetheless we prefer using the “spatial” dynamics form (6) because it allows
us to apply the theory of dynamical systems to study the formation of localized temporal structures and SWs.
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