Health relevance of antihypertensive peptides in foods

Marta Gallego, Leticia Mora and Fidel Toldrá*

Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Avenue Agustín Escardino 7, 46980, Paterna

(Valencia), Spain

* Corresponding author: Tel: +34963900022 ext.2112; fax: +34963636301.

E-mail address: ftoldra@iata.csic.es
Abstract

Food-derived bioactive peptides are promising components for the prevention and treatment of cardiovascular diseases including hypertension. Recently, there has been an increase in knowledge about the variety of complex and interrelated mechanisms for blood pressure regulation as well as the potential targets for peptides to exert their antihypertensive effects. Empiric and bioinformatics studies have provided large amounts of data regarding characteristics, structure-activity relationships and bioavailability of antihypertensive peptides through the use of in vitro assays, cell cultures, and animal studies. However, the scarce number of robust clinical trials to prove their efficacy in humans is the main reason of the limited use of antihypertensive peptides as functional foods for promoting health. Further research is needed to overcome the challenges for the application of food-derived antihypertensive peptides as functional ingredients with health benefits in the human body.
Introduction

Hypertension is considered as one of the most important risk factors in the development of cardiovascular diseases, which are currently the main cause of death in the first world. Hypertension consists of a long-term elevation of blood pressure (BP) over 140/90 mm Hg (systolic/diastolic) that frequently can be improved with healthy lifestyles such as medical nutrition care including reduction in sodium intake and calcium supplementation, as well as regular physical activity and reduction of alcohol consumption and stress conditions [1]. Different pharmaceutical drugs are available for the treatment of hypertension, but their high costs and negative side-effects has led to an increasing interest in the research on natural food-derived bioactive peptides for the management of BP [2].

Bioactive peptides are short sequences of amino acids that exert different biological properties with a positive health impact on the human body, being antihypertensive peptides the most studied to date. The use of empirical and bioinformatics approaches have allowed the discovery of numerous peptides with antihypertensive effects derived from milk, egg, meat, fish, and their by-products, but their use as nutraceutical and functional food ingredients for BP regulation is still very limited due to their insufficient proven efficacy in clinical trials [3-5].

The present paper gives a general overview about the multiple and complex mechanisms of action of antihypertensive peptides as well as the current status of bioavailability studies and future research needs for their use as functional components to promote human health.

Antihypertensive mechanisms of action
The control of BP can be carried out through a variety of interrelated metabolic pathways, being the inhibition of angiotensin converting enzyme (ACE) by the renin-angiotensin system (RAS) the most studied mechanism to date. However, there are other control systems that target nitric oxide system (NOS), endothelin system function, and receptor blockers, among others [6**]. A simplified scheme of the main systems for BP regulation is shown in Figure 1.

Renin-angiotensin system (RAS)

The RAS is one of the most important pathways for BP control and electrolyte balance in the human body. In this system, angiotensinogen is cleaved by renin generating angiotensin I. This inactive peptide is hydrolysed by ACE into angiotensin II, which is a potent vasoconstrictor that mediates its action through binding with AT$_1$ and AT$_2$ receptors (-R). AT$_1$-R induces vasoconstriction by increasing the Ca$^{2+}$ level in vascular smooth muscle cells (VSMC), releases aldosterone that increases salt and water retention leading to renin inhibition, and increases inflammation and oxidative stress. Binding to AT$_2$-R produces vasodilation through the NOS, protecting against hypertension [7]. Additionally, ACE can hydrolyse the vasodilator bradykinin into inactive fragments, inhibiting indirectly the production of nitric oxide (NO) that occurs during BP regulation when bradykinin binds to β-R [8]. Angiotensin I can also be cleaved by ACE 2 to generate the inactive angiotensin 1-9, which can be further converted to angiotensin 1-7 by the action of ACE. A more efficient pathway of ACE 2 is the hydrolysis of angiotensin II into angiotensin 1-7, whose binding to the MAS-R inhibits angiotensin II-induced vasoconstriction [9].

Most strategies in BP control involve the inhibition of ACE by food-derived peptides, which reduces both angiotensin II generation and bradykinin inactivation leading to a BP decrease [5,10]. However, other antihypertensive mechanisms in RAS would imply
AT$_1$-R blockers, ACE 2 up-regulation, β-R activation, and renin inhibitors that may be even more specific than ACE inhibitors [7,11].

Nitric oxide system (NOS)

This pathway is assumed to be, together with RAS, one of the main mechanisms in BP regulation. In the NOS, the oxidation of L-arginine to L-citrulline by the action of endothelial nitric oxide synthase (eNOS) generates NO which leads to vasodilatory effects and BP reduction [12]. So, the use of peptides that increase NO production through eNOS up-regulation would be a possible pathway for hypertension treatment.

Endothelin system

Endothelin converting enzyme (ECE) cleaves big endothelin-1 (bET-1) to generate endothelin-1 (ET-1), which mediates vasoconstriction in VSMC due to its binding to ET$_A$-R and ET$_B$-R. However, ET$_B$-R also induces dilatation of endothelial cells through eNOS activation [13]. The decrease in the release of ET-1 by endothelial cells through the use of ECE inhibitors is an alternative antihypertensive mechanism to ACE inhibition. ET-1 levels can also be reduced indirectly by ACE inhibition due to the accumulation of bradykinin and consequently increases the generation of NO, which antagonises the release of ET-1. Additionally, peptides can block calcium channels, reducing the influx of Ca$^{2+}$ produced by the activation of AT$_1$-R and ET$_{A,B}$-R and thus increasing vasodilation [14].

Other systems

Antihypertensive activity of food-derived peptides can be exerted through other less studied mechanisms related to sympathetic nervous system (SNS), vascular inflammation and oxidative stress. Angiotensin II induces the formation of reactive oxygen species (ROS) that scavenge NO and increase SNS activity, leading to renin production and RAS activation. Moreover, ROS stimulate the production of cytokines
that generate over-expressed inflammatory responses. Therefore, peptides showing anti-inflammatory and antioxidant activities may also exert lowering BP effects due to the increased bioavailability of NO through the control of cytokine levels and the scavenging of free radicals, respectively [15,16]. Additionally, binding of peptides to opioid receptors can exert lowering effects on BP due to the release of the vasodilator NO or the decreased SNS activity. The presence of opioid receptors in the intestinal tract would be an advantage as peptides would not need to be absorbed and reach the blood stream to exert their antihypertensive action [17].

Structure-activity modelling

The development of bioinformatic tools and predictive models has allowed the discovery of bioactive peptides and study their chemical structures as well as enzyme-peptide interactions linked with specific bioactivities. Quantitative structure-activity relationship modelling (QSAR) and molecular docking simulation are widely used as cost- and time-effective tools prior to *in vitro* and *in vivo* assays, allowing a better understanding of the characteristics and mechanisms of antihypertensive peptides [18,19]. Such *in silico* models have shown that the C-terminal sequence has a major effect on antihypertensive mechanisms such as ACE and renin inhibition, as well as the formation of hydrogen bonds between peptides and the active sites of enzymes is mainly responsible for the inhibition of these enzymes [20-22]. Abdelhedi et al. [23] noted that binding of peptides to ACE can also be performed through hydrophobic, van der Waals and electrostatic interactions with the residues coordinated with the zinc ion of the enzyme. On the other hand, Liu et al. [24] suggested that the structural stability of the ACE-peptide complex may be due to covalent cation–pi interactions. *Molecular docking would appear to give better results for competitive ACE inhibitors because*
structure-activity correlation studies are based on a competitive-type binding mechanism in which ligands occupy the active site of the enzyme. However, non-competitive inhibitors of ACE do not fit the model based on these studies and the relationship between the inhibition mechanism and the structure of these peptides is not yet clear [25]. Therefore, more research is needed in order to increase the knowledge about targets and mechanisms of action of bioactive peptides, which would improve the development of meaningful models for the discovery of promising antihypertensive peptides.

Bioavailability of antihypertensive peptides

Bioactive peptides need to reach their targets in a significant quantity and an active form to exert their health effects. Low bioavailability of peptides is mainly attributed to their instability during gastrointestinal (GI) digestion, selective transport, and degradation by blood plasma peptidases, which are important factors that may seriously limit their in vivo antihypertensive effects. Moreover, food processing conditions and matrix-peptide interactions can modify the structural characteristics of antihypertensive peptides or generate new compounds, affecting their bioavailability and bioactivity [2526*]. Several methods or models including static and dynamic in vitro assays, cell and ex vivo cultures, and animal studies are used to assess the bioaccessibility and bioavailability of antihypertensive peptides prior to further clinical studies to prove its hypotensive effect in humans.

In vitro studies

Digestion models are simple and useful tools to evaluate the effects of food processing and predict the stability of bioactive peptides in the GI tract [2627,2728]. These models do not reproduce all the dynamic aspects of the GI process, but show very good
correlations with \textit{in vivo} outcomes even in the case of complex foods that can be subjected to structural changes due to the digestive environment \cite{2829}. Furthermore, it should be noted that gut endogenous proteases constitute a little explored source of bioactive peptides such as ACE inhibitory, renin inhibitory and antioxidant peptides that need to be considered, together with dietary protein-derived peptides, for their impact on various regulatory systems in the GI and human body \cite{2930}.

Cell cultures are also frequently used to study the stability and mechanism of transport of antihypertensive peptides through the intestinal epithelium \cite{3031-3233}. As an example, Gallego et al. \cite{3031} evidenced that the transport through Caco-2 cells can result in the degradation of ACE inhibitory peptides into smaller fragments, most of them also showed high \textit{in vitro} activity (see Table 1). Peptides are easily hydrolysed by brush border peptidases generating di- and tri-peptides that are likely to be transported \textit{via} intestinal peptide transporter T1 (PepT1). In this sense, Wang and Li \cite{3334} reported that peptides transported by this active route showed higher bioavailability than peptides transported by paracellular route but also the amino acid sequence of short peptides could also affect their bioavailability. The use of cell cultures has improved the knowledge about the multiple functional modalities of antihypertensive peptides including ACE inhibition, control in the release of NO and endothelin, and reduction in oxidative stress and inflammation \cite{3435,3536}.

Current challenges involve the quantification of low abundant bioactive peptides for an adequate characterisation of their bioavailability, which is possible through the use of modern mass spectrometry techniques \cite{3637}. Recently, Yang et al. \cite{3738} evaluated the transport rate of ACE and renin dual inhibitory peptides LY, RALP and TF for potential \textit{in vivo} antihypertensive activity. Grootaert et al. \cite{3839} went one step further as their study quantified egg antihypertensive peptides in an \textit{in vitro} model that
combined luminal digestion with intestinal transport, also evaluating the food matrix influence.

Ex vivo and in vivo animal studies

Spontaneously antihypertensive rats (SHR) are one of the most common animal models used to study human hypertension. Numerous studies have been focused on studying the effects of oral administration of ACE inhibitory peptides on systolic blood pressure (SBP) of SHR. Some recent examples are shown in Table 2, evidencing that some peptides with low IC$_{50}$ values exerted a notable and short-term antihypertensive effect in SHR after administration of low doses of peptide. It is worth noting the study by Sánchez-Rivera et al. [4647*] that identified and quantified the fragments generated from the peptide HLPLP by the action of rat plasma peptidases, which were still exerting an antihypertensive effect (reduction of 21.1 mm Hg for an intake of only 7 mg/Kg body weight of rat).

Ex vivo and *in vivo* studies are also useful to examine the molecular mechanisms of action [6**] and routes of intestinal transport of antihypertensive peptides. According to Jahandideh et al. [4950], egg hydrolysates exerted BP reduction through multiple mechanisms of vascular relaxation and RAS modulation such as reduced ACE and AT$_1$-R expression, as well as enhanced AT$_2$-R expression and NO bioavailability. On the other hand, Gleeson et al. [5051] evaluated the PepT1 and paracellular transport of peptides IPP and LKP through a combination of *in vitro*, *ex vivo* and *in vivo* models.

Human studies

Clinical trials are the most accurate way to evaluate the efficacy and health effects of food-derived antihypertensive peptides, but the complexity, high cost and time consuming make them scarce. Most of human studies performed to date involve dairy peptides, whereas the bioactivity of animal and vegetal products has been scarcely
confirmed in clinical trials. Several milk-derived ACE inhibitory peptides have been
detected in the circulation of humans [5152,5253] and have shown significant BP-
lowering effects [6**,5152,5354*]. Sanchón et al. [5455] monitored the degradation of
milk proteins and peptide release in digests from human jejunum, evidencing a good
correlation with a standardised in vitro model and characterising those peptides more
resistant to GI digestion. In meat products, Montoro-García et al. [5556] suggested that
the consumption of dry-cured ham, a product rich in bioactive peptides, did not impair
BP in humans even though its high salt intake probably due to the participation of ACE
inhibition and other antihypertensive mechanisms. Marine sources may have a positive
health impact on oxidative stress and hypertension due to their relatively high content in
amino acid taurine, which is known for its antioxidant activity and BP reducing effects
[5657]. Salmon and sardine peptides have also shown antihypertensive effects in
humans, although other clinical trials on hypertension and inflammation parameters
have been inconclusive [5758]. In vivo conditions such as genetic factors, health status,
diet, and other sources of inter-individual variability across different populations can
lead to controversial outcomes when compared with animal or other human intervention
studies. So, it is needed to consider these aspects to draw adequate conclusions and
support health claims for food-derived antihypertensive peptides.

Conclusions

Despite the advances in knowledge about the potential of food-derived antihypertensive
peptides to exert health benefits, this is still a subject of ongoing research. Further
studies are needed for an indepth knowledge about the molecular mechanisms and
pharmacokinetics of antihypertensive peptides, structural features that can affect their
stability and bioavailability, and the development of robust clinical trials to conclusively
determine their efficacy in humans. Additionally, the use of antihypertensive peptides as ingredients of functional foods requires the use of efficient strategies for industrial scale production and oral delivery, as well the assurance of the safety and quality of the product for consumer acceptance. The use of empirical and bioinformatics studies can effectively help to overcome the current challenges existing for the use of food-derived antihypertensive peptides in functional foods for promoting health.

Acknowledgements

Grant AGL2014-57367-R and FEDER funds from the Spanish Ministry of Economy, Industry and Competitiveness are acknowledged. Juan de la Cierva de Incorporación postdoctoral contract to LM is also acknowledged.

References

6. Majumder K, Jianping Wu: **Molecular targets of antihypertensive peptides: Understanding the mechanisms of action based on the pathophysiology of hypertension.** *Int J Mol Sci* 2015, **16**:256-283. **This review provides a comprehensive description of the complex molecular mechanisms involved in blood pressure regulation. Moreover, the article gives an overview on different modes of action of antihypertensive peptides in rat studies and the efficacy of some of them in human clinical trials.**

13. Boesen EI: **Endothelin receptors, renal effects and blood pressure.** *Curr Opin Pharmacol* 2015, **21**:25-34.

26. Udenigwe CC, Fogliano V: **Food matrix interaction and bioavailability of bioactive peptides: Two faces of the same coin?** *J Funct Foods* 2017, **35**:9-12. * This paper describes the importance of assessing peptide-food matrix interactions as they can lead to structural changes affecting the release, bioavailability and bioactivity of peptides.

Two angiotensin-converting enzyme-inhibitory peptides from almond protein and the protective action on vascular endothelial function. *Food Funct* 2016, 7:3733.

Milk-derived tripeptides IPP (Ile-Pro-Pro) and VPP (Val-Pro-Pro) differentially modulate angiotensin II effects on vascular smooth muscle cells. *J Funct Foods* 2017, 30:151-158.

Quantification of egg ovalbumin hydrolysate-derived anti-hypertensive peptides in an in vitro model combining luminal digestion with intestinal Caco-2 cell transport. *Food Res Int* 2017, 99:531-541. **As far as we know, this is the first article that applies a quantitative approach for evaluating the bioavailability of ACE inhibitory peptides in a complex matrix through a model that combines luminal digestion and intestinal absorption.

46. Sánchez-Rivera L, Santos PF, Miralles B, Carrón R, Montero MJ, Recio I: Peptide fragments from β-casein f(134–138), HLPLP, generated by the action of rat blood plasma peptidases show potent antihypertensive activity. *Food Res Int* 2016, 88:348-353. * This is one of the few studies monitoring the degradation of the peptide HLPLP by rat plasma peptidases and showing that derived fragments also contribute to the antihypertensive action in the rat model.

Bouglé, D, Bouhallab S: Dietary bioactive peptides: human studies. *Crit Rev Food Sci Nutr* 2017, 57:335-343. * This review summarises the human trials performed to test the activity of bioactive peptides according to their functions in the human body.

Figure captions

Figure 1. Simplified scheme of blood pressure regulation showing the relationship between the main mechanisms (renin-angiotensin, nitric oxide, and endothelin systems). Enzymes are shown in red whereas potential targets of peptides to mediate antihypertensive effects are in yellow squares. Adapted from Majumder and Wu [6**].
Figure 1.
Table 1. Transport through Caco-2 cell monolayers of three ACE inhibitory peptides derived from dry-cured ham.

<table>
<thead>
<tr>
<th>Precursor peptide</th>
<th>Peptide fragments<sup>a</sup></th>
<th>%IC<sub>50</sub> (µM)</th>
<th>Monoisotopic mass (Da)<sup>b</sup></th>
<th>Apical – times (min)<sup>c</sup></th>
<th>Basal – times (min)<sup>d</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>AAATP</td>
<td>AATP</td>
<td>100</td>
<td>429.22</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>AAAT</td>
<td>300.74</td>
<td>358.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ATP</td>
<td>513.65</td>
<td>332.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AAA</td>
<td>406.56</td>
<td>287.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>111.47</td>
<td>231.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AAPLAP</td>
<td>PLAP</td>
<td>14.38</td>
<td>538.31</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>APLA</td>
<td>76.5</td>
<td>396.24</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AAPL</td>
<td>> 1000</td>
<td>370.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PL</td>
<td>> 1000</td>
<td>370.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LA</td>
<td>337.32</td>
<td>228.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>310</td>
<td>202.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KPVAAP</td>
<td>VAAP</td>
<td>12.37</td>
<td>581.35</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>KPV</td>
<td>16.75</td>
<td>356.21</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>KP</td>
<td>> 1000</td>
<td>342.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VA</td>
<td>22</td>
<td>243.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AP</td>
<td>607.96</td>
<td>188.12</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td></td>
<td>230</td>
<td>186.10</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

^aFragments derived from the degradation of the precursor peptide detected by using MALDI-ToF/ToF MS.

^bMonoisotopic molecular mass in Daltons of the matched peptide.

^cPeptides detected in the apical compartment at different transport times.

^dPeptides detected in the basal compartment at different transport times.

Adapted from Gallego et al. [31] with permission from Elsevier.
Table 2. Examples of ACE inhibitory peptides with proved antihypertensive effects in spontaneously hypertensive rats.

<table>
<thead>
<tr>
<th>Peptide sequence</th>
<th>Source</th>
<th>IC<sub>50</sub> (µM)</th>
<th>Dose (mg/kg bw)<sup>a</sup></th>
<th>SBP (mm Hg)<sup>b</sup></th>
<th>Time (h)<sup>c</sup></th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAAGGAF</td>
<td>Adlay seed glutelin</td>
<td>14,19</td>
<td>30</td>
<td>-49.7</td>
<td>6</td>
<td>[40]</td>
</tr>
<tr>
<td>VLIVP</td>
<td>Bay scallop mantle</td>
<td>19,7</td>
<td>1,5</td>
<td>-21.67</td>
<td>3</td>
<td>[41]</td>
</tr>
<tr>
<td>YQKFPCQLQY</td>
<td>Bovine casein</td>
<td>11,07</td>
<td>9</td>
<td>-40</td>
<td>4</td>
<td>[42]</td>
</tr>
<tr>
<td>QIGLF</td>
<td>Egg white</td>
<td>75</td>
<td>50</td>
<td>-13</td>
<td>10</td>
<td>[43]</td>
</tr>
<tr>
<td>MEVFVP</td>
<td>Flounder fish</td>
<td>79</td>
<td>40</td>
<td>-44.25</td>
<td>6</td>
<td>[44]</td>
</tr>
<tr>
<td>VSQLTR</td>
<td>Flounder fish</td>
<td>105</td>
<td>40</td>
<td>-34.25</td>
<td>6</td>
<td>[44]</td>
</tr>
<tr>
<td>YLVR</td>
<td>Hazelnut</td>
<td>15,42</td>
<td>10</td>
<td>-39.97</td>
<td>8</td>
<td>[24]</td>
</tr>
<tr>
<td>FQPS</td>
<td>Kacang goat</td>
<td>27</td>
<td>2,39</td>
<td>-10.6</td>
<td>8</td>
<td>[45]</td>
</tr>
<tr>
<td>IPIK</td>
<td>Krill</td>
<td>57,4</td>
<td>20</td>
<td>-17</td>
<td>6</td>
<td>[46]</td>
</tr>
<tr>
<td>HLPLP</td>
<td>Milk casein</td>
<td>21</td>
<td>7</td>
<td>-21.1</td>
<td>2</td>
<td>[47*]</td>
</tr>
<tr>
<td>LPLP</td>
<td>Milk casein</td>
<td>720</td>
<td>7</td>
<td>-16.2</td>
<td>4</td>
<td>[47*]</td>
</tr>
<tr>
<td>WALKGYK</td>
<td>Mushroom</td>
<td>0,4</td>
<td>25</td>
<td>-18</td>
<td>2</td>
<td>[48]</td>
</tr>
<tr>
<td>GNGSGYVSR</td>
<td>Sipuncula</td>
<td>29</td>
<td>5</td>
<td>-31</td>
<td>2</td>
<td>[49]</td>
</tr>
<tr>
<td>YASGR</td>
<td>Sipuncula</td>
<td>184</td>
<td>5</td>
<td>-25</td>
<td>2</td>
<td>[49]</td>
</tr>
</tbody>
</table>

^aOral administration of the peptide expressed as mg /kg body weight of rat.

^bMaximum decrease in systolic blood pressure measured in mm Hg.

^cTime in hours after peptide administration to exert the maximum decrease in systolic blood pressure.