CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS

PUBLICACIONES
DEL
INSTITUTO DE BIOLOGÍA APLICADA

TOMO XLVIII

Publicado en julio de 1970

BARCELONA, 1970
La correspondencia debe dirigirse a:

INSTITUTO DE BIOLOGÍA APLICADA
UNIVERSIDAD DE BARCELONA

Director: Prof. Dr. E. Gadea

Precio de un número: España . . 60 Ptas.
> » » » extranjero . 80 »

Depósito legal, M. 703 - 1958

Suscripción y venta en:

LIBRERÍA CIENTÍFICA MEDINACELI
Duque de Medinaceli, 4
M A D R I D
SUMARIO

<table>
<thead>
<tr>
<th>Autor</th>
<th>Título</th>
<th>Páginas</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. Petitpierre</td>
<td>Variaciones morfológicas y de la genitalia en las Timarcha Lat. (Col. Chrysomelidae)</td>
<td>5</td>
</tr>
<tr>
<td>Jorge Sarater-Pi</td>
<td>Aportación a la ecología de los Colobus polykomos satanas, Waterhouse 1838, de Río Muni (República de Guinea Ecuatorial)</td>
<td>17</td>
</tr>
<tr>
<td>F. Español</td>
<td>Notas sobre anóbidos (Col.)</td>
<td>33</td>
</tr>
<tr>
<td>Manuel González</td>
<td>El género Desbrochersella Reitter (Col. Curculionidae)</td>
<td>49</td>
</tr>
<tr>
<td>Francisco Castelló</td>
<td>Sobre la presencia del género Achanthochiton (Mol. Poliplacophora) en las costas de la isla de Ibiza (Baleares)</td>
<td>73</td>
</tr>
<tr>
<td>María Rambla</td>
<td>La especie Cosmobunus granarius (Lucas 1847) en la Península Ibérica y Norte de África</td>
<td>81</td>
</tr>
<tr>
<td>Jaime Isern</td>
<td>Sobre Aspidosiphon clavatus (Sipunculoidea) del litoral de Blanes</td>
<td>107</td>
</tr>
<tr>
<td>Enrique Gadea</td>
<td>Sobre la nematofauna muscícola de los Andes venezolanos</td>
<td>113</td>
</tr>
<tr>
<td>J. M.ª Losa</td>
<td>El Gunaster triplex Junich, característica de la asociación Buxo-Juniperetum phoeniceae Riv. Mart.</td>
<td>119</td>
</tr>
<tr>
<td>Valentín Sans-Coma</td>
<td>Sobre la distribución de micromamíferos del N. E. de la península ibérica, con algunas consideraciones metodológicas</td>
<td>125</td>
</tr>
</tbody>
</table>
Variaciones morfológicas y de la genitalia en las Timarcha Lat. (Col. Chrysomelidae).

por

E. PETITPIERRE

La sistemática del género Timarcha, a pesar de los múltiples trabajos dedicados a este tema concreto, ha sido y es objeto de numerosas controversias que han determinado un alto grado de confusionismo.

Las dificultades taxonómicas del género derivan principalmente de la gran proliferación de formas y de la fuerte variabilidad común a muchas de ellas. Este doble aspecto ha dado lugar a dos tipos esenciales de errores sistemáticos: 1) se han descrito simples aberraciones individuales como especies, y 2) no se ha delimitado con exactitud la categoría taxonómica de muchas formas.

El primer tipo de error es atribuible a la mayoría de los sistemáticos que han descrito a menudo especies, basándose en uno o muy pocos individuos. Este punto de vista al ignorar un fenómeno tan importante como la variabilidad en las Timarcha, induce corrientemente a interpretaciones equivocadas. Esta dificultad ha podido resolverse en las revisiones taxonómicas parciales más recientes (Jeanne, 1965; Kocher, 1951 y 1957) mediante el estudio de muestras poblacionales numerosas, fundamentándose en datos biogeográficos y ecológicos. El segundo tipo de error puede centrarse en el concepto de especie. En mi opinión muchas de las llamadas especies de Timarcha, no son más que subespecies o razas geográficas por cuanto no parecen haber adquirido el aislamiento sexual.

Las pruebas definitorias de la especie plantean muchas veces serias dificultades y se requieren estudios muy amplios con el fin de caracterizar biológicamente a esta categoría taxonómica. Dentro de esta línea de
trabajo hemos realizado el análisis citogenético de los cariotipos de diversas Timacha, conjuntamente con ciertos aspectos ecológicos de valor diferencial (Petitpierre, 1965 y 1970).

En el presente artículo comparamos los datos obtenidos anteriormente, con estudios morfológicos y de la genitalia masculina en varias formas de Timarcha. Hemos procurado realizar la importancia de la variabilidad para la interpretación sistemática, por cuantificación de los resultados extraídos de las distintas muestras poblacionales estudiadas.

El estudio filogenético más reciente de las Timarcha (Bechyné, 1948) establece 28 grupos de especies, constituidos sobre las variaciones en diversos caracteres morfológicos: dimorfismo sexual, forma del último artículo de los palpos maxilares, del protórax, del prosterno y del mesosterno, forma de las patas y de los tarsos, etc.

En la Península Ibérica habitan formas correspondientes a 19 grupos, entre los cuales 12 de ellos son endémicos. Esta simple enumeración muestra la importancia de nuestra región geográfica como centro de diversificación secundaria de las Timarcha.

Los grupos de Bechyné son de difícil manejo y por ello, proponemos de manera provisional, una clasificación más simplificada que considereamos particularmente válida para las formas de la Europa Occidental y del Norte de África.

1 (2) Dimorfismo sexual poco acentuado (respecto a la talla y los tarsos). Comprenden las formas más primitivas: subgéneros Americanotimarcha Jolivet y Metallotimarcha Motschulsky que habitan respectivamente en el oeste de los Estados Unidos y en la Europa Centro-Oriental. Las primeras se alimentan de Rosáceas y las segundas de Vaccinium (Vacciníáceas).

1 (2) Dimorfismo sexual acentuado (respecto a la talla y los tarsos). Formas más evolucionadas que comprenden a la mayoría de los representantes del género y están distribuidas por la región paleártica (Europa y Norte de África).

3 (4) Tibias intermedias de los machos más cortas o aproximadamente de igual longitud que los tarsos correspondientes. Formas principalmente europeas, casi siempre de pequeño tamaño. Subgénero Timarchostoma Motschulsky:

A) Borde posterior del mesosterno escotado (lóbulos bien desarrollados). Último artículo de los palpos maxilares masculinos dilatado. Decrecimiento anteroposterior uniforme a 75 x aproximadamente en el diámetro del 2.º artículo tarsal de los machos (similar, de la I a la II pata con el de la II a la III pata). Formas de la Europa Central y Occidental que se extienden por la región oriental española. Se alimentan casi exclusivamente de Rubiáceas.

B) Borde posterior del mesosterno recto o sinuado (lóbulos muy cortos). Último artículo de los palpos maxilares masculinos de forma oval. Decrecimiento anteroposterior desigual en el diámetro del 2.º artículo tarsal (mucho más avanzado de la I a la II pata, que de la II a la III pata). Formas del sudoeste de Francia, Centro y Norte de la Península Ibérica. Se alimentan de Rubiáceas y Plantagináceas.

C) Borde posterior del mesosterno bifurcado (lóbulos largos y divergentes). Decrecimiento anteroposterior desigual en el diámetro del segundo artículo tarsal. Puntuación de los élitros muy fina y esparcida o nula. Formas del sur de la Península Ibérica y de las Baleares, con dos representantes en
Marruecos. Su alimentación parece ser muy variable según las especies y aun en algún caso, dentro de la misma especie: Rubiáceas, Plantagináceas, Crucíferas y Escrofulariáceas.

4 (3) Tibias intermedias de los machos más largas que los tarsos correspondientes. Formas por lo general, de mayor tamaño que las anteriores. Decrecimiento anteroposterior del diámetro del 2.° artículo tarsal de los machos semejante al de los grupos B y C de las Timarchostoma. Comprenden especies norteafricanas y unas pocas europeas. Se alíamentan de Rubiáceas y Plantagináceas.

Subgénero Timarcha s. str.

Esta clasificación no tiene un valor absoluto, por lo menos en lo que se refiere a los tres grupos del subgénero Timarchostoma. Existen formas de transición entre un grupo y otro (por ej., entre los grupos A y B: T. cyanescens Fairm. y T. recticollis Fairm.) y las formas más evolucionadas del grupo B (T. hispanica Herr.-Schäff. y T. calceata Pérez) tienen el mesosterno bifurcado como las del grupo C, aunque más corto. Sin embargo consideramos de utilidad estos grupos a efectos orientadores, para determinar las posibles líneas filogenéticas. Nuestras investigaciones se han desarrollado sobre diversas formas de los subgéneros Timarchostoma y Timarcha s. str., principalmente ibéricas y muy en particular de Cataluña y Levante, pero también hemos podido estudiar algunas formas francesas y marroquíes.

Forma del mesosterno

Hemos escogido este carácter por considerarlo de gran interés sistemático, en concordancia con la mayoría de los autores que han estudiado las Timarcha. La forma del borde posterior del mesosterno puede clasificarse en cuatro clases principales: a) recto, b) sinuado, c) escotado, y d) bifurcado. En esta sistematización se ha preseñado el diámetro del mesosterno (ancho o estrecho) para atender exclusivamente a la morfología del borde posterior. Sin ningún género de dudas la determinación exacta de ciertos individuos es bastante difícil y ciertamente más o menos subjetiva, pero en la mayor parte de los casos puede efectuarse con seguridad. El análisis cuantitativo de las muestras poblacionales, que se detalla en el cuadro adjunto, se ha efectuado sobre \(\sigma' \sigma' \), porque aunque el dimorfismo sexual no afecta al carácter, la mayoría de las muestras estudiadas son suficientemente grandes (más de 30 individuos) para considerarlas representativas.

Las cuatro primeras formas pertenecen al grupo T. goettingensis de Bechyné; las restantes también constituyen grupos particulares, excepto T. temperpei Jeanne y T. maritima Perr. incluidas en el grupo T. monticolá, y T. espagnoli Bech. en el grupo T. rugosa.

Al observar las clases de mesosterno en las poblaciones de la región
CUADRO I

<table>
<thead>
<tr>
<th>FORMA</th>
<th>SUBGÉNERO Y GRUPO</th>
<th>POBLACIÓN</th>
<th>n.º ind. por clase de mesostermo</th>
</tr>
</thead>
<tbody>
<tr>
<td>T. sinuatocollis Fairm.</td>
<td>Timarchostoma</td>
<td>Campellas</td>
<td>n.º</td>
</tr>
<tr>
<td>id.</td>
<td>id.</td>
<td>Planolas</td>
<td>40</td>
</tr>
<tr>
<td>T. monserratensis Bech.</td>
<td>id.</td>
<td>Coll-Formic</td>
<td>35</td>
</tr>
<tr>
<td>T. catalaunensis Fairm.</td>
<td>id.</td>
<td>La Garriga</td>
<td>40</td>
</tr>
<tr>
<td>T. affinis Laboiss.</td>
<td>id.</td>
<td>S. Pedro de Roda</td>
<td>40</td>
</tr>
<tr>
<td>id.</td>
<td>id.</td>
<td>Garraf</td>
<td>40</td>
</tr>
<tr>
<td>T. fallax Pérez</td>
<td>id.</td>
<td>Alió (Tarragona, Cataluña)</td>
<td>40</td>
</tr>
<tr>
<td>id.</td>
<td>id.</td>
<td>Port d’Ager</td>
<td>40</td>
</tr>
<tr>
<td>id.</td>
<td>id.</td>
<td>Aldea (Tarragona, Cataluña)</td>
<td>40</td>
</tr>
<tr>
<td>T. intermedia Herr.-Schaf.</td>
<td>Timarchostoma</td>
<td>Tabarca (Alicante)</td>
<td>40</td>
</tr>
<tr>
<td>T. recticollis Fairm.</td>
<td>Timarchostoma</td>
<td>Port de la Bonaigua</td>
<td>40</td>
</tr>
<tr>
<td>T. temperei Jeanne</td>
<td>Timarchostoma</td>
<td>Vall de Llauset</td>
<td>34</td>
</tr>
<tr>
<td>T. maritima Perr.</td>
<td>id.</td>
<td>Ondres-Plage</td>
<td>12</td>
</tr>
<tr>
<td>T. monticola Duf.</td>
<td>id.</td>
<td>Gourette (Pirineos Occidentales, Francia)</td>
<td>14</td>
</tr>
<tr>
<td>T. strangulata Fairm.</td>
<td>id.</td>
<td>Port de la Bonaigua</td>
<td>14</td>
</tr>
<tr>
<td>T. perezi Fairm.</td>
<td>id.</td>
<td>Villanubla</td>
<td>40</td>
</tr>
<tr>
<td>T. tenebricosa F. Timarcha s. str.</td>
<td>Timarcha s. str.</td>
<td>Planolas (Gerona, Cataluña)</td>
<td>32</td>
</tr>
<tr>
<td>T. espagnoli Bech.</td>
<td>id.</td>
<td>Tabarca (Alicante)</td>
<td>40</td>
</tr>
</tbody>
</table>
oriental de la Península (las 6 primeras formas) se advierte una tendencia hacia el mesosterno bifurcado en sentido geográfico norte-sur.

T. recticollis Fairm. atendiendo a la morfología del mesosterno, ocupa una posición intermedia entre los grupos A y B (su localización geográfica en los Pirineos Centrales también explica este fenómeno).

En *T. tenebricosa* F. y *T. espagnoli* Bech. el mesosterno es escojado, aunque en esta última los lóbulos son bastante cortos, en curva regular amplia.

Cuando estudiamos la variabilidad dentro de cada población, se observan unas pocas formas cuyo mesosterno es de morfología constante (*T. sinuatocollis* Fairm., *T. intermedia* Herr.-Schäff., *T. strangulata* Fairm., *T. tenebricosa* F. y *T. espagnoli* Bech.). En todas las restantes hay una variabilidad de transición con las formas geográficamente más próximas, cuyo significado se discute en la última parte de este trabajo.

La genitalia masculina

El estudio del órgano copulador masculino de las *Timarcha*, hasta hace pocos años, sólo se había utilizado para diferenciar al género de los restantes Chrysomelinae. Los trabajos de Jolivet (1948) y de Iablokoff-Khinzorian (1966) establecen los tipos característicos de copulador a nivel de subgénero, y el último autor, desarrolla la interpretación filogenética de los distintos subgéneros en su estudio comparado de la genitalia masculina de los Chrysomelidae.

En nuestro trabajo hemos centrado las investigaciones sobre la armadura del saco interno, por ser un carácter poco conocido y que suministra mucha más información que los otros elementos de la genitalia masculina. El primer trabajo completo acerca de la armadura del saco interno (*Stockmann*, 1966), describe los diversos escleritos especialmente el flagelo y el manubrium (compuesto por dos piezas). La forma del manubrium, según *Stockmann*, añade un nuevo carácter diferencial entre las *Timarchostoma* francesas estudiadas por él y las *Timarcha s. str.* representadas en el mismo país. Al extender este estudio a gran parte de las formas ibéricas y marroquíes, hemos obtenido resultados que nos permiten aclarar la filogenia del género y establecer precisiones sistemáticas basadas en el análisis cuantitativo.

La morfología más primitiva de los escleritos del saco interno en las *Timarchostoma*, corresponde a *T. goettingensis* L. *s. str.* Este tipo o tipos muy similares de manubrium lanceolado, se encuentran también en *T. maritima* Perr., *T. cyanescens* Fairm., *T. temperei* Jeanne, *T. recticollis* Fairm. (fig. 1), *T. sinuatocollis* Fairm., *T. perezi* Fairm. (fig. 9),
Tipos de armadura genital del saco interno (manubrium y flagelo):

1. T. recticollis
2. T. catalaunensis
3. T. affinis
4. T. fallax a
5. T. intermedia
6. T. fallax b
7. T. marginicollis
8. T. balearica
9. T. perezi
10. T. hispanica
11. T. calcicola
12. T. strangulata
13. T. tenebricosa
14. T. spagnoli
15. T. scabripennis

Figs. 1-15.—Tipos de armadura genital del saco interno (manubrium y flagelo):

Figs. 16-19.—Tegmen:
16. T. catalaunensis
17. T. tenebricosa
18. T. tangeriana
19. T. intermedia

Figs. 20-21.—Borde apical del edago (cara dorsal):
20. T. marginicollis
21. T. balearica
T. gougeleti Fairm. y T. geniculata Fairm.; es decir, en la mayoría de los representantes estudiados de los grupos A y B.

La evolución ulterior en ambos grupos se manifiesta por alargamiento y más tarde reducción en el diámetro del manubrium. Las diversas etapas del proceso son muy patentes en las poblaciones catalanas y transcurren desde las formas más próximas a T. goettingensis L., hacia T. catalaunensis Fairm. (fig. 2), T. affinis Labois. (fig. 3) y T. fallax Pérez (fig. 4). Esta línea se continua en ciertas formas del grupo C (mesosterno bifurcado), en donde T. intermedia Herr.-Schäff. tiene ya un manubrium muy reducido (fig. 5) y finaliza en T. parvicollis Rosenh. por fusión de los vestigios del manubrium al flagelo, formando una estructura muy semejante a la observada en T. scabripennis Fairm. (figura 15). Una línea colateral de T. intermedia conduce a T. balearica Gory (fig. 8) cuyo manubrium está igualmente muy poco desarrollado, pero las dos partes se separan de modo parecido a lo que sucede en las Timarcha s. str. (figs. 13 y 14). Este hecho no indica un parentesco directo con las Timarcha s. str., porque el mesosterno de las especies de este subgénero es bituberculado pero no bifurcado como en T. balearica (for- ma muy especializada), aunque demuestra una convergencia evolutiva que debe responder a una identidad filogenética común y próxima la fórmula cromosómica de esta especie: 2N = 22, estudiada reciente- mente, confirma este parentesco.

A partir de otro tipo de manubrium en T. fallax (fig. 6) una línea distinta del grupo C deriva hacia las formas esencialmente orófilas del sudeste de la Península, a diferencia de las anteriores, cuya distribución es sublitoral o de montaña baja. En esta nueva línea se reduce el manubrium desde el supuesto tipo original y se separan las dos piezas. Las dos especies estudiadas, T. insparsa Rosenh., y T. marginicollis Rosenh. (ambas del grupo T. marginicollis de Bechyné) muestran un tipo similar pero no idéntico de manubrium (fig. 7), y pueden diferen- ciarse por la morfología del borde apical del edago, semejante al común a la gran mayoría de las especies del género en T. insparsa, y triangular en T. marginicollis (fig. 20).

En todas las especies estudiadas del grupo C, al igual que en T. tene- bricosa F., el flagelo es algo más largo que el normal en las demás Timarcha y tiene el extremo curvado. El caso límite en este sentido lo constituye T. balearica, cuyo flagelo está completamente curvado en es- piral por su extremo (fig. 8). Por otra parte el borde apical del edago de T. balearica tiene una morfología roma bien característica (fig. 20) y el borde apical del tegmen está escotado.

Las pocas formas del grupo B sometidas a examen también mani- fiestan una reducción paulatina del manubrium (fig. 10 y 11) aunque es menos acentuada que en ciertas especies del grupo C y no disminuye la pigmentación. En el grupo B, T. strangulata Fairm. se diferencia per-
<table>
<thead>
<tr>
<th>FORMA</th>
<th>POBLACIÓN</th>
<th>N.º INDIV.</th>
<th>TIPOS DE MANUBRIUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>T. sinuatocollis Fairm.</td>
<td>Campellas (Gerona)</td>
<td>1</td>
<td>T. goettingensis</td>
</tr>
<tr>
<td>id.</td>
<td>La Garriga (Barcelona)</td>
<td>2</td>
<td>id.</td>
</tr>
<tr>
<td>T. catalaunensis Fairm.</td>
<td>Planolas (Gerona)</td>
<td>19</td>
<td>id.</td>
</tr>
<tr>
<td>T. roeticollis Fairm.</td>
<td>Port de la Bonaigua (Lérida)</td>
<td>7</td>
<td>T. goettingensis (5) y T. catalaunensis (14)</td>
</tr>
<tr>
<td>T. cyanescens Fairm.</td>
<td>Bidart-Plage (B. Pyrenées, Francia)</td>
<td>3</td>
<td>id.</td>
</tr>
<tr>
<td>T. temperet Jeanne</td>
<td>Vall de Lliauset (Huesca)</td>
<td>5</td>
<td>id.</td>
</tr>
<tr>
<td>T. maritima Perris</td>
<td>Ondres-Plage (Landes, Francia)</td>
<td>6</td>
<td>id.</td>
</tr>
<tr>
<td>T. perezi Fairm.</td>
<td>Villanubla (Castilla)</td>
<td>9</td>
<td>id.</td>
</tr>
<tr>
<td>T. asturiensis Kraatz</td>
<td>S. Vicente de la Barquera (Asturias)</td>
<td>1</td>
<td>id. (aunque más largo)</td>
</tr>
<tr>
<td>T. gougeleti Fairm.</td>
<td>Villagarcía (Galicia)</td>
<td>1</td>
<td>T. hispanica</td>
</tr>
<tr>
<td>T. hispanica Herr.-Sch.</td>
<td>Salamanca</td>
<td>3</td>
<td>T. całeata</td>
</tr>
<tr>
<td>T. calceata Pérez</td>
<td>Candaleda</td>
<td>1</td>
<td>T. affinis (7), T. fallax a (4), T. intermedia (1)</td>
</tr>
<tr>
<td>T. affinis Laboiss.</td>
<td>Garraf (Barcelona)</td>
<td>12</td>
<td>T. catalaunensis (1), T. affinis (2), T. fallax a (4), T. fallax b (3)</td>
</tr>
<tr>
<td>T. fallax Pérez</td>
<td>Alió (Tarragona)</td>
<td>10</td>
<td>T. fallax a (1), T. fallax b (1), T. intermedia</td>
</tr>
<tr>
<td>id.</td>
<td>Aldea (Tarragona)</td>
<td>2</td>
<td>T. scabripennis</td>
</tr>
<tr>
<td>T. intermedia Herr.-Sch.</td>
<td>Tabarca (Alicante)</td>
<td>8</td>
<td>id.</td>
</tr>
<tr>
<td>T. parvicollis Rosenh.</td>
<td>Málaga</td>
<td>1</td>
<td>T. marginicollis</td>
</tr>
<tr>
<td>id.</td>
<td>Algeciras (Cádiz)</td>
<td>1</td>
<td>id.</td>
</tr>
<tr>
<td>T. marginicollis Rosenh.</td>
<td>Fuentebernaza (Cazorla, Jaén)</td>
<td>2</td>
<td>T. tenebricosa</td>
</tr>
<tr>
<td>T. insparsa Rosenh.</td>
<td>Sierra Nevada (Granada)</td>
<td>3</td>
<td>T. fallax a (1), T. fallax b (1), T. intermedia</td>
</tr>
<tr>
<td>T. balearica Gory</td>
<td>Portocristo (Mallorca)</td>
<td>1</td>
<td>T. tenebricosa</td>
</tr>
<tr>
<td>id.</td>
<td>Illa dels Coloms (Menorca)</td>
<td>2</td>
<td>id.</td>
</tr>
<tr>
<td>T. tenebricosa F.</td>
<td>Planolas (Gerona)</td>
<td>5</td>
<td>T. tenebricosa</td>
</tr>
<tr>
<td>T. rugosa L.</td>
<td>Beni Said (Marruecos)</td>
<td>1</td>
<td>id.</td>
</tr>
<tr>
<td>id.</td>
<td>Beni Said (Marruecos)</td>
<td>1</td>
<td>id.</td>
</tr>
<tr>
<td>T. punctella Weise</td>
<td>Beni Said (Marruecos)</td>
<td>1</td>
<td>id.</td>
</tr>
<tr>
<td>id.</td>
<td>Ain Zora (Mesalza, Marruecos)</td>
<td>1</td>
<td>id.</td>
</tr>
<tr>
<td>T. tangeriana Béch.</td>
<td>Tánger (Marruecos)</td>
<td>6</td>
<td>id.</td>
</tr>
<tr>
<td>T. espagnoli Béch.</td>
<td>Tabarca (Alicante)</td>
<td>12</td>
<td>id.</td>
</tr>
<tr>
<td>T. scabripennis Fairm.</td>
<td>Ceuta (Marruecos)</td>
<td>4</td>
<td>T. scabripennis</td>
</tr>
</tbody>
</table>
fectamente de todas las restantes Timarcha por la atrofia casi completa de su flagelo y manubrium (fig. 12).

Es interesante señalar la variabilidad que presentan, dentro de la misma población, ciertas formas de Timarchostoma (cuadro 2) respecto a la morfología de los escleritos del saco interno. Todas las formas catalanas excepto las pirenaicas (quizás por efectos del aislamiento) están sujetas a variabilidad.

El manubrium de las Timarcha s. str. (figs. 13 y 14) evidencia muy pocas variaciones, las dos partes están aisladas y unidas solamente por la base. El único aspecto de interés filogenético es la débil reducción en el grosor de las piezas del manubrium, desde T. tenebricosa a las especies norteafricanas: T. rugosa L., T. tangeriana Bech., y T. punctella Weise, o españolas emparentadas con éstas como T. espagnoli Bech., T. scabripennis Fairm. (fig. 15) constituye la excepción a la regla común para todas las Timarcha s. str. estudiadas, porque en ella las piezas del manubrium están fusionadas con el flagelo, del que destacan solamente dos pequeñas apófisis laterales. Un tipo similar, como ya hemos citado anteriormente, se halla en T. parvicollis Rosenh.

En cuanto a la morfología del tegmen, Iablokoff-Khenzorian (1966) separa las Timarcha s. str. de las Timarchostoma (fig. 16) por la reducción de los lóbulos laterales que experimentan las primeras. Esta reducción es patente en el tegmen de T. tenebricosa (fig. 17), pero además es general para todas las especies del grupo C de las Timarchostoma como T. intermedia (fig. 19) y por excepción en otras especies (T. triangulata). Las Timarcha s. str. norteafricanas (fig. 18) también la presentan, aunque no es tan marcada como en T. tenebricosa.

Discusión y conclusiones

Las variaciones en la morfología del mesosterno y de la armadura genital prueban una evolución multidireccional en sentido Norte-Sur. El tipo escotado de mesosterno, el más primitivo de las Timarchostoma, deriva en el grupo B hacia el tipo sinuado o recto, pero la tendencia evolutiva general hacia formas de mesosterno bituberculado y finalmente bifurcado, se advierte desde T. perezi a T. calceata. Esta tendencia está correlacionada con el mayor grado de curvatura del pronoto en sus bordes laterales.

En la región oriental de la Península el estudio es más completo que en las anteriores especies (de distribución centro-occidental), se demuestra sin embargo la misma tendencia, que alcanza los valores extremos en muchas especies del grupo C (mesosterno bifurcado).

La variabilidad en la morfología del mesosterno y en la armadura del saco interno dentro de una misma población no pueden explicarse sin
admitir la falta de aislamiento sexual entre estas formas. El análisis citogenético de diversas formas con estas peculiaridades (Pettitpierre, 1969; Dutrillaux y Chevin, 1969) no revelan otras diferencias en el cariotipo que las atribuibles a las técnicas empleadas. Todas las pruebas refuerzan pues la hipótesis de una variación de tipo clina, por cuanto además, ninguna de estas formas cohabitaban generalmente en la misma localidad. Esta clina está constituida probablemente por gran parte de las formas correspondientes a los grupos A y B (grupos de Bechyné: T. goettingensis, T. recticollis, T. monticola, T. perezi y T. fallax) que proponemos denominarla «complejo T. goettingensis», por estar compuesta de formas derivadas de T. goettingensis. Cuando las barreras geográficas son suficientemente fuertes para asegurar un aislamiento prolongado, acontecen procesos de especiación. Así ha ocurrido por ejemplo en T. strangulata Fairm., especie derivada al parecer de T. monticola Duf., que ha adquirido el aislamiento sexual por cambio en el número cromosómico a partir del complemento de cromosomas típico de los elementos de la clina, desde 2N = 20 a 2N = 28 (Petitpierre, no publicado). Los datos cuantitativos de la morfología del mesosterno (constante) y de la armadura genital (muy atrofiada) también confirman la validez específica de este endemismo pirenaico. Este caso no debe ser probablemente un ejemplo aislado, pues otras formas ibéricas como T. geniculata Fairm. y T. calceata Pérez, es muy posible que también hayan alcanzado el status de especie mediante reordenaciones cromosómicas.

En el grupo C, T. intermedia Herr-Schäff, es la única especie estudiada bajo todos los aspectos enumerados, su mesosterno y la armadura del saco interno manifiestan una constancia morfológica. El número cromosómico no difiere del de T. goettingensis, 2N = 20, pero la morfología de los elementos del juego cromosómico es claramente distinta (Petitpierre, 1970). Los datos morfológicos se complementan por lo tanto con los citogenéticos, lo cual nos evidencia el aislamiento sexual. Las otras formas del grupo excepto T. balearica Gory (T. parvicollis Rosenh., T. insparsa Rosenh. y T. marginicollis Rosenh.) no han sido todavía estudiadas citogenéticamente, aunque su peculiar morfología y genitalia deben reflejar con probabilidad un cariotipo específico.

Entre las Timarcha s. str. se dan muy pocas variaciones en la forma del mesosterno y en la genitalia. A pesar de que el número de formas estudiadas es bastante menor que en las Timarchostoma, las Timarcha s. str. parecen ser mucho más homogéneas que aquéllas. Las fórmulas cromosómicas de las únicas especies analizadas: T. tenebricosa F., T. espagnoli Bech. y T. tangeriana Bech. aíslan perfectamente las Timarcha s. str. de las Timarchostoma por su mayor número de elementos cromosómicos. Además, la evolución de la genitalia dentro del subgénero concuerda con las variaciones en el número de cromosomas de cada especie. Así T. tenebricosa, la especie más primitiva del conjunto
observado, tiene la fórmula $2N = 22$ (Petitpierre, 1970), mientras que $T. espagnoli$ (Petitpierre, 1970) y $T. tangeriana$ (Petitpierre, no publicado) tienen un número cromosómico $2N = 26$, más alto y por tanto más evolucionado. El origen de este subgénero es difícil de precisar; $T. scabripennis$ ha sido considerada por Bechyné la especie más primitiva del grupo por la fusión incompleta de los élitros, bordes laterales del pronoto en declive suave, etc., pero por otra parte, su tipo particular de armadura del saco interno dificulta su encuadre como especie origen de las *Timarcha s. str.* en las que se incluye. La forma del flagelo y manubrium la aproximan a ciertas especies de Andalucía (*T. parvicollis*) pero no su morfología corporal. El estudio del cariotipo de *T. scabripennis* que estamos realizando en la actualidad nos puede dar la respuesta al problema.

Departamento de Genética
Barcelona

* * *

Debo hacer constar mi agradecimiento a F. Español, Director del Museo de Zoología de Barcelona por haber puesto a mi disposición las colecciones de *Timarcha* del Museo, así como por su ayuda y colaboración en todo momento. Las series estudiadas de *T. cyanescens*, *T. maritima* y *T. monticola* proceden del material enviado por G. Tiberghien, de Biarritz. Asimismo he de agredecer al Dr. A. Prevosti la crítica y sugerencias en la lectura del manuscrito.
SUMMARY

The paper deals with the taxonomic position of the different Timarcha forms, especially those of Spain and some of France and Morocco.

The variations between and within forms and populations in the mesosternum shape and in the genitalia (with particular references to the sclerites of inner sack) have been studied. The results are compared with some cytogenetic data previously obtained. They show the main lines of evolution and throw light on the taxonomic category of several forms that have appeared as a continuous variation of clinal type.

BIBLIOGRAFÍA

Aportación a la ecología de los *Colobus polykomos satanas*, Waterhouse 1838, de Río Muni (República de Guinea Ecuatorial)

por

JORGE SABATER-PÍ

Introducción

Existe muy poca información referente a la situación de los *Colobus polykomos satanas* en sus biotopos naturales.

MALBRANT y MACLATCHY (1949) publican algunos datos concernientes a la ecología de estos monos en Camerún y Gabón, Basilio (1962) informa sobre unas pocas observaciones llevadas a cabo en Río Muni.

TAPPEN (1960) presenta un resumen, muy interesante, de los problemas que esta especie plantea en sus aspectos taxonómico y ecológico.

Los únicos trabajos importantes referentes a la ecología y el comportamiento de los *Colobus* en la naturaleza, son los que ULLRICH (1961), SCHENKEL y SCHENKEL-HÜLLIGER (1967) y MARLER (1969) publican sobre los *Colobus guereza caudatus*, Thomas del África oriental.

Los datos que publicamos han sido logrados del 21 de septiembre de 1966 al 12 de diciembre de 1968, principalmente en la zona montañosa de Matama, cuyas coordenadas geográficas son: 10° 3' long E y 1° 28' lat. N, en esta localidad observamos los C. *p. satanas* 12 veces sumando un total de 32 h 11' ; también los contactamos 2 veces en la localidad de Ndjengayong, 9° 43' long E y 1° 43' lat N con un total de 0 h 18' y una
sola vez en las montañas de Okorobikó, 10° 2’ long E y 1° 29’ lat N con un total de 1 h 13’ (fig. 1).

Las localidades donde hemos oído a estos animales han sido: Churu 10° 3’ long E y 1° 18’ lat N, Abumnzok 10° 8’ long E y 1° 29’ lat N y Añinzok 10° 9’ long E y 1° 29’ lat N. También hemos oído estos monos en los ya relacionados lugares de Matama y Okorobikó (fig. 1).

![Mapa de localizaciones](image)

Fig. 1. — Localizaciones de *Colobus polykomos satanas* en el territorio de Guinea Ecuatorial.

Resultados y discusión

Distribución y hábitat

Los Colobus polykomos satanas tienen, según Dandelot (1968) una área de distribución limitada al bosque denso del África occidental, del Sur Camerún al Gabón y al Este llegan a la actual República del Congo-Brazzaville.

Malbrant y Macclatchy (1949) informa que su área de dispersión
es discontinua quedando limitada a los macizos montañosos recubiertos de bosque denso lejos de las zonas habitadas. En Río Muni, según SABATER y JONES (1967), quedan confinados solamente en las zonas montañosas del Sudoeste del territorio.

Las especies arbóreas más notables de la selva densa de las montañas de Matama y Okorobikó son las siguientes: Pycnanthus angolensis, Coelocaryon klainei, Berlinia bracteosa, Desbordesia glaucescens, Pachylobus buttneri, Brachystegia mildbraedii, Antrocaryon klaineanum, Poga oleosa, Sarcocephalus diderrickii y Plagiostyles africana. El sobobosque lo integran una gran abundancia de plantas entre las que descuellan: Oncocalamus manni, Ancistrophyllum secundiflorum, Eremospatha cabrae, Sarcophrynium velutinum, Palisota hirsuta, Rhektophyllum mirabilis y Halopegia azurea.

Si bien las zonas contiguas a las de Matama y Okorobikó han sido muy afectadas por las talas que llevan a cabo las explotaciones forestales, la vegetación de estas montañas se ha conservado prácticamente intacta hasta la fecha debido a las dificultades que entrañaba su explotación por lo accidentado del terreno.

El bosque de los montes de Matama es denso, en las laderas los árboles alcanzan una altura media de 35 metros y se patentizan 2 estratos. En la meseta superior la altura de las especies puede llegar a los 45 metros, observándose 3 estratos. La vegetación de Okorobikó es afín pero en las laderas la altura de los árboles es superior en 5 metros de promedio a la que señalamos en las faldas de las montañas de Matama.

Asociación con otros primates

Hemos observado en 7 ocasiones a los *C. p. satanas* en asociación con otros primates (tabla 1): 4 veces con los Cercopithecus nictitans, 2 con los Cercopithecus pogonias, 2 con los Cercopithecus cephus y una vez con un ejemplar solitario de Mandrillus sphinx.

Las asociaciones observadas parecen encuentros casuales en árboles portadores de frutos (*Pycnanthus angolensis*, *Antrocaryon klaineanum* y *Alstonia congestis*).

El 28 de enero de 1967 comprobamos que los *C. p. satanas* estaban mezclados con una numerosa manada de *C. cephus*, *C. pogonias* y *C. nictitans*, en las demás observaciones si bien los animales parecían hallarse juntos, los niveles en que se encontraban las distintas especies era diferente.

Cuando se produce la fuga, los *C. p. satanas* escapan, casi siempre, en dirección de la cumbre de la montaña desplazándose por el estrato superior de la vegetación arbórea; los *Cercopithecus*, juntos o agrupa-
Asociación de los Colobus polykomos satanas con cuatro especies de primates y una de aves

<table>
<thead>
<tr>
<th>Fecha del contacto visual</th>
<th>Localidad del contacto</th>
<th>Cercopithecus cephus</th>
<th>Cercopithecus pogonias</th>
<th>Cercopithecus nictitans</th>
<th>Mandrillus sphinx</th>
<th>Tropicranus albocristatus</th>
</tr>
</thead>
<tbody>
<tr>
<td>21-9-1966</td>
<td>Matama</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12-11-1966</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26-11-1966</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17-12-1966</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28-1-1967</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-4-1967</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20-7-1967</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-8-1967</td>
<td>Ndjengayong</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C. nictitans</td>
</tr>
<tr>
<td>1-3-1968</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22-3-1968</td>
<td>Okorobikó</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-4-1968</td>
<td>Matama</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-4-1968</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17-5-1968</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-8-1968</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12-12-1968</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

dos por especies, se desplazan en otras direcciones generalmente utilizando el estrato inferior.

En una ocasión encontramos a un gran Mandrillus sphinx, macho solitario, comiendo conjuntamente con los C. p. satanas, ante nuestra presencia descendió rápidamente al suelo donde desapareció.

En dos ocasiones, en Matama, oímos conjuntamente y en el mismo lugar los C. nictitans y los C. p. satanas (tabla 2).

Sabemos que en la región de Matama se encuentra también uno o

<table>
<thead>
<tr>
<th>Fecha del contacto auditivo</th>
<th>Lugar del contacto</th>
<th>Número de contactos</th>
<th>Otros primates oídos conjuntamente</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-11-1966</td>
<td>Matama</td>
<td>1</td>
<td>Cercopithecus nictitans</td>
</tr>
<tr>
<td>20-4-1967</td>
<td></td>
<td>2</td>
<td>Id.</td>
</tr>
<tr>
<td>1-6-1967</td>
<td>Okorobikó</td>
<td>1</td>
<td>Id.</td>
</tr>
<tr>
<td>5-7-1967</td>
<td>Matama</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>27-7-1967</td>
<td>Churu</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>10-8-1967</td>
<td>Abumnzok</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>11-8-1967</td>
<td>Añinzok</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>17-8-1967</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>11-4-1968</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>23-8-1968</td>
<td>Matama</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
dos grupos de *Gorilla gorilla gorilla* y algunos ejemplares de *Pan troglodytes troglodytes*, pero nunca hemos visto a estas especies conjuntamente con los *C. p. satanas*. En Ndjengayong viven varios grupos de *Cercocetus torquatus* y de *Cercopithecus neglectus* según Jones y Sabater-Pf (1968), pero nunca se han observado asociados con los *C. p. satanas*.

En una sola ocasión se ha observado a los *C. p. satanas* acompañados del pequeño calao forestal *Tropicranus albocristatus*, esta asociación que ya habíamos observado en otras ocasiones con los *Cercopithecus* y los *P. t. troglodytes* ha sido también señalada por Gautier-Hion (1966) con los *Miopithecus talapoin* y otros *Cercopithecus* del Gabón.

No se ha observado ninguna interacción de tipo agresivo o sexual entre las distintas especies a que nos hemos referido.

Locomoción y movimientos

Loc *C. p. satanas* son totalmente arbóreos, observamos, no obstante, a varios ejemplares de la variedad *C. p. satanas* que vive en la isla de Fernando Poo desplazándose por el suelo en las praderas que a una altura de 2500 a 3000 metros recubren las zonas más elevadas del pico de Santa Isabel.

Según nuestras observaciones (tabla 3) el movimiento de estos monos se inicia sobre las 7 horas de la mañana, que es cuando la luz permite una visibilidad suficiente a la progresión; de 10,30 a 11,30 horas es cuando apreciamos más actividad de desplazamiento; si bien disponemos de pocas observaciones durante la tarde, parece ser que, en general, la actividad es entonces menor y ésta finaliza cuando falta la luz en el interior de la selva, lo que sucede sobre las 17,30 horas. Al mediodía se patentiza un marcado período de descanso.

Observamos velocidades de progresión de 100, 600 y 750 metros a la hora en recorridos de 1500, 900 y 750 metros.

Al igual que los *C. torquatus* y los *C. albigena* [ver Jones y Sabater-Pf (1968)] cuando son molestados, corren a grandes saltos por las ramas gruesas, los ejemplares jóvenes tienden a esconderse en el follaje. Todos ellos, para desplazarse, saltan a las ramas terminales de los árboles contiguos que, cediendo al peso, actúan al modo de amortiguadores. Los saltos observados han sido de 5 a 6 metros de desnivel, en dos ocasiones un macho adulto saltó unos 10 metros.

Cuando están tranquilos, trepan y descienden con cautela por lianas, troncos delgados y ramas colgantes; en varias ocasiones los hemos observado descendiendo con la cabeza abajo.

Estos monos pasan gran parte del día inmóviles; una posición típica es la sentada apoyando su cuerpo en las callosidades isquióticas mientras
<table>
<thead>
<tr>
<th>TIEMPO</th>
<th>DESPLAZÁNDOSE RÁPIDAMENTE</th>
<th>DESPLAZÁNDOSE LENTAMENTE</th>
<th>DESCANSANDO ECHADOS O SENTADOS</th>
<th>COMIENDO</th>
<th>ORINANDO O DEFECANDO</th>
</tr>
</thead>
<tbody>
<tr>
<td>0600-0629</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0630-0659</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0700-0729</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0730-0759</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0800-0829</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0830-0859</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0900-0929</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0930-0959</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000-1029</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1030-1059</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1100-1129</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1130-1159</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1200-1229</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1230-1259</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1300-1329</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1330-1359</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1400-1429</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1430-1459</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1500-1529</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1530-1559</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1600-1629</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1630-1659</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1700-1729</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1730-1759</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1800-1829</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1830-1859</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1900-1929</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Se agarran de pies y manos a las ramas laterales situadas a un plano superior, la cola les cuelga entonces verticalmente.

Es también muy frecuente el que pasen el período de descanso del mediodía echados en una posición muy característica que sólo la hemos observado en esta especie, consiste en echarse, boca abajo, en una rama más o menos horizontal con los brazos y piernas colgando (foto 1). Hemos visto a un animal durante dos horas seguidas en esta posición sin moverse.

Esta misma postura de inmovilidad total, echados, la adoptan también con frecuencia para esconderse cuando les acecha algún peligro.

Composición de los grupos

Los datos que hemos podido lograr referente a la organización social de los *C. p. satanas* son muy escasos debido a la poca visibilidad de
la selva densa que les sirve de biotopo y al gran temor que estos animales manifiestan ante la presencia del hombre.

Hemos observado grupos de, aproximadamente, 5, 6, 8, 15 y 30 ejemplares, este último lo contactamos 4 veces en un período de pocos meses. Malbrant y Maclatchy (1949), dice haber observado grupos de hasta 60 a 80 ejemplares de C. p. satanas en el Gabón. En cuanto a los Colobus guereza, Maler (1969) se refiere a grupos de 2 a 13 individuos; Schenkel y Schenkel-Hulliger (1967) a manadas de 6, 12 y 15 animales, y Ullrich (1961) a un grupo de 13 ejemplares.

El grupo de unos 30 C. p. satanas observado en la región de Matama, estaba integrado por un macho dominante y dos machos adultos que le secundaban en el «canto roncado» (jumping-roaring display), formaban parte también de esta manada tres hembras que acarreaban agarrados en su vientre a animales muy jóvenes, dos con el pelaje blanco y negro y uno con el pelaje casi blanco; integraban también la manada varios subadultos y otros animales grandes que no han podido ser identificados.

Observamos en cuatro ocasiones, que el macho dominante al presentir algún peligro se separaba del grupo y llevaba a cabo grandes rodeos, preso de gran excitación, mientras el resto de la manada se alejaba o inmovilizaba escondiéndose entre el follaje.

No hemos visto ninguna interacción entre los componentes de esta manada.
ALIMENTACIÓN

Todos los autores que han estudiado a estos monos en la naturaleza, están de acuerdo en afirmar que los Colobus se alimentan principalmente de hojas y brotes tiernos de algunos de los árboles de sus biotopos; nuestras observaciones (tabla 4) confirman, en parte, estas afirmaciones ya que los encontramos ocho veces comiendo hojas, cuatro de ellas de

| TABLA 4 |

Plantas consumidas por los Colobus polykomos satanas

<table>
<thead>
<tr>
<th>Familia</th>
<th>Especie</th>
<th>Partes consumidas y número de observaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myristicaceae</td>
<td>Pycnanthus angolensis, Welw.</td>
<td>Hojas 4</td>
</tr>
<tr>
<td></td>
<td>Coelocaryon preussi, Warb.</td>
<td>Flores 2</td>
</tr>
<tr>
<td>Apocynaceae</td>
<td>Alstonia congensis, Engl.</td>
<td></td>
</tr>
<tr>
<td>Euphorbiaceae</td>
<td>Plagiotylos africana, Prain</td>
<td></td>
</tr>
<tr>
<td>Cesalpinaceae</td>
<td>Berlinia bracteosa, Benth</td>
<td></td>
</tr>
<tr>
<td>Anacardiaceae</td>
<td>Antrocaryon kleinianum, Pierre</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hypericum lanceolatum, Desv.</td>
<td></td>
</tr>
</tbody>
</table>

Observación en la isla de Fernando Poo

Pycnanthus angolensis, y seis veces comiendo frutos, de las cuales dos eran de este mismo árbol que tiene una gran importancia en la alimentación de los Cercopithecus y de los P. t. troglodytes de Río Muni. MALBRANT y MACLATCHY (1949) afirman que han encontrado, en muchas ocasiones, frutos de Pycnanthus kombo en el contenido estomacal de los C. p. satanas que han examinado en el Gabón.

En cinco ocasiones que hemos intentado la aclimatación de ejemplares jóvenes de C. p. satanas, las hojas y brotes tiernos de Pycnanthus angolensis han sido el alimento que han aceptado con más facilidad.

Las especies que figuran en la tabla número 4, pertenecen, principalmente al bosque denso primario y también al bosque secundario o degradado.

Observamos a estos monos comiendo casi continuamente de las 7 a las 13 horas; por la tarde sólo tenemos una sola observación comiendo, que corresponde a las 17 horas. Existe un marcado período de descanso al mediodía que posiblemente en esta especie es más patente que en los Cercopithecus.

Los contenidos estomacales de tres ejemplares hembra, adulta, de C. p. satanas, muertos en la región de Matama y que fueron examinados por el Dr. C. Jones, dieron los resultados siguientes:
SOBRE LOS COLOBUS DE RÍO MUNI

<table>
<thead>
<tr>
<th>Peso del animal</th>
<th>Peso del contenido estomacal</th>
<th>Índice</th>
<th>Contenido</th>
<th>Hora de su muerte</th>
</tr>
</thead>
<tbody>
<tr>
<td>6,500 kilos</td>
<td>0,326 kilos</td>
<td>5,01 %</td>
<td>Hojas y restos de frutos</td>
<td>11 horas</td>
</tr>
<tr>
<td>8,600 kilos</td>
<td>0,483 kilos</td>
<td>5,61 %</td>
<td>id.</td>
<td>11 »</td>
</tr>
<tr>
<td>6,010 kilos</td>
<td>0,407 kilos</td>
<td>8,26 %</td>
<td>id.</td>
<td>18,30 »</td>
</tr>
</tbody>
</table>

Reproducción

Nada se ha publicado referente a la reproducción de los C. p. satanas en la naturaleza y en cautividad.

Observamos en la región de Matama el 17 de mayo de 1968 a dos hembras con pequeños cuya edad oscilaba de 2 a 3 meses; en la misma región el 28 de enero de 1967, vimos a tres hembras con un hijo cada uno, dos de ellos tenían unos dos meses y el tercero un mes escaso y el 22 de marzo a una hembra con un pequeño de pocos días, completamente blanco, como es propio en la especie.

Una hembra muerta en la región de Matama el 23 de abril de 1967, examinada por el Dr. C. Jones, tenía un feto de unos 3 meses.

No hemos observado ninguna hembra en estricto, porque según WICKLER (1967) en esta especie no es visible ningún abultamiento especial de la zona genital cuando las hembras son receptivas. Tampoco hemos visto ninguna interacción de tipo sexual entre los componentes de las manadas.

Los datos presentados concuerdan, en parte, con los que publicados por GAUTIER-HION (1968) señalan los meses de diciembre a abril como el período de nacimientos de los Cercopithecus nictitans, Cercopithecus pogonias, Cercopithecus cephus, Cercopithecus neglectus y Miopithecus talapoin del Gabón. Esta época se sitúa en la pequeña estación seca y corresponde a la temporada de la gran fructificación del bosque y es, sin duda, la estación más favorable del año para todos los monos.

Gritos, vocalizaciones y despliegue

Hemos oído el canto roncado (roaring display) de los C. p. satanas de las 6 a las 18 horas, el período de máxima actividad vocal ha sido de las 9,30 a las 10,30 horas y el de menor actividad de las 13 a las 14,30 horas, lapso que corresponde al descanso del mediodía (tabla 5).

SCHENKEL y SCHENKEL-HULLIGER (1967) informan haber oído con frecuencia el (roaring display) durante la madrugada de las 3 a las 7 ho-
<table>
<thead>
<tr>
<th>Tiempo</th>
<th>Canto roncado (roaring)</th>
<th>Pequeñas vocalizaciones</th>
<th>Despliegues (display)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000-0029</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0030-0059</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0100-0129</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0130-0159</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0200-0229</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0230-0259</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0300-0329</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0330-0359</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0400-0429</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0430-0459</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0500-0529</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0530-0559</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0600-0629</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0630-0659</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0700-0729</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0730-0759</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>0800-0829</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0830-0859</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0900-0929</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>0930-0959</td>
<td>13</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>1000-1029</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1030-1059</td>
<td>5</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>1100-1129</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>1130-1159</td>
<td>6</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>1200-1229</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1230-1259</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1300-1329</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1330-1359</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1400-1429</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1430-1459</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1500-1529</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1530-1559</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1600-1629</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1630-1659</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1700-1729</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1730-1759</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1800-1829</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1830-1859</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1900-1929</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1930-1959</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000-2029</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2030-2059</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2100-2129</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2130-2159</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2200-2229</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2230-2259</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2300-2329</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2330-2359</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2400-0029</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SOBRE LOS COLOBUS DE RÍO MUNI

ras y Ullrich (1961) de manera más o menos regular durante las horas diurnas.

Nosotros nunca hemos oído esta manifestación vocal durante el tiempo que media de las 18 a las 5.59 horas.

Hemos podido verificar que en 3 ocasiones, el (roaring display) lo han provocado las vocalizaciones lejanas de los C. nictitans macho, en una ocasión, el grito de alarma de un Mandrillus sphinx, en otro caso el paso de un avión a poca altura y en seis ocasiones los (roaring display) lejanos de otras manadas de C. p. satanas.

Fig. 3. — El macho dominante de la manada de 30 ejemplares de Colobus polykomos satanas observada en la región de Matama, inicia el «canto roncado» (roaring display).

El animal está separado del resto del grupo y se halla en el estrato superior de la vegetación arbórea.

Si bien varias veces y ante nuestra presencia estos monos han entonado esta vocalización que en algunos casos ha sido contestada por un grupo lejano, no estamos muy seguros que la misma haya sido motivada por nuestra presencia ya que esta manifestación vocal se ha producido sin causa aparente y después de mucho tiempo de hallarnos en contacto visible con el grupo. Hemos constatado de 6 a 31 emisiones sonoras en un (roaring display).

Los C. p. satanas, aparte este despliegue coral ritualizado, son animales muy silenciosos, sus vocalizaciones, escasas y débiles, consisten casi siempre en chasquidos secos, más frecuentes en los animales jóvenes que en los adultos.

El (roaring display) va acompañado, según Ullrich (1961), Schenkel
y Schenkel-Hulliger (1967) y Marler (1969) del «despliegue de saltos» (jumping display); nosotros lo hemos observado también en los C. p. satanas en seis ocasiones de las 8:30 a las 13 horas.

En el grupo de Matama integrado por 30 individuos el macho dominante iniciaba el (jumping-roaring display) (foto 2) que era secundado por dos machos subordinados adultos, cuando el despliegue alcanza su punto álgido, los machos, presos de gran excitación y vocalizando o silenciosos saltan de rama en rama con ímpetu lo que provoca la caída de ramas secas y hojas en abundancia; en una ocasión durante el (jum-
ping-roaring display) el macho que lo realizaba defecó y orinó copiosamente casi sobre nosotros.

Comprobamos, en varias ocasiones, que cuando se iniciaba el (roaring display) el macho se sienta y mueve alternativamente la cabeza y el tronco de arriba abajo, rítmicamente, acompañando las emisiones vocales.

Según ULLRICH (1961) el (jumping-roaring display) es una señal óptico-acústica que tiene por objeto marcar el territorio del grupo, Schenkel y Schenkel-Hulliger (1967) estiman que este despliegue aparte de su función de señalización, tiene por objeto reforzar la posición del macho dominante dentro del grupo y MARLER (1969) estima que la función del despliegue es la de mantener la interdistancia entre los distintos grupos que integran una población.

Al igual que los C. guereza, es muy posible que en los C. p. satanas el (jumping-roaring display) tenga por objeto el mantener la distancia entre los diferentes grupos y que también sirva para reforzar la posición social del macho dominante dentro de la manada.

Resumen y conclusiones

Nuestros conocimientos referentes a la ecología y la etología de los monos del África occidental son todavía muy escasos, debido principalmente, a la poca visibilidad de los biotopos donde habitan ya que la relación existente entre estos animales y el hombre es la de depredador-presa. El trabajo que presentamos se está dedicado a la ecología de unos grupos de C. p. satanas que viven en 3 localidades del sudeste del territorio de Río Muni (África occidental). He aquí las principales conclusiones:

1) Los C. p. satanas habitan las regiones montañosas recubiertas de bosque denso primario o secundario, lejos de la interferencia humana. Son esencialmente arborícolas frecuentando, de preferencia, el estrato superior de la vegetación arbórea.

2) Las asociaciones temporales observadas con los Cercopithecus y otros monos, parecen encuentros casuales en árboles portadores de frutos no habiéndose constatado ninguna tensión especial ni interacción durante estos encuentros.

3) Los grupos de C. p. satanas observados oscilaban entre 5 y 30 individuos, en los C. guereza se han señalado manadas de hasta 15 individuos como máximo.

4) Los C. p. satanas, al igual que los demás Colobus, se alimentan principalmente de hojas y brotes tiernos, pero los frutos representan un
capítulo no despreciable en la dieta de la especie que acabamos de estudiar.

5) Al igual que los *Cercopithecus* del Gabón y de Río Muni, parece existir un período de reproducción anual circunscrito a la pequeña estación seca que se extiende de diciembre a principios de abril, coincidente con la época de mayor fructificación en el bosque.

6) Se ha observado con frecuencia, sólo durante el día, el «despliegue de saltos y rugidos» (jumping-roaring display), cuya finalidad, como en los *G. guereza* parece ser la de mantener la interdistancia entre los diversos grupos de esta especie y reforzar la posición del macho dominante dentro del grupo.

* ** *

Este trabajo ha sido posible merced a la ayuda financiera aportada por *The National Geographic Society* de Washington y el *The National Institute of Health* (FR-00164).

Agradecemos también la ayuda que nos ha prestado el Parque Zoológico de Barcelona y el *Delta Regional Primate Research Center* de la Tulane University.

Agradecemos al Dr. Gadea, de la Universidad de Barcelona, la revisión que ha efectuado del trabajo y el haber aceptado su publicación, y al Sr. Jonch, Director del Parque Zoológico de Barcelona y a la señora Nos, biólogo del mismo, la ayuda y facilidades que nos han otorgado.

El *Royal Botanic Garden* de Kew, en Inglaterra y el Servicio Forestal de Río Muni nos ayudaron en la clasificación de las plantas que figuran en el trabajo.

Agradecemos la ayuda que nos han dispensado también, en diversos aspectos, los Dres. Osman Hill, Collin Groves y Clyde Jones.

PARQUE ZOOLOGICO DE BARCELONA.
SUMMARY

The autor observed Colobus polykomos satanas 15 times in a total of 39h 42' observations in the central mountain forests of Rio Muni (West Africa). He verified that this species inhabits the upper storey of the dense primary forest, and that, basically, it is dietetically phyllophagous, though certain fruits are also consumed. He has referred to the possibility of seasonal breeding. Numbers of individuals in the troops agree with other species of Primates. Finally he has compared the 'jumping-roaring displays' with that of Colobus guereza.

BIBLIOGRAFÍA

Notas sobre anóbdidos (Col.)

por

F. ESPAÑOL

XLIX. Sobre el género FALSOGASTRALLUS Pic

El género Falsogastrallus fue establecido por Pic, en 1914, para un anóvido vecino de Gastrallus (F. salteri Pic), descubierto por Sauter en Anping (Formosa) en el interior de un libro según consta en el ejemplar que lleva la indicación de tipo.

El género siguió monospecífico hasta 1924, en cuyo año Scott describió un segundo representante procedente de las islas Seychelles (F. seychellensis Scott), al que siguieron otros cinco dados a conocer por Pic en lo que va de siglo: F. natalensis Pic del África austral, F. tonkineus Pic y F. barbieri Pic de la que fue Indochina francesa, F. elongatus Pic del Yunnán, y F. pendleburyi Pic de Malaya.

Una última aportación, esta vez mía, sirve de apéndice al trabajo que dediqué en 1963 a los Gastrallus del Mediterráneo occidental. En ella me límito a separarle del gén. Gastrallus y a señalar su presencia en el SE, europeo y Mediterráneo oriental, representado en estos territorios por un complejo de formas, todavía no estudiadas, que giran alrededor del supuesto Gastrallus unistriatus Zouf. que pertenece, como aquellas, al gén. Falsogastrallus. Apunto también la posibilidad de que otras especies descritas como Gastrallus (G. javanus Pic, por ejemplo) pertenezcan, en realidad, al género objeto del presente comentario.

El disponer hoy de nuevos materiales y lo que es más importante procedentes del continente americano en el que el género seguía hasta el presente desconocido, me lleva a publicar esta segunda aportación en la que luego de concretar los caracteres más importantes que lo
definen, intento dar una más correcta interpretación de su contenido específico.

CARACTERES DEL GÉNERO

Talla pequeña, comprendida entre 1,5 y 3 mm.; cuerpo oblongo, moderadamente convexo y atenuado en ambos extremos.

Cabeza hundida en el protórax, no visible por encima y profundamente excavada por debajo; antenas (fig. 1) de 9 artejos con maza terminal suelta y muy desarrollada de 3.

![Figuras 1-3](image)

Figs. 1-3. — *Falsogastrellus sauteri* Pie: 1, antena; 2, placa mesosternal y cavidades cotiloideas intermedias; 3, abdomen.

Protórax estrechado por delante, uniformemente convexo por encima, excavado por debajo para recibir a la cabeza en estado de retracción, ligeramente explanado en los lados por detrás y con el borde anterior prolongado inferiormente en canto vivo y continuo, no interrumpido entre las coxas anteriores; arista lateral completa o casi completa.

Élitros con una estría lateral bien impresa, sin estriación manifiesta en el resto de la superficie.

Proceso intercoxal del prosternón bastante ancho, deprimido y transverso; el del mesosternón (fig. 2) en forma de placa oblonga, con las márgenes realizadas y dispuesta horizontalmente justo al nivel del metasternón; éste moderadamente convexo; metapisternas anchas, tendiendo a estrecharse por detrás.
Los dos primeros segmentos abdominales (fig. 3) soldados en el medio y notablemente desarrollados; el 1.° más largo que el 2.° en el medio y más corto que éste en los lados; el 3.° y sobre todo el 4.° cortos; el 5.° más largo que éstos.

Figs. 6-7. — Organo copulador, cara ventral, de *Falsogastrallus unistratus* Zouf.: 6, ♂ de Volo, Tesalia; 7, ♀ de Beyrut.
Patas gráciles, con las coxas de cada par anchamente separadas. Organo copulador (figs. 4-7) definido principalmente por la estructura de los parámeros que responden al mismo modelo en cuantas especies he podido disecar: bifido en la extremidad y con lóbulo lateral atenuado por tura 3B; justo el juzgo genéricas.

como pone de manifiesto la precedente descripción, se trata de un género relacionado con Gastrallus, pero bien diferente de éste por la cabeza profundamente excavada por debajo (no excavada en Gastrallus); por las antenas de 9 artejos (10 en Gastrallus) por el protórax más atenuado por delante, con la arista lateral completa o casi completa (interrumpida por delante en Gastrallus) por el lóbulo anterior prolongado por debajo en canto vivo y continuo (interrumpido entre las coxas anteriores en Gastrallus); por la placa intercoxal lateral deprimida y dispuesta horizontalmente (excavada y en fuerte declive hacia adelante en Gastrallus); por los élitros con sólo una estría lateral (con varias estrías o series de puntos en los lados y a veces también en el disco en Gastrallus); por las coxas de cada par de patas más anchamente separadas; por la estructura sensiblemente distinta del órgano copulador; en fin, por el cuerpo proporcionalmente más corto, y la talla, de ordinario, más pequeña.

Contenido específico

Partiendo de la especie-tipo sobre la que está basada la precedente descripción, fácil resulta comprobar la presencia en el cuadro específico de Falsogastrallus de un elemento extraño a eliminar del referido género, y advertir, al mismo tiempo, deben figurar en él otras especies que fueron descritas y siguen incorporadas actualmente en otras secciones genéricas. Por ello antes de entrar en el detalle de dicho cuadro específico juzgo conveniente ocuparme de las indicadas anomalías.

Elementos que deben mantenerse al margen del género Falsogastrallus Pic. Me refiero al supuesto Falsogastrallus pendleburyi Pic de Malaya, mal interpretado por Pic, sin señalar en él carácter alguno que justifique tal atribución genérica y al que compara con F. sauteri Pic, del que sólo le distingue por la forma más paralela y la coloración rubia uniforme de la parte superior del cuerpo.

Tengo a la vista el tipo de esta especie y sorprende, en efecto, no se diera cuenta Pic que dicho insecto nada tiene que ver con Falsogastrallus ni con Anobiinae alguno a los que le opone la estructura de la parte inferior del cuerpo reuniendo todos los caracteres que definen a la subfamilia Dorcatominae, sin hablar de las antenas con 11 artejos, ni de la conformación de la genitalia masculina (fig. 8) que le separan, al primer examen, de Falsogastrallus y afines.
En apoyo de cuanto antecede acompaña una nueva descripción de este insecto, complemento obligado de la diagnosis original que permitirá, además, fijar la posición del mismo en el extenso grupo de los *Dorcatominae*.

Long. 3 mm. Cuerpo moderadamente estrecho y alargado, subcilíndrico; rojizo-oscuro, mate.

Cabeza poco visible por encima, hundida en el protórax hasta el nivel de los ojos y profundamente excavada por debajo para alojar a las antenas en estado de reposo; éstas, de 11 artejos, sin ramas laterales y con maza terminal, suelta, ancha y alargada de 3; ojos mediocres, muy separados uno de otro.

Protórax poco transverso, atenuado por delante, convexo por encima, sin ser giboso; márgenes caídas, nada explanadas; canto lateral vivo y completo; base sinuosa; puntuación pequeña, densa y finamente rugosa.

Elítritos oblongos, tan anchos como el protórax, de lados paralelos hasta la zona apical, redondeados conjuntamente en la extremidad; superficie muy densa y finamente rugoso-granulosa, sin estrías propia-
mente dichas, pero insinuándose líneas longitudinales oscuras, marcadas de puntos grandes, poco aparentes y muy ligeramente impresos.

Prosternón dejando visible, a cada lado del borde anterior, una superficie triangular, cóncava; mesosternón con un pequeño lóbulo intercoxal, ganchudo, unido al lóbulo del metasternón; éste con sendas excavaciones transversas por delante para recibir a las patas intermedias, y con línea longitudinal media tendiendo a hundirse y ensancharse por detrás; lóbulo intercoxal bien desarrollado, fuertemente transverso, plano por encima y en forma de yunque; metapisternas estrechas.

Esternitos abdominales libres; el 1.° corto, excavado y cubierto por las patas posteriores que sólo dejan visible el lóbulo intercoxal, estrecho y de lados subparalelos, poco ensanchado por detrás; los 2.°, 3.° y 4.° aproximadamente iguales; el 5.° más largo; suturas ligeramente sinuosas.

Coxas anteriores salientes, comprimidas y contiguas en el ápice; las intermedias y posteriores separadas; placas metacoxales subparalelas; patas gráciles; tarsos cortos.

Organo copulador según muestra la figura 8.

Así definido, pendleburyi se nos muestra estrechamente relacionado con el género australiano Dicoelocephalus Lea, al que se llega utilizando las claves de este autor; género que como ya he señalado en notas anteriores se sitúa, a su vez, en la inmediata vecindad de Methemus Broun, al que es posible deba reunirse en concepto de sinónimo. El no disponer, por el momento, de las especies-tipo de uno y otro género (D. granipennis Lea y M. griscipilis Broun) hace aventurada cualquier conclusión y sólo permite intuir lo mucho que tienen de común ambas secciones; parentesco que se hace extensivo a los supuestos Falsogastrallus pendleburyi Pic, Mesoceloopus javanus Pic y Cryptorhopalus obscurus Macl., como he podido comprobar a la vista de representantes típicos de estos tres insectos y como ya indicó Lea, referente al tercero de ellos, en el comentario que le dedicó al hablar del género Dicoelocephalus.

En realidad F. pendleburyi, M. javanus y C. obscurus son tres Dorcatominae con un importante fondo de caracteres comunes que a la par que testimonian un parentesco muy próximo entre todos ellos, los sitúan en el complejo Methemus-Dicoelocephalus, o por lo menos, en la inmediata vecindad de éste.

Elementos que deben ingresar en el género Falsogastrallus Pic.

Aparte el supuesto Gastrallus unistriatus Zouf. ya comentado en una de mis notas precedentes, deben incorporarse al gén. Falsogastrallus los tres siguientes anóbdidos mal interpretados hasta la fecha.

El primero de ellos fue dado a conocer por Pic a principios de siglo (1903) en los siguientes términos: «Gastrapllus javanus n. sp. Satis ro-
bustus, paululum elongatus, subnitidus, griseopubescens, niger, thorace anterus rifolimbato et distincte angustato, antennis pedibusque testacei. Long. 2 mm. Java. Espèce bien distincte par sa forme moins allongée que les autres espèces du genre».

Pese a lo poco que nos dice la precedente diagnosis, lo cierto es que parte de ella nos hace pensar en el gén. *Falsogastrallus*, al que no dudo en incorporarlo a la vista del tipo.

En 1938 *Fisher* creó el género *Neogastrallus* para un nuevo carcoma bibliófago (*N. fibrinocens* Fish.) descubierto en Florida (U.S.A.) infestando los viejos libros.

Sin conocer este anóvido y a base sólo de las excelentes descripciones originales del género y de su especie-tipo, llegó a la conclusión se trataba de un insecto genéricamente inseparable de *Falsogastrallus* del que copia la morfología externa y coincide, además, por su modo de vida (bibliófago como la especie-tipo de *Falsogastrallus*). Para mayor seguridad solicité y obtuve de mi colega Dr. R. E. *Wood* del U.S. National Museum de Washington dos ejemplares del referido insecto con la indicación «*Fisher* vidit» cuyo detenido estudio al confirmar plenamente la precedente conclusión obliga a invalidar al género *Neogastrallus* Fish, por sinónimo de *Falsogastrallus* Pic.

Un año después Pic en un trabajo que dedicó al género *Petalium* describió el *P. unistriatum* del Brasil para el que estableció el nuevo subgénero *Gastrallomimum* sin darse cuenta de que esta pretendida sección nada tiene que ver con *Petalium* y se ajusta, en cambio, perfectamente a la definición del gén. *Falsogastrallus*. Confusión difícil, por otra parte, de comprender por ser el mismo Pic quien describió, años antes, a este último género y por suponer, tal interpretación un error de subfamilia. Basta, en efecto, examinar con alguna atención este pretendido subgénero de *Petalium* para comprobar nada en él justifica su aislamiento de *Falsogastrallus* del que reproduce fielmente todos los caracteres.

Con el paso de este insecto de Pic al gén. *Falsogastrallus* se hace necesario su cambio de nombre por caer en homonimia de *F. unistriatus* de *Zoufal*. Propongo, pues, para él el nuevo nombre de *F. pici* n. n.

Representación actual del género. De acuerdo con las precedentes puntualizaciones el género y su cuadro específico podrían interpretarse del siguiente modo:

Gén. Falsogastrallus Pic, 1914.

Long. 2,3-3 mm. Moderadamente alargado, robusto, de un moreno rojizo más o menos oscuro, brillante; puntuación bastante fuerte y rugosa (salvo en la cabeza); pubescencia gris, fina y acostada, más densa en los lados del protórax y sobre los élitros. Cabeza fina y densamente punteada; antenas (fig. 1) cortas, con la maza terminal ancha y tan larga como los seis artejos que la preceden; del 3.° al 6.° subiguales, más estrechos que el 2.°, éste más estrecho, a su vez, que el 1.°. Protórax corto, con la arista lateral entera y la puntuación bastante fuerte y granulosa, más densa hacia los lados. Escudete transverso. Élitros no más anchos que el protórax, bastante cortos, convexos, con una estría lateral bien impresa y casi completa; calo humeral señalado; puntuación rugosa y extendida por toda la superficie. Patas gráciles. órgano copulador según muestra la figura 4.

Encontrado en el interior de un libro según consta en el ejemplar que lleva la indicación de tipo.

Falsogastrallus javanus (Pic). Java.

Difícil se hace opinar sobre este insecto a base de un único ejemplar, el tipo, muy viejo y mal conservado. Indicaré sólo que su forma poco alargada y bastante robusta, las antenas de 9 artejos con maza terminal de 3, el protórax estrechado por delante, los élitros con una estría lateral y la estructura de los esternitos torácicos y abdominales apoyan su incorporación al género Falsogastrallus, sin poderse precisar más mientras no se disponga de material fresco y no se pueda examinar la genitalia masculina que en éste y otros géneros de aspecto externo tan uniforme adquiere un valor, a menudo decisivo, en la identificación específica.

Ignoro si Pic llegó a describir esta especie de la que no he logrado encontrar referencia bibliográfica alguna. De ella existe un ejemplar en la colección Pic con las siguientes indicaciones: «Saigón, 6-IX-50, J. Barbier, Falsogastrallus barbieri n. sp.». Otros dos ejemplares, también de Saigón, recogidos por los Sres. AGUILAR-AMAT y JUNCADELLA, se guardan en el Museo de Zoología de Barcelona. Los tres caracterizados principalmente por su pequeña talla, comprendida entre 1,5 y 2 mm, por la puntuación del pronoto y élitros particularmente fuerte y densa y por diferentes detalles del órgano copulador (fig. 5).
Falsogastrallus unistriatus (Zouf.). Sudeste europeo y Mediterráneo oriental.

Descrito como *Gastrallus* y pasado al gén. *Falsogastrallus* en una de mis notas precedentes (véase bibliografía) por ajustarse en todos sus caracteres a la definición de este último género.

Ocurre, además, que tal como sigue interpretado desde los tiempos de Zoufal, *unistriatus* parece constituido por distintas poblaciones ubicadas en el sudeste europeo y Mediterráneo oriental, difíciles de distinguir por la morfología externa, pero separadas una de otra por la estructura de la genitalia masculina (compárense figs. 6 y 7) hasta el punto de hacer pensar en una posible disparidad específica o subespecífica. De confirmarse tal impresión debería reservarse para la forma que habita Atica y Morea el nombre de *unistriatus*, y describir como nuevas aquéllas, difíciles todavía de precisar, que a partir de Hungría se reparten por la región balcánica, por Siria y por otros puntos del Mediterráneo oriental.

Falsogastrallus seychellensis Scott. Islas Seychelles.

De este *Falsogastrallus*, descrito cuidadosamente por Scott en 1924, poseo dos ejemplares procedentes de Mahé (I. Seychelles) facilitados por el British Museum y muy de acuerdo con la descripción original que, como es corriente en las diagnóstico de dicho autor, se muestra más que suficiente para la debida identificación de este insecto a nivel genérico y específico. Como dato complementario añadiré sólo que la genitalia masculina se muestra en él completamente de acuerdo con el modelo que es norma entre los restantes *Falsogastrallus* por mí conocidos.

Falsogastrallus natalensis Pic. África austral: Durbán.

Como en el caso del *F. javanus* Pic, se hace difícil opinar sobre esta especie sin disponer de material idóneo para su examen en fresco y para el estudio de la genitalia masculina. De ella existen en la colección Pic dos ejemplares de la serie típica en los que pueden observarse los caracteres que definen al gén. *Falsogastrallus*, pero de dudosa utilización a nivel específico por su deficiente estado de conservación. Tampoco puede sacarse gran provecho de la descripción original, poco precisa y sin suficientes caracteres diferenciales frente a los otros representantes del género.

Falsogastrallus fibrinocens (Fish.). U.S.A.: Florida.

Es evidente que Fisher al establecer para este insecto el nuevo género *Neoagastrallus* desconocía las notas de Pic y Scott referentes al género *Falsogastrallus*, ya que de no ser así se hubiera dado cuenta de que trataba de un genuino representante de este último género.
Por el indicado motivo el trabajo de Fisher excelente en cuanto a la identificación genérica del insecto descrito, resulta incompleto a nivel específico por faltar en él todo dato relativo a los caracteres que distinguen a fibrinocens de los otros representantes del género, tanto más necesarios por cuanto se trata de un conjunto particularmente homogéneo, con tendencia al cosmopolitismo como consecuencia de la domesticidad de algunas especies y su fácil transporte pasivo.

Para salir de dudas se hace pues, obligado, completar la descripción de Fisher con el estudio comparado de estos insectos, labor al margen de mis posibilidades actuales ante la falta de machos de fibrinocens y de parte de sus congéneres no americanos.

Según consta en la descripción original el insecto en cuestión fue descubierto por E. A. Back en Florida infestando una colección de libros.

Falsogastrallus pici n. n. Brasil: Porto Alegre (Río Grande del Sur); Corumbá (Matto Grosso).

Como he señalado ya y se pone de manifiesto al examinar la serie típica, el supuesto *Petalium unistriatum* Pic, para el que estableció este autor el subgénero *Gastrallomimum*, debe pasar al género *Falsogastrallus* del que reúne todos los caracteres; paso que hace obligado el cambio de nombre por existir ya un *F. unistriatus* descrito mucho antes por Zoufal.

Por lo que a afinidades se refiere, resulta curioso comprobar la gran semejanza existente entre este representante brasileño y el *sauteri* Pic de Formosa, parecido que afecta no sólo a la morfología externa, sino también a la genitalia masculina y que hace de ambos dos formas muy próximas y difíciles de separar a base del material hoy disponible. Dificultades que por afectar a la totalidad del género sólo podrán ser superadas el día que se logre reunir material fresco y abundante de cada una de las unidades que componen tan confuso cuadro específico.

Especies no comprobadas. Entran aquí *F. tonkinus* Pic del Tonkín y *F. elongatus* Pic del Yunnán que sólo conozco por la descripción, insuficiente para resolver si pertenecen, como creyó Pic, al gén. *Falsogastrallus*, o deben pasar, como ocurre en el caso de *pendleburyi*, a otras secciones genéricas.

L. A propósito del Xyletinus bombycinus Erichson.

He de agradecer a mi apreciado amigo y excelente colega Dr. W. Wittmer el estudio de una colección de anóbdidos del Museo de Historia Natural de Basilea en la que, entre otros representantes americanos,
he encontrado un interesante Xyletininae del Perú descrito en 1847 por Erichson bajo el nombre de Xyletinus bombycinus.

Por tratarse de un insecto apenas conocido le he dedicado especial atención comprobando, de acuerdo con el punto de vista de Erichson, las muchas afinidades que le unen a Xyletinus, pero sin que por ello pueda alinearse, a mi entender, en este género, al que le oponen importantes particularidades que justifican el establecimiento para él de una nueva sección genérica.

Gén. Xyletineurus nov.

Cuerpo oblongo, subcilíndrico; pubescencia corta, densa y aplicada contra el tegumento.

Cabeza ancha, introducida en el protórax hasta el borde posterior de los ojos, pudiendo inclinarse debajo de él hasta apoyarse sobre las coxas anteriores; deprimida por debajo, entre los ojos; la depresión rectangular, no estrangulada en el medio (fig. 9); frente ancha; ojos grandes, salientes, enteros; antenas (figs. 11 y 12) de 11 artejos, sin maza terminal, flabeladas en el ♂ a partir del 4.º artejo, del mismo tipo pero con las ramas laterales más cortas en la ♀; último artejo de los palpos maxilares (fig. 13) estrecho, alargado y tendiendo a aguzarse en la extremidad.

Fig. 9. — Xyletineurus bombycinus (Er.), parte inferior de la cabeza.
Protórax fuertemente transverso, tan ancho o casi tan ancho como los elitros, excavado por debajo para la recepción de la cabeza, convexo, sin ser giboso, por encima; márgenes laterales caídas; bordes de éstas en canto vivo, estrechamente explanados por delante, algo más anchamente por detrás en la región de los ángulos posteriores; éstos obtusredondeados.

Fig. 10. — Xyletinus (Xeronthobius) lecerfi Kocher, parte inferior de la cabeza.

Elitros sin estrías ni series longitudinales de puntos; superficie muy finamente rugosa, con puntuación diminuta e irregularmente dispuesta, y con huellas de elevaciones longitudinales más o menos aparentes según los ejemplares.

Prosternón excavado por delante, con lámina media triangular acuminada frente a las coxas anteriores; mesosternón horizontal por delante, ascendente por detrás y estrechamente aquillado entre las coxas intermedias; metasternón no excavado para las patas, en declive por delante y surcido por detrás; la declividad anterior no limitada posteriormente por línea realizada alguna; metapisternas proporcionalmente anchas, subparalelas.

Segmentos abdominales libres y con las suturas rectas; el 1.º no excavado para las patas; 1.º, 2.º y 5.º grandes, más largos que los 3.º y 4.º.

Coxas anteriores e intermedias en fuerte declive y deprimidas por encima; las anteriores contiguas en el ápice; las intermedias muy es-
NOTAS SOBRE ANÓBIDOS

trechamente separadas por la quilla mesosternal; las posteriores un poco más separadas que las intermedias; placas metacoxales paralelas; fémures y tibias moderadamente alargados, algo más robustos en los ma-

![Diagram](image1)

Figs. 11-13. — *Xyletineurus bombycinus* (Er.): 11, antena del ♂; 12, antena de la ♀; 13, último artejo de los palpos maxilares del ♂.

chos que en las hembras; tarsos largos y gráciles, con los artejos 1.° y 2.° alargados y casi de la misma longitud; los 3.° y 4.° progresivamente más cortos; el 5.° de nuevo alargado,

![Diagram](image2)

Figs. 14-15. — *Xyletineurus bombycinus* (Er.): 14, órgano copulador, cara ventral; 15, segmento genital.
Organo copulador y segmento genital según muestran las figuras 14 y 15.

Como ya he señalado en un principio, no anduvo desacertado Enrichson en sus apreciaciones, por situarse este nuevo género en la vecindad de Xyletinus del que imita el aspecto general y con el que comparte numerosos caracteres; por el gran desarrollo de los ojos y la notable longitud y gracilidad de los tarsos diríase estrechamente relacionado con el grupo paleártico del X. pallens Germ. (subgén. Xeronthobius Mor.), pero bien diferente de los representantes de este grupo por los elitros desprovistos de estrías y de series de puntos, por la depresión de la parte inferior de la cabeza rectangular y no estrangulada en el medio (casi dividida en dos por una estrangulación media en Xeronthobius, fig. 10) y por las antenas fabeladas (aserradas en Xeronthobius). Diferencias que sumadas a la longitud y gracilidad de los tarsos le separan aún más claramente del grupo americano del X. pellatus Harr. Frente a los restantes Xyletinus las diferencias son todavía más acusadas y se refieren a la escultura elítral, a la estructura de la parte inferior de la cabeza, a la forma de las antenas, al contorno del último artejo de los palpos, al desarrollo de los ojos, a la gracilidad de los tarsos, etc. En realidad, los elitros sin estrías ni series de puntos, la depresión de la parte inferior de la cabeza rectangular y no estrangulada en el medio y accesoriamente las antenas fabeladas, son caracteres que les oponen a Xyletinus y hacen, a mi entender, obligada su separación de éste.

Frente a los otros géneros de Xyletininae las diferencias son también manifiestas, sin que la combinación de sus principales caracteres permita, como muestra la tabla que acompaña, asociarlo a ninguno de ellos.

1. Declividad anterior del metasterñón no limitada posteriormente por una línea realizada y continua
7. Elítritos con estrias o series longitudinales de puntos .. 8
8. Elítritos sin estrias ni series longitudinales de puntos ... 11
9. Las series de puntos visibles en toda la superficie de los elítritos; cabeza del macho no modificada .. 9
10. Antenas pectinadas y con los tres últimos artejos poco pero sensiblemente mayores que los precedentes; tarsos gráciles, con los artejos 1.º, 2.º y 5.º notablemente alargados; último artejo de los palpos aguzado en la extremidad .. 10
11. Antenas aserradas y con los tres últimos artejos no mayores que los precedentes; tarsos cortos, con sólo los artejos 1.º y 5.º alargados, menos que en su oponente; último artejo de los palpos triangular y esculto en el ápice, excepcionalmente con otro contorno .. 11
12. Antenas pectinadas en ambos sexos; último artejo de los palpos secundiforme; coxas intermedias separadas; tarsos cortos .. 12

No se incluyen en la tabla anterior Tasmanobium Lea, Dasytanobium Pic y Plananobium Pic y Plananobium Pic, probables géneros de Xyletininae que sólo conozco por sus respectivas descripciones, si bien, en cualquier caso y a juzgar por éstas, Xyletinineurus se aleja del primero por los elítritos desprovistos de estrias y por las antenas flabeladas; distinto asimismo del segundo por el protórax no anchamente explanado en los lados y sin sobrepasar la anchura de los elítritos, por el cuerpo convexo y práctica mente liso, por la pubescencia corta y acostada, etc.; separado, en fin, del tercero por el cuerpo convexo; por el protórax de anchura normal y con las márgenes caídas (latissimo, lateraliter subdeplanato et reflexo, en Plananobium), y por los elítritos no estriados (elytris lateraliter modice et regulariter punctato-striato, en Plananobium).

Laboratorio de Zoología (1)
Facultad de Ciencias
Universidad de Barcelona

(1) Este trabajo se ha beneficiado de la ayuda concedida a la Cátedra de Zoolo gía (Invertebrados) con cargo al crédito destinado al fomento de la investigación en la Universidad.
RÉSUMÉ

La note XLIX est une nouvelle contribution à la connaissance du genre Falsogastrallus Pic dans laquelle, après des brèves considérations historiques, on précise les caractères qui définissent celui-ci, ses affinités avec Gastrallus Duv., ainsi que les caractères que l'en séparent; on s'occupe ensuite d'une espèce, pendleburyi Pic, figurant à tort dans le genre objet de la présente note; on donne à la suite la liste sommaire des éléments qui doivent s'incorporer au genre Falsogastrallus et qui sont, outre Gastrallus unistriatus Zof., déjà revisé dans une note précédente, Gastrallus javaeus Pic, le genre Neogastrallus Fish, et le sous-genre Gastralimum Pic placé à tort dans le genre Petalium Lec.; on ennumère après les Falsogastrallus actuellement connus; enfin on s'occupe des espèces douteuses dont la place dans ce genre est à vérifier.

La note L consiste en une redescription du Xyletinus bombycinus d'Erichson pour lequel il est nécessaire de créer un nouveau genre, Xyletineurus, voisin de Xyletinus, mais bien différent de celui-ci par les élytres non striés, à surface finement rugueuse, par la dépression inférieure de la tête rectangulaire, non élargie au milieu, et accessoirement par les antennes flabellées (€) ou subflabellées (?). Un tableau de détermination précise, d'autre part, les caractères qui séparent Xyletineurus des autres genres de Xyletiniacea.

BIBLIOGRAPHÍA

Erichson. — 1847. Archiv für Naturgeschichte, XIII, 1, pág. 86.
Pic, M. — 1908. Diagnoses génériques et spécifiques de divers coléoptères exotiques. L'Echange, XIX, pág. 188.
El género *Desbrochersella* Reitter
(Col. Curculionidae)

por

MANUEL GONZÁLEZ

Por tratarse *Desbrochersella* de un género poco frecuente y menos conocido, y por la dificultad que presenta la identificación de sus escasos representantes, he creído de interés dar una nueva visión de conjunto de su cuadro específico, al mismo tiempo que incluyo en él, las novedades que encontré entre el material que me ha servido de base para este estudio.

En 1906 Reitter creó el género y agrupó en él las especies [*baetica* (Schauf.), *castiliana* (K. Daniel), *pennata* (Faust), *reitteri* (Stierl.) y *vaulogeri* (Pic)] que hasta aquel entonces estaban situadas en los géneros *Omias*, *Mylacus* y *Sciaphilus*. Desde esa fecha, su cuadro específico no sufrió alteración alguna, hasta 1954, en que Hoffmann describió la *D. maroccana*.

Los caracteres principales que definen a *Desbrochersella*, están centrados en la estructura del rostro y de la cabeza: rostro corto, robusto, de longitud algo inferior a su anchura en el ápice incluidos los pterigios; de lados casi paralelos o algo convergentes hacia el ápice; parte dorsal rápidamente estrechada desde el borde anterior de los ojos hasta una gran impresión a modo de placa, ésta colocada entre la inserción de las antenas, y extendiéndose desde el borde anterior del rostro hasta casi alcanzar la zona media del mismo.

Placa rostral de elevación variable y con la superficie presentando diversas formas, tales como quillas arqueadas, salientes triangulares, excavaciones a modo de surco, concavidades o bien con la superficie completamente plana.
Escrobas con los pterigios laterales, situados en el borde apical del rostro, muy desarrollados y con el borde inferior cerrado y el superior formando parte de los bordes de la placa rostral; más o menos visibles, según la anchura de la placa. Surcos antenales dirigidos hacia la parte ventral del rostro y formando casi un ángulo recto con los pterigios; de profundidad y longitud variables, pudiendo, en algunos casos, llegar a la vecindad del borde inferior o casi desapareciendo en su inicio; visibles por encima, pero también su apreciación total o parcial está condicionada a la anchura de la placa rostral.

Cabeza gruesa, de anchura igual a la del borde anterior del protórax, convexa por encima; ojos laterales, situados algo más cerca del borde dorsal que del ventral, casi redondos, salientes y relativamente pequeños; frente muy ancha, plana, casi tan ancha como el ápice del rostro incluidos los pterigios.

Mantiene afinidad con el género Omias, por tener ambos el rostro de parecida conformación, por presentar las escrobas pterigios muy desarrollados, visibles por encima y con el borde inferior cerrado; por ser visible la cavidad que se sitúa detrás de los pterigios en donde se forma el surco antenal, si bien en Omias éste no se continua hacia la parte ventral del rostro, detalle bastante similar al que presenta alguna especie de Desbrochersella. Asimismo poseen el lóbulo medio del órgano copulador de parecido contorno.

Aparte de las afinidades expuestas, Desbrochersella se separa rápidamente, por la ausencia en Omias de la característica placa del rostro, y por tener los rebordes superiores de los pterigios prolongados hasta casi la altura de los ojos, a modo de pequeñas quillas, quedando entre éstas un espacio algo hundido; mientras que en Desbrochersella la superficie del rostro está en un mismo plano que la de la frente.

Con el género Mylacus ofrece menos parentesco, por tener el rostro más alargado y aguzado, por la posición más dorsal de los pterigios y a la vez más separados del borde apical del rostro. El órgano copulador en Mylacus es totalmente diferente; en las especies que he podido estudiar, los caracteres generales de este órgano, se mantienen bastante uniformes; la parte distal del lóbulo medio es mucho más ancha que la base, el ápice poco quitinizado y con el saco interno evacinado.

Algunos géneros de Brachyderini, presentan también la peculiar placa en el ápice del rostro, no obstante esta placa en ellos es de características diferentes. Entre los géneros que he podido consultar, el que la posee más semejante es Scaphobus, pero en éste la conformación del rostro y de la cabeza es totalmente diferente, y más aún las escrobas, que no poseen pterigios, son sulcoiformes, estrechas y arqueadas hasta el borde inferior del rostro.

En la actualidad no poseo datos de su biología, salvo los que señala el Sr. Pardo en los rótulos de algunos ejemplares capturados por él en
el norte de África; éstos se refieren a la *D. baetica* (Schauf.), recolectada en restos alterados de *Atriplex, Lavandula dentata* y *Artemisia*.

Hasta la fecha *Desbrochersella*, sólo es conocida por mí de la cuenca mediterránea; llega como zona más septentrional al sur de la provincia de Huesca, en España y es posible que se encuentre también al sur de Cataluña; a partir de esta zona y después de colonizar el sudeste de la Península Ibérica, alcanza las costas del norte de África, extendiéndose desde Tánger hasta Israel y Jordania como límite más oriental, presente asimismo en Sicilia, Malta y Chipre.

Como se aprecia en el mapa de distribución, existen bastantes áreas sin señalar su presencia; y a buen seguro nos daría bastantes sorpresas la prospección de las zonas que en la actualidad permanecen en blanco; aparte de que aún se podrían aportar al género nuevos elementos, con el examen de las especies de los géneros *Omis, Mylacus, Sciaphilus* y Brachysomus, sobre todo de las descritas de la parte meridional y oriental del Mediterráneo.

La ordenación del cuadro específico, la he basado exclusivamente en la morfología externa, diferenciando sus especies en dos grandes grupos por la forma de las antenas; en líneas generales, las he separado por la estructura de la pubescencia y por la conformación de la placa rostral, ambos caracteres muy constantes, salvo en *baetica*, en la que su revestimiento presenta alguna variación. Asimismo figuro el órgano copulador [excepto los de *barbarica* n. sp., *cinerascens* (Rosenh.), *franzi* n. sp., *insulana* n. sp., *reitteri* (Stierl.) y *tingitana* n. sp.] cuyo estudio comparado facilita detalles diferenciales casi necesarios para la identificación específica.

Tengo que agradecer especialmente al Sr. F. ESPAÑOL, Director del Museo de Zoología de Barcelona, el haber puesto a mi disposición tanto la biblioteca del citado Museo, como la suya propia.

Parte del material en que he basado este estudio, procede de los centros científicos siguientes:

Instituto de Aclimatación, Almería; Museum d’Histoire Naturelle, Ginebra; Instituto Español de Entomología, Madrid; Deutsches Entomologisches Institut, Eberswalde (D. D. R.); Institut für Bodenforschung, Viena; Zoologische Sammlung des Bayerischen Staates, Munich; Staatliches Museum für Tierkunde, Dresde; Musée Hongrois d’Histoire Naturelle, Budapest; Museo Civico di Storia Naturale, Milán; Natur-
historiska Riksmuseet, Estocolmo; Museo Civico di Storia Naturale, Verona y Museum National d’Histoire Naturelle, París.

En el transcurso de este trabajo he tenido ocasión de consultar los tipos de:

Asimismo examiné la serie paratípica de Omias castilianus K. Dan., y un ejemplar de Omias cinerascens Rosenh., procedente de la colección Rosenhauer, que creo se trata del tipo, por estar etiquetado con la localidad que figura en la descripción original, haber sido recogido por el autor, y también por estar reseñado en el rótulo, el título de Thiere Andalusiens.

LISTA DE ESPECIES

Desbrochersella castiliana (K. Daniel) (1900)

Junto con cobosi y maroccana, forman un grupo que se diferencia del resto de especies, por presentar el funículo de las antenas (fig. 14), con los artejos finales (5.º, 6.º y 7.º) transversos. Este grupo es el que guarda más parecido con Omias, por las similares dimensiones del rostro y por presentar el surco antenal muy reducido y visible por encima.

Su distribución es la más septentrional del grupo. A pesar de haber consultado bastantes especímenes, todos los ejemplares proceden de la misma localidad locotípica, aunque recolectados en diferentes fechas.

Descrito de Pozuelo de Calatrava (Ciudad Real); asimismo recolectado en 1899 y 1900. Con ocasión de haber examinado la serie de cotipos en que K. Daniel basó la descripción, he señalado como lectoholotipo un ejemplar recogido por La Fuente en 1899.

Desbrochersella cobosi n. sp.

Holotipo, α, La Borrica, Sierra de María, Almería, 4-10-VI-1951 (A. Cobos). Paratipos: 9 ejemplares, misma localidad y Sierra María, Almería, VII-1953 (A. Cobos); en la colección del Instituto de Aclimatación de Almería, del Museo Civico di Storia Naturale de Milán y mía.
Longitud sin el rostro 3,42 mm; anchura máxima 1,67 mm. Proto-
órax, longitud en la línea media 0,71 mm; anchura en el borde ante-
rior 0,75 mm; id. máxima 0,92 mm; id. en la base 0,78 mm. Élitros,
longitud en la sutura 2,28 mm; anchura máxima 1,67 mm.

Placa rostral bien diferenciada del resto de la superficie del rostro,
con los lados estrechados hacia el borde anterior, éste ligeramente re-
dondeado y de anchura algo inferior a la mitad de la del borde basal;
por encima cóncava y con una quilla basal que se extiende hacia la
parte central en forma de arco; de superficie lisa y brillante, sólo pun-
teada alrededor de la quilla.

Puntuación de la superficie del rostro, hacia la placa, fuerte, desig-
gual, muy profunda y algo rugosa; toda ella se va atenuando mucho
en dirección a la frente.

Antenas (fig. 13) muy gruesas y cortas; escapo casi doble más an-
cho en el ápice que en la base, engrosado a partir del segundo tercio;
funículo con el primer artejo de longitud algo superior al 2.° y con el
3.° tan largo como ancho; los restantes transversos y de anchura pro-
gresiva hasta el 7.°; maza de anchura muy superior al 7.° artejo y de
longitud igual a los cuatro últimos artejos del funículo juntos.

Élitros (fig. 12) algo más de vez y cuarto tan largos como anchos;
poco convexos por encima y de lados subparalelos. Escudete visible
triangular.

Órgano copulador, figura 48.

Sin diferencias sexuales aparentes por encima. En la parte inferior
la ♀ se diferencia del ♂, por tener el primer segmento abdominal algo
más abombado y el 5.° con el borde externo aguzado.

Conocido únicamente de Sierra María, en Almería.

Mantiene afinidad con castiliana, aparte de la estructura de las an-
tenas, por poseer la placa rostral muy parecida y por ser el revestimiento
de ambos piliforme; si bien éste en cobosi es totalmente distinto, de
tal manera que por él se diferencia rápidamente de sus congéneres.

Dedicated a su descubridor Sr. A. Cobos, gracias a quien he podido
describir esta interesante novedad.

Desbrochersella maroccana Hoffm. (1954)

Aunque mantiene los caracteres del grupo, es la que posee el rostro
más alargado y estrecho, la placa rostral menos diferenciada del resto
de la superficie del rostro y el surco antenal algo más alargado hacia la
parte ventral.

Descrita de Marruecos: Gada de Debdou, 1500 m, Bajo Mouluva,
III-52 (Kocher). Hasta la fecha sólo he podido estudiar el ejemplar
señalado como tipo y no conozco ninguna cita que amplíe su área de dispersión.

Desbrochersella barbarica n. sp.

Holotipo, ♀, Orán, Argelia, 1894 (Vauloger); en la colección K. Daniel, depositada en el Zoologische Sammlung des Bayerischen Munich.

Longitud sin el rostro 3,10 mm; anchura máxima 1,46 mm. Protórax, longitud en la línea media 0,71 mm; anchura en el borde anterior 0,64 mm; id. máxima 0,89 mm; id. en la base 0,75 mm. Elítrós, longitud en la sutura 2,10 mm; anchura máxima 1,46 mm.

Rostro de lados paralelos; escobas con los pterigios bien desarrollados y casi totalmente visibles por encima; surcos antenales anchos y prolongados hacia la parte ventral del rostro, hasta la altura del borde inferior de los ojos. Placa rostral (fig. 20) con el borde anterior recto, el basal presentando un saliente triangular a modo de pequeña placa sobrepuesta.

Antenas (fig. 24) con el escapo vez y media más ancho en el ápice que en la base, y engrosado rápidamente casi a partir del tercer cuarto; artejos 3.°, 5.° y 7.° del funículo tan largos como anchos, el 4.° y 5.° algo más alargados; maza alargada, de longitud igual a los cinco últimos artejos reunidos.

Elítrós alargados, vez y media tan largos como anchos; poco convexos por encima y con los puntos de las estrías bien marcados y muy juntos; intervalos redondeados y de superficie granujienta.

Pubescencia de la parte dorsal del cuerpo de coloración uniforme, salvo en la base de los elitros y borde posterior del protórax, en donde se sitúan algunas escamas piliformes de color más claro y algo más gruesas.

Sólo conozco el ejemplar de Orán, en el que he basado la descripción. Determinado por Desbrochers como *Platytarsus* n. sp.

Por la forma de sus antenas, es la que más se acerca al grupo de especies con los artejos transversos. Su aspecto general recuerda a *castiliana*; en particular por la forma del rostro, si bien en *barbarica* es algo más alargado y paralelo; y por la estructura de la pubescencia aplicada. No obstante se separa de *castiliana* por la forma de los pelos erectos, conformación del protórax, etc.

Desbrochersella cinerascens (Rosenh.) (1856)

Omias cinerascens Rosenh. Thiere Andalus, pág. 261. 1856.

Próxima a *barbarica*, por la parecida conformación del revestimiento de la parte dorsal del cuerpo (fig. 35); si bien en *cinerascens* la pubes-
cencia aplicada es más larga y gruesa, mientras que la erecta es algo más corta y delgada. Asimismo poseen los elitros de parecidas dimensiones.

Se diferencian por presentar *cinerascens* las antenas mucho más largas (1), la estructura de la placa rostral distinta, la forma diferente del protórax, etc.

En el catálogo WINKLER figura incluida en los *Barypithes*; asimismo en 1948, SOLARI en su trabajo sobre *Brachyderinae* donde describe el *B. paganettii*, lo diferencia de *cinerascens* precisamente por la falta de la placa rostral, sin tener en cuenta que en las tablas de separación, el género *Barypithes* lo coloca dentro de los que no poseen la placa.

Descrita de Sierra Nevada; sólo he podido estudiar un ejemplar ♀, que posiblemente se trate del tipo.

Desbrochersella tingitana n. sp.

Holotipo, ♀, Tánger, Marruecos (sin indicación de recolector); en la colección de J. PERICART, París.

Longitud sin el rostro 2,82 mm; anchura máxima 1,42 mm. Protórax, longitud en su línea media 0,60 mm; anchura en el borde anterior 0,64 mm; ld. máxima 0,82 mm; ld. en la base 0,75 mm. Elitros longitud en la sutura 1,89 mm; anchura máxima 1,42.

Muy convexo por encima; moreno rojizo, salvo las patas y antenas que son de tonalidad más clara. Puntuación de la superficie del rostro, lo mismo que la de la cabeza y protórax fina, contigua y uniforme.

Escobas con los pterigios sólo la mitad visibles por encima; surcos antenales extendidos hasta la altura del borde inferior de los ojos, anchos y muy poco señalados.

Antenas largas y finas, con el 2.º artejo del funículo casi tan largo como el 1.º; los 3.º y 4.º de la misma longitud y los 5.º y 7.º tan largos como anchos. Mazas aguzada casi desde su mitad y tan larga como los cuatro últimos artejos juntos.

Elitros con los puntos de las estrías algo alargados y contiguos; intervalos anchos y de superficie plana.

Sólo relacionado con *cinerascens*, por la similar estructura de los pterigios y de la placa rostral; si bien en *tingitana* la placa es de superficie algo más plana.

Se separa del resto de especies por ser su revestimiento (fig. 31) simple y estar formado por escamas muy pequeñas y de dimensiones uniformes.

(1) El ejemplar estudiado, posee las antenas mutiladas, no obstante la descripción indica que éstas alcanzan la mitad de la longitud del cuerpo y son gráciles.
Desbrochersella baetica (Schauf.) (1861)

Desbrochersella cobosi Sol. (i ulitt.) (2).

Especie muy variable y de amplia distribución. Los caracteres externos más variables, son principalmente la pubescencia dorsal (figs. 25, 26 y 27) y su tamaño (fig. 1), que oscila entre los 2,57 y 4,28 mm de longitud; datos obtenidos con el examen de unos 90 ejemplares. Asimismo el órgano copulador (fig. 40) tampoco es constante, sobre todo el contorno del lóbulo medio.

No obstante su variabilidad, la placa rostral presenta siempre la con-cavidad característica, así como la quilla basal en forma de arco.

Su área de distribución conocida, es la más amplia de todos los representantes: sur de la Península Ibérica y parte de la costa mediterránea de Marruecos.

Desbrochersella franzi n. sp.

Holotipo, , alrededores de Callosa, Alicante (H. Franz); en mi colección. Paratipo: 1 ejemplar , locotípico, en la colección del doctor H. Franz, Institut für Bodenforschung, Viena.

Longitud sin el rostro 3,96 mm; anchura máxima 1,81 mm. Protórax, longitud en la línea media 0,89 mm; anchura en el borde anterior 0,89 mm; id. máxima 1,10 mm; id. en la base 0,96 mm. Elitros, longitud en la sutura 2,57 mm; anchura máxima 1,81 mm.

(2) Un ejemplar depositado en el Instituto de Aclimatación de Almería, posee un rótulo manuscrito por Solari como alotipo de Desbrochersella cobosi, que no llegó a describir.
Escrobas con el surco antenal largo, casi alcanzando el borde inferior del rostro, ancho y algo profundo; visible por encima en más de la mitad de su longitud. Placa rostral con el borde anterior recto.

Antenas (fig. 11) con el escapo doble tan grueso en el ápice como en la base y engrosado a partir del segundo tercio; funículo con el primer artejo más largo que el 2.°, los restantes de longitud muy similar; maza de longitud igual a los cuatro y medio últimos artejos juntos.

Elitros algo aplanados por encima y con el declive apical brusco; puntos de las estrías de profundidad inferior a los de la superficie del protórax; intervalos de superficie lisa y moderadamente convexa.

Los caracteres del ejemplar paratipo ♀, se ajustan a los del tipo, excepto su tamaño, que es inferior (3,10 mm de longitud sin el rostro y 1,60 mm de anchura máxima).

Afín a baetica, por la presencia en la placa rostral de la quilla en forma de arco; asimismo esta placa es de parecida conformación a la de mediterranea, si bien en ésta la quilla es menos aparente y toda la superficie es mucho más punteada.

Por la particular estructura de la pubescencia erecta (fig. 29), se diferencia de todas las especies.

Dedicada a su descubridor Dr. H. FRANZ, gracias a quien he podido dar a conocer esta interesante novedad ibérica.

Desbrochersella mediterranea n. sp.

Desbrochersella segorbensis Hoffnn. (in litt.).

Holotipo, ♂, Villamarchante, Valencia, 11-XII-1910 (MORÓDER); en la colección del Zoologische Sammlung des Bayerischen Staates, Munich. Paratipos, 9 ejemplares: 1 ejemplar ♀, Segorbe, Castellón (MORÓDER (3)); 1 ejemplar ♀, Benicasim, Castellón, 2-IV-1956 (J. RIBES); 1 ejemplar ♀, Valderrobles, Teruel, 2-XI-1964 (F. PABLOS); 1 ejemplar ♀, Las Menorcas, Los Monegros, Huesca, IV-1966 (J. RIBES); 1 ejemplar ♀, Valencia (sin recolector); 1 ejemplar ♀, Villamarchante, Valencia (sin recolector); 1 ejemplar ♀, Serra, Valencia (H. FRANZ); 1 ejemplar ♂, Valencia (MORÓDER) (4); 1 ejemplar ♀, Valencia (sin recolector); en las colecciones de Hoffmann del Museum National d'His-toire Naturelle, París; Institut für Bodenforschung, Viena; K. Daniel del Zoologische Sammlung des Bayerischen Staates, Munich y mía.

Longitud sin el rostro 2,92 mm; anchura máxima 1,46 mm. Protórax, longitud en la línea media 0,67 mm; anchura en el borde anterior 0,64 mm; id. máxima 0,85; id. e nla base 0,71 mm. Elíteros, longitud en la sutura 1,89 mm; anchura máxima 1,46.

Placa rostral con el borde anterior recto y el basal con una quilla en forma de arco, poco aparente a consecuencia de la gruesa puntuación que se sitúa en la parte superior de ella; asimismo en esta zona la placa presenta la superficie con una depresión en forma de arco.

Escrobas con los surcos antenales extendidos hacia la parte ventral del rostro, hasta la altura del borde inferior de los ojos; muy anchos en su confluencia con los pterígos y progresivamente estrechados hasta terminar en punta ;borde inferior de éstos en forma de quilla, unida al reborde del pterigio.

Prótorax con los lados redondeados en su parte central, y más estrechados en el borde anterior que en el basal; por encima poco convexos y con la puntuación uniforme, muy apretada y dando la impresión de ser algo granulosa.

Sin diferencias sexuales aparentes por encima. En la parte inferior la ♀ se diferencia del ♂, por tener el último segmento abdominal más aguzado y en general por ser todos los segmentos algo más abombados.

Especie de talla variable comprendida entre 2,50 y 3,64 mm; varía asimismo en las magnitudes del rostro y con el contorno de los elitros (fig. 16).

(3) En este ejemplar figura una etiqueta manuscrita por Hoffmann, como tipo de Desbrochersella segorbensis, que no llegó a describir.

(4) Este ejemplar posee una etiqueta con el nombre escueto de edetana K. Dan.; probablemente se trate de una nominación in litt.
Su área de dispersión es bastante amplia y la más septentrional del género. Se conoce de las provincias de Huesca, Teruel, Castellón y posiblemente se encuentre en el sur de Cataluña.

Afin a *pennata*, diferenciándose ambas del resto de las especies, por la peculiar estructura que presenta la pubescencia aplicada. Con *franzi* sólo parecido por ser recto el borde anterior de la placa rostral.

Desbrochersella penna (Faust) (1885)

Afin a *mediterranea*, por la estructura general del revestimiento aplicado. Difere de ella por el ápice de las escamas aplicadas terminado en tres puntas y en algunos casos cuatro, y por tener *penna* la placa rostral con el borde superior un poco más redondeado, el basal sin quilla y presentar en el centro de la superficie una ligera excavación irregular.

Especie variable tanto por su talla, que oscila entre 3,03 y 4 mm, como por el contorno de los elitros y dimensiones de la placa rostral.

Se conoce de Argelia: Ami-Moussa y Oued-Riau (Abbeille de Perrin), localidades citadas en las descripciones de *Mylacus pennatus* y *Sciaphilus pruinosus* respectivamente y he consultado varios ejemplares de Oued-Riau (Vauloger).

Desbrochersella vauloger (Pic) (1896)

A colocar en la inmediata vecindad de *penna*, por no presentar la placa rostral quilla alguna; asimismo por poseer las escrobas de parecida conformación, si bien en *vauloger* (Pic) el surco antenal es más largo y estrecho. Su revestimiento posee la pubescencia erecta igual a la de *mediterranea*, fina, larga y de similar disposición.

Existe otra especie que ostenta el mismo nombre, descrita por Desbrochers en 1906 como *Platyptarsus*; Formanek en 1905 la incluye dentro del cuadro de Omiás; posteriormente Reitter en 1906 la coloca en el de Desbrochersella; en el catálogo Winkler figura en este género

a la vez que en *Brachysomus* y por último *Loma* en el catálogo *Junk* la sitúa en *Omias*.

Hoffmann en la descripción de *D. maroccana*, indica en nota marginal sobre *vaulogeri* Desbr. (después de comentar su doble situación en el catálogo *Winkler*) que parece estar bien colocada en el género *Desbrochersella*; por lo que se desprende de esta nota, posiblemente **Hoffmann** no tuvo a la vista la especie.

Después de numerosas gestiones a fin de localizar el tipo de *Desbrochers*, sin haberlo conseguido, ignore si se trata de una especie válida o si en realidad pertenece a *Desbrochersella* (6); por el momento doy prioridad a la de *Pic*, cuya descripción apareció el 15-IX-1896, publicada en *Miscelánea Entomológica*, vol. IV, n.º 7 y fechada el 15-VI-1896; mientras que la de *Desbrochers*, figura en el n.º 12 del vol. V de *Le Frelon*, posiblemente aparecido en el último mes de 1896 o en los primeros de 1897.

Es curioso señalar que la localidad que se cita en la descripción de *vaulogeri* Desbr., Argelia, Oned-Riau, es la misma que posee el *Sciaphilus pruinosis* Desbr. En la actualidad sólo he podido examinar el tipo de *vaulogeri* (Pic) de Túnez, Sfax (VAULOGERI (7). El catálogo *Junk* la señala también de Argelia, supongo a consecuencia de la confusión reinante (8).

Desbrochersella insulana n. sp.

Holotipo, ♀, Yermasoya-River, Chipre, 1-1950 (MAUROMOUSTAKIS); en mi colección. Paratipo: 1 ejemplar ♀, Mukawa, S. Jordania, 7-II-1969 (J. y S. KLAPPERICH); en mi colección.

Longitud sin el rostro 4,10 mm; anchura máxima 2 mm. Prótorax, longitud en la línea media 0,89 mm; anchura en el borde anterior 0,89 mm; id. máxima 1,14 mm; id. en la base 1 mm. Élitros, longitud en la sutura 2,71 mm; anchura máxima 2 mm.

Escobas con los pterigios la mitad visibles, vistos por encima; surcos antenales largos, terminados en la vecindad del borde inferior del rostro, moderadamente anchos y profundos.

Placa rostral muy transversa, de superficie plana y presentando en el borde basal un espacio más o menos triangular desprovisto de la pubescencia aplicada que ostenta el resto de la superficie.

(6) El autor no señala en la descripción la presencia de la característica placa rostral.

(7) **Normand** en su *Contribution au Catalogue des Coléoptères de la Tunisie* no la menciona.

(8) Posiblemente la especie de *Desbrochers* no sea sinónima, teniendo en cuenta su posición geográfica tan distante de la que posee la especie de *Pic*; en la actualidad ningún representante ostenta una área de dispersión tan extensa.
Élitros casi vez y media tan largos como anchos, subparalelos, aguzados en el ápice y con los ángulos humerales redondeados y algo salientes; aplanados por encima en el disco y con los puntos de las estrías contiguos y bien marcados; intervalos ligeramente convexos.

El ejemplar paratipo presenta alguna variación con respecto al tipo; su tamaño es inferior 3,39 mm de longitud y 1,57 de anchura máxima; las escamas aplicadas son de dimensiones más reducidas, mientras que la pubescencia erecta es algo más larga, fina y levantada; los élitros más convexos y su aspecto en general más grácil.

A pesar de las diferencias mencionadas y ser los dos ejemplares ♂♀, los refiero a la misma especie, por la posible variación que pueda presentar insulana; variabilidad muy similar a la de *baetica* y *mediterranea*.

Los caracteres de las antenas que cito en las tablas de separación están basados en las del paratipo, por tenerlas mutiladas el ejemplar tipo.

En la actualidad sólo conocida de Chipre y del sur de Jordania; siendo muy probable que su área geográfica sea mucho más extensa.

Por la estructura de la placa rostral, y por los artejos de las antenas de dimensiones parecidas recuerda a *vaulogeri*, si bien en *insulana* los artejos son algo más alargados. Se separan principalmente por la conmoción de los ángulos humerales y por la estructura y disposición de la pubescencia levantada.

Desbrochersella championi n. sp.

Desbrochersella championi Hoffm. (in litt.).

Holotipo, ♂, Palermo, Sicilia (CHAMPION); en la colección de HOFFMANN del Museum National d'Histoire Naturales, París.

Longitud sin el rostro 4,03 mm; anchura máxima 1,82 mm. Protórax, longitud en su línea media 0,82 mm; anchura en el borde anterior 0,78 mm; anchura máxima 1,03 mm; anchura en la base 0,92 mm. Élitros, longitud en la línea media 2,60 mm; anchura máxima 1,82 mm.

Escrobas con los pterigios casi visibles en su totalidad, vistos por encima; surcos antenales alargados, pero sin alcanzar el borde inferior del rostro, más anchos en su confluencia con los pterigios que en el ápice; en esta zona se curvan ligeramente en dirección a los ojos; estos oblongos.

Rostro tan largo como ancho, delante de los ojos. Superficie de la placa rostral con la puntuación muy confusa y formando rugosidades aplanadas.

Élitros con los puntos de las estrías finos y bien marcados; intervalos muy anchos, en la base doble o más del doble tan anchos como el diámetro de los puntos de las estrías.

Sólo lo conozco de Sicilia, Palermo. El único ejemplar posee un
rótulo manuscrito por Hoffmann como tipo de *D. championi*, que no llegó a describir; mantengo el mismo nombre en homenaje a su descubridor.

Estrechamente emparentado con *hoffmanni* por la destacada placa rostral y por ser el tamaño y coloración de los tegumentos prácticamente iguales.

Desbrochersella hoffmanni n. sp.

Desbrochersella championi Hoff. (in litt.).

Holotipo,♂, Malta (CHAMPION); en la colección Hoffmann del Museum National d’Histoire Naturale, París.

Longitud sin el rostro 4,10 mm; anchura máxima 1,82 mm. Protórax, longitud en su línea media 0,85 mm; anchura en el borde anterior 0,78 mm; anchura máxima 1,07 mm; anchura en la base 0,89 mm. Elíteros, longitud en la sutura 2,60 mm; anchura máxima 1,82 mm.

Escobas con los pterigios algo menos de la mitad visibles por encima; surcos antenales muy largos, alcanzando el borde inferior del rostro, moderadamente profundos y más anchos en el ápice que en su confluencia con los pterigios; en la zona apical poseen los lados algo aquillados y con el superior casi alcanzando el borde inferior de los ojos; éstos redondos.

Rostro ligeramente más corto que ancho delante de los ojos. Superficie de la placa rostral con la puntuación muy fina, espaciada y uniforme.

Elíteros con los puntos de las estrías gruesos y profundos; intervalos estrechos, en la base casi tan anchos como el diámetro de los puntos de las estrías.

Sólo lo conozco de Malta. El único ejemplar posee un rótulo manuscrito por Hoffmann, como paratipo ♀ de *Desbrochersella championi*.

Dedicado al Dr. A. Hoffmann, uno de los especialistas que más ha contribuido al conocimiento de los curculiónidos paleárticos.

Su afinidad con *championi* es manifiesta, tanto por los caracteres mencionados en la descripción anterior, como en las tablas de separación; no obstante se separan principalmente por ser el rostro de *hoffmanni* algo más corto, por la estructura de las escobas, placa rostral, pubescencia dorsal, etc.

Desbrochersella reitteri (Stierl.) (1884)

Se separa de todos los representantes del género, principalmente por la estructura del rostro (fig. 19) y por tener las uñas libres. Su afinidad
con todos ellos se establece por la presencia de la placa rostral; si bien de conformación bastante diferente.

Por el momento sigo el criterio de Reitter, por sólo haber podido examinar dos ejemplares ♀♀. El posterior estudio de un abundante
material, así como el examen del órgano copulador ♂, podrá resolver la posición actualmente dudosa.
Hasta la fecha sólo se conoce el tipo de Israel: Haifa (Reitter) y otro ejemplar con la misma localidad y recolector (Col. Reitter), ambos por mí examinados.

Tablas de separación

1. Placa rostral transversa o tan larga como ancha (figs. 2, 6, 8, 20, 21 y 22).
 Uñas soldadas desde la base hasta la zona media 2
 — Placa rostral (fig. 19) mucho más larga que ancha, estrechada hacia el borde anterior y de superficie irregular; en la zona central, algo hundida, de donde parte una quilla longitudinal hasta la base, ésta delimitada por un surco; desprovista de pubescencia. Rostró alargado y muy estrechado por encima en la zona media; superficie del mismo junto con la de la frente, con puntuación muy confusa y profunda, formando estriolas longitudinales, hasta el borde anterior de la placa rostral. Elíitos convexos, con los lados redondeados y presentando su máxima anchura en el medio, progresivamente estrechados después hacia el ápice, éste algo aguzado; de superficie uniforme, lisa, salvo la sutura en la zona del escudete, donde se elevan ligeramente. Escudete visible. Pubescencia de la parte dorsal de los élitros (fig. 18) simple, compuesta por pelos muy largos y finos, aplicados, pero algo levantados y curvados, muy espaciados y de disposición bastante ordenada, aunque más numerosos y apretados en los lados; todos ellos con ligeros destellos metálicos. Tegumentos castaño rojizos. Uñas libres desde la base

2. Antenas cortas (figs. 13 y 15), gruesas y con los tres últimos artejos del funículo transversos 3
 — Antenas largas (figs. 4, 7, 9, 10, 11 y 24), delgadas y con todos los artejos del funículo más largos que anchos, o en algunos casos parte de ellos tan largos como anchos 4

3. Placa rostral, presentando en su borde basal una quilla en forma de arco, alcanzando casi la zona media. Pubescencia doble de la parte superior de los élitros, piliforme. Protórax transverso 4
 — Placa rostral desprovista de quilla. Pubescencia doble de la parte superior de los élitros (fig. 92), compuesta por pequeñas escamas aplicadas, lanceoladas, de coloración dorado-verdosa, más o menos metálica; y por otras semi-levantadas, arqueadas y de grosor uniforme, dispuestas a lo largo de los intervalos algo desordenadamente. Protórax convexo, casi tan largo como ancho, puntuación de la parte superior fina, uniforme y densa. Élitros convexos y de lados regularmente ovales, casi un tercio más anchos. Tegumentos muy oscurceados D. maroccanum Hoffm.

4. Pubescencia doble de la parte superior de los élitros (fig. 37), formada por pelos muy largos y finos, erectos y por otros mucho más numerosos, casi del mismo grosor, semi-acostados y de longitud variable, pero sin alcanzar nunca la de los primeros; todo el revestimiento de disposición desordenada. Protórax con los lados bruscamente redondeados en la zona media y estrangulados en los bordes anterior y posterior, éstos casi de anchura igual; puntuación de la parte superior desigual, muy fuerte y granulosa. Élitros (fig. 12) oval alargados, con la máxima anchura casi detrás de la parte media, doble más anchos que el protórax; puntos de las estrías fuertes; intervalos lisos. Tegumentos negro brillantes, patas y antenas rojizas. Órgano copulador fig. 48 D. cebosi n. sp.
— Pubescencia doble de la parte superior de los élitros (fig. 36), formada por pelos semi-levantados y algo arqueados, de disposición uniforme; y por otros aplicados, algo engrosados en la base de longitud igual o inferior a la mitad de la de los primeros y de coloración dorado verdosa algo metálica. Protórax con los lados fuertemente arqueados desde la base y estrangulados detrás del borde anterior, éste de anchura inferior a la de la base; puntuación de la parte superior bastante uniforme, contigua y algo rugosa. Élitros (fig. 14) cortos, casi paralelos; vez y media tan anchos como el protórax; puntos de las estrías muy aparentes pero de poca profundidad; intervalos con una serie de gránulos pequeños y poco aparentes. Tegumentos rojizos de intensidad variable. Órgano copulador fig. 42 ...

... ...

D. castiliana (K. Daniel)

5. Escamas aplicadas de la pubescencia dorsal de los élitros bifidas o trífidas ...

— Escamas aplicadas de la pubescencia dorsal de los élitros de formas diversas, sin presentar nunca la estructura de las anteriores ...

6. Placa rostral, con el borde superior redondeado o mal limitado con el resto del rostro. Élitros cortos y con el declive apical atenuado; de lados muy redondeados algo aguzados en el ápice. Pubescencia de la parte dorsal de los élitros (fig. 39), terminada en tres puntas, en algunos casos, entre éstas aparecen en diferentes zonas algunas con cuatro puntas, pero poco apreciables. Órgano copulador (fig. 43) ...

— Placa rostral con el borde superior recto y bien diferenciado del resto del rostro. Élitros alargados y con el declive apical bruso; de lados subparalelos o de convexidad moderada, y anchamente redondeados en el ápice, en algunos casos algo aguzados, correspondiendo entonces a las formas de élitros más paralelos. Pubescencia de la parte dorsal de los élitros (fig. 38), terminada en dos puntas. Órgano copulador fig. 44 ...

7. Rostro alargado, tan largo o casi tan largo como ancho delante de los ojos; moderadamente estrechado por encima hacia la placa rostral, ésta muy destacada del resto del rostro, por ser de coloración más clara; de superficie plana. Tegumentos rojizo amarillentos, y con las patas y antenas de la misma coloración que el resto del cuerpo ...

— Rostro muy corto, transverso y siempre de longitud inferior a su anchura delante de los ojos; muy rápidamente estrechado por encima hacia la placa rostral, ésta comparativamente poco destacada del resto del rostro, por ser casi de la misma coloración; en algunos casos presentando su superficie, quillas, surcos o señales de éstos, así como pubescencia o puntuación gruesa. Tegumentos oscurecidos, patas y antenas siempre de tonos más claros ...

8. Placa rostral poco transversa (fig. 6), y con el borde superior anguloso. Pubescencia doble de la parte superior de los élitros (fig. 33), compuesta por pequeñas escamas ovales, de dimensiones bastante uniformes y aplicadas, algo verdosas y con un ligero matiz metálico; y por otras ordenadamente dispuestas a lo largo de los intervalos, colocándose en algunas zonas en dos hileras, todas ellas largas, erectas y algo más grusas en el ápice. Antenas alargadas (fig. 7), con los cinco últimos artículos del funículo, más largos que anchos. Protibias curvadas hacia dentro en el ápice. Superficie del protórax rugosa y con la puntuación profunda y algo apretada. Élitros (fig. 5) con la superficie muy convexa, de lados regularmente arqueados y muy aguzados en el ápice. Órgano copulador fig. 45 ...

— Placa rostral muy transversa (fig. 8), y con el borde superior débilmente arqueado. Pubescencia de la parte superior de los élitros (fig. 34), simple, formada por escamas aplicadas, de grosor muy variable, hasta llegar algunas de ellas a ser piliformes, de coloración más o menos verdosa y ligeramente metálica. Antenas cortas (fig. 9), con los artículos 3,º, 5,º, 6,º y 7,º del funículo, casi tan largos como anchos. Protibias rectas. Superficie del
protórax poco rugosa y con los puntos muy separados. Elíitros aplanados, de lados subparalelos y moderadamente redondeados en el ápice. Organo copulador fig. 47 D. hoffmanni n. sp.

9. Placa rostral muy transversa, doble o casi doble más ancha que larga (fig. 22), con los lados regularmente arqueados hasta la base; provista por encima de una serie de escamas aplicadas de dimensiones algo inferiores a las del resto del cuerpo y dispuestas en forma de arco 10
— Placa rostral poco transversa, de anchura, como máximo, vez y media superior a su longitud (figs. 2 y 20), de lados poco redondeados y con los ángulos anteriores casi rectos; desprovista por encima de escamas 11

10. Pubescencia doble de la parte dorsal del cuerpo (fig. 28), formada por pelos muy finos, largos y casi rectos, colocados sobre el rostro, cabeza, protórax y elitros; en estos últimos muy numerosos, algo más largos y dispuestos desordenadamente a lo largo de los intervalos; y por escamas, anchas y espátuliformes, todas ellas de dimensiones uniformes tanto las del rostro y cabeza como la de los elitros; en general de coloración blanquecina; sobre el protórax se disponen las de tono más claro en tres bandas longitudinales, dos laterales y una central; en los elitros las claras se concentran también en los lados y zona de escudete y en el resto de la superficie formando pequeñas manchas. Antenas (fig. 10) comparativamente cortas, con el 2.° artejo del funículo de longitud igual a la del 3.°, y con el escapo sobrepasando escasamente el borde posterior de los ojos. Protórax con la superficie uniforme y de lados poco redondeados, casi rectos. Elíitros con los ángulos humerales no salientes. Organo copulador fig. 46 D. vaulogeri (Pic)
— Pubescencia doble de la parte dorsal del cuerpo (fig. 30), formada por escamas, gruesas, semi levantadas y algo curvadas, dispuestas sólo sobre los elitros y colocadas ordenadamente en una sola línea a lo largo de los intervalos; y por escamas aplicadas, anchas y de dimensiones algo variables, sólo colocadas sobre los elitros; en el protórax y cabeza éstas se mezclan con otras también aplicadas, de longitud similar pero muy delgadas, casi piliformes; todas ellas de coloración más o menos amarillenta; en los elitros, las de tono más claro se agrupan a lo largo de los lados y sutura, resaltando sobre todo las de la zona humeral y del escudete. Antenas comparativamente largas, con el 2.° artejo casi doble más largo que el 3.° y con el escapo sobresaliendo casi en un tercio el borde de los ojos. Protórax con la superficie provista de un débil surco transversal detrás del borde anterior y con los lados redondeados en la parte media y bruscamente estrechados hacia el borde anterior y posterior. Elíitros con los ángulos humerales redondeados y algo salientes D. insulana n. sp.

11. Pubescencia de la parte dorsal del cuerpo doble (figs. 23, 25, 26, 27, 29 y 35), formada por escamas aplicadas y por otras más o menos levantadas, pero siempre de longitud superior a las primeras 12
— Pubescencia de la parte dorsal del cuerpo simple (fig. 31), formada por escamas muy pequeñas aplicadas, aguzadas en la base y ancha mente redondeadas en el ápice; éstas, vistas de perfil, se levantan ligeramente en la región apical de los elitros. Placa rostral con la superficie lisa, punteada y desprovista de quilla o excavación alguna. Protórax algo transverso; de superficie regular, convexa y con la puntuación uniforme y apretada; de lados redondeados en la zona central y algo estrechados hacia los bordes posterior y anterior. Elíitros muy convexos y con los lados redondeados de forma regular, desde la zona media hacia el ápice, éste moderadamente aguzado D. tingitana n. sp.

12. Placa rostral (fig. 20) corta, poco estrechada hacia el borde anterior, éste de anchura algo inferior a la del borde basal entre las escobas. Pubescencia levantada de la parte dorsal del cuerpo (figs. 23, 29 y 35) siempre de grosor
superior a la que forma el revestimiento aplicado. Elítritos poco convexos por encima y de lados subparalelos ...

— Placa rostral rápidamente estrechada hacia el borde anterior, éste de anchura casi igual a la mitad del borde basal, entre las escrobas; con la superficie muy cóncava por encima, elevada lateralmente y con una quilla en la base en forma de arco extendida hasta casi la zona media. Revestimiento de la parte dorsal del cuerpo (fig. 25, 26 y 27) con la pubescencia levantada, piliforme, algo curvada y dispuesta en dos hileras a lo largo de los intervalos; de grosor variable pero siempre inferior a las escamas aplicadas; éstas aún más variables, desde casi espatuliformes a semi-piliformes, en este caso coincidiendo con la pubescencia erecta extraordinariamente fina; todo el revestimiento aplicado de coloración variable, blanquecino, rojizo o verdoso, en algunos casos bastante metálica y sin formar dibujo concreto. Elítritos muy convexos por encima y con los lados redondeados (fig. 1), y regularmente estrechados a partir de la zona media hacia el ápice, éste algo aguzado. Órgano copulador fig. 40 ...

D. baetica (Schauf.)

13. Revestimiento de la parte dorsal del cuerpo, con la pubescencia aplicada piliforme (figs. 29 y 25) ...

— Revestimiento de la parte dorsal del cuerpo, con la pubescencia aplicada muy gruesa, espatuliforme (fig. 29). Placa rostral con los ángulos anteriores casi rectos; en el borde basal presenta una quilla aguda semi-circular que alcanza la zona media, limitada ésta por una excavación de superficie punteada. Protórax con los lados estrangulados detrás del borde anterior y con la máxima anchura delante de la parte media, a partir de donde se estrechan regularmente hasta el borde basal; puntuación de la superficie uniforme, y profunda y algo separada. Elítritos con los lados casi paralelos y estrechados a partir del 2.º tercio y algo redondeados en el ápice. Pubescencia formada por escamas aplicadas grandes, anchas y ligeramente curvadas, dando la impresión de estar algo levantadas, todas ellas de coloración blanquecino más o menos oscura, entremezclándose sin formar dibujo concreto, salvo en la región humeral en donde se sitúa una franja longitudinal corta, de escamas casi blancas, las de tonalidad más oscura poseen un ligero matiz metálico; y por otras semi-levantadas, curvadas, espatuliformes y de anchura en algunos casos, más del doble que las aplicadas, de disposición ordenada a lo largo de los intervalos ...

D. franzi n. sp.

14. Placa rostral con el borde anterior redondeado y con la superficie algo irregular; en el centro de ésta se sitúa una leve depresión y hacia los bordes anterior y posterior la superficie se abomba ligeramente. Pubescencia doble del dorso (fig. 35), formada por escamas piliformes largas y aplicadas, con su mayor grosor hacia la base, de coloración verdosa y algo rojiza, ambos tomados metálicos; y por otras largas y gruesas, semi-levantadas, dispuestas ordenadas y espaciadamente a lo largo de los intervalos, de coloración blanquecina. Protórax (fig. 17) con los lados redondeados en la parte media, de donde posee su máxima anchura y estrechados hacia ambos bordes; por encima sin depresión alguna y con la puntuación uniforme, apretada y comparativamente poco profunda. Elítritos casi paralelos y estrangulados hacia el ápice a partir del segundo tercio. Tegumentos negros ...

D. cinerascens (Rosenh.)

— Placa rostral (fig. 20) con el borde anterior recto, y con el borde provisto de un saliente triangular que alcanza la parte central, alrededor del que se sitúa una depresión de superficie lisa y brillante. Pubescencia doble del dorso (fig. 23) formada por escamas piliformes aplicadas, muy pequeñas y finas; de color blanquecino más o menos verdoso y de reflejo metálico, pero de difícil observación dado su exiguo tamaño; y por otras largas, erectas y algo curvadas, ligeramente más gruesas en la zona apical; dispuestas a lo largo de los intervalos en forma ordenada. Protórax con la máxima anchura en el primer tercio y con los lados estrangulados detrás del borde anterior, y a partir de esta zona estrechados de forma progresiva y regular hacia el borde posterior; con una depresión transversal por encima conoci-
diendo con la estrangulación de los lados; de superficie algo rugosa-granulosa y con la puntuación profunda y apretada. Élitros con los lados subparalelos y estrechados casi a partir del primer tercio. tegumentos rojizos, con la zona de la sutura y ápice de los élitros de coloración más clara ...

... D, barbárica n. sp.

Laboratorio de Zoología (1)
Facultad de Ciencias
Universidad de Barcelona

RESUMEN

Ante la confusión actual que nos ofrece el género Desbrochersella, he creído útil dar una nueva visión de conjunto de sus representantes. Desde 1906 su cuadro específico estaba formado por baetica (Schauf.), castiliana (K. Daniel), pennata (Faust), reitteri (Stierl.) y vauiogeri (Pic), y en 1964 Hoffmann lo incrementó con la descripción de maroccana; si nuestra aportación a partir de esta fecha.

La conformación del rostro y cabeza son los caracteres principales que lo definen, por éstos y por la estructura del órgano copulador, se acerca al género Omias, del que se separa principalmente por la presencia en el ápice del rostro de un espacio diferenciado del resto de la superficie a modo de placa.

El examen de diverso material procedente de diferentes centros científicos, me ha permitido dar a conocer 8 nuevos representantes (barbárica, cobosi, championi, franzi, hoffmanni, insulana, mediterránea y tingitana) y asimismo incluir en su cuadro específico cinerasens (Rosenh.), descrito como Omias y colocado hasta la fecha dentro de los Barypithes.

Su área de distribución es mediterránea; se extiende desde el sur de la provincia de Huesca en la península Ibérica, hasta las costas del Norte de África, coloniza éstas desde Tánger y alcanza como zona más oriental Israel y Jordania; presente también en Sicilia, Malta y Chipre.

(1) Este trabajo se ha beneficiado de la ayuda concedida a la Cátedra de Zoología (invertebrados) con cargo al crédito destinado al fomento de la investigación en la Universidad.
Distribución del género DESBROCHERSELLA Reitter.

- **D. mediterranea** n.sp.
- **D. cinerascens** (Rosenh.)
- **D. cobosi** n.sp.
- **D. pennata** (Faust.)
- **D. hoffmani** n.sp.
- **D. baetica** (Schauf.)
- **D. tingitana** n.sp.
- **D. barbarica** n.sp.
- **D. vaulogeri** (Pic.)
- **D. insulana** n.sp.
- **D. franzi** n.sp.
- **D. castiliana** (K. Daniel)
- **D. maroccana** Hoffm.
- **D. championi** n.sp.
- **D. reitteri** (Stierl.)
RÉSUMÉ

En raison de la confusion actuelle dans le genre Desbrochersella j'ai cru utile de donner une nouvelle vision d'ensemble de ses représentants. Depuis 1906 le tableau spécifique était constitué par: bactica (Schauf.), castiliana (K. Daniel), pennata (Faust), reitteri (Stierl.) y valugeri (Pic.), Hoffmann y ajoutant en 1954 la description de maroccana. Aucune autre apportation n'est faite à partir de cette date.

La forme du rostre et de la tête sont les principaux caractères que déterminent ce genre; ceux de la structure de l'organe copulateur le rapprochent du genre Omius, dont s'en écarte, cependant, surtout par la présence chez l'apex du rostre d'un espace différencié, façonné comme une plaque, du reste de la surface.

L'examen de bien de matériel procédant de différents centres scientifiques m'a permis de pouvoir faire connaître 8 nouvelles espèces (barbarica, cobosi, championi, franzsi, hoffmanni, insulana, mediterranea y tingitana) ainsi que d'inclure cineraeos (Rosenh.) dans le tableau spécifique de ce genre, cette dernière espèce étant décrite comme Omius, mais actuellement faisant partie du genre Barypithes.

L'aire de distribution des Desbrochersella est méditerranéenne. A présent bien constatée dès le sud de la province de Huesca (en Espagne) jusqu'à les côtes nordafricaines. Dans celles-ci s'étand de Tanger vers Israël et Jordanie. Les îles de Sicile, Malte et Chypre ont-elles aussi des représentants.

BIBLIOGRAFÍA

Desbrochers des Loges, J. — 1874-75. Opuscules Entomologiques (Coléoptères), premier Cahier.
— 1905-96. Espèces inédites de Curculionides (VI), vols. 5-6 págs. 176-177.

Sobre la presencia del género *Acanthochiton* (Mol. Poliplacophora) en las costas de la isla de Ibiza (Baleares)

por

FRANCISCO CASTELLÓ

Durante el mes de agosto de 1969 se realizó un estudio de la fauna de moluscos Poliplacóforos existentes en la isla de Ibiza (únicamente de las formas que ordinariamente viven en superficie o a pequeña profundidad). Fueron estudiados distintos puntos de todo el perímetro costero isleño; y de esta recolección damos una pequeña noticia, ocupándonos en este caso únicamente de la presencia del género *Acanthochiton*.

Pudimos localizar ejemplares pertenecientes a este género en tres puntos distintos del litoral de la isla:

a) *Playa de Talamanca*. Playa situada a unos 3 km de la capital de la isla. Playa arenosa en casi toda su extensión, bastante abierta a los vientos y mareas, y con grandes depósitos de fanerógamas marnas. En la región situada más al norte, el fondo es rocoso, y en ella abundan las algas pardas, moluscos del género *Patella* algunos erizos, estrellas del género *Pentagonaster* de reducido tamaño, etc. En esta zona (denomina da de «Ses Figueres») localizamos dos formas distintas del género *Acanthochiton*. La abundancia del citado género en esta región es realmente escasa; sólo dos ejemplares pudimos recolectar, pegados a las piedras del fondo y a una profundidad no superior a los 40 cm.

b) *Cala Grassio*. Pequeña cala de fondo arenoso, con abundantes piedras a los lados, situada al NW de la isla, a unos 2 km de la villa de San Antonio. Gran variación de fauna acompañante, entre la que
citamos la presencia de abundantes anémonas, *Ceratium*, *Patella*, erizos de mar y quisquillas; entre la flora destacamos la presencia de algas pardas, *Padina pavonia*, *Dictyota dicotoma*, *Caulerpa*, *Ulva*, etc. Ésta es una de las playas más ricas en Poliplacóforos que localizamos en Ibiza. Pudimos recolectar unas dos docenas de ejemplares, con un tamaño que oscila desde los 6 a los 20 mm de longitud. Todos pertenecen a la misma especie y sólo encontramos una pequeña anomalía en uno de los ejemplares, completamente rojo púrpura. Todos los individuos fueron capturados a una profundidad entre los 40 y los 80 cm y siempre pegados en la cara inferior de las piedras del fondo.

c) *Port de Sant Miquel.* Sólo pudimos localizar un ejemplar del género *Acanthochiton* en esta playa, situada al Norte de la isla de Ibiza y de aguas extremadamente limpias y tranquilas. Igual que en los casos anteriores el ejemplar encontrado estaba pegado a las rocas del fondo.

Todos los ejemplares fueron fijados en alcohol de 65°, previa una breve inmersión en agua de mar en la cual se había añadido una pequeña cantidad de barbiturato sódico para lograr una buena relajación y evitar que, al ser introducidos en el alcohol, los ejemplares se enrollaran y dificultaran en extremo su posterior análisis.

De lo citado se desprende que en las costas de Ibiza sólo nos ha sido posible encontrar dos formas distintas pertenecientes al género objeto de nuestro estudio en la presente comunicación: *Acanthochiton communis* (Risso, 1826) (*). De estas dos formas citadas, una se encontraba con relativa facilidad; de la segunda forma sólo hemos podido capturar un único ejemplar.

Descripción de la primera forma

El individuo de talla media que se ha tomado como tipo corresponde a un ejemplar bien conservado, completamente estirado, con una longitud de 15 mm, una anchura máxima de 8 mm y una altura de 4 mm de forma ovalada, algo más fino en la región cefálica. La coloración es pardo-verdosa en la cara superior de la cintura y algo más oscuras las placas. La cintura es ancha y recubriendo en parte a las placas; dicha cintura está recubierta por completo de espinas. (Foto n.º 1.)

(*) Sinonimias:

Chiton discrepans Brown, 1827.
Chiton fascicularis var. *major* Philippi, 1836.
Acanthochites discrepans Brown, 1879.
Acanthochiton discrepans Brown, 1892.
Figs. 1 a 9. — *Acanthochiton communis* (Risso, 1826). 1, forma de las espinas de la cara inferior de la cintura. — 2, forma de las espinas de la cara marginal de la cintura. — 3, forma de las espinas que constituyen los pinceles característicos del género. — 4, distribución de los mismos en el animal. — 5, esquema de la cara superior de la placa oral y cara inferior de la misma. — 6, esquema de una placa intermedia con el detalle de las granulaciones que la recubren dorsalmente y cara inferior de la misma. — 7, aspectos dorsal e inferior de la placa anal. — 8, esquema del tegumentum en la forma tipo. — 9, id. en la forma *barashi*.
Cintura: Ancha y carnosa, de color pardo claro y con numerosas manchas indefinidas de color verde-marrón oscuro. Por la cara inferior es de coloración pardo-clara uniforme, casi blanca. Está completamente recubierta de espinas cortas, transparentes y de punta roma. Su tamaño es prácticamente uniforme en toda la zona (fig. I A).

En la cara superior la forma de las espinas es bastante variada. En la región del borde las espinas son largas (alrededor del medio milímetro), unas muy finas y otras algo más gruesas, que vistas al microscopio, a unos 200 aumentos, dan la impresión de estar transversalmente estriadas. Toda la cintura se encuentra recubierta de espinas muy parecidas a las de la cara inferior y sembrada aquí y allá de espinas largas parecidas a las marginales (fig. 2 A).

Por último, encontramos sobre la cintura unos «pinceles» de espinas muy largas (más de un milímetro), distribuidos en 18 grupos, situados dos a cada lado a nivel de las inserciones de las placas, y cuatro de estos «pinceles» rodeando a la placa oral. Estas espinas son finas, lisas y transparentes (fig. 3 A).

Aparato respiratorio: Es del tipo merobranquito-abanal (foto n.° 2). Los cteníados que forman las branquias están distribuidos en dos hileras, que se inician a nivel de la cuarta placa y acaban en las proximidades de la séptima, sin rodear al ano.

Placas: Son bastante curvadas, con el tegumentum de color pardo claro con manchas más oscuras distribuidas uniformemente y que en general son más abundantes en las placas quinta y sexta, más condensadas en las zonas anterior y laterales de cada placa.

La primera placa, o placa oral, es de forma semicircular, con el articulamentum sobresaliendo por debajo del tegumentum, determinando una lámina de inserción con cinco fisuras, que en la cara inferior se traducen en cinco estrías muy tenues (fig. B-I).

Las placas intermedias, de forma en general rectangular o cuadrangular, tienen el tegumentum más ancho que largo, con las áreas latero-pleurales recubiertas de diminutas granulaciones de forma circular. El área dorsal —jugum— tiene forma de triángulo, con la base ocupando todo el seno que determinan las dos láminas suturales que forma el articulamentum. Dicha área, en lugar de granulaciones, está recubierto de finas estrías longitudinales. Por la cara inferior el articulamentum, de color azul pálido, forma en la parte delantera de la placa dos láminas suturales anchas y redondeadas y está divido en tres regiones por dos inflexiones laterales que se inicián en dos suturas que existen en los márgenes (fig. B-II).

La placa octava o anal tiene el tegumentum prácticamente circular, con el área dorsal o jugum también triangular y estriado pero con el vértice situado en el mucro, el cual ocupa la posición central de la placa y está muy bien definido. El jugum es prácticamente de color claro.

Foto 2. — Vista ventral, con detalle de las branquias.

Foto 3. — Placas oral, intermedia y anal, vistas por su cara superior.

Foto 4. — Placas oral, intermedia y anal, vistas por su cara interna.
FOTO 5. — *A. communis f. barashi.* Vista dorsal.

FOTO 6. — Placas oral, intermedia y anal, vistas por su cara superior.

FOTO 7. — Placas oral, intermedia y anal, vistas por la cara interna.
El articulamentum origina dos láminas suturales delanteras interrumpidas por el seno jugal por la parte delantera, mientras que por la parte posterior de la placa sobresale por debajo del tegmentum, originando una lámina sutil prácamente circular, interrumpida por dos fisuras latero-posteriores (fig. B-III) (Fotos 3 y 4).

Descripción de la segunda forma

De los dos ejemplares recolectados en Talamanca, uno de ellos pertenece al grupo descrito anteriormente. El otro presenta una serie de diferencias anatómicas que vamos a reseñar (fotos 5, 6 y 7).

Ya externamente, al comparar este ejemplar con otro del grupo primero, se nota una serie de diferencias en el aspecto. La facies general del presente individuo es bastante más rechoncha, más alta, con la cintura es más gruesa y sobre todo difiere en la coloración general, que en el individuo en cuestión es de una tonalidad pardo-naranja en la cintura y de un marrón más luminoso las placas, sobre todo la tercera y cuarta. Las espinas que recubren la cintura, tanto en la cara inferior como en la superior, son idénticas a las del grupo anterior, así como la forma general de las placas. La única diferencia verdaderamente notable que hemos encontrado ha sido una ligera variación en cuanto a la forma del tegmentum de las placas intermedias al compararlas con las del grupo antes descrito. Si en los individuos precedentes la forma del tegmentum tiende a ser circular en su zona anterior, en el individuo de Talamanca se nota, en las placas intermedias, una pronunciada tendencia al retroceso, originando en la zona próxima a las láminas suturales dos marcadas inflexiones hacia atrás (fig. C).

Esta ligera diferencia entre las dos formas, que no sabíamos sí era debida únicamente a efectos locales o bien teníamos delante dos formas realmente distintas del mismo género (dudas ocasionadas al no contar más que con un único ejemplar) ha quedado prácticamente definida al poder consultar un trabajo realizado por Mn. Leloup (Bruselas) en octubre de 1969 y en el cual describe perfectamente dos especímenes de la región de Akhiv, al norte de Haifa, cerca de la frontera de Israel con el Líbano. Consultadas sus notas, vemos que el ejemplar descrito por Leloup coincide por completo con el de Talamanca. En su breve nota llama a esta forma, forma barashi en honor al profesor Al Barashi de la Universidad de Tel Aviv.

En consecuencia nos es grato coincidir con las apreciaciones de E. Leloup, ratificando su descripción y dar nota de la existencia también en las costas de la isla de Ibiza del Acanthochiton communis (Risso, 1826) f. Barashi.

El individuo capturado en la playa de Talamanca, a una profun-
didad de unos 25 cm media 20 mm de longitud, 15 mm de anchura y 6 mm de altura máxima.

Resumen y conclusiones

En la presente nota se pone de manifiesto la presencia en las costas de Ibiza de la existencia de dos formas de Molusco Poliplacóforo pertenecientes al género *Acanthochiton*. La forma tipo de la especie *Acanthochiton communis* (Risso, 1826), bastante abundante y la rara presencia (un solo ejemplar) de *Acanthochiton communis f. barashi*, hasta ahora citado únicamente en las costas de Israel por E. Leloup.

Ponemos de manifiesto también que los individuos pertenecientes a este género sólo se han encontrado adheridos a las piedras sumergidas en el agua y nunca pegados a las rocas y a nivel o por fuera del agua, como ocurre con otros géneros.

SUMMARY

In this note the forms of Poliplacophora presents at the Ibiza Island coast are studied.

We found that only two different forms are existents, the *Acanthochiton communis* (Risso, 1826), and the *Acanthochiton communis f. barashi*.

BIBLIOGRAFÍA

(1) Este trabajo se ha beneficiado de la ayuda concedida a la Cátedra de Zoología (invertebrados) con cargo al crédito destinado al fomento de la investigación en la Universidad.
Contribución al estudio de los Opiliones de la Fauna Ibérica

La especie *Cosmobunus granarius* (Lucas 1847) en la Península Ibérica y Norte de África.

por

MARÍA RAMBLA

Introducción

Hace más de un siglo que Lucas 1847, nos dio a conocer la especie *granarius* procedente de Argelia, la cual situó en el género *Phalangium*. Más tarde Simon 1879, la separa de *Phalangium*, creando para ella el nuevo género *Cosmobunus*, que sitúa muy próximo a *Leiobunum*, ambos aún, dentro de la subfamilia *Phalangiinae*.

Fue Roewer 1910, quien sitúa este género en la subfamilia *Leptobuninae* Banks 1894, la cual consta de ocho géneros, casi todos ellos de Norteamérica, siendo *Cosmobunus* el único que habita nuestra Península y el Norte de África. La especie *granarius* ha sido citada posteriormente por varios autores, de Marruecos, mediodía de España y sur de Portugal.

Roewer 1910, 1923 y 1957, añade al género tres nuevas especies: *unicolor, unijasciatus* y *americanus* respectivamente. Esta última procede de Guatemala y las dos primeras de España. Estas dos especies fueron descritas cada una de ellas, con un solo ejemplar hembra. Sabemos que *unijasciatus* fue hallado en la provincia de Granada, sin más detalles; de *unicolor* se desconoce incluso la localidad.

Nos ha llamado poderosamente la atención que a pesar de las numerosas prospecciones realizadas a lo largo de la Península Ibérica, no hemos conseguido hallar ni un solo ejemplar de estas dos especies, ni...
tampoco en la literatura han vuelto a aparecer nuevas citas, después de más de medio siglo transcurrido desde su descripción.

Dudando pues de su existencia, solicitamos revisar los tipos depositado en el Museo de Frankfurt, que nos fueron facilitados gracias a la amabilidad del Dr. Grasshoff, a quien nos complacemos en expresar aquí nuestro agradecimiento. Los datos climatológicos nos han sido facilitados por el Servicio Meteorológico del Pirineo Oriental, gracias a la amabilidad de D. Tomás Quevedo a quien agradecemos su interés. También agradecemos a varios espeleólogos españoles (cuyos nombres mencionaremos en la relación de localidades), la cesión de los ejemplares recogidos por ellos en innumerables simas y cuevas, que junto con el de nuestras propias recolecciones, nos han proporcionado material suficiente para ampliar el conocimiento de esta especie, no sólo en su aspecto morfológico, sino también en sus aspectos biológico, ecológico, etológico y biogeográfico.

De su morfología estudiaremos aquellos caracteres que mejor nos definan la especie y que han sido descuidados o mal interpretados en la literatura anterior, como son, coloración, relieves quitinosos, genitalia, etcétera, así como su grado de variabilidad.

Al estudiar su ciclo biológico, pretendemos poner en evidencia las modificaciones que ciertos caracteres usados en la sistemática, experimentan durante el desarrollo postembrionario, a la vez que analizaremos los factores ecológicos que condicionan la biología de esta especie y su área de expansión geográfica.

Material y técnicas utilizadas

Las prospecciones a lo largo de la Península Ibérica y Norte de África, nos han proporcionado muestras de 45 localidades diferentes con un total de 852 ejemplares. Con la totalidad de este material hemos confeccionado un mapa de su distribución geográfica y esbozado un estudio sobre la variabilidad de la especie.

Para seguir su ciclo biológico «in vivo» y su comportamiento, nos hemos servido exclusivamente de los ejemplares recolectados en la región catalana en la localidad de Viladecaballs, pues por tratarse de nuestra residencia habitual de veraneo, hemos podido realizar numerosas observaciones en los biotopos típicos de esta especie, sin necesidad de desplazarnos; y también porque al hallarse situada a pocos kilómetros de Barcelona, hemos podido efectuar fácilmente recolecciones periódicas a medida que lo exigían las necesidades de material para experimentar en el laboratorio.

Esta localidad está situada en el Vallés oriental, al este de Olesa de Montserrat y a una altura de 274 m sobre el nivel del mar. El terreno
es de conglomerados terciarios del Vallesense, constituido por cantos cementados por arcillas y arenas. En esta zona alternan las tierras de cultivo con los bosques de *Pinus halepensis* invadidos en parte por *Quercus ilex*.

Los datos climatológicos han sido tomados de las cinco estaciones meteorológicas de mayor proximidad a la zona en cuestión: Tarrasa, Sabadell, Esparraguera, Collbató y La Puda. Dado que la zona de Viladecaballs está situada aproximadamente en el centro de la región ocupada por los cinco observatorios citados, creemos viable hacer una interpolaración de datos para obtener sus propios factores climatológicos, la cual nos da los siguientes valores aproximados:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatura media anual</td>
<td>14’ 5°C</td>
</tr>
<tr>
<td>Temperaturas medias de enero y agosto</td>
<td>5’ 8° y 22’ 3°C</td>
</tr>
<tr>
<td>Oscilación térmica anual</td>
<td>16’ 5°C</td>
</tr>
<tr>
<td>Precipitación anual en mm</td>
<td>630</td>
</tr>
</tbody>
</table>

Las temperaturas máximas y mínimas indican que esta comarca es de veranos calurosos e inviernos fríos. El grado de continentalidad y las oscilaciones de temperaturas son mayores que en la costa. El clima de esta zona de Viladecaballs es pues del tipo de «valle interior» según la clasificación de J. Wrobel para los climas de Cataluña.

El material recolectado procede de dos estaciones diferentes: la 1.ª es una pequeña cavidad artificial de 2 metros de altura por 4 m de profundidad aproximadamente, situada en un desnivel del terreno, en el borde de separación del bosque con las tierras de cultivo. Esta cavidad había servido antiguamente para refugio de labradores en caso de tormenta, pero posteriormente fue abandonada y con el paso del tiempo invadida por una comunidad biótica, rica en vegetales y animales, especialmente invertebrados, que ofrecían a la especie en cuestión un biotopo con un conjunto de factores ambientales, muy favorable a su desarrollo, como lo prueba el hecho de haber hallado durante varios años consecutivos gran cantidad de ejemplares.

Se tomaron las temperaturas en el interior de esta cavidad y obtuvimos como medias de enero y agosto 8,5° y 18’8°C, cuya diferencia aproximada con relación al exterior es de 3°C. La oscilación térmica anual es de 10’3°C, mientras la del exterior es de 16,5°C. Estos datos nos muestran que en esta pequeña cavidad, las fluctuaciones térmicas se dejan sentir indiscutiblemente, pero atenuadas con relación a la del exterior. Creemos que las condiciones son semejantes a las de la entrada de las cuevas, con caracteres intermedios entre el mundo exterior y la zona profunda de las grandes cavidades.

La 2.ª estación es una fuente situada en el ángulo formado por dos muros invadidos por complejo de hiedra arbórea (*Hedera helix*). Lugar éste muy sombrío y húmedo, en donde los ejemplares eran hallados de-
bajo las ramas de la hiedra, huyendo de la luz y buscando la humedad.

Estas dos estaciones han sido escogidas para nuestras experiencias \textit{in vivo}, por la sencilla razón de que, a pesar de tratarse de dos biotopos diferentes, la especie llevaba a cabo tanto en uno como en otro, su ciclo vital completo (puesta de los huevos, desarrollo y vida adulta).

Para seguir el ciclo \textit{in vitro} se recogieron hembras grávidas y se trasladaron en cajas de madera con una tapa provista de una rejilla metálica. Una vez en el laboratorio se aislaban en cristalizadores de 20 cm de diámetro por 10 cm de altura, cubiertos con una tapa de cristal. En el fondo del cristalizador se colocaba previamente un espesor de tierra de 1 cm, unas hojas de hiedra y un trozo de papel secante empapado de agua que mantenía la humedad. Se alimentaron con fragmentos de un isópodo (\textit{Porcelio scaber}) muy abundante en la región y pequeñas porciones de frutos, con lo que satisfacían sus necesidades hídricas. Las puestas fueron aisladas en cápsulas de petri y mantenidas en una habitación cuya temperatura osciló entre los 17° y los 23°.

Dificultades imprevistas surgidas en el transcurso de estas experiencias, nos impiden dar por el momento un resultado más satisfactorio del desarrollo \textit{in vitro}. En estas líneas daremos a conocer sólo algunos datos del trabajo proyectado, el cuál continuamos perfeccionando para ofrecerlo más completo en futuras publicaciones.

\textbf{Cosmobunus granarius (Lucas 1847)}

La descripción que sigue está hecha con un \(\sigma\) y una \(\varphi\) adultos, escogidos entre los individuos de máxima frecuencia de una muestra de 54 ejemplares de una población de la región catalana.

\textbf{Biblio.}:

♂. — Cuerpo = 7 mm. Quelíceros: artejo basal = 1.60 mm, artejo distal = 2 mm. Palpos: Tr = 0.53, Fe = 1.60, Pa = 0.75, Ti = 1, Ta = 1.78 mm. Fémures de las patas = 11, 17, 11.5 y 15 mm. Patas (long. total) = 45, 78, 46 y 60 mm.

Fig. 1. — Hileras coxales de *Cosmobunus granarius*.

Fig. 2. — Palpo y quelíceros derechos, vistos por su cara interna.
Cuerpo globuloso, tegumento dorsal y ventral muy granugiento. Prominencia ocular separada del borde frontal por algo más del doble de su longitud. Baja, pequeña y casi igual larga que ancha. Ojos rodeados por un círculo de 6 dientes. Láminas supraquelicerales, una con 5 y otra con 4 dientecitos. Opérculo genital a los lados, con una hilera de gibas y todos los esternitos con otra hilera transversal de estas mismas gibas. Zonas laterales de los esternitos fuertemente granujientas, zonas centrales lisas. Estas zonas granujientas, pueden dar la impresión de placas laterales separadas, como ocurre en los Sclerosomatinae, pero esta impresión es falsa, pues no existe solución de continuidad.

La 1.ª, 2.ª y 4.ª coxas con una hilera anterior y posterior de grandes gibas trifurcadas, 3.ª coxa sólo con una hilera en el borde anterior (fig. 1).

Fig. 3. — Dibujo dorsal de Cosmobunus granarius.
Quêlcéros normales, más bien estrechos y alargados, sólo salpicados de finos pelos dispersos. Artejo basal con la uña ventral característica. Palpos: fémur dorsalmente en el ápice con fuertes dientes, ventralmente dos hileras longitudinales que se juntan en la base, y otra hilera más corta, lateral interna, formada por 10 recios dientes. Patela y tibia salpicadas espesamente de los mismos dientes, menos en la cara lateral interna. Palpo sólo peludo con la uña final lisa (fig. 2). Patas: trocán-
teres fuertemente dentados, fémures con hileras irregulares de dientes, patelas y tibias con algunos dientes aislados, las tibias del segundo par con falsas articulaciones y el resto de los artejos sólo peludos.

Color de fondo amarillo ocre con un dibujo dorsal pardo oscuro, que describimos en el apartado que trata de la variabilidad. La figura 3 nos reproduce la forma más corriente y que corresponde al ♂ que describimos.

Órgano copulador fuertemente quitinizado, longitud 3,81 mm. Cuerpo muy largo y estrecho, con la base ensanchada, recurvada y con una gran escotadura (fig. 4). El cuerpo del pene también se ensancha ligeramente, a nivel de la inserción de las dos bolsas laterales membranosas, situadas antes del extremo distal. Glande pequeño, estriado, en forma de huso y con dos pares de finos pelos laterales. Estilo corto y también fusiforme. El aspecto que ofrece el órgano in situ, al levantar el opérculo genital y parte del tegumento abdominal, es el de la figura 4 a. Aquí podemos apreciar las dos placas quitinosas laterales que lo sujetan en la base. El espacio que limitan estas dos placas está ocupado por una membrana estriada que recubre las bolsas y forma en las aberturas de éstas, unos procesos quitinosos que tienen el aspecto de un corto tubo traqueal.

♀. — Cuerpo=9 mm. Quelíceros: artejo basal=1,60 mm, artejo distal=1,9 mm. Palpos: Tr=0,53, Fe=1,60, Pa=0,74, Ti=0,98, Ta=1,78 mm. Fémures de las patas=10, 16, 10 y 14 mm. Patas (long. total)=44, 75, 44 y 58 mm.

Los dos sexos son iguales y no se aprecian caracteres sexuales secundarios de importancia, ni antes ni después de la última muda. El tarso del palpo del ♂, no posee la hilera longitudinal de granitos, que según Roewer 1923, estaría presente, ni otros relieves quitinosos como expresión de un dimorfismo sexual. Éste queda reducido a diferencias de tamaño, de cuerpo y apéndices, que serán discutidas más adelante.

El dibujo dorsal aparentemente menos desarrollado en la ♀, no es real, sino el efecto producido por una mayor distensión del abdomen que se acentúa en estado de gravedad.

El ovisceapo de la ♀ es el típico de los Phalangiidae. Su longitud es de 6,10 mm.Consta de 33 segmentos de 8 pelos por segmento. La figura 5, nos muestra el extremo apical a gran aumento, pudiendo apreciarse por transparencia la forma y tamaño de las bolsas seminales así como la configuración de los tres primeros segmentos o lóbulos hendidos.

Variabilidad

Eliminadas las diferencias de sexo y edad en los 852 ejemplares estudiados, la variabilidad no parece ser muy acusada, ni siquiera el dimorfismo sexual lo es, como hemos visto ya al describir la especie. Esta
La especie Cosmobunus granarius

La variación ha sido observada en los siguientes caracteres: cromatismo, relieves quitinosos y longitud de las patas. En ninguno de ellos hemos hallado niveles de diferenciación suficientemente altos, para poder fraccionar la especie en poblaciones diferentes, y estas variaciones son individuales y no presentan segregación geográfica. La misma variación individual presentan las muestras de las montañas del Gran Atlas Central, que las muestras de la región catalana. Sólo en el sur de la Península, se aprecia una variante cromática oscura, que quizás haya alcanzado cierto valor geográfico como veremos a continuación.

Policromatismo. — Para realizar un estudio del policromatismo hemos procedido a una selección de los ejemplares, eliminando: 1.°, los que por su larga permanencia en alcohol, podían estar parcial o totalmente depigmentados; 2.°, los que no eran adultos, y 3.°, los que aún siéndolo, acababan de sufrir la última muda y tenían el tegumento aún blando.
y débilmente pigmentado. El material así seleccionado es más homogéneo y el margen de error más reducido, y además al eliminar los ejemplares no adultos, evitamos superponer la variabilidad individual y la del crecimiento.

Eliminando el material no útil, disponemos para este estudio de 421 ejemplares, 210 ♂ y 211 ♀ que proceden de cuatro regiones distintas:

<table>
<thead>
<tr>
<th>Muestra</th>
<th>♂</th>
<th>♀</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.ª muestra de la provincia de Barcelona</td>
<td>96</td>
<td>88</td>
<td>184</td>
</tr>
<tr>
<td>2.ª muestra de la provincia de Murcia</td>
<td>66</td>
<td>78</td>
<td>144</td>
</tr>
<tr>
<td>3.ª muestra de la provincia de Almería</td>
<td>23</td>
<td>13</td>
<td>36</td>
</tr>
<tr>
<td>4.ª muestra del Gran Atlas Central</td>
<td>25</td>
<td>32</td>
<td>57</td>
</tr>
<tr>
<td>Total</td>
<td>210</td>
<td>211</td>
<td>421</td>
</tr>
</tbody>
</table>

La especie presenta un color de fondo uniformemente amarillo ocre (yellow ocher) fuerte. A este fondo amarillento se superpone en el dorso una pigmentación pardo muy oscura casi negra, que forma un dibujo típico de la especie y que varía de unos individuos a otros dentro de amplios límites. La forma cromática que llamaremos «normal» por ser la más numerosa (fig. 3), podemos describirla de la siguiente manera: partiendo del borde frontal con una forma alada, rodea la prominencia ocular prolongándose hacia los bordes laterales de una manera irregular. Continúa en el borde anterior del segundo segmento torácico y penetra en el escudo del abdomen formando dos bandas longitudinales oscuras que limitan en el centro una banda longitudinal clara. Estas dos bandas oscuras son discontinuas, apareciendo a trechos el color claro del fondo en forma de manchas y pequeños círculos. En los segmentos libres vuelven a aparecer estas dos bandas longitudinales oscuras, existiendo una solución de continuidad con el dibujo del escudo cuando el abdomen está distendido, como ocurre por ejemplo en el caso de las hembra grávidas o de los machos muy hidratados. Si el abdomen no está distendido, esta solución de continuidad no existe y las dos bandas longitudinales oscuras forman un todo continuo. No existe dimorfismo sexual pero las hembras parecen más claras, por tener casi siempre el abdomen más distendido que los machos.

A uno y otro lado de este dibujo «normal», hay dos tipos extremos. Uno muy claro (fig. 6 a), con el dorso sólo salpicado de manchas negras bordeando la banda central clara, y otro en el cual, las dos bandas oscuras ocupan casi todo el abdomen (fig. 6 b), a excepción de la banda central. Entre estos dos tipos extremos existen varios estados intermedios que ofrecen una variación de mayor a menor cromatismo.

Analizando esta variación cromática en los ejemplares procedentes
de las cuatro regiones antes mencionadas, no fue posible ordenarlos según una clina geográfica, ya que pudimos observar una variación individual no sólo entre los ejemplares de una misma muestra, sino entre los de una misma puesta, de las varias obtenidas en el laboratorio, lo que nos hace pensar en una variación de tipo genético.

Fig. 6. — Tipos extremos de variación cromática en el dibujo dorsal de *Cosmobunus granarius*.

No obstante entre los individuos de Barcelona, Murcia y Gran Atlas, el tipo extremo de mayor pigmentación es rarísimo, ocurriendo lo contrario entre los individuos de Almería, en donde se presenta más abundante. Probablemente si tuviéramos material suficiente para expresar gráficamente este fenómeno, veríamos que los individuos de la forma descrita como «normal», serían los más numerosos en las muestras de Barcelona, Murcia y Gran Atlas, y ocuparían la clase modal, mientras que los de pigmentación más reducida o muy abundante, tendrían frecuencias cada vez menores y ocuparían los extremos de la curva. En cambio en la muestra de Almería, ésta probablemente se desviaría incrementándose a nivel de los individuos de mayor pigmentación.
Por otro lado, el ejemplar ♀ que Roewer describió como especie distinta con el nombre de *unifasciatus*, procede de la provincia de Granada sin que desgraciadamente se sepa la localidad exacta, y encaja bien dentro de la variante cromática oscura de los ejemplares de la provincia de Almería, que proceden de las localidades de Huércal-Overa y Gérgal. Esta última se halla situada en la parte oriental de la Sierra de Filabres, la cuál penetra por el oeste en la provincia de Granada, por lo que cabe la posibilidad de que el ejemplar que Roewer describió como *unifasciatus*, proceda de la misma cadena montañosa que los demás ejemplares de coloración también oscura.

Quizás este segmento sur del área total de la especie en la Península, esté desarrollando un proceso de fragmentación que pueda conducir a la formación de una forma «melánica» que llegue a adquirir categoría infraspecífica; en cuyo caso *unifasciatus* sería una subespecie de *cosmobunus*, cosa que, con la escasez de datos a nuestro alcance, estamos lejos de poder probar. Pero lo que está claro es que *unifasciatus* no es una especie distinta de *cosmobunus*. Roewer basó la descripción única-mente en su acentuado cromatismo dorsal, y después de un detenido estudio del ejemplar en cuestión, vemos que no presenta ninguna diferencia respecto a la especie anterior.

También Roewer 1910, describe otro ejemplar totalmente «albino» o sea sin dibujo dorsal oscuro, con el nombre de *unicolor*. Hemos exami-nado este ejemplar (se trata de una ♀ y no de un ♂ como dice Roewer), y parece ser más bien un Leiobunum que un Cosmobunus, de manera que en este caso pertenecería a otra subfamilia. Desgraciadamente los palpos están mutilados y desprovistos de la uña final, por lo que al no saber si es o no pectinada, tampoco podemos afirmar con certeza que se trate de un miembro de la subfamilia Leiobiinidae. Si realmente se tratase de un Cosmobunus, podría ser efectivamente una especie diferente de *granarius*, pues otros caracteres aparte de su albinismo, lo separan de esta especie, pero por ahora no podemos despejar esta incógnita.

Los ejemplares que Lucas 1847, describe como *Phalangium levipes* y *Phalangium flavo-unilineatum*, no han podido ser revisados, pero según Simón 1879, se trata de un ejemplar joven en el primer caso, y de un ejemplar recolectado después de la puesta o con el abdomen retraído en el segundo, todos ellos de la misma especie *granarius*.

Por todo lo expuesto y a nuestro modo de ver, creemos hallarnos en presencia de una sola especie, *granarius*, cuyas distintas formas de color deben interpretarse como variaciones individuales dentro de la población total de la misma.

Relieves quitinosos. — La variabilidad se manifiesta en la dentición de las láminas supraquelicerales, prominencia ocular, fémures de los palpos, hileras coxales y esternitos abdominales.

Las láminas supraquelicerales en los adultos siempre son dentadas,
aunque varía el número de dientes y su posición. En la figura 7, a, b, c, mostramos estos diferentes grados de dentición. En la prominencia ocular existe un número de 6 a 8 dientes dispuestos en círculo bordeando los ojos. En algunos ejemplares el número disminuye y en otros aumenta y además se disponen sin orden alguno (fig. 7 d, e).

La cara ventral del fémur del palpo, presenta dos hileras longitudinales de dientes que se juntan en la base. Estas hileras son muy regulares y casi siempre formadas por el mismo número de dientes. Existe otra hilera lateral interna, mucho más corta que las anteriores en la cual la variación en el número de dientes es muy amplia (fig. 7, f, g, h).
Las hileras coxales faltan en el borde posterior del tercer par de coxas de una manera constante, y las giba no siempre son regularmente trifurcadas, sino que hay algunas de bordes redondeados o cuadrados, y a veces, aunque muy raramente, fusionadas entre sí (fig. 7, i, j).

Tamaño. — Hemos medido el tamaño del cuerpo y la longitud de las patas en los 421 ejemplares seleccionados de las cuatro regiones antes citadas, y no hemos hallado variación geográfica, ni tampoco han podido ser ordenados según una variación clinal.

Lo único que nos ha llamado la atención es que la forma melánica oscura de la provincia de Almería, tiene las patas más cortas en relación al tamaño del cuerpo, que las muestras obtenidas de las demás poblaciones. Los ejemplares que poseemos de esta muestra son tan escasos, que no nos permiten actualmente llevar a cabo ningún cálculo biométrico, ni el estudio de la relación existente, entre su acentuado cromatismo y el acortamiento de las patas.

Ciclo biológico

Las observaciones hechas in vivo en la segunda de las dos estaciones experimentales elegidas, han puesto en evidencia la regularidad del ciclo biológico de la especie. En esta estación epigea las hembras realizan la puesta en el suelo, en un ángulo húmedo del terreno al lado de la fuente, que contiene restos vegetales en descomposición, formando un estrato de detritus con abundante microfauna, propicia para la alimentación de las primeras ninfas.

La eclosión se efectúa al empezar la primavera, las ninfas son abundantes en abril y mayo, y aparecen los primeros adultos a principios de verano, en el transcurso de éste se verifica la puesta y mueren en otoño. Los huevos pasan el invierno enterrados en el suelo, al empezar la primavera se verifica la eclosión y un nuevo ciclo recomienza.

Durante varios años consecutivos hemos observado este ciclo anual siempre con la misma regularidad y en el mismo biotopo elegido. No obstante podemos deducir que en la naturaleza las cosas no siempre ocurren así, ya que en las numerosas recolecciones a lo largo del área total de la especie, hemos hallado distintas fases de desarrollo en una misma recolección, e indistintamente en las diferentes estaciones del año. Si el ciclo se cumpliese siempre con la regularidad antes mencionada, esto no sería posible.

Pero, nos ha llamado la atención que la presencia simultánea de adultos y fases juveniles en todas las estaciones ha sido comprobada sólo en las recolecciones efectuadas en cavidades. Véase a este propósito la relación de capturas en el cuadro de la página 102. En las 23 localidades epigeas encontramos las fases juveniles en primavera y los adultos en
verano. En los meses fríos de invierno, los intentos de captura son infructuosos. Sólo en algunas estaciones del sur de España con inviernos más templados, hemos hallado algunos ejemplares, en fase distinta a la que correspondía a su ciclo «normal».

Podemos suponer que el comportamiento de esta especie al penetrar en las cavidades, ha podido modificar la regularidad de su ciclo. Si los adultos penetran en las cuevas después de verificada la puesta, con el único objeto de protegerse del descenso de temperatura al que son muy sensibles, las cuevas serían para ellos un buen lugar de refugio, y el efecto apreciable sería la prolongación de la fase adulta y la sucesión de mayor número de puestas, ya que las hembras ponen mientras las condiciones ambientales son favorables, afectando por lo tanto a la regularidad de su ciclo. Pero si además aceptamos la puesta de los huevos en las cuevas (hecho que hemos comprobado), éstos podrán desarrollarse en la estación no propicia, debido a las reducidas fluctuaciones térmicas existentes en el medio cavernícola, y verificarse la eclosión de los huevos fuera de su período «normal» he incluso proseguir su desarrollo dentro de las mismas. Condición indispensable para que esto último se realice, es que en las cavidades donde se efectúe la eclosión, los pullus encuentren en ellas material nutritivo suficiente para continuar su desarrollo.

De todo lo expuesto deducimos que el ciclo biológico y la reproducción dejan de estar sujetos a las estaciones, cuando las condiciones físicas requeridas son prácticamente constantes en cuanto a temperatura y humedad, y otros factores biológicos tales como material nutritivo están al alcance de la especie en la estación desfavorable.

Estos factores se dan en estas pequeñas cavidades y anfractuosidades, que son el lugar más frecuente de hallazgo junto con la zona de entrada de las grandes cuevas, en donde hallamos estas características ambientales que podemos considerar intermedias entre el exterior y las zonas profundas de las grandes cavidades. Las fluctuaciones térmicas se dejan sentir, pero muy atenuadas con relación a las del exterior. El grado higrométrico es asimismo más alto que el externo, y la luz solar penetra muy disminuida en su intensidad.

Es posible que en estas condiciones la vida del adulto se prolongue, y que las hembras verifiquen sucesivas puestas durante un período de tiempo más largo que en el exterior. El momento de la eclosión depende del de la puesta y el desarrollo postembrionario a su vez de la eclosión. Por lo tanto este hecho justifica la presencia de jóvenes y adultos en todas las estaciones del año, en un biotopo especializado en el cual la especie puede desarrollarse sin esta dependencia absoluta a las estaciones anuales.

En cuanto al ciclo biológico in vitro, a pesar de que se han seguido todas las fases de su desarrollo postembrionario, a consecuencia de dificultades técnicas imprevistas en los métodos utilizados, la obtención de
numerosos datos, tales como, número de huevos de cada puesta, número de puestas, número de ninfas, etc., han sido solamente esbozados.

El tamaño de los huevos oscila entre 1,14 y 1,25 mm. Son esféricos y ligeramente amarillentos. La mayoría de hembras efectuaron una sola puesta, tres de ellas efectuaron 2 y una de ellas 3. El número de huevos por puesta osciló entre 16 y 78. Las puestas más frecuentes fueron con un número aproximado de 35 a 50 huevos.

Fig. 8. — Huevos de una puesta de *Cosmobunus granarius*.

Los fenómenos del desarrollo embrionario son visibles a través del corión. La foto de la figura 8, nos muestra parte de una puesta, y en algunos huevos se ven por transparencia los dos ojos bien pigmentados. Una vez la larva ha alcanzado su desarrollo, se produce la exuvación y salen las primeras ninfas. La piel de la primera ninfa es completamente lisa, no existe ninguna clase de relieve quitinoso ni en el cuerpo ni en los apéndices. La prominencia ocular presenta sólo finos pelos aislados (figura 9 b). Las láminas supraquelicerales son dos pequeños muñones membranosos sin relieve alguno (figura 9 a). Ventralmente el cuerpo es más peludo que el dorso; coxas, opérculo genital y segmentos abdominales, están cubiertos de una fina pubescencia (fig. 9 c), la cual destaca fuertemente por su color oscuro del color claro del tegmento. Los endopoditos de las coxas están bien formados y provistos ya de largos pelos pigmentados. El opérculo genital no está abierto, sino frontalmente unido a la región bucal. El quelíceo es el apéndice que se modifica menos en el transcurso del desarrollo, pues tiene casi el aspecto del adulto.

Cuerpo y apéndices son de color blanco amarillento y sólo en el dorso se inicia una pigmentación parda oscura en los bordes laterales del cefa-
lotorax y otras manchas menos marcadas en todo el cuerpo, sin llegar a formar un dibujo determinado.

En cada exuvación la ninfa aumenta de tamaño y el dibujo dorsal se va perfilando. La piel del cuerpo sigue siendo lisa y únicamente se aprecia la existencia de finos pelos. Dos días después de la penúltima muda, empiezan a verse por transparencia, las nuevas formaciones quitinosas de toda la superficie del cuerpo y de los apéndices, tales como, granulación del tegumento, hileras coxales, hileras de los esternitos abdominales, dentición de las láminas supraquelicerales, prominencia ocular, etc.

![Diagrama](image)

Fig. 9. — Primera ninfa de *Cosmobunus granarius*; a, láminas supraquelicerales; b, prominencia ocular; c, cara ventral a nivel de las coxas.

La última exuvación libera al animal totalmente desarrollado y con todas las características definitivas del adulto. En el tiempo que transcurre después se refuerza el color y se endurecen los tegumentos.

Comportamiento

La especie tiene un fototropismo negativo, ya que siempre huye de la luz. Durante el día permanece inactiva e inmóvil si no se la importuna, y no empieza a desplegar alguna actividad hasta el crepúsculo. En estos momentos se la puede ver moviéndose activamente en busca de alimento.
En cambio en las horas de sol se refugia en lugares sombríos y su actividad es mínima.

Estas observaciones han sido hechas en la naturaleza, en las dos estaciones antes mencionadas. Los ejemplares de la estación hipogea permanecen en el techo y paredes de la cueva durante las horas de sol y de más calor. Después del crepúsculo empiezan a moverse activamente y salen fuera o permanecen dentro, pero unos y otros se desplazan en busca de alimento. Idéntico comportamiento se observó en los ejemplares de la estación epigea. Durante el día los animales permanecían refugiados debajo de las ramas de hiedra, protegiéndose de la luz solar y de la sequedad de la atmósfera y no desplegaban ninguna actividad. A partir de las seis de la tarde aproximadamente, empezaban a salir de su refugio y se les veía correr por el suelo para ir en busca de alimento. Los hemos visto atacando pequeñas arañas, ácaros, larvas de dípteros e incluso pequeños isópodos.

Uno de los aspectos que más llama la atención sobre el comportamiento de esta especie, es la de formar agrupaciones de grandes masas de individuos, en los biotopos de preferencia.

En las cávidades, sean o no naturales, hallamos siempre reunidos un gran número de ejemplares en el techo y paredes de la entrada y en la zona todavía iluminada, llegando a desplazarse hasta la zona de penumbra. No tenemos ningún dato que nos confirme su penetración en la zona oscura.

El número de individuos reunido es a veces considerable llegando a más de un centenar. Debido a la extraordinaria longitud de las patas comparada con el tamaño del cuerpo, este enjambre de individuos, ofrece el aspecto de una masa de finas raíces que salen del techo y paredes de la cueva. Fijan la extremidad de sus patas en el techo y el cuerpo queda suspendido. En estas grandes masas unos individuos se apoyan encima de otros, llegando a formar una capa de varios centímetros de espesor. Al ser molestados con algún objeto, muchos individuos se desprenden de sus vecinos y se tiran rápidamente al suelo y otros se desplazan por las paredes huyendo del peligro.

Los individuos aislados, con mucha frecuencia se les encuentra estereotipados en las paredes con el cuerpo perfectamente adaptado a una pequeña hendidura, y las patas estiradas, radialmente al cuerpo y pegadas a la superficie de la pared en toda su longitud.

Este comportamiento a reunirse en grupo lo hemos podido observar incluso en los hallazgos al exterior. Los hemos encontrado debajo los puentes suspendidos en la bóveda, agrupados en las infractuosidades de las rocas e incluso en un pueblo de la provincia de Jaén, en los corrales de las casas de los labradores, formando grupos suspendidos en los ángulos de las paredes.

De las 45 localidades en donde ha sido hallada la especie, 22 de
ellas son caviades (11 cuevas, 5 simas y 6 cavidades artificiales) y las 23 restantes son epigácas. Vemos pues que la oportunidad de hallazgos en cavidades o fuera de ellas, es aproximadamente la misma, lo que nos indica que la especie no ser propiamente cavernícola, tampoco podemos considerarla como un huésped ocasional, o sea una forma simplemente troglofaga que penetra accidentalmente en las cuevas cuando las condiciones externas sean desfavorables, pues en este caso las cuevas no serían para ella más que un lugar de refugio.

Por el contrario las observaciones realizadas nos inclinan a creer, que no se trata simplemente de un huésped ocasional, sino que sus necesidades ecológicas específicas, obligan a la especie a elegir como residencia más habitual que ocasional, un biotopo que presente esta serie de factores ambientales favorables a su desarrollo.

La prueba más convincente a favor de las observaciones expuestas, es el hecho de haber hallado puestas de huevos y pullus en 10 de las 22 cavidades prospectadas. En la primera de las dos estaciones elegidas para nuestras experiencias, conseguimos después de azarosas búsquedas, hallar en la capa de detritus del suelo dos puestas; una constaba de 42 y otra de 73 huevos. Esta ha sido la única cavidad donde hemos podido comprobar el desarrollo del ciclo completo.

En 6 de las restantes cavidades fueron halladas las primeras ninñas unas veces solas y otras acompañadas de animales adultos. Otras tres cavidades denotaban la presencia de fases juveniles en un estado de desarrollo más avanzado. Si bien estas fases juveniles podían haber alcanzado la cueva desde el exterior, la presencia de las primeras ninñas en la cueva, nos hace pensar que estos ejemplares han nacido allí, pues es poco probable que estas primeras ninñas se hayan desplazado desde el exterior para penetrar en la cueva, ya que los pullus son propiamente edáficos, y nunca abandonan el suelo, por lo que la especie en las primeras fases de su existencia está íntimamente ligada a él. En cambio en su estado adulto presenta caracteres muy evolucionados, tales como el considerable desarrollo de los apéndices, que le permiten desplazarse con extraordinaria rapidez en su medio epigáco, hierbas, arbustos e incluso troncos de árboles en donde ha sido hallada algunas veces.

Teniendo en cuenta, por un lado esta facilidad de dispersión en el medio epigáco, y por otro, la busca activa de toda clase de cavidades (cuevas, simas, grietas, etc.), que constituyen el nicho particular al que se adaptan mejor sus exigencias ecológicas, nos inclinamos a considerar la especie no simplemente como troglófaga regular, sino como troglobófila (eutroglófica según la expresión de Pavan 1944), término que emplea para los cavernícolas facultativos, pero reproduciéndose también en el interior de las cavidades.
Distribución geográfica

En la Península Ibérica ocupa toda Andalucía. Se extiende hacia el este por la zona costera mediterránea hasta casi los Pirineos, y por el oeste penetra en Extremadura y la mitad sur de Portugal. En el noroeste de África, invade toda la meseta marroquí, llegando hasta la cadena del Gran Atlas Central.

Fig. 10. — Área actual de expansión de Cosmobunus granarius.

En el mapa de la figura 10 los círculos negros marcan los hallazgos de la especie y las dos líneas de puntos limitan la parte de la península y meseta marroquí, que corresponde a las regiones de verano cálido (agosto superior a 22°) e invierno suave (generalmente no inferior a 6°). A simple vista vemos que los círculos negros quedan circunscritos dentro de las dos líneas de puntos, por lo tanto el área actual de la especie, parece condicionada por la temperatura, sin que al parecer otros factores
limiten discontinuidades en su área de expansión, la cual queda limitada a las zonas de clima mediterráneo o templado seco, con inviernos suaves y veranos calurosos. En cuanto a su distribución altitudinal no llega a los 1000 m. Las capturas más frecuentes son entre los 200 m y los 600 m de altura.

Existen sin embargo dos excepciones, una en Cataluña fuera de la línea de puntos, en zona más septentrional, y otra en África a una altura de 2000 m.

La primera excepción la constituyen dos citas, una de Roewer 1935, de la Pobla de Segur y otra actual, de una cueva en la Sierra del Montsant; ambas en la provincia de Lérida. Son las dos localidades más septentrionales citadas hasta la fecha y las dos únicas que no quedan circunscritas dentro la línea de puntos que limita las temperaturas en la península. Es fácil imaginar, y más tratándose de cavidades, que en este biotopo aislado, se dan las condiciones de supervivencia requeridas para la especie.

La segunda excepción es el hallazgo de unos ejemplares en dos cuevas de la cadena del Gran Atlas Central a 2000 m de altura. Esta cadena montañosa corre más o menos paralela a la costa noroeste de África y se extiende a través de 2400 km, siendo la Central la de mayor extensión y también la más alta. Su mayor elevación es de 3305 m. Dos de sus picos están siempre cubiertos por las nieves perpetuas y la mayoría de cumbres conservan manchas de nieve durante los meses de verano. En ninguna de las elevadas montañas de la Península de condiciones semejantes a las citadas, tales como Sierra Nevada, por ejemplo, ha sido hallada esta especie. El hallazgo en el Gran Atlas, constituye pues una excepción. Estas montañas han sido poco prospectadas, por lo tanto desconocemos si se trata de un aislado biotopo de gran altura, o si futuros hallazgos enlazarían este biotopo con las actuales citas de la costa mediterránea sin solución de continuidad.

La mayor densidad de círculos negros en la región catalana, no debe interpretarse como una mayor importancia numérica de las poblaciones de esta región, sino que por ser el lugar de nuestra residencia habitual, las prospecciones han sido más numerosas. La ausencia de estos círculos en las regiones de la Península situadas por encima de la línea de puntos, tampoco es causa de escasez de prospecciones, pues éstas han sido más numerosas en la meseta, región cantábrica y pirenaica, que en la zona sur y sudoeste, a pesar de lo cual todas las recolecciones en las primeras regiones citadas, han sido infructuosas hasta la fecha.

Todo ello nos hace suponer que los datos obtenidos, a pesar de ser susceptibles de variación por nuevas aportaciones, pueden reflejar con un mínimo de error la dispersión actual de la especie.

Por último, hemos confeccionado un cuadro, detallando la procedencia del material estudiado, en el que se indica el número de ejemplares,
Cuadro con la procedencia del material estudiado

<table>
<thead>
<tr>
<th>N.° REGISTRO</th>
<th>LOCALIDADES</th>
<th>ALTURAS</th>
<th>RECOLECTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Viladecaballs, prov. de Barcelona (en la entrada de una cueva artificial; en el techo).</td>
<td>274 m</td>
<td>Rambla</td>
</tr>
<tr>
<td>2</td>
<td>Viladecaballs, prov. de Barcelona (en la entrada de una cueva artificial; en el techo).</td>
<td>274 m</td>
<td>Rambla</td>
</tr>
<tr>
<td>3</td>
<td>Viladecaballs, prov. de Barcelona (en las hiedras de una fuente)</td>
<td>274 m</td>
<td>Rambla</td>
</tr>
<tr>
<td>4</td>
<td>Olesa de Montserrat, prov. de Barcelona (en un prado).</td>
<td>200 m</td>
<td>Rambla</td>
</tr>
<tr>
<td>5</td>
<td>«Els Bruchs», prov. de Barcelona.</td>
<td>600 m</td>
<td>Español</td>
</tr>
<tr>
<td>6</td>
<td>«Els Bruchs», prov. de Barcelona.</td>
<td>600 m</td>
<td>Ventalló</td>
</tr>
<tr>
<td>7</td>
<td>Cueva «Cort Fose», Sant Llorenç del Munt, Matadepera, prov. de Barcelona.</td>
<td>700 m</td>
<td>Rambla</td>
</tr>
<tr>
<td>8</td>
<td>Cueva del Mal Pas, Sant Llorenç del Munt, Matadepera, prov. de Barcelona.</td>
<td>600 m</td>
<td>Ribera</td>
</tr>
<tr>
<td>9</td>
<td>Sima «Aven Muntanés», Macizo de Garraf, prov. de Barcelona.</td>
<td>500 m</td>
<td>Ventalló</td>
</tr>
<tr>
<td>10</td>
<td>Cueva San Miguel, Sierra del Montsec, Ager, prov. de Lérida.</td>
<td>650 m</td>
<td>Español</td>
</tr>
<tr>
<td>11</td>
<td>Vendrell, prov. de Tarragona (en las ramas de un pino).</td>
<td>47 m</td>
<td>Pablos</td>
</tr>
<tr>
<td>12</td>
<td>Sierra de Cardó, cerca Balneario, prov. de Tarragona.</td>
<td>480 m</td>
<td>Rambla</td>
</tr>
<tr>
<td>13</td>
<td>Cueva Bonica, S. Carlos de la Rápita, prov. de Tarragona.</td>
<td>700 m</td>
<td>González</td>
</tr>
<tr>
<td>14</td>
<td>Sima «Avene Lolita», Tivisa, prov. de Tarragona.</td>
<td>350 m</td>
<td>Vives</td>
</tr>
<tr>
<td>15</td>
<td>Cueva Castanya, La Riba, prov. de Tarragona.</td>
<td>280 m</td>
<td>González</td>
</tr>
<tr>
<td>16</td>
<td>Burgans, entre Tivisa, «La Rasquera», prov. de Tarragona.</td>
<td>350 m</td>
<td>Ventalló</td>
</tr>
<tr>
<td>17</td>
<td>Aiguaviva, Sierra del Montmell, prov. de Tarragona.</td>
<td>610 m</td>
<td>Español</td>
</tr>
<tr>
<td>18</td>
<td>Aiguaviva, Sierra del Montsia, prov. de Tarragona.</td>
<td>350 m</td>
<td>Ventalló</td>
</tr>
<tr>
<td>19</td>
<td>Sima Ventanas, Vandellós, prov. de Tarragona.</td>
<td>282 m</td>
<td>Castell y Pérez</td>
</tr>
<tr>
<td>20</td>
<td>Cueva del Tío Eulogio, Tales, cerca de Onda, prov. de Castellón.</td>
<td>320 m</td>
<td>Español</td>
</tr>
<tr>
<td>21</td>
<td>Cueva Atropino, Sierra de Espadà, Alpens, prov. de Valencia.</td>
<td>220 m</td>
<td>Rambla</td>
</tr>
<tr>
<td>22</td>
<td>Gandía (en las paredes de una cueva), prov. de Valencia.</td>
<td>250 m</td>
<td>Rambla</td>
</tr>
<tr>
<td>23</td>
<td>Cresta del Gallo, Sierra de Carrosses, prov. de Barcelona.</td>
<td>900 m</td>
<td>Rambla</td>
</tr>
<tr>
<td>24</td>
<td>Sima Ventanas, Vandellós, prov. de Tarragona.</td>
<td>800 m</td>
<td>Rambla</td>
</tr>
</tbody>
</table>

ESPAÑA

¡Recuerde, esta es una representación natural del contenido del documento. La naturaleza del documento sugiere que es un cuadro con la procedencia del material estudiado, posiblemente en la biología o geología, pero no hay suficientes detalles para proporcionar una explicación más precisa.**
<table>
<thead>
<tr>
<th>N°</th>
<th>3</th>
<th>4</th>
<th>-</th>
<th>5</th>
<th>pull.</th>
<th>Cueva Venallans, Valencian, prov. of Tarragona.</th>
<th>282 m</th>
<th>22-VI-64</th>
<th>Castell y Pérez Español.</th>
</tr>
</thead>
<tbody>
<tr>
<td>521</td>
<td>2 pull.</td>
<td>1 pull.</td>
<td>3 pull.</td>
<td>2 pull.</td>
<td>Cueva Altopeño, Sierra de Espuña, Barax, prov. of Valencia.</td>
<td>320 m</td>
<td>10-VIII-65</td>
<td>Española.</td>
<td></td>
</tr>
<tr>
<td>524</td>
<td>2 pull.</td>
<td>1 pull.</td>
<td>1 pull.</td>
<td>1 pull.</td>
<td>Cresta del Gallo, Sierra de Carrascoy, prov. of Murcia (en una cavidad artificial).</td>
<td>50 m</td>
<td>19-V-58</td>
<td>Rambla.</td>
<td></td>
</tr>
<tr>
<td>525</td>
<td>2 pull.</td>
<td>1 pull.</td>
<td>2 pull.</td>
<td>1 pull.</td>
<td>Gorgal, prov. of Almería (en una cavidad artificial).</td>
<td>900 m</td>
<td>6-VI-68</td>
<td>Rambla.</td>
<td></td>
</tr>
<tr>
<td>526</td>
<td>2 pull.</td>
<td>1 pull.</td>
<td>2 pull.</td>
<td>1 pull.</td>
<td>Alhauirín, Sierra de Mijas, prov. of Málaga.</td>
<td>658 m</td>
<td>7-V-58</td>
<td>Rambla.</td>
<td></td>
</tr>
<tr>
<td>527</td>
<td>1 pull.</td>
<td>1 pull.</td>
<td>2 pull.</td>
<td>1 pull.</td>
<td>Motril, prov. de Granada.</td>
<td>28 m</td>
<td>7-V-58</td>
<td>Rambla.</td>
<td></td>
</tr>
<tr>
<td>528</td>
<td>1 pull.</td>
<td>1 pull.</td>
<td>2 pull.</td>
<td>1 pull.</td>
<td>Jerez de la Frontera, prov. de Cádiz (en una cueva artificial).</td>
<td>173 m</td>
<td>7-V-58</td>
<td>Rambla.</td>
<td></td>
</tr>
<tr>
<td>529</td>
<td>1 pull.</td>
<td>1 pull.</td>
<td>2 pull.</td>
<td>1 pull.</td>
<td>Cueva (sin nombre?), estribaciones de Sierra Morena, prov. de Jaén.</td>
<td>166 m</td>
<td>7-V-58</td>
<td>Rambla.</td>
<td></td>
</tr>
<tr>
<td>530</td>
<td>2 pull.</td>
<td>1 pull.</td>
<td>1 pull.</td>
<td>1 pull.</td>
<td>El Centenillo (en las corrales de las casas), prov. de Jaén.</td>
<td>165 m</td>
<td>7-V-58</td>
<td>Rambla.</td>
<td></td>
</tr>
<tr>
<td>531</td>
<td>1 pull.</td>
<td>1 pull.</td>
<td>1 pull.</td>
<td>1 pull.</td>
<td>Pozoblanco (en una cavidad artificial), prov. de Córdoba.</td>
<td>164 m</td>
<td>7-V-58</td>
<td>Rambla.</td>
<td></td>
</tr>
<tr>
<td>532</td>
<td>1 pull.</td>
<td>1 pull.</td>
<td>1 pull.</td>
<td>1 pull.</td>
<td>Jerez de los Caballeros, prov. de Badajoz.</td>
<td>156 m</td>
<td>7-V-58</td>
<td>Rambla.</td>
<td></td>
</tr>
<tr>
<td>533</td>
<td>1 pull.</td>
<td>1 pull.</td>
<td>1 pull.</td>
<td>1 pull.</td>
<td>Guadalupe, prov. de Cáceres.</td>
<td>155 m</td>
<td>7-V-58</td>
<td>Rambla.</td>
<td></td>
</tr>
<tr>
<td>534</td>
<td>1 pull.</td>
<td>1 pull.</td>
<td>1 pull.</td>
<td>1 pull.</td>
<td>Almadén (en una cavidad artificial), prov. de Ciudad Real.</td>
<td>151 m</td>
<td>7-V-58</td>
<td>Rambla.</td>
<td></td>
</tr>
</tbody>
</table>

PORTUGAL

<table>
<thead>
<tr>
<th>N°</th>
<th>1 pull.</th>
<th>1 pull.</th>
<th>1 pull.</th>
<th>1 pull.</th>
<th>Mina dos Mouros, Distrito do Faro, Portimão.</th>
<th>50 m</th>
<th>31-XII-39</th>
<th>Barros Machado.</th>
</tr>
</thead>
<tbody>
<tr>
<td>643</td>
<td>1 pull.</td>
<td>1 pull.</td>
<td>1 pull.</td>
<td>1 pull.</td>
<td>Moura, Distrito de Beja.</td>
<td>60 m</td>
<td>10-V-34</td>
<td>Ventalló.</td>
</tr>
<tr>
<td>644</td>
<td>1 pull.</td>
<td>1 pull.</td>
<td>1 pull.</td>
<td>1 pull.</td>
<td>Sierra de Ossa.</td>
<td>60 m</td>
<td>12-V-34</td>
<td>Ventalló.</td>
</tr>
</tbody>
</table>

MARRUECOS

<table>
<thead>
<tr>
<th>N°</th>
<th>5 pull.</th>
<th>1 pull.</th>
<th>1 pull.</th>
<th>1 pull.</th>
<th>Gurugu (cueva?), Melilla.</th>
<th>700 m</th>
<th>1-IX-58</th>
<th>García.</th>
</tr>
</thead>
<tbody>
<tr>
<td>160</td>
<td>1 pull.</td>
<td>1 pull.</td>
<td>1 pull.</td>
<td>1 pull.</td>
<td>Musa (en una cueva sin nombre), Ceuta.</td>
<td>600 m</td>
<td>1-VII-30</td>
<td>Mazarredo.</td>
</tr>
<tr>
<td>312</td>
<td>1 pull.</td>
<td>1 pull.</td>
<td>1 pull.</td>
<td>1 pull.</td>
<td>Cueva «Ifri El Caid», región de los Ait M'Hamed, Gran Atlas Central.</td>
<td>1800 m</td>
<td>10-VII-66</td>
<td>Senent.</td>
</tr>
<tr>
<td>651</td>
<td>1 pull.</td>
<td>1 pull.</td>
<td>1 pull.</td>
<td>1 pull.</td>
<td>Sima «Iri Subils Godoy», región de los Ait M'Hamed, Gran Atlas Central.</td>
<td>1800 m</td>
<td>10-VII-66</td>
<td>Senent.</td>
</tr>
</tbody>
</table>
el sexo y el estado de desarrollo. Cuando no se menciona éste, es que son adultos. De cada localidad damos su altura sobre el nivel del mar, y después de las fechas de recolección, figuran también los nombres de los recolectores.

Departamento de Zoología (1)
Facultad de Ciencias
Universidad de Barcelona

SUMMARY

The present paper deals on the species *Cosmobunus granarius* (Lucas, 1847). 852 specimens collected in 45 different localities, have been studied.

First, external morphological features and genitalic structures are evaluated. A redescriptions of species is made with one ♂ and one ♀, chosen among the specimens of main frequency from a sample of the catalan region.

The variability of the remaining material is discussed. Differences in coloration are widely studied. We have reviewed the dark coloured *unifasciatus* and pale coloured *unicolor* forms, admitted by Roevwar as different species of *cosmobunus*. Pronounced dark pigmentation observed in a sample collected in the South of Spain, has proved that the species *unifasciatus*, is not a good one. This specimen represent an individual variant within the species’ polichromatism. The other species *unicolor*, seems to be rather a *Leiobunum* then a *Cosmobunus*. The palpus being destroyed, we can not prove whether the claws are pectinate or not.

In the biological part, the vital's cycle is described, and the differences between immature forms and adult ones, are pointed out.

Available ecological and etological data are presented. Among the 45 localities where the species have been found, 22 are caves. The eggs have been laid within and out of the caves. For this reason, we must consider the species as troglophile and not trogloxene, as believed until now.

A geographical distribution on the map, shows us, the total area of the species. It appears to be conditioned to the temperature. We have found the species, only in the zone of mediterranean climate.

(1) Este trabajo se ha beneficiado de la ayuda concedida a la Cátedra de Zoolo-
gía (invertebrados) con cargo al crédito destinado al fomento de la investigación en
la Universidad.
BIBLIOGRAFÍA

Sobre *Aspidosiphon clavatus*, (Sipunculoidea) del litoral de Blanes

por

JAIME ISERN

Introducción

Con motivo de los estudios que se desarrollan actualmente sobre los sipuncúlidos, se han efectuado dragados, principalmente en la zona de Blanes (Gerona), y entre el material obtenido se observa que la especie más abundante es *Aspidosiphon clavatus* Blainville 1827, uno de los sipuncúlidos más fácilmente diferenciables.

Este sipincúlido se caracteriza por presentar en el cuerpo dos escudos, uno en el extremo posterior y otro en posición dorsal o anterodorsal y por encima del ano; ambos escudos son rugosos, el anterior de forma troncocónica, y en la mayoría de los casos presentan unos surcos dispuestos de forma radial. La trompa, que es de una longitud muy superior a la del resto del cuerpo, también es bastante más delgada que éste y está situada excéntricamente en el escudo dorsal; en ella se encuentran dispuestos series de ganchos microscópicos, en líneas regulares en su parte anterior y en el resto de ella de forma totalmente irregular.

Obtención de las muestras

Las muestras en las que se basa el presente trabajo han sido todas obtenidas en las aguas litorales de Blanes (Gerona) y se han conseguido por dragado por medio de dragas de arrastre, entre los 80 y los 200 m
de profundidad, en los fondos llamados «La Planassa» y «Els Capets» y también por recogida de submarinistas provistos de escafandra autónoma a una profundidad que oscila entre los 10 y los 20 metros aproximadamente.

Los fondos en los que se han conseguido las muestras por dragado son fundamentalmente limosos, con zonas en las que abundan algo los pequeños guijarros y en los que es muy abundante el crinoideo Antedon mediterranea; en estos fondos se encuentran depósitos de conchas vacías de gasterópodos y en los que abundan de forma preponderante las conchas del género Turritella. Las dragas usadas consisten en un marco de hierro de forma rectangular al que está cosida una red de malla de unos 2 centímetros.

Las muestras proporcionadas por los submarinistas son recogidas al azar y consisten en conchas vacías de gasterópodos, obtenidas en fondos de naturaleza muy variada, y en fragmentos de formaciones coralinas de naturaleza bastante compleja y en las que abundan los agujeros y las fisuras.

Los dragados se han efectuado durante los meses de marzo, abril, mayo y junio y las muestras de los submarinistas sólo han sido obtenidas durante el mes de junio.

Obtención de los ejemplares

En las muestras obtenidas por dragados se ha procedido a un lavado con agua de mar y en un colador apropiado, de manera que se elimine todo el limo de la muestra, haciendo mucho más fácil su observación.

De ellas se separan las conchas de gasterópodos vacías, entre las que, como ya se ha dicho, dominan de forma especial las del género Turritella pero entre las cuales también se encuentran ejemplares de los géneros Aporrhais y Littorina, entre otras, así como también tubos de serpúlidos; además aparecen tunicados, en especial de la especie Microcosmus sulcatus, en cuya base están adheridos materiales muy diversos, entre los que también abundan las conchas vacías de gasterópodos. Ejemplares de Dentalium, muy abundantes en otros sectores de la misma costa (Banyuls, P. O.), se encuentran aquí en pequeña proporción.

Aproximadamente el 90 % de los ejemplares de Aspidosiphon clavatus obtenidos se encuentran alojados en el interior de las conchas vacías de gasterópodos y el resto se ha encontrado o bien libre entre el limo (1 ejemplar, y aun podría ser que procediera del interior de una concha), o entre las fisuras de las formaciones coralinas o en los agujeros de la misma, así como entre los materiales del pie de Microcosmus. La pro-
porción de ejemplares obtenidos por las muestras proporcionadas por los submarinistas es mucho menor, debido a la selección que de forma inevitable se hace y también a que *Aspidosiphon clavatus* es mucho más abundante a partir de los 60 metros y especialmente a partir de los 100 metros (M. A. Herubei).

Las conchas de gasterópodos vacías se rompen con las debidas precauciones con la ayuda de un martillo, y dentro de ellas, y con cierta abundancia, se encuentran alojados, junto con muchos otros representantes de otros grupos animales, sipuncúlidos, de los cuales casi la totalidad de los obtenidos pertenecen a la especie *Aspidosiphon clavatus*, única del género en las aguas europeas. Otros géneros hallados dentro de conchas han sido *Phascolosoma* y *Physcosoma*.

El porcentaje de conchas que contienen un sipuncúlido varía bastante según los dragados, sin que se haya podido encontrar una causa o razón y su valor se encuentra entre el 20 %, en la recolección óptima el 5 % en gran número de casos o incluso menos. Como se ha dicho casi todos los ejemplares se encontraban dentro de conchas de *Turritella*, pero también se han encontrado en *Aporrhais* y en *Littorina*, en la proporción en que éstas se encontraban en el fondo, así como también dentro de los tubos de serpúlidos, aunque en menor proporción. Dentro de *Dentalium*, no se ha encontrado ningún ejemplar.

Dentro de la concha, el sipuncúlido se encuentra enrollado en espiral, adaptándose a la forma de aquélla (fig. 1), encontrándose situado

![Aspidosiphon clavatus con la trompa evaginada](image)

Fig. 1. *Aspidosiphon clavatus* con la trompa evaginada. Obsérvese el arrollamiento y deformación del cuerpo debido a la permanencia dentro de la concha de un gasterópodo, así como los dos escudos.
bastante hacia el interior de la concha. La abertura de la concha en general está obturada por limo, pero no siempre, a través del cual sale la trompa del animal; este limo, de todas formas, no ejerce función de opérculo, ya que el propio sipuncúlido posee el escudo dorsal que desempeña esta función de forma perfecta, y nunca posee sustancias que lo cementen, como en otras especies. En algunos casos, bastante pocos, se ha encontrado dentro de la concha, y junto con el ejemplar de sipuncúlido, un poliqueto, posiblemente del género *Syllis*.

Prácticamente, en todos los casos, el tamaño del ejemplar se ajusta perfectamente al de la concha que lo aloja, o sea que, a mayor tamaño de la concha, mayor tamaño del ejemplar; los ejemplares en fisuras también procuran alojarse en las de un tamaño al que se ajusten perfectamente, tanto en los de la base de *Microcosmus*, como en los de las formaciones coralinas.

Estudio anatómico externo de los ejemplares

Esta especie de sipuncúlidos posee un gran polimorfismo, y a lo largo del siglo pasado, por dicho motivo se la ha clasificado bajo distintos nombres, por lo que es grande la cantidad de sinonimias; en la actualidad sólo se consideran como variaciones de una sola especie (ver sinonimias).

La longitud de los ejemplares oscila entre 86 milímetros y los 30, con la trompa evaginada, que tiene una longitud de casi tres veces la del cuerpo y es mucho más delgada que éste y de 28 a los 7 milímetros cuando la trompa está retraída, teniendo entonces el cuerpo un aspecto cilíndrico, si no está modificado por la torsión a que lo somete la concha. En general abundan más los ejemplares de tamaño medio y grande.

La coloración del cuerpo es también de una gran variabilidad, encontrándose ejemplares que van desde el gris oscuro, casi negro, a través de toda la gama de grises, hasta tonos blancuzcos, casi totalmente blancos, así como también, aunque en menor proporción, formas de color pardo más o menos oscuro o incluso amarillento.

La trompa es siempre de coloración más clara a medida que se acerca al ápice y tiene estructura granulosa, como el resto del cuerpo. Se encuentra llena de ganchos (uncinas) a lo largo de toda su extensión; los de la parte anterior, dispuestos en filas regulares (en general formas de 10 a 14 filas), son bifidos; y los de la parte posterior, dispuestos de forma totalmente irregular, son sencillos (fig. 2). Algunos autores (Oscar, Schmidt) pensaron encontrar en la disposición de estos ganchos un criterio de diferenciación específica, pero la variabilidad es tan grande, que difícilmente puede considerarse esta proposición.

El cuerpo en las proximidades de los escudos se vuelve más rugoso.
y éstos también presentan una cierta variabilidad, principalmente el dorsal; el escudo terminal en general presenta 16 surcos radiales y el dorsal de forma tronco-cónica muy acusada, posee rugosidades en la parte central, que hacia los lados se transforman en surcos, pero en la variabilidad es mucho mayor que en el escudo terminal.

Los ejemplares que se han conseguido extraer vivos de las conchas, situados en acuarium de agua salada, en cuyo fondo hay piedras y algo de limo, han vivido perfectamente durante dos meses, sin importarles el gran cambio de presión sufrido, ya que los ejemplares procedían de profundidades de más de 100 metros. Como la inmensa mayoría, pero no todos, buscaban refugio debajo de las piedras, es de suponer que huyen de la luz.

![Fig. 2. — Esquemas de los ganchos o uncinas de la trompa de *Aspidosiphon clavatus*; a, b y c, uncinas normales; d y e, uncinas bifidas del extremo superior de la trompa.](image)

Conclusiones

a) Es la especie más abundante.

A la vista de los datos aportados por las muestras, en esta parte de la costa española, la especie continúa siendo la más abundante entre los sipuncúlidos. En Banyuls (P. O. Francia), *Aspidosiphon clavatus* se encuentra en la proporción de 30 a 1 con respecto a las otras especies, y una sola muestra obtenida en Cambrils (Tarragona) confirman la aseveración.

b) La temperatura no les afecta.

Dicha especie se desenvuelve perfectamente a cualquier temperatura, ya que tanto se encuentra a 200 metros de profundidad como a 15 o incluso menos y también vive en un acuarium en que la temperatura es del orden de los 18-20°C.
c) Viven a muy distintas profondidades.

Como ya se ha dicho al hablar de las temperaturas, se los encuentra desde los 12 hasta los 200 metros y según R. SOUTHERN llega hasta más de los 800 metros de profundidad.

d) Prefiere las zonas limosas.

Su constitución anatómica los hace aptos para hallar el alimento entre el limo. Se ha observado que en las muestras en las que sólo había limo la proporción de ejemplares era algo mayor; y en las zonas de poca profundidad donde hay arena o vegetación de algas, su número es francamente escaso.

Sinonimias

Aspidosiphon clavatus (Blainville 1827) - *Sipunculus (Phascolosoma) scutatus* ALDER 1800, Lesina caricmen O. SCHMIDT 1854, *Aspidosiphon mulleri DIESING 1851*, *Aspidosiphon eremita DIESING 1859* (no Ph. eremita de M. SARS), *Aspidosiphon mirabilis ThéEL 1875*, *Aspidosiphon armatum Koren y DANIELSEN 1881*.

Departamento de Zoología (1)
Facultad de Ciencias
Universidad de Barcelona

SUMMARY

On the sea-coast of Blanes (Gerona, Spain) is found *Aspidosiphon clavatus* Blainville, the commonest Sipunculidae in the western Mediterranean Sea. This work explain collection methods and external caracteristics of this worms.

BIBLIOGRAFÍA

(1) Este trabajo se ha beneficiado de la ayuda concedida a la Cátedra de Zoología (invertebrados) con cargo al crédito destinado al fomento de la investigación en la Universidad.
Sobre la nematofauna muscícola
de los Andes venezolanos

por

ENRIQUE GADEA

El material estudiado procede de la cordillera de Mérida (proximidades de Barinitas y Barinas), en la región andina venezolana, a una altitud aproximada de 2000 metros. Fue recolectado por el Dr. B. ANDREU, Director del Instituto de Investigaciones Pesqueras (Barcelona), durante su estancia en aquellos parajes en el verano de 1962, y a quien por ello doy las gracias.

Viene a sumarse esta nota a otros estudios nematodológicos similares hechos por el autor en materiales de otras zonas andinas de Chile y de Perú y de la cordillera Centroamericana (GADEA, 1963, 1965 y 1968).

Las muestras consisten en masas de musgos con algo de substrato. Las condiciones de conservación, excelentes, han permitido el estudio microfaunístico de las mismas. Se ha seguido para ello el procedimiento habitual en el análisis nematodológico, mediante extracción por vía acuosa. Se ha tomado de cada muestra 5 c.c. de material en varias fracciones y en cada caso se han efectuado observaciones a intervalos regulares de 24, 48 y 72 horas. Para la diagnosis y estudio de los ejemplares se han teñido éstos con «cotton blue» (método de Goodey) y se han montado en lactofenol.

Estudio analítico

12-VIII-1962. Masa de musgos con substrato arenoso, deleznable y de naturaleza silícea. Reacción del medio ácida (pH=4.5). Microflora muy pobre, representada sólo por bacterias. Microfauna escasa, sólo formada por ciliados (*Chilodon* y *Colpoda*). Nematofauna:

<table>
<thead>
<tr>
<th>N.º</th>
<th>Especies</th>
<th>♀</th>
<th>juv.</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mesodorylaimus filiformis</td>
<td>11</td>
<td>5</td>
<td>16</td>
</tr>
<tr>
<td>2</td>
<td>Plectus cirratus</td>
<td>15</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>Tylenchus filiformis</td>
<td>14</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>4</td>
<td>Actinolaimus macrolaimus</td>
<td>2</td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N.º</th>
<th>Especies</th>
<th>♀</th>
<th>juv.</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Prionchulus muscorum</td>
<td>24</td>
<td>18</td>
<td>42</td>
</tr>
<tr>
<td>2</td>
<td>Plectus cirratus</td>
<td>15</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>Tylenchus filiformis</td>
<td>5</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>Mesodorylaimus filiformis</td>
<td>4</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>Rhabdolaimus aquaticus</td>
<td>3</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Consideraciones ecológico-faunísticas

La nematocenosis de la primera muestra es típicamente hidrófila, casi acuática; la de la segunda muestra es de tipo muscícola húmedo, a lo sumo embebido, pero no inmerso. En el primer caso, la dominancia está representada casi a partes iguales entre tres especies: *Mesodorylaimus filiformis*, *Plectus cirratus* y *Tylenchus filiformis*, representantes respectivamente de las fracciones bióticas briófaga y fitodetrítófaga. En el segundo caso hay una especie claramente dominante: *Prionchulus muscorum*, seguida de otra subdominante: *Plectus cirratus*; la primera representa una nutrida fracción depredadora de la nematocenosis; la segunda, la fracción detrítófaga. Llama la atención la desproporción entre las fracciones bióticas de ambas comunidades nemáticas; sin embargo en ambas faltan prácticamente las formas típicamente saprobiontes.

En su conjunto, dominan en ambas nematocenosis las formas ecológicamente acuáticas o hidrófilas, pero con pocas especies, incluso las se-
cundarias o accesorias. Sistemáticamente están representados únicamente los Monónquidos, Doriláimidos, Areoláimidos y Tilénquidos, faltando por completo, entre otros, los frecuentes Trilóbidos, Tripípidos, Monhisterídos, Rabdítidos y Cefalóbidos.

Entre los Doriláimidos faltan totalmente los géneros *Dorylaimus* y *Eudorylaimus*, tan comunes en casi todas las nematocenosis; están representados sólo por *Mesodorylaimus filiformis* y *Actinolaimus macroalaimus*, ambas especies típicamente acuáticas. Es posible que en esta restricción y selección de especies influya la alta acidez del medio y escasa proporción de materia orgánica detrítica que se observa en el substrato, efecto tal vez de un acusado lavado del medio.

Faunísticamente no hay ninguna novedad, ya que todas las especies halladas son comunes y propias de estos biotopos. A este respecto pueden verse los trabajos de Micoletzky (1925) y de Loof (1964).

Reseña sistemática

Las especies halladas se distribuyen en seis géneros, cuatro familias y cuatro órdenes. Se reseñan siguiendo el criterio de Filipjev y no el de Chitwood, por ser más filogenético y objetivo.

Orden Mononcoideos (Mononchoidea) Familia Monónquidos (Mononchidae)

Prionchulus muscorum (Dujardin, 1845) Wu & Hoeppli, 1929. — 24 ♂♂ y 18 juv. en la muestra n.° 2. Los ejemplares adultos son de gran tamaño (L=2-3,5 mm) y presentan la armadura bucal muy marcada y típica; en cambio, los ejemplares juveniles la poseen sin la sierra de dentículos (fig. 1).

![Fig. 1. — Prionchulus muscorum (Dujardin, 1845) Wu & Hoeppli, 1929. a, armadura bucal de un ejemplar (♀) adulto; b, armadura bucal de un individuo juvenil.](image-url)
Orden DORILAIMOIDEOS (Dorylaimoidea)
Familia Dorilámidos (Dorylaimidae)
Mesodorylaimus filiformis (Bastian, 1865) n. comb. — 11 ♀♀ y 5 juveniles en la muestra n.º 1; 4 ♀♀ en la n.º 2.

Familia Actinoláimidos (Actinolaimidae)
Actinolaimus macrolaimus (De Man, 1884) Steiner, 1916. — 2 ♀♀ en la muestra n.º 1.

Orden AREOLAIMOIDEOS (Araeolaimoidea)
Familia Pléctidos (Plectidae)
Plectus cirratus Bastian, 1865. — 15 ♀♀ en la muestra n.º 1; 11 ♀♀ en la n.º 2.

Familia Leptoláimidos (Leptolaimidae)
Rhabdolaimus aquaticus De Man, 1880. — 3 ♀♀ en la muestra 2. Individuos muy pequeños (L=0,3 mm) y muy delgados.

Orden TYLENCHOIDEOS (Tylenchoidea)
Familia Tilénquidos (Tylenchidae)
Tylenchus (Filenchus) filiformis Bütschli, 1873 (ndrássy, 1954). — 14 ♀♀ en la muestra n.º 1; 5 ♀♀ en la n.º 2.

Conclusiones

1.° La nematofauna hallada en el material estudiado es típicamente hidrófila y corresponde a un medio muscícola inmerso o embebido. Es relativamente escasa y parca en especies (seis en total).

2.° La nematocenosis incluye una notable proporción de formas depredadoras, así como briófagas y detritófagas, faltando prácticamente, las saprobiontes.

3.° Las especies dominantes son Mesodorylaimus filiformis, Plectus cirratus y Prionchulus muscorum.

4.° Faunísticamente no hay novedades, ya que todas las especies halladas son cosmopolitas y comunes.

Departamento de Zoología (1)
Facultad de Ciencias
Universidad de Barcelona

(1) Este trabajo se ha beneficiado de la ayuda concedida a la Cátedra de Zoología (invertebrados) con cargo al crédito destinado al fomento de la investigación en la Universidad.
SUMMARY

On the moss inhabiting nematofauna of Venezuelan Andes.—In this paper is studied moss inhabiting nematofauna in materials from localities of Cordillera de Mérida (Venezuela), at 2,000 m about. The found nematic fauna appertains to water-bryophile type of nematocoenosis. The dominant species are Mesodorylaimus filiformis, Plectus cirratus and Prionchulus muscorum.

BIBLIOGRAFÍA

por

J. M.ª LOSA

RIVAS-MARTÍNEZ (1969) describe la comunidad *Buxo-Juniperetum phoeniceae*, como propia de la orla de los encinares montanos de Cataluña, e indica que se sitúa en los bordes secos de los enclaves abruptos que presentan los sistemas montañosos, cuyo prototipo es Montserrat (5).

En el ambiente de esta comunidad, aparecen en otoño gran cantidad de macromicetes, pudiéndose destacar las siguientes especies:

- *Geaster tripexus* Jungh.
- *Cortinarius purpurascens* Fr. *forma eumarginata* Henry
- *Polyporus brumalis* (Pers.) Fr.
- *Rhodophyllus undatus* (Fr.) Qué. *var. undatus.*
- *Inocybe euteles* Fr. *ex* Berk.
- *Clavaria cinerea* Fr. *ex* Bull.
- *Helvella crispa* Scop. *ex* Fr.
- *Marasmius alliaeus* (Jacq. *ex* Fr.) Fr.
- *Omphalia graveolens* Petersen.
- *Boletus (Ixoeomus) badius* Fr.
- *Clitocybe infundibuliformis* (Schaeff. *ex* Fr.) Qué.
- *Collybia putilla* (Fr.) Sing.
- *Cortinarius fulmineus* (Fr.) Fr.
- *Inocybe fastigiata* (Schaeff. *ex* Fr.) Qué.
- *Inocybe geophylla* (Sow. *ex* Fr.) Kummer.
- *Russula densifolia* (Secret.) Gillet, etc.

El conjunto de estas especies presentan unas características ecológicas, que merecen ser consideradas brevemente:
Geaster triplex Jungh. Especie propia de bosques xerófilos de pinos, donde suele aparecer en lugares aclarados, que se localiza en el seno de esta comunidad cerca de los vástagos de Juniperus sabina. Sus caracteres macroscópicos, se destacan en la fotografía que ilustra este trabajo.

En centroeuropa, se relaciona con bosques de coniferas. Localizada en el seno de esta asociación, considero pueda ser una característica sociológica.

El estudio de los caracteres morfológicos concuerda con los expuestos en las obras clásicas (3), y el tamaño de las esporas varía entre 4,5-5,5 micra (promedio de diez medidas).

Cortinarius purpurascens Fr. forma eumarginata Henry

El tipo de esta especie es propio de bosques de hojas caducas, sin embargo esta forma eu-marginata (hace referencia a la presencia en los carpóforos de un bulbo netamente marginado), la hemos encontrado repetidas veces en la comunidad reseñada; morfológicamente destaca su coloración azul violácea general, con un tono purpúreo en las laminillas.

Polyporus brumalis (Pers.) Fr. = Leucoporus brumalis (Pers.) Quél.

Especie de ecología saprofita, cuyo micelio forma parte del complejo biológico que realiza la descomposición de restos vegetales lignificados y cuyos cuerpos frutíferos aparecen sobre ramas o troncos depositados en el suelo.

Morfológicamente se caracteriza por presentar un píleo con la cutícula lisa, superficie himenial blanca, y estipe delgado y flocoso.

Rhodophyllus undatus (Fr.) Quél. var. undatus.

Especie saprofita que se desarrolla sobre los abundantes restos húmicos del suelo de esta comunidad, morfológicamente se caracteriza bien por su píleo umbilicado y el color pardo oscuro de sus laminillas y estipe.

Inocybe eutheles Fr. ex Berk.

Especie calícica, de ecología probablemente humícola, pero que puede tener relación con el Juniperus proenicea. Los ejemplares estudiados presentaban un diámetro pileico de 2,3 cm, netamente acampanadomelonado, con la cutícula fibrillosa y agrietada en el margen (2,4).

Clavaria cinerea Fr. ex Bull.

Especie común, que aparece sobre suelos ricos en materia orgánica, se localiza en la zona de contacto con el encinar, cerca del tangle húmico. Morfológicamente queda bien definida por su estipe erguido y poco ramificado.
Helvella crispa Scop. ex Fr.

Especie micorrízica, que se relaciona con diversas coníferas, se caracteriza bien por su hímenio blanquecino y ondulado (1).

Marasmius alliaceus (Jacq. ex Fr.) Fr.

Especie saprófita de amplia dispersión, que aparece sobre restos vegetales lignificados, bien caracterizada por el olor aliáceo de sus cuerpos frutíferos, el largo estipe, de color negro y el píleo blanquecino; fue encontrada en el ambiente de la comunidad reseñada (8).

Omphalia graveolens Peters.

Especie de amplia diseminación, pero que en las localidades estudiadas aparece formando parte del cortejo de la encina (Quercus ilex L.).

Boletus (Xerocomus) badius Fr. = Xerocomus badius (Fr.) Kühner ex Gilbert.

Especie micorrízica, que puede incluirse entre las asociadas al Juniperus phoenicea, si bien no excluye otras relaciones más amplias. Los ejemplares estudiados no alcanzan grandes tamaños; hifas vesiculosas en su cutícula.

Clitocybe infundibuliformis (Schaeff. ex Fr.) Quél.

Especie ampliamente diseminada que considero localmente perteneciente al cortejo de la encina, siendo una de las más frecuentes y constantes.

Collybia putilla (Fr.) Sing. = Marasmius putillus Fr.

Especie que aparece sobre restos vegetales de diversas coníferas y que considero de valor, dentro de las características de esta asociación; la parte basal del estipe suele presentar abundante pruina y restos micélianos que la relacionan con tejidos vegetales húmicos, a los que contribuye a descomponer (8).

Cortinarius fulmineus (Fr.) Fr.

Especie micorrízica relacionada con diversas coníferas y entre ellas con Juniperus phoenicea; se reconoce por su margen pileico anaranjado-amarillento, lo mismo que las laminillas y la presencia de escamas ferrugineas en la superficie del sombrerillo.

Inocybe fastigiata (Schaeff. ex Fr.) Quél.

Pertenece al cortejo de la encina, por lo menos en lo que hace re-
lación al tipo de especie y según los datos deducidos de la flora micológica de Cataluña (2, 4).

Como especie se presenta muy polimórfica, habiendo separado recientemente como subespecie independiente, las formas de ecología arenicola (Heim) Losa-Quintana (6).

Inocybe geophylla (Sow. ex Fr.) Kummer.

Especie de amplia dispersión que se encuentra tanto en los bosques de encinas, como en los bosques de coníferas. Los ejemplares estudiados pertenecen a la var. *lilacina* (Fr.) Heim (4).

Russula densifolia (Secret.) Gillet.

Considero que es propia del cortejo del encinar montano, cuya orla exterior representa la asociación comentada (9).

* * * *

Fig. 1. — Geaster tripexus Jaungh. Fotografía de los ejemplares estudiados.
Sobre Geaster triplex junct

Especies ligadas a la comunidad
Geaster triplex
Cortinarius purpurascens f. eu-margine

Especies del cortejo de la encina
Clitocybe infundibuliformis
Boletus badius
Cellybia putilla
Cortinarius fulmineus
Inocybe fastigiata
Inocybe geophylla
Russula densifolia
Omphalia graveolens

Especies de amplia dispersión
Polyporus brumalis
Rhodophyllus undatus
Inocybe eutheles
Clavaria cinerea
Helvella crispa
Marasmius alliaceus

SUMMARY

In this note are studied the species present in the Geaster triplex Junct., characteristic in the vegetal association Buxo-Juniperetum phoeniceae Riv. Mart., which is typical of Quercus ilex forest in mountains of Catalonia (Spain).

BIBLIOGRAFÍA

Sobre la distribución de micromamíferos del N. E. de la península ibérica, con algunas consideraciones metodológicas

por

VALENTÍN SANS-COMA

Introducción

Según se ha puesto de manifiesto a través de las publicaciones de G. Guerin (7), H. Kahmann y A. Brotzler (8), J. Nadal (11 y 12), X. Palaus (11), M.ª R. Nos (13), M. C. Saint Girons y F. Petter (14), Uttendörfer (15) y J. R. Vericad (17), el estudio de las egagrópilas de ciertas especies avícolas suministra una serie de conocimientos de gran interés sobre la fauna de micromamíferos que habita las zonas donde aquéllas efectúan sus cacerías.

El presente trabajo tiene por objeto aportar algunos datos más, sobre los ya existentes, en relación con la composición faunística de micromamíferos de la región nororiental de la Península Ibérica. Al limitarnos, en nuestro estudio, al campo de los pequeños mamíferos, tan sólo hemos utilizado una parte, la más numerosa, del total de piezas de vertebrados e invertebrados encontradas en las egagrópilas; nos referimos a los cráneos y mandíbulas, los cuales nos han permitido diagnosticar las distintas especies de micromamíferos presentes en los ovillos. Digamos, no obstante, que, entre los especímenes hallados, figuraban restos de aves, reptiles e insectos, generalmente en muy poca cantidad, salvo en las muestras procedentes de una de las localidades —Tona—, las cuales suministraron catorce cráneos de aves.
Material y métodos

Las muestras estudiadas procedían de Radiquero, Alquezar y Huerta (prov. de Huesca), Borjas Blancas, Puig-grós y Cerviá (prov. de Lérida) y Tona (prov. de Barcelona), habiéndose llevado a cabo su recolección durante los meses de julio, agosto y diciembre de 1969 (fig. 1).

El material fue hallado en recintos deshabitados de iglesias y masías, conociéndose con certeza su procedencia específica solamente en los casos de Borjas Blancas y Radiquero, donde se pudo constatar la presencia de lechuzas junto a las egagrópilas. No obstante, es muy probable que los ovillos de las demás localidades perteneciesen también a Tyto alba, pues, tanto en su morfología como en su tamaño, eran muy semejantes a los anteriores y, además, estaban junto a excrementos de aves de dicha especie.

La recolección del material se efectuó separando, ya desde un principio, las egagrópilas conservadas en su totalidad, del material desperdigado, producto de la descomposición de ovillos más antiguos.

La disgregación del material y la limpieza de los especímenes se
SOBRE DISTRIBUCIÓN DE MICROMAMÍFEROS IBÉRICOS

Fig. 2. — Porcentajes de roedores e insectívoros en el material estudiado. a, cráneos; b, mandíbulas totales. — Localidades: A, Alquézar; H, Huerta; R, Radiquero; T, Tona; B, Borjas Blancas; P, Puig-grós; C, Cerviá.
llevó a cabo manualmente, mediante el empleo de un instrumental sen­
cillo, habiéndose eliminado la escoria, que había quedado adherida a los
huesos, con agua oxigenada de diez volúmenes.

Estudio del material

En este apartado tenemos que distinguir dos aspectos, a saber, el
estudio de las egagrópilas bien conservadas y el estudio de los especí­
menes encontrados sueltos, procedentes de otras egagrópilas disgrega-
das por la acción de la intemperie.

Figs. 3 y 4. — Porcentajes de *Apodemus sylvaticus* (III) y de *Mus musculus* (IV).—
a, cráneos; *b*, mandíbulas totales. — Localidades: como en la figura 2.

El primero ofrece la ventaja de poder trabajar con individuos com-
pletos (cráneo y dos mandíbulas); aunque también hemos considerado,
como tales, los representados por alguna de las tres piezas citadas. De
esta forma, nos ha sido posible obtener porcentajes referidos a indivi-
duos de distintas especies.
El segundo lleva consigo la necesidad de clasificar cada pieza por separado, obteniéndose entonces porcentajes de cráneos, por un lado, y de mandíbulas, derechas e izquierdas, por otro.

En nuestro estudio hemos trabajado fundamentalmente con una mezcla de ambas clases de material, lo cual nos ha obligado a tener en cuenta tanto los porcentajes referentes a cráneos, como los correspondientes a mandíbulas. Como se demostrará posteriormente, las series de datos, obtenidas de esta forma, no son todas homogéneas, lo cual es debido a distintas causas que han determinado, que los cráneos y las mandíbulas de los diferentes micromamíferos no hayan llegado a nuestras manos con idéntica facilidad. Esta falta de homogeneidad puede obedecer a la fragilidad de algunos cráneos, o ha podido originarse por la pérdida, en la recolección, de algunas mandíbulas de reducido tamaño. Por todo ello, hemos considerado oportuno mantener, en la ex-
posición de nuestros resultados, la mencionada separación entre los porcentajes de las distintas piezas óseas.

El número de especies de micromamíferos que hemos hallado es muy reducido, distribuyéndose todas ellas entre los órdenes Rodentia e Insectívora. A continuación, daremos una lista de los caracteres más sobresalientes que hemos utilizado para la determinación de los especímenes. Dichos caracteres se refieren fundamentalmente a las estructuras dentarias y a las morfologías craneana y mandibular.

O. Rodentia

F. Muridae: dentición 1/1, 0/0, 0/0, 3/3; molares con los pliegues del esmalte sigmoideos.

Subf. Murinae: molares de crecimiento limitado y tuberculados; tubérculos de los molares superiores colocados en tres filas principales.

Mus musculus Linnaeus, 1758: M₁ y M² con dos tubérculos en el lado interno; corona del M₁ más larga que las del M₂ y del M₃ sumadas; incisivos superiores con la cara opuesta a la arista cortante, quebrada por una muesca patente. M₁ sin un pequeño tubérculo anteromediano y M₂ si un pequeño tubérculo anteroexterno. Siguiendo el criterio de J. R. Ellermann y T. C. S. Morrison-Scott (6), consideramos a Mus spicilegus Thomas, 1901, como una subespecie de Mus musculus.

Rattus Fischer, 1803: M₁ y M₂ con dos tubérculos en el lado interno; la corona del M₁ no es tan larga como las del M₂ y del M₃ sumadas.

Rattus norvegicus Berkenhout, 1769: primera lámina del M₁ y el talón terminal del M₂ sin un tubérculo externo bien diferenciado. M₁ provisto de tres tubérculos principales; M₂ con dos tubérculos principales alargados y otros dos, muy pequeños, en la parte anterior.

Rattus rattus Linnaeus, 1758: primera lámina del M₁ con un tubérculo externo bien diferenciado y, en general, tan grande como el tubérculo interno; el talón terminal del M₂ con un tubérculo externo patente y separado. En el M₁ y en el M₂ los pequeños tubérculos aislados, en posición externa, son más numerosos que en Rattus norvegicus.
Apodemus sylvaticus Linnaeus, 1758: M₁ y M₂ con tres tubérculos en el lado interno. Primera lámina del M₁ con un tubérculo anteromediano; M₂ con un tubérculo anteroexterno bien diferenciado.

Subf. Microtinae: molares prismáticos, de crecimiento continuo.

Pitymys duodecimcostatus de Sélys-Longchamps, 1839: raíces de los incisivos inferiores muy largas, sobrepasando el nivel de los molares. Longitud condilobasal del cráneo menor de 30 mm. M₃ con dos ángulos salientes externos muy pronunciados y un ángulo mediano muy reducido. Incisivos superiores marcadamente proclives.

Arvicola terrestris sapidus Miller, 1908: longitud condilobasal del cráneo mayor de 40 mm; la zona más ancha de los nasales puede llegar a alcanzar la totalidad del rostro. M₁ con el primer triángulo externo y el primer triángulo interno no comunicantes entre sí.

F. Muscardinidae: dentición 1/1, 0/0, 1/1, 3/3; molares braquidontos, con raíces.

Eliomys quercinus Linnaeus, 1766: margen externo del M₁ y del M₂ con dos cúspides altas; coronas de los molares profundamente cóncavas; los dos premolares, superior e inferior, con cúspides altas. Longitud occipital del cráneo de 31 a 37 mm; el bulbo timpánico equivale del 29 al 31 % de la longitud occipital del cráneo.

O. Insectívora

F. Soricidae: M₁ y M₂ con tres o cuatro cúspides de tamaño muy desigual. Incisivo inferior muy alargado según el eje mandibular. Articulación mandibular doble.

Suncus etruscus Savi, 1822: dientes completamente blancos; dientes unicúspides superiores: 4-4.

Crocidura russula Hermann, 1780: dientes completamente blancos; dientes unicúspides superiores: 3-3; longitud de la serie dentaria superior mayor de 8 mm.
Resultados

Los datos obtenidos se han recogido en forma de tablas, en las cuales se expresa la suma de los resultados procedentes del estudio de las egagrópilas y del material disgregado. En ellas, no damos el número de individuos completos, hallado en los ovillos, por representar éste, en la mayoría de las localidades, una fracción muy reducida del material total.

La interpretación de los símbolos es la siguiente: C, cráneos; MI, mandíbulas izquierdas; MD, mandíbulas derechas; MT, mandíbulas totales.

TABLA I

Localidad: Radiquero (prov. de Huesca).
Fecha de recolección: 19 de julio de 1969.
Muestras recogidas en la mansarda de la iglesia de dicha localidad. Se pudo comprobar que las egagrópilas pertenecían a la especie Tyto alba, forma clara.
Cráneos totales: 322.
Mandíbulas totales: 833; izquierdas, 427; derechas, 426.

<table>
<thead>
<tr>
<th></th>
<th>C %</th>
<th>MI %</th>
<th>MD %</th>
<th>MT %</th>
</tr>
</thead>
<tbody>
<tr>
<td>O. Rodentia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F. Muridae</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subf. Murinae</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apodemus sylvaticus</td>
<td>105</td>
<td>32,6</td>
<td>165</td>
<td>38,6</td>
</tr>
<tr>
<td>Mus musculus</td>
<td>50</td>
<td>15,5</td>
<td>92</td>
<td>21,5</td>
</tr>
<tr>
<td>No identificados</td>
<td>.</td>
<td>.</td>
<td>5</td>
<td>1,2</td>
</tr>
<tr>
<td>Subf. Microtinae</td>
<td>7</td>
<td>1,6</td>
<td>7</td>
<td>1,6</td>
</tr>
<tr>
<td>Pitymys duodecimcostatus</td>
<td>94</td>
<td>29,9</td>
<td>99</td>
<td>28,2</td>
</tr>
<tr>
<td>F. Muscardinidae</td>
<td>98</td>
<td>23,1</td>
<td>190</td>
<td>22,3</td>
</tr>
<tr>
<td>Elyomys quercinus</td>
<td>1</td>
<td>0,3</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>O. Insectívora</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F. Soricidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crocidura russula</td>
<td>71</td>
<td>22,1</td>
<td>66</td>
<td>15,5</td>
</tr>
<tr>
<td>Suncus etruscus</td>
<td>1</td>
<td>0,3</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>

El porcentaje entre roedores e insectívoros es el siguiente:
Cráneos: Rodentia: 77,6 %; Insectívora: 22,4 %.
Mandíbulas totales: Rodentia: 85,0 %; Insectívora: 15,0 %.
Localidad: Huerta (prov. de Huesca).
Fecha de recolección: 19 de julio de 1969.
El material fue recolectado en la escalinata del campanario de la iglesia. Su procedencia no pudo ser verificada.
Cráneos totales: 90.
Mandíbulas totales: 197; izquierdas, 97; derechas, 100.

O. Rodentia	Eodentia	%	34,5	37,1	36,0	36,6
F. Muridae	Mus musculus	11	12,2	20,6	17,0	18,8
Subf. Murinae	Arvicola terrestris sapidus	1	1,1	1,0	1,0	1,0
F. Muridae	Pitymys duodecimcostatus	29	32,2	25,8	29,0	27,4
Subf. Microtinae	Eliomys quercinus	1	1,1	1,0	1,0	1,0

El porcentaje entre roedores e insectívoros es el siguiente:
Cráneos: Rodentia: 80,0 %; Insectívora: 20,0 %.
Mandíbulas totales: Rodentia: 84,8 %; Insectívora: 15,2 %.

Localidad: Alquezar (prov. de Huesca).
Fecha de recolección: 19 de julio de 1969.
Las muestras se encontraron en el campanario de la iglesia y a ellas se sumaron unas pocas recolectadas en la Colegiata. La procedencia de los ovillos no se pudo verificar.
Cráneos totales: 28.
Mandíbulas totales: 60; izquierdas, 27; derechas, 33.

O. Rodentia	Eodentia	%	42,8	37,1	39,4	38,2
F. Muridae	Apodemus sylvaticus	12	10,7	6,0	7,0	21,2
Subf. Murinae	Mus musculus	3	10,7	6,0	22,2	13,0
Subf. Microtinae	Pitymys duodecimcostatus	5	17,9	4,0	14,8	18,2
O. Insectívora	Crocidura russula	8	28,6	6,0	22,2	21,7
F. Soricidae	Suncus etruscus	1	3,7	1,0	1,7	

El porcentaje entre roedores e insectívoros es el siguiente:
Cráneos: Rodentia 71,4 %; Insectívora: 28,6 %.
Mandíbulas totales: Rodentia: 76,6 %; Insectívora: 23,4 %.
TABLA IV

Localidad: Borjas Blancas (prov. de Lérida).
Fecha de recolección: 26 de agosto de 1969.
El material fue recolectado en el despán de la masía denominada Mas de l'Aranyó.
Las egagrópilas pertenecían a la especie Tyto alba, forma oscura, lo cual se verificó gracias a la presencia de una hembra, de dicha especie, con su cría compuesta por cuatro polluelos que todavía conservaban el plumón blanco.
Cráneos totales: 1422.
Mandíbulas totales: 3159; izquierdas, 1581; derechas, 1558.

<table>
<thead>
<tr>
<th>O. Rodentia</th>
<th>F. Muridae</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subf. Murinae</td>
<td></td>
</tr>
<tr>
<td>Apodemus sylvaticus</td>
<td>176</td>
</tr>
<tr>
<td>Morganus musculus</td>
<td>718</td>
</tr>
<tr>
<td>Rattus rattus</td>
<td>4</td>
</tr>
<tr>
<td>Rattus norvegicus</td>
<td>1</td>
</tr>
<tr>
<td>Subf. Microtinae</td>
<td></td>
</tr>
<tr>
<td>Arvicola terrestris</td>
<td>310</td>
</tr>
<tr>
<td>Pitymys duodecimcostatus</td>
<td>1</td>
</tr>
<tr>
<td>F. Muscardinidae</td>
<td></td>
</tr>
<tr>
<td>Eliomys quercinus</td>
<td>175</td>
</tr>
<tr>
<td>Mus musculus</td>
<td>87</td>
</tr>
<tr>
<td>Rattus norvegicus</td>
<td>1</td>
</tr>
</tbody>
</table>

El porcentaje entre roedores e insectívoros es el siguiente:
Cráneos: Rodentia: 85,1 %; Insectívora: 14,9 %.
Mandíbulas totales: Rodentia: 87,4 %; Insectívora: 12,6 %.

TABLA V

Localidad: Puig-grós (prov. de Lérida).
Fecha de recolección: 26 de agosto de 1969.
El material se encontró en la mansarda de la iglesia de dicha población. Los ovillos pertenecían seguramente a la especie Tyto alba, cuya nidificación en este lugar se había comprobado tiempo atrás, pero que, en la actualidad, ya no es posible por haber quedado cerradas todas las entradas al recinto, debido a las reformas efectuadas en el edificio.
Cráneos totales: 162.
Mandíbulas totales: 359; izquierdas: 176; derechas: 183.

<table>
<thead>
<tr>
<th>O. Rodentia</th>
<th>F. Muridae</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subf. Murinae</td>
<td></td>
</tr>
<tr>
<td>Apodemus sylvaticus</td>
<td>96</td>
</tr>
<tr>
<td>Morganus musculus</td>
<td>1</td>
</tr>
<tr>
<td>Rattus rattus</td>
<td>26</td>
</tr>
<tr>
<td>Subf. Microtinae</td>
<td></td>
</tr>
<tr>
<td>Arvicola terrestris</td>
<td>29</td>
</tr>
<tr>
<td>Pitymys duodecimcostatus</td>
<td>2</td>
</tr>
</tbody>
</table>

El porcentaje entre roedores e insectívoros es el siguiente:
Cráneos: Rodentia: 80,9 %; Insectívora: 19,1 %.
Mandíbulas totales: Rodentia: 82,2 %; Insectívora: 17,8 %.
SOBRE DISTRIBUCIÓN DE MICROMAMÍFEROS IBÉRICOS

TABLA VI

<table>
<thead>
<tr>
<th>Cráneos</th>
<th>Mandíbulas izquierdas</th>
<th>Mandíbulas derechas</th>
</tr>
</thead>
<tbody>
<tr>
<td>O. Rodentia</td>
<td>17</td>
<td>42</td>
</tr>
<tr>
<td>F. Muridae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subf. Murinae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apodemus sylvaticus</td>
<td>9</td>
<td>22</td>
</tr>
<tr>
<td>Pitymys duodecimcostatus</td>
<td>6</td>
<td>16</td>
</tr>
<tr>
<td>O. Insectívora</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F. Soricidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crocidura russula</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

El porcentaje entre roedores e insectívoros es el siguiente:
Cráneos: Rodentia: 88,2 %; Insectívora: 11,8%.
Mandíbulas totales: Rodentia: 90,5 %; Insectívora: 9,5 %.

TABLA VII

<table>
<thead>
<tr>
<th>Cráneos</th>
<th>Mandíbulas izquierdas</th>
<th>Mandíbulas derechas</th>
</tr>
</thead>
<tbody>
<tr>
<td>O. Rodentia</td>
<td>578</td>
<td>1151</td>
</tr>
<tr>
<td>F. Muridae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subf. Murinae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apodemus sylvaticus</td>
<td>19</td>
<td>44</td>
</tr>
<tr>
<td>Mus musculus</td>
<td>128</td>
<td>299</td>
</tr>
<tr>
<td>Rattus rattus</td>
<td>11</td>
<td>18</td>
</tr>
<tr>
<td>Subf. Microtinae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pitymys duodecimcostatus</td>
<td>269</td>
<td>497</td>
</tr>
<tr>
<td>O. Insectívora</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F. Soricidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crocidura russula</td>
<td>146</td>
<td>285</td>
</tr>
<tr>
<td>Suncus etruscus</td>
<td>5</td>
<td>8</td>
</tr>
</tbody>
</table>

El porcentaje entre roedores e insectívoros es el siguiente:
Cráneos: Rodentia: 73,8 %; Insectívora: 26,2 %.
Mandíbulas totales: Rodentia: 74,6 %; Insectívora: 25,4 %.
Tan sólo en dos localidades—Borjas Blancas y Tona—hemos encontrado un número suficiente de egagrópiles completamente conservadas, que nos permita establecer comparaciones con los datos anteriormente citados. Los resultados, obtenidos de esta forma, están expuestos en las tablas VIII y IX.

TABLA VIII

Localidad: Borjas Blancas.
Individuos totales: 724.

<table>
<thead>
<tr>
<th>Clase</th>
<th>n.° individuos</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rodentia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F. Muridae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subf. Murinae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apodemus sylvaticus</td>
<td>82</td>
<td>11,3</td>
</tr>
<tr>
<td>Mus musculus</td>
<td>422</td>
<td>58,3</td>
</tr>
<tr>
<td>Rattus rattus</td>
<td>1</td>
<td>0,2</td>
</tr>
<tr>
<td>Subf. Microtinae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pitymys duodecimcostatus</td>
<td>119</td>
<td>16,4</td>
</tr>
<tr>
<td>Insectívora</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F. Soricidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crocidura russula</td>
<td>82</td>
<td>11,3</td>
</tr>
<tr>
<td>Suncus etruscus</td>
<td>18</td>
<td>2,5</td>
</tr>
</tbody>
</table>

El porcentaje entre roedores e insectívoros es el siguiente:
Rodentia: 86,2 %; Insectívora: 13,8 %.

TABLA IX

Localidad: Tona.
Individuos totales: 346.

<table>
<thead>
<tr>
<th>Clase</th>
<th>n.° individuos</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rodentia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F. Muridae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subf. Murinae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apodemus sylvaticus</td>
<td>8</td>
<td>2,3</td>
</tr>
<tr>
<td>Mus musculus</td>
<td>109</td>
<td>31,5</td>
</tr>
<tr>
<td>Rattus rattus</td>
<td>2</td>
<td>0,6</td>
</tr>
<tr>
<td>Subf. Microtinae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pitymys duodecimcostatus</td>
<td>122</td>
<td>35,3</td>
</tr>
<tr>
<td>Insectívora</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F. Soricidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crocidura russula</td>
<td>101</td>
<td>29,2</td>
</tr>
<tr>
<td>Suncus etruscus</td>
<td>4</td>
<td>1,1</td>
</tr>
</tbody>
</table>

El porcentaje entre roedores e insectívoros es el siguiente:
Rodentia: 69,7 %; Insectívora: 30,3 %.
Discusión

Tras haber realizado una prueba matemática para averiguar la homogeneidad de las series de datos referentes a cráneos y mandíbulas totales, de cada una de las tablas expuestas (I-VII), hemos obtenido los siguientes valores para x^2:

<table>
<thead>
<tr>
<th>tabla</th>
<th>grados de libertad</th>
<th>valor de x^2</th>
<th>probabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>6</td>
<td>27.770</td>
<td>menor de 0,01</td>
</tr>
<tr>
<td>II</td>
<td>6</td>
<td>2.039</td>
<td>entre 0,90 y 0,95</td>
</tr>
<tr>
<td>III</td>
<td>4</td>
<td>2.221</td>
<td>entre 0,50 y 0,70</td>
</tr>
<tr>
<td>IV</td>
<td>8</td>
<td>19.620</td>
<td>entre 0,01 y 0,02</td>
</tr>
<tr>
<td>V</td>
<td>6</td>
<td>0.915</td>
<td>entre 0,98 y 0,99</td>
</tr>
<tr>
<td>VI</td>
<td>2</td>
<td>0.086</td>
<td>entre 0,95 y 0,98</td>
</tr>
<tr>
<td>VII</td>
<td>5</td>
<td>4.021</td>
<td>entre 0,50 y 0,70</td>
</tr>
</tbody>
</table>

De estos valores podemos deducir que el estudio conjunto de ega-grópilas, totalmente conservadas y disgregadas, obliga a considerar los resultados por separado, ya que, entre los mismos, pueden darse diferencias significativas. Tal es el caso de las tablas I y IV, que corresponden a dos de las localidades que han suministrado mayor cantidad de material.

El estudio matemático nos permite calcular también los valores teóricos, para cada especie, correspondientes a series homogéneas, y, mediante la comparación de dichos valores teóricos con las cifras reales obtenidas, es posible discutir la falta de homogeneidad que presentan nuestros resultados.

En la tabla X están expuestas las cantidades teóricas de cráneos y mandíbulas totales, de las cinco especies que hemos encontrado con mayor abundancia, calculadas para series homogéneas.

| TABLA X |
|------------------|------------------|
| **Apodemus sylvaticus** |
TABLA	**CRÁNEOS TEÓRICOS**	**MANDÍBULAS TOTALES TEÓRICAS**
I	120.6	319.4
II	82.3	70.7
III	11.1	23.9
IV	180.5	393.0
V	5.9	13.1
VI	8.9	22.1
VII	21.1	41.9
Mus musculus

<table>
<thead>
<tr>
<th>TABLA</th>
<th>CRÁNEOS TEÓRICOS</th>
<th>MANDÍBULAS TOTALES TEÓRICAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>65.8</td>
<td>174.2</td>
</tr>
<tr>
<td>II</td>
<td>15.0</td>
<td>32.9</td>
</tr>
<tr>
<td>III</td>
<td>5.1</td>
<td>11.0</td>
</tr>
<tr>
<td>IV</td>
<td>766.6</td>
<td>1692.3</td>
</tr>
<tr>
<td>V</td>
<td>99.2</td>
<td>219.8</td>
</tr>
<tr>
<td>VI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VII</td>
<td>142.7</td>
<td>284.3</td>
</tr>
</tbody>
</table>

Pytymys duodecimcostatus

<table>
<thead>
<tr>
<th>TABLA</th>
<th>CRÁNEOS TEÓRICOS</th>
<th>MANDÍBULAS TOTALES TEÓRICAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>77.3</td>
<td>204.7</td>
</tr>
<tr>
<td>II</td>
<td>26.0</td>
<td>57.0</td>
</tr>
<tr>
<td>III</td>
<td>4.8</td>
<td>10.2</td>
</tr>
<tr>
<td>IV</td>
<td>282.8</td>
<td>624.2</td>
</tr>
<tr>
<td>V</td>
<td>24.9</td>
<td>55.1</td>
</tr>
<tr>
<td>VI</td>
<td>6.3</td>
<td>15.7</td>
</tr>
<tr>
<td>VII</td>
<td>256.1</td>
<td>509.9</td>
</tr>
</tbody>
</table>

Crocidura russula

<table>
<thead>
<tr>
<th>TABLA</th>
<th>CRÁNEOS TEÓRICOS</th>
<th>MANDÍBULAS TOTALES TEÓRICAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>54.3</td>
<td>143.7</td>
</tr>
<tr>
<td>II</td>
<td>14.1</td>
<td>30.9</td>
</tr>
<tr>
<td>III</td>
<td>6.9</td>
<td>14.3</td>
</tr>
<tr>
<td>IV</td>
<td>163.4</td>
<td>360.6</td>
</tr>
<tr>
<td>V</td>
<td>27.6</td>
<td>61.4</td>
</tr>
<tr>
<td>VI</td>
<td>1.7</td>
<td>4.3</td>
</tr>
<tr>
<td>VII</td>
<td>144.1</td>
<td>286.9</td>
</tr>
</tbody>
</table>

Suncus etruscus

<table>
<thead>
<tr>
<th>TABLA</th>
<th>CRÁNEOS TEÓRICOS</th>
<th>MANDÍBULAS TOTALES TEÓRICAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>0.5</td>
<td>1.5</td>
</tr>
<tr>
<td>II</td>
<td>0.6</td>
<td>1.4</td>
</tr>
<tr>
<td>III</td>
<td>0.3</td>
<td>0.7</td>
</tr>
<tr>
<td>IV</td>
<td>26.2</td>
<td>57.8</td>
</tr>
<tr>
<td>V</td>
<td>1.9</td>
<td>4.1</td>
</tr>
<tr>
<td>VI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VII</td>
<td>4.3</td>
<td>8.7</td>
</tr>
</tbody>
</table>
De esta forma, hemos comprobado, por una parte, que en las seis localidades, en las que se presenta *Mus musculus*, siempre hay un déficit de cráneos de dicha especie respecto al número teórico obtenido y también respecto a la mitad del número de mandíbulas hallado.

Por otra parte, la cantidad de mandíbulas de *Crocidura russula* es siempre inferior al número teórico calculado y, en casi todos los casos, inferior al doble de la cifra de cráneos encontrada. Otro tanto ocurre con *Suncus strucus*, con una excepción que corresponde a la tabla III, en la cual se cita el hallazgo tan sólo de una mandíbula.

Salvo en un caso (tabla VI), los cráneos de *Pitymys duodecimcostatus* encontrados superan el valor teórico, en tanto que las mandíbulas presentan un déficit respecto al mismo; estas diferencias parecen estar empero bastante influenciadas por las halladas en las especies antes citadas, ya que, en general, hay una correspondencia bastante aceptable (1 : 2) entre la cantidad de cráneos y de mandíbulas suministrada por el material estudiado.

En *Apodemus sylvaticus* las diferencias, positivas o negativas, respecto a las cifras teóricas suelen alternar, aunque es más frecuente que los cráneos estén en ligero déficit respecto a las mandíbulas.

Las demás especies encontradas apenas si se pueden tener en cuenta en estas consideraciones, dada la poca frecuencia con que se han presentado.

En relación con estas diferencias expuestas diremos que, al preparar el material, hemos podido comprobar la gran fragilidad de algunos cráneos, ante todo los de *Mus musculus*, por lo cual es lógico pensar que, al descomponerse las egagrópilas de forma natural, muchos de ellos se destruyan. También nos parece muy verosímil el hecho de que, durante la recolección del material disgregado, las pequeñas mandíbulas de los insectívoros se pierdan con facilidad o incluso se rompan.

Posteriormente, hemos realizado una comparación matemática de los datos pertenecientes a las tablas de Borjas Blancas (IV, VIII) y de Tona (VII, IX), la cual arroja los siguientes resultados:

<table>
<thead>
<tr>
<th>TABLAS</th>
<th>ESPECÍMENES</th>
<th>GRADOS DE LIBERTAD</th>
<th>VALOR DE x^2</th>
<th>PROBABILIDAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV, VIII</td>
<td>cráneos</td>
<td>7</td>
<td>15,526</td>
<td>entre 0,02 y 0,05</td>
</tr>
<tr>
<td>IV, VIII</td>
<td>mandíbulas</td>
<td>7</td>
<td>8,163</td>
<td>entre 0,30 y 0,50</td>
</tr>
<tr>
<td>VII, IX</td>
<td>cráneos</td>
<td>5</td>
<td>18,741</td>
<td>menor de 0,01</td>
</tr>
<tr>
<td>VII, IX</td>
<td>mandíbulas</td>
<td>5</td>
<td>13,427</td>
<td>menor de 0,02</td>
</tr>
</tbody>
</table>

Las series de datos que se han comparado corresponden a cráneos y número de individuos o a mandíbulas totales y número de individuos, según se indica en cada caso.
A lo largo del proceso matemático, del que se desprende la falta de homogeneidad existente entre las series comparadas, hemos obtenido también los valores teóricos para las distintas piezas de cada especie, mediante los cuales podemos discutir las diferencias que se presentan entre el estudio de los ovillos enteros y el de una mezcla de regurgitaciones enteras y disgregadas.

Mus musculus se encuentra en mayor proporción cuando se trata de egagrópilas totalmente conservadas, lo cual corrobora el hecho de que, cuando operamos con ovillos disgregados, el déficit numérico, correspondiente a los huesos cefálicos de dicha especie, se debe a la destrucción de los mismos, seguramente por acción de la intemperie. Lo mismo ocurre con *Crocidura russula* y *Suncus etruscus*, pero en proporciones menores, acusándose más esta diferencia negativa si se trata de mandíbulas. *Apodemus sylvaticus* y *Pitymys duodecimcostatus*, en cambio, se hallan en proporciones inferiores si trabajamos solamente con ovillos enteros.

Tenemos que aclarar, que estas diferencias, negativas o positivas, se obtienen tanto comparando las dos clases de material indicadas, como operando con las cifras, procedentes del estudio de egagrópilas enteras, y los valores teóricos.

Por último, destacaremos la ausencia de algunas especies en los ovillos no disgregados (en nuestro caso: *Rattus norvegicus, Arvicola terrestris sapidus* y *Eliomys quercinus*), lo cual obliga a no despreciar el material disgregado, al que se podría considerar, tras este estudio, como inductor de errores.

Al abordar la cuestión de la distribución de los micromamíferos, a partir de los datos obtenidos, resulta evidente que, de las siete localidades estudiadas, cuatro nos suministran una información suficiente para elaborar algunas conclusiones sobre la abundancia relativa de algunas especies en dichas zonas, en tanto que las otras tres se limitan a aportarnos conocimientos de tipo complementario.

En líneas generales, se aprecia la presencia constante de cinco especies (*Apodemus sylvaticus, Mus musculus, Pitymys duodecimcostatus, Crocidura russula* y *Suncus etruscus*), hecho en el que debe jugar un papel importante el efecto selectivo ejercido por las aves depredadoras; las demás especies, cuando se las encuentra, están en porcentajes muy reducidos.

Apodemus sylvaticus, que suele preferir los lugares generalmente abiertos, tales como zonas campestres no muy ricas en agua, márgenes de pequeños bosques y áreas de matorral bajo, se halla en porcentajes elevados en las localidades oscenses, en las que los cultivos de trigo, viñas y olivo, lindan con zonas pedregosas de matorral bajo, y también en Cerviá, donde los viñedos se distribuyen entre pequeñas áreas de bosque. No obstante, los datos procedentes del estudio de las egagrópilas
recolectadas en esta última localidad no se pueden tener muy en cuen-
ta, dada la poca cantidad de material de la que dispusimos. En las lo-
calidades restantes los porcentajes disminuyen, en general de forma
paralela a un aumento de especímenes de Mus musculus, por tratarse
de núcleos urbanos bastante poblados.

Mus musculus puede encontrarse en lugares campestres, de matorral
bajo o de bosque, pero también suele abundar mucho en las poblacio-
nes humanas, lo cual se manifiesta en Borjas Blancas y en Puig-grós,
donde los porcentajes superan el 50 %. Esta especie no ha podido ser
citada en Cerviá, aunque ello se deberá con toda seguridad a la escasez
de especímenes recolectados. En Tona, la disminución del porcentaje de
Mus musculus, respecto a otras poblaciones humanas, posiblemente ven-
ga condicionado por el elevado número de ejemplares de Pitymys duode-
cicostatus encontrados.

Pitymys duodecicostatus suele residir en lugares algo húmedos, de
cultivo, aunque también se presenta en zonas campestres. El porcentaje
más elevado corresponde a Tona, donde son frecuentes las plantaciones
de forrajes y solanáceas, así como las pequeñas huertas. En las demás
localidades, salvo en el caso poco revelador de Cerviá, los porcentajes,
para esta especie, se mantienen alrededor del 22 al 23 %.

Crocidura russula es el insectívoror que hemos hallado con mayor
abundancia, siendo sus porcentajes bastante uniformes dentro del con-
junto, de localidades, estudiado. Las cifras oscilan entre un 11 y un
29 %, para los cráneos, y entre un 9 y un 25 %, para las mandíbulas

Suncus etruscus lo hemos encontrado en todas las muestras, salvo en
las de Cerviá, pero siempre en proporciones muy reducidas.

Los especímenes del género Rattus se han presentado en muy poca
cantidad y, tan sólo, en las zonas más pobladas, como son Borjas Blan-
cas, Puig-grós y Tona, dominando en ellas la especie R. rattus.

Arvicola terrestris sapidus, que habita en lugares cercanos al agua,
debe ser, al igual que Rattus, una presa algo difícil para la lechuza, dado
su tamaño, y solamente lo hemos hallado esporádicamente.

Eliomys quercinus ha podido ser citado en dos localidades de la
provincia de Huesca y en Borjas Blancas.

Los porcentajes de roedores e insectívoros se ajustan perfectamente
a los obtenidos por J. Nadal (11 y 12), X. Palau (11) y J. R. Veri-
cad (17), variando para los del último orden entre un 11,8 % y un
28,6 %, si se trata de cráneos, y entre un 9,5 % y un 25,4 %, si se
refieren a mandíbulas.

Tenemos que destacar que, en el presente estudio, no hemos encon-
trado ningún especimen perteneciente a los géneros Clethrionomys, So-
rex, Neomys y Talpa, bien representados en nuestra fauna y citados
en los trabajos de J. Nadal (11 y 12), X. Palau (11) y J. R. Veri-
cad (17).
Conclusiones

Las especies de micromamíferos que hemos encontrado con mayor frecuencia son las siguientes: *Apodemus sylvaticus*, *Mus musculus*, *Pitymys duodecimcostatus*, *Crocidura russula* y *Suncus etruscus*; las demás especies se presentan en porcentajes muy reducidos, fenómeno en el cual debe jugar un papel de gran importancia el efecto selectivo que ejercen las aves depredadoras al dar caza a sus presas, además de su abundancia.

La abundancia relativa de cada especie en las distintas localidades estudiadas está en correspondencia con las características ecológicas de las mismas.

Los niveles de equilibrio entre roedores e insectívoros están comprendidos entre los hallados por J. Nadal, X. Palaus y J. R. Vericad en otras localidades de la región nororiental de la Península Ibérica.

Los cálculos matemáticos realizados han demostrado la falta de homogeneidad de las series de datos obtenidas, lo cual nos ha inducido a exponer, por separado, los resultados referentes al estudio de egagrópilas enteras y los correspondientes al material disgregado por la acción de la intemperie.

Las diferencias encontradas, entre los distintos porcentajes, vienen seguramente determinadas por la destrucción de algunas piezas, debida a la acción de la intemperie, o por la pérdida de algunas de ellas, en la recolección del material.

Departamento de Zoología (1)
Facultad de Ciencias
Universidad de Barcelona

(1) Este trabajo se ha beneficiado de la ayuda con cargo al crédito destinado al fomento de la investigación en la Universidad.
ZUSAMMENFASSUNG

Bei dieser Arbeit haben wir die Kleinsäugerartiere, die in vollständig erhaltenen und zerteilten Gewöllemäuse eingeschlossen waren, behandelt. Die Gewöllemäuse stammen aus sieben Ortschaften, die im Nordosten von der spanischen Halbinsel gelegen sind.

Die Arten von Kleinsäugertieren, welche wir am häufigsten angetroffen haben, waren: Apodemus sylvaticus, Mus musculus, Pytymys duodecimcostatus, Crocidura russula und Suncus etruscus; die anderen Arten waren in geringeren Prozentsätzen vorhanden.

Die relative Menge jeder Art, in den verschiedenen studierten Ortschaften, war mit den oekologischen Charakteristiken übereinstimmend.

Die mathematischen Berechnungen, die wir gemacht haben, zeigten, dass die Serien der Daten, welche wir bekamen, nicht homogen waren. Deshalb haben wir die Resultate unseres Studiums, von vollständig erhaltenen Gewöllemäusen und zerteilten, getrennt angegeben.

Die gefundenen Unterschiede zwischen den einzelnen Prozentsätzen sind sicherlich bestimmt durch die Zerstörung einiger Knochenstücke, was auf die Tätigkeit des Unwetters zurückzuführen ist, oder auch durch den Verlust einiger von ihnen, während der Materialsammlung.

BIBLIOGRAFÍA

Índice

TOMO XL

Junio 1966

<table>
<thead>
<tr>
<th>Autor(es)</th>
<th>Título</th>
<th>Págs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>M.ª Angeles González Nicolás</td>
<td>Influencia de la alimentación sobre el ciclo de longevidad de Anagasta kühniella (Zell.)</td>
<td>5</td>
</tr>
<tr>
<td>Joaquín Templado</td>
<td>Larvas de Paranthrene tabaniiformis Rott. en madera seca</td>
<td>29</td>
</tr>
<tr>
<td>A. Caballero, J. Andrés, J. F. Aguilá y M. Berbel</td>
<td>Invernadero de plástico adecuado para el cultivo del clavel en la comarca de El Maresme (Barcelona)</td>
<td>33</td>
</tr>
<tr>
<td>Juan Isart</td>
<td>Algunos datos acerca de un «topillo» que ataca a la remolacha: Pitymys ibericus (Gerbe)</td>
<td>59</td>
</tr>
<tr>
<td>F. Español</td>
<td>Interesantes descubrimientos biospeleológicos en la provincia de Castellón</td>
<td>67</td>
</tr>
<tr>
<td>Antonio Vidal</td>
<td>Estudio biológico de las islas Pitiusas: Anfibios</td>
<td>81</td>
</tr>
<tr>
<td>Martín Nadal Puigdefàbregas</td>
<td>Estudio comparativo de las especies Alternaria dianthi Stevens et Hall y Alternaria dianthicola Neerg.</td>
<td>113</td>
</tr>
<tr>
<td>Jorge F. Aguilá y Montserrat Ubach</td>
<td>Acción de los herbicidas en los cultivos tardíos de gladiolo en El Maresme</td>
<td>129</td>
</tr>
<tr>
<td>Jaime Bech Borrás</td>
<td>Percolador automático con capacidad para regular condiciones edáficas o de meteorización</td>
<td>135</td>
</tr>
<tr>
<td>Enrique Gadea</td>
<td>Sobre la biocenótica de los nematodos terrestres</td>
<td>145</td>
</tr>
<tr>
<td>María Ramella</td>
<td>Contribución al estudio de los Opiliones de la fauna ibérica. Sobre el género Denticacheus Rambla 1956. Descripción de Denticacheus minor n. sp.</td>
<td>153</td>
</tr>
</tbody>
</table>

TOMO XLI

Diciembre 1966

<table>
<thead>
<tr>
<th>Autor(es)</th>
<th>Título</th>
<th>Págs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>José M.ª Rey</td>
<td>Aspectos del mecanismo de acción de los insecticidas</td>
<td>5</td>
</tr>
<tr>
<td>Francisco Castelló</td>
<td>Sobre algunos aspectos de la anatomía de los Políplocóforos</td>
<td>41</td>
</tr>
<tr>
<td>F. Español</td>
<td>Los Peterostigíquidos cavernícolas de la Península Ibérica e Islas Baleares (col. Carabóideas)</td>
<td>49</td>
</tr>
<tr>
<td>M.ª Concepción Rigau</td>
<td>Correlaciones de los pigmentos foliares con el crecimiento y la producción</td>
<td>69</td>
</tr>
<tr>
<td>Título</td>
<td>Autor</td>
<td>Páginas</td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>Sobre la filogenia de los Cnidarios, particularmente la de la clase de los Antozoos</td>
<td>Miguel de Renzi</td>
<td>89</td>
</tr>
<tr>
<td>Contribución al conocimiento de los circulióonidos del Mediterráneo occidental</td>
<td>Manuel González</td>
<td>103</td>
</tr>
<tr>
<td>Sobre la presencia de Oniscus asellus var. jaccestanus en el Pirineo aragonés</td>
<td>Fernando Pablo</td>
<td>109</td>
</tr>
</tbody>
</table>

TOMO XLII

Julio 1967

JACINTO NADAL Y XAVIER PALAUS. — Micromamíferos hallados en egagrópilas de Tyto alba.

Manuel González. — El género Orthochaetes German (Col. Curculionidae).

B. H. Dussart. — Contribution à l'étude des Copépodes d'Espagne.

S. Rivas-Martínez. — Algunas notas taxonómicas sobre la flora española.

Traian Ceaca. — Contributions à la connaissance de la faune des diplopodes cavernicoles d'Espagne.

María Rambla. — Contribución al estudio de los Opiliones de la Fauna Ibérica. Descripción de una n. sp. de Diceranopalpus Doleschall 1862 (Opiliones Paltofores).

TOMO XLIII

Diciembre 1967

M. DE RENZI DE LA FUENTE. — Estudio de la variabilidad individual en los distintos estadios de crecimiento en el gasterópodo Bittium reticulatum da Costa.

Fernando Pablo. — Sobre la presencia de Gluvia dorsalis; var. conquensis en los puertos de Contreras (Cuenca).

María Rambla. — Contribución al conocimiento de los Opiliones de la Fauna ibérica. Sobre Eudasylobus nicacensis (Thorell 1879).

Montserrat Urach y Jorge F. Aguila. — La eliminación de las malas hierbas en los cultivos de Dianthus cariophyllus L. II. Méthodes aplicados en la actualidad.

L. VALLMITJANA. — Sobre ciertos corpúsculos de las neuronas.

S. Rivas-Martínez. — Lino-Genistetum pumilae, nueva asociación del piso mediterráneo ibérico de parámera.

F. Español. — Notas sobre anóbitos (Coleoptera).

Andrés de Haro. — Picenogónidos de la fauna española. Picenogónidos de las posidionias de Blanes (Gerona).

Enrique Gadea. — Sobre la nematofauna muscícola del Atlas marroquí.
TOMO XLVII

Diciembre 1969

<table>
<thead>
<tr>
<th>Autor</th>
<th>Título</th>
<th>Págs</th>
</tr>
</thead>
<tbody>
<tr>
<td>José Antonio Arroyo Merino</td>
<td>Estudio de la flora bacteriana presente en la gamba (Parapenaeus longirostris) de consumo en Madrid</td>
<td>5</td>
</tr>
<tr>
<td>Enrique Gadea</td>
<td>La nematocesión típica de los medios muscineos montanos centrobéricos</td>
<td>75</td>
</tr>
<tr>
<td>Manuel González</td>
<td>Sobre el género Phaenotherium Friv. (Col. Anthribidae)</td>
<td>79</td>
</tr>
<tr>
<td>María Rambla</td>
<td>Contribución al estudio de los Opiliones de la Fauna Ibérica. Una n. sp. del Gén. Nemastoma, grupo baciliforme, de la Península Ibérica (Opiliones. Fam. Nemastomatidae)</td>
<td>89</td>
</tr>
<tr>
<td>F. Español</td>
<td>— Notas sobre anfibios (Col.)</td>
<td>97</td>
</tr>
<tr>
<td>Christian P. Vivares et Manuel Rubio</td>
<td>Protozoa parasites de Crustacea Decapoda Brachyura de la côte nordest de l’Espagne</td>
<td>111</td>
</tr>
<tr>
<td>J. P. Mauriès</td>
<td>Myriapodes de Sierra Nevada (Espagne). Une nouvelle espèce du genre Ceratosphys Ribaut, 1920 (Diplopoda)</td>
<td>131</td>
</tr>
</tbody>
</table>
OTRAS REVISTAS SOBRE BIOLOGÍA

ANALES DE BROMATOLOGÍA. — Publicación de la Sociedad Española de Bromatología. Recoge esta revista los trabajos sobre alimentos efectuados en diversos Institutos del Consejo Superior de Investigaciones Científicas. — Trimestral. Ejemplar, pesetas 35. Subscripción, pesetas 120.

ANALES DEL JARDÍN BOTÁNICO DE MADRID. — Publica trabajos y notas científicas que abarcan todos los campos de la botánica. — Anual. Subscripción, 100 pesetas. Número atrasado, 110 pesetas.

ANTROPOLOGÍA Y ETNOLOGÍA. — Publicación del Instituto «Bernardino de Sahagún». Revista dedicada a la Antropología, Etnología y en general a las Ciencias del Hombre; Trabajos originales; Noticieros; Reseñas bibliográficas. — Semestral. Ejemplar, 60 pesetas. Subscripción, 100 pesetas.

ARCHIVO DE LA SOCIEDAD OPTOMOLÓGICA HISPANOAMERICANA. — Son sus colaboradores todos los miembros de la Sociedad Oftalmológica, sin que ello excluya otras colaboraciones, y sus páginas se ven honradas con la aportación de los médicos, naturalistas, físicos, químicos y, en general, de todo cuanto pueda contribuir al mejor conocimiento de esta ciencia. — Mensual. Ejemplar, 20 pesetas. Subscripción, 210 pesetas.

ARCHIVO DE MEDICINA EXPERIMENTAL. — Publicación del Instituto Nacional de Ciencias Médicas. En esta revista, ilustrada con numerosas fotografías de los casos de experimentación, se reúnen todos los trabajos que se realizan en las distintas Secciones del Instituto Nacional de Ciencias Médicas. — Cuatrimestral. Ejemplar, 30 pesetas. Subscripción, 75 pesetas.

BOLETÍN DE LA REAL SOCIEDAD ESPAÑOLA DE HISTORIA NATURAL. — Publicación del Instituto «José de Acosta». — Se publican 5 números al año. Subscripción, 200 pesetas.

REVISTA ESPAÑOLA DE FISIOLOGIA. — Publica trabajos de investigación sobre temas de Fisiología humana, normal y patológica. Fisiología animal y comparada y Bioquímica. Inserta, a continuación de los originales, un resumen de los mismos en idiomas extranjeros. La sección de libros recibidos publica notas críticas de cuentos, españoles o extranjeros, se envían a la redacción de la revista. — Trimestral. Subscripción anual, 400 pesetas.

Galenica Acta. — Publicación del Laboratorio de Farmacia Galénica. — Recoge en sus páginas la investigación realizada sobre temas que interesan a farmacéuticos y médicos, ocupándose en la correcta preparación y valoración de los medicamentos y en el de las formas farmacéuticas apropiadas para su administración, y abarca un amplio conjunto de cuestiones relacionadas con la Química, Farmacognosia, Terapéutica y Técnica industrial. — Trimestral. Ejemplar, 40 pesetas. Subscripción, 150 pesetas.

Investigación Pesquera. — Publicación del Instituto de Investigaciones Pesqueras. Portavoz de las actividades científicas del mencionado Instituto, abarca toda clase de investigaciones relacionadas con la Biología Marina y los problemas pesqueros.

Revista Ibérica de Parasitología. — Publicación del Instituto Nacional de Parasitología. Dedicada a cuestiones relacionadas con las parasitología de la Península Ibérica y sus colonias. Órgano de publicidad de las investigaciones realizadas por la Sección de Helmintología del Instituto «José Acosta». — Trimestral. Ejemplar, 25 pesetas. Subscripción, 100 pesetas.

INSTITUTO DE BIOLOGIA APLICADA

TOMO XLIX

Publicado en diciembre de 1970

BARCELONA, 1970
La correspondencia debe dirigirse a:

INSTITUTO DE BIOLOGÍA APLICADA
UNIVERSIDAD DE BARCELONA

Director: Prof. Dr. E. Gadea

Precio de un número: España . . 60 Ptas.
« » » » extranjero . 80 »

Depósito legal, M. 703 - 1958

Suscripción y venta en:

LIBRERÍA CIENTÍFICA MEDINACELI
Duque de Medinaceli, 4
M A D R I D
SUMARIO

BENIGNO ROMÁN. — Nuevas especies de peces de Río Muni (Guinea Ecuatorial). .. 5

FRANCISCO CASTELLÓ. — Nota sobre la presencia de Chiton olivaceus en las islas Baleares .. 25

ESTHER SIMÓN-MARTÍNEZ. — Variación del nitrógeno mineral en praderas experimentales ... 33

F. ESPAÑOL. — Notas sobre anóbidos (Col.) ... 49

ENRIQUE GADEA. — Algunas consideraciones sobre las nematocenosis de suelos primordiales ... 59

GIORGIO MARCUZZI, PAOLA PELUSIO e SILVIO RIGATTI LUCCHI. Osservazioni sulla variabilità di due specie di Glomeris (Myriapoda, Diplopoda) nella regione di Asiago (Veneto). 65

M.ª DOLORES ROMERO, F. Jiménez MILLÁN y MARÍA ARIAS. Interrelación de nematodos fitopárásitos de algunos cultivos de solanáceas ... 101

F. J. FERNÁNDEZ CASAS. — Notas sobre vegetación .. 111

VALENTÍN SANZ-COMA. — Algunos datos sobre los roedores de los Picos de Europa ... 121

V. SANZ-COMA y J. NADAL-PUIGDEFÀRBREGAS. — Sobre la distribución de Clethrionomys glareolus (Schreber, 1780) y Pitymys duodecimcostatus (de Sélys-Longchamps, 1839) en la Península Ibérica ... 125
Nuevas especies de peces de Río Muni
(Guinea Ecuatorial)

por
BENIGNO ROMÁN

En esta nota se describen seis nuevas especies de peces de las aguas del Río Muni (República de Guinea Ecuatorial). Corresponden a los géneros Gymnallabes, Tilapia, Barbus y Aplocheilichthys. En la descripción se dan todos los datos característicos con la máxima precisión y detalle.

Aparte del gran valor sistématico que estas nuevas especies representan, todas ellas son de inestimable interés para la biología de las aguas dulces no sólo africanas, sino mundiales.

Gymnallabes alvarezi n. sp.
1 ej. long. stand. 297 mm (cola rota) río Kie, cerca de Ebebiyin, el 5-4-1966.

Descripción

Cabeza sin escudo óseo postorbitario; una placa de dientes cónicos, algo incurvados hacia el interior, en cada mandíbula; borde del párpado haciendo cuerpo con el globo ocular; labios rugosos; lóbulo del ángulo de los labios casi inexistente.

Long. stand./altura cuerpo: 14,14; long stand./long. cabeza: 11; cabeza, long./anchura: 1,35; log. cabeza/diám. ojo: 16,8; distancia interorbitaria/diám. ojo: 6,56; log. postorbitaria/long. hocico: 2,57. Cabeza comprendida 2,29 veces en la distancia que separa el origen de la dorsal del hocico.

Barbilla nasal/long. cabeza: 0,59; barbilla maxilar/log. cabeza: 1,03; barbilla mandibular externa/long. cabeza: 0,70; barbilla mandibular externa/barbilla mandibular interna: 1,72. Base de las barbillas rugosa.

Dorsal: 110 radios.
Anal: 101 radios.
La distancia que separa el origen de la dorsal del hocico es 3,44 veces mayor que la del origen de la dorsal al ano.

Pectoral pequeña pero bien formada con una espina y 7 radios; longitud cabeza/log. radios pectoral: 3 veces; longitud cabeza/long. espina pectoral: 5,40.

Sin ventrales ni el menor rastro de ellas.

Sin pedículo caudal pues la dorsal y la anal confluyen con la caudal formando una única aleta.

Fig. 1. — Gymnallabes alvarezi n. sp.

Librea

Coloración general gris rojiza sobre el dorso y gris claro sobre el vientre; aleta anal de color gris claro y la dorsal de color gris rojizo; pectoral casi incolora en su parte distal.

Este único ejemplar que poseemos y que acabamos de describir pertenece a la familia y género Gymnallabes por los caracteres siguientes: carencia de postorbitario y de supraopercular; dorsal y anal confluentes con la caudal; borde del párpado no libre, es decir, haciendo cuerpo con el globo ocular.

A estos caracteres genéricos añadimos, para el ejemplar de Río Muni, la ausencia de ventrales.

BOULENGER (1911) describe la especie Gymnallabes typus GUNThER del bajo Níger y del Calabar. Con ella confrontamos el ejemplar de Río Muni para hacer resaltar los caracteres que separan ambas especies.
DAGET e ILTIS (1965) hacen referencia a *Gymnallabes typus* y dan esta especie como la única conocida del sur de Nigeria y del sur del Dahomey.

Gymnallabes n. sp. de Río Muni se diferencia de *Gymnallabes typus* sobre todo por la relación longitud standard/long. cabeza, y por el mayor número de radios de la anal. Otras características cabe señalar: la relación de las barbillas maxilar y mandibular interna respecto a la longitud de la cabeza, diferente en ambas especies; el escaso desarrollo del ángulo de los labios para el ejemplar de Río Muni; la forma de la cabeza; la ausencia de ventrales.

Proponemos para el ejemplar del río Kie, capturado cerca de Ebe-biyín, el nombre específico de *Gymnallabes alvarezi* como testimonio de gratitud y de amistad hacia el Sr. Mario Álvarez, a quien debo el haber podido llevar a feliz término esta publicación.

Tilapia aequatorialis n. sp.

1 ej. holotipo long. tot. 120 mm (long. stand. 89 mm) río Miyogo, afluente del Monyoga, poblado de Yang, 21-8-1966.
7 ej. paratipos long. tot. 59,5 a 120 mm (long. stand. 45 a 89 mm) río Miyogo, afluente del Monyoga, poblado de Yang, el 2-8-1966.
2 ej. paratipos long. tot. 71 y 98 mm (long. stand. 57 y 74 mm) riachuelo cerca de Bolondo, el 28-6-1968.
2 ej. paratipos long. tot. 69 y 76 mm (long. stand. 52 y 58 mm) cerca de Bolondo el 28-6-1968. Depositado en Tervuren con los números de registro del R.G.M.R.A.C. 164709-710.

Descripción del holotipo

Cuerpo corto y muy comprimido, el dorso y la parte superior de la cabeza casi rectos, boca pequeña.

<table>
<thead>
<tr>
<th>Long. stand./altura cuerpo</th>
<th>G. typus</th>
<th>14-15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long. stand./long. cabeza</td>
<td>7,5-8,5</td>
<td>11</td>
</tr>
<tr>
<td>Cabeza, long./anchura</td>
<td>1,5</td>
<td>1,85</td>
</tr>
<tr>
<td>Interorbitario/cabeza</td>
<td>0,33</td>
<td>0,38</td>
</tr>
<tr>
<td>Barbilla nasal/cabeza</td>
<td>0,66-0,83</td>
<td>0,59</td>
</tr>
<tr>
<td>Barbilla maxilar/cabeza</td>
<td>inferior a 1</td>
<td>1,63</td>
</tr>
<tr>
<td>Barbilla mandib. ext./cabeza</td>
<td>0,66-0,75</td>
<td>0,70</td>
</tr>
<tr>
<td>Barbilla mandib. inter./cabeza</td>
<td>poco infer. a 1</td>
<td>0,40</td>
</tr>
<tr>
<td>Dorsal</td>
<td>98-110</td>
<td>110</td>
</tr>
<tr>
<td>Anal</td>
<td>82-88</td>
<td>101</td>
</tr>
<tr>
<td>Pectoral/cabeza</td>
<td>0,33-0,40</td>
<td>0,33</td>
</tr>
<tr>
<td>Ventrales</td>
<td>presentes</td>
<td>ausentes</td>
</tr>
</tbody>
</table>

Tilapia aequatorialis n. sp.
dientes bicúspides largos e implantados oblicuamente, de forma espatulada, con una de las dos cúspides muy grande y la otra muy reducida; los dientes de las hileras internas son tricúspides.

Dorsal con 15 espinas seguidas de 10 radios flexibles bifurcados; longitud cabeza/long. espina más larga: 2,25.

Anal con 3 espinas seguidas de 9 radios bifurcados. Pectoral: 13 radios; long. cabeza/long. pectoral: 0,86. Ventral: 6 radios.

Pedículo caudal, long./altura: 0,46. Caudal de longitud igual a la de la cabeza, algo entrante en su parte media y con las extremidades de los lóbulos poco redondeados.

Branquispinas, 14 en la parte inferior del primer arco branquial y 4 en la superior.

Escamas cicloides, 19 + 9 en línea longitudinal, 3 1/2 sobre la línea lateral superior y 11 1/2 por debajo de esta línea; línea lateral doble, la superior con 19 escamas y la inferior con 9 escamas; entre ambas líneas laterales hay 2 escamas; alrededor del pedículo caudal, 16 escamas.

Fig. 2. — *Tilapia aequatorialis* n. sp.

Librea

Coloración general plateada con brillo acerado, grisáceo, más oscura sobre el dorso y blanca sobre el vientre; una mancha negra opercular; la parte distal de la dorsal espinosa con una faja estrecha algo más oscura pero poco distinta del resto de la aleta, y los radios flexibles de
esta aleta con manchas claras difusas; las otras aletas de color uniforme pardo amarillento, las ventrales y las pectorales algo más claras. Ninguna mancha negra en la parte inferior de la cabeza ni en las partes extremas de los lóbulos de la caudal.

Variabilidad sobre 10 ejemplares

<table>
<thead>
<tr>
<th>Medida</th>
<th>Rango</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitud/altura cuerpo</td>
<td>1,98-2,25</td>
</tr>
<tr>
<td>Longitud/cabecera</td>
<td>2,50-2,80</td>
</tr>
<tr>
<td>Altura cuerpo/largo cabecera</td>
<td>1,18-1,30</td>
</tr>
<tr>
<td>Cabecera, longitud/ancho</td>
<td>1,63-1,82</td>
</tr>
<tr>
<td>Cabecera/diámetro ojo</td>
<td>3,37-4,00</td>
</tr>
<tr>
<td>Distancia interorb./diámetro ojo</td>
<td>1,13-1,55</td>
</tr>
<tr>
<td>Longitud cabecera/largo hocico</td>
<td>2,70-3,58</td>
</tr>
<tr>
<td>Longitud postorbitaria/largo hocico</td>
<td>1,21-1,46</td>
</tr>
<tr>
<td>Dorsal</td>
<td></td>
</tr>
<tr>
<td>Longitud cabecera/largo espina larga</td>
<td>2,37-3,00</td>
</tr>
<tr>
<td>Anal</td>
<td></td>
</tr>
<tr>
<td>Pedículo caudal, longitud/altura</td>
<td>0,46-0,67</td>
</tr>
<tr>
<td>Branquispinales</td>
<td></td>
</tr>
<tr>
<td>Escamas, línea longitudinal</td>
<td></td>
</tr>
<tr>
<td>Escamas, línea transversal</td>
<td></td>
</tr>
<tr>
<td>Alrededor del pedículo caudal</td>
<td></td>
</tr>
<tr>
<td>Línea lateral superior</td>
<td></td>
</tr>
<tr>
<td>Línea lateral inferior</td>
<td></td>
</tr>
</tbody>
</table>

Afinidades

Esta especie parece confundirse con *Tilapia nigripinnis* Guichenot, pues tomados globalmente se compenetran bastante los límites de la variabilidad en las relaciones de las diversas partes del cuerpo; lo mismo respecto al número de radios de las aletas y de escamas en los diversos modos de contarlas que hemos realizado. Esto puede comprobarse comparando los valores que acabamos de dar en la variabilidad de *Tilapia* n. sp. con los de *Tilapia nigripinnis*, que dejamos consignados también en este trabajo y que han sido realizados con el mismo plan y la misma modalidad en los recuentos.

Con todo, hay varios motivos que pueden permitirnos separar ambas especies, si los tomamos en su conjunto ya que se van a completar unos con otros:

— Ambas especies no han sido capturadas en el mismo biotopo ya que *Tilapia* n. sp. ha sido capturada en aguas dulces y *Tilapia nigripinnis*
es una forma de aguas salobres en las zonas de los ríos influenciados por las mareas.

— El examen del hueso faríngeo inferior de ambas especies nos hace ver que en *Tilapia* n. sp. el número de dientes es menor que en la otra, aunque la forma del hueso sea casi idéntica y el área de repartición de los mismos.

— Además de los biotopos propios de estas especies, lo que principalmente las separa son las relaciones entre las diversas partes del cuerpo si se toman ejemplares adultos de igual tamaño. Para este estudio comparativo hemos tomado el holotipo de *Tilapia* n. sp. de 89 mm de longitud standard, y un ejemplar de *Tilapia nigripinnis* de 93 mm de longitud standard, que es el ejemplar de tamaño más aproximado al del holotipo que hemos examinado y que ha sido capturado en las aguas salobres del Esimi, riachuelo de Bata, a unos 100 m del mar.

He aquí las proporciones comparadas:

<table>
<thead>
<tr>
<th>Medición</th>
<th>T. nigripinnis</th>
<th>Tilapia n. sp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long. stand./altura cuerpo</td>
<td>2,02</td>
<td>2,35</td>
</tr>
<tr>
<td>Long. stand./long. cabeza</td>
<td>2,82</td>
<td>2,70</td>
</tr>
<tr>
<td>Altura cuerpo/long. cabeza</td>
<td>1,39</td>
<td>1,18</td>
</tr>
<tr>
<td>Cabeza, longitud/anchura</td>
<td>1,65</td>
<td>1,79</td>
</tr>
<tr>
<td>Long. cabeza/diámetro ojo</td>
<td>3,75</td>
<td>4,28</td>
</tr>
<tr>
<td>Espacio interorbit./diámetro ojo</td>
<td>1,55</td>
<td>1,75</td>
</tr>
<tr>
<td>Long. cabeza/long. hocico</td>
<td>2,85</td>
<td>3,23</td>
</tr>
<tr>
<td>Long. postorbitar./long. hocico</td>
<td>1,27</td>
<td>1,43</td>
</tr>
<tr>
<td>Pedículo caudal, long./altura</td>
<td>0,46</td>
<td>0,63</td>
</tr>
<tr>
<td>Branquispinas, parte inferior</td>
<td>14</td>
<td>16</td>
</tr>
</tbody>
</table>

Respecto al número de branquispinas que acabamos de indicar, he aquí la variabilidad total en ambas especies: *Tilapia n. sp.*: $\frac{13}{1} ; \frac{14}{6} ; \frac{15}{3}$, y para *Tilapia nigripinnis*: $\frac{14}{3} ; \frac{15}{15} ; \frac{16}{9} ; \frac{17}{6}$ valores que se refieren a la parte inferior del primer arco branquial, y que también contribuyen a separar ambas especies.

Thys (1966) en su estudio sobre «Les Tilapia (Pisces, Cichlidae) du Sud-Cameroun et du Gabon» propone una clave para separar las diversas especies descritas de estos territorios:

Especies con 12-18 branquispinas en la parte inferior del primer arco branquial (es el grupo de *Tilapia n. sp.): *Tilapia heudeloti* que más tarde coloca en sinonimia con *Tilapia nigripinnis*, propia de aguas salobres; *Tilapia mariae* de la baja zona costera del Camerún; *Tilapia cabrae* de la baja zona costera del Gabón y del Congo-Brazzaville.

Tilapia n. sp. de la baja zona costera de Río Muni se separa de estas tres especies. Respecto de *Tilapia nigripinnis* ya hemos visto los caracteres que las separa.
Tilapia n. sp. se separa de Tilapia mariae entre otros caracteres por el número de radios flexibles de la dorsal: 13-15; por los de la anal: 10-11; por el número de escamas en línea longitudinal: 29-31, sobre la línea lateral superior: 4-5,5; por el número de branquispinas: 12-16 sobre todo 13, y por la librea.

De Tilapia cabrae se separa principalmente por el número de espinas en la dorsal: 16-17 y de radios flexibles: 11-14 sobre todo 13; por los de la anal: 9-11 sobre todo 10; por el número de escamas en línea longitudinal: 30-31, sobre la línea lateral superior: 4-6; por el número de branquispinas: 12-16 sobre todo 12-13, y por la librea.

Proponemos para esta especie de aguas dulces de la baja zona costera de Río Muni el nombre de Tilapia aequatorialis ya que proviene de la actual Guinea Ecuatorial.

Barbus martorelli n. sp.
1 ej. holotipo, long. tot. 85 mm (long. stand. 69 mm) río Nsie, afl. del Guoro, cuenca del río Ntem, el 12-8-1967.
1 ej. alotipo, long. tot. 122 mm (long. stand. 98 mm) río Nsie, afl. del Guoro, cuenca del Ntem, el 12-8-1967.
6 ej. paratipos, long. tot. 79 a 86 mm (long. stand. 60 a 67 mm) río Mami, afl. del Kie, el 13-8-1967.
4 ej. paratipos, long. tot. 51 a 112 mm (long. stand. 39,5 a 87 mm) río Nsie, cuenca del río Ntem, el 12-8-1967.
3 ej. paratipos, long. tot. 59 a 63 mm (long. stand. 39,5 a 48 mm) río Ndo, cuenca del Ntem, el 14-8-1967.
16 ej. paratipos, long. tot. 65 a 87 mm (long. stand. 41 a 55 mm) río Lea, cuenca del Ntem, el 12-8-1967.
8 ej. long. tot. 41 a 104 mm (long. stand. 31 a 84,5 mm) río Kie, Mongomo, el 15-8-1966.
3 ej. paratipos, long. tot. 82 a 90 mm (long. stand. 63 a 68 mm) capturados en el río Sie, afl. del Guoro (cuenca del río Campo) y depositados en Tervuren con los números de registro del R.G.M.R.A.C. 164, 706-708.

Descripción del holotipo. (El alotipo entre paréntesis.)

Boca subínfera, hocico redondeado, labios poco desarrollados; dos pares de barbillas; escamas cicloidales. El alotipo con los ovarios maduros.

Long. stand./altura cuerpo: 3,28 (3,09); long. stand./long. cabeza: 4,91 (4,04); cabeza, long./anchura: 1,72 (1,61); long. cabeza/diá. ojo: 3,30 (3,55); distancia inteorbitaria/diá. ojo: 1,19 (1,35); long. cabeza/long. hocico: 3,45 (3,55); long. postorbitaria/long. hocico: 1,4 (1,5).

Long. cabeza/barbilla anterior: 3,30 (3,90); barbilla anterior/diá. ojo: 1 (0,91); long. cabeza/barbilla posterior: 2,02 (2,16); barbilla posterior/diá. ojo: 1,63 (1,76).

Dorsal 3+8 radios en ambos ejemplares; el tercer radio sencillo está aserrado en su parte posterior; el origen de esta aleta se halla sobre el de las ventrales; longitud dorsal/altura cuerpo: 0,85 (0,79); cabeza/long. dorsal: 0,95 (1).

El lóbulo superior de la caudal más largo y puntiagudo que el interior; long. cabeza/long. caudal: 0,81 (1).

Branquispina 5 (5) en la parte inferior del primer arco branquial.

En línea longitudinal 22 y 23 (23) escamas más 2 sobre la base de la caudal; en línea transversal 4 ½ (4 ½) de cada lado de la línea lateral; 12 (12) escamas alrededor del pedículo caudal.

Fig. 3. — *Barbus martorelli* n. sp.

Librea

Coloración muy plateada con el dorso gris y el vientre blanco; una mancha negra, vertical, en la zona de contacto de cada escama con la anterior; dorsal y caudal anaranjadas; pectorales, ventrales y anal de color amarillo paja; una faja negra corre por los costados desde la extremidad anterior del labio superior, al que da la vuelta, hasta la caudal prolongándose por los radios centrales de esta aleta.

La región externa de la dorsal lleva una mancha negra poco precisa y débil en todos los ejemplares; en la base de esta aleta se halla una mancha muy característica formada por varias escamas grandes muy ricas en melanóforos y colocadas en posición oblicua respecto del cuerpo y paralelas a los radios de esta aleta, pegadas a su membrana. Esta
mancha es constante en todos los ejemplares capturados, hasta en los de escaso tamaño; mientras que la de la parte externa de la dorsal no suele observarse in vivo, quedando oculta bajo el color anaranjado de la aleta.

En la base de los lóbulos de la caudal hay varias series de escamas de tamaño cada vez menor a medida que se alejan del origen de esta aleta.

Variabilidad sobre 42 ejemplares examinados.

<table>
<thead>
<tr>
<th>Medida</th>
<th>Variación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long. stand./altura cuerpo</td>
<td>3,06-3,96</td>
</tr>
<tr>
<td>Long. stand./long. cabeza</td>
<td>3,39-4,08</td>
</tr>
<tr>
<td>Cabeza, longitud/anchura</td>
<td>1,56-1,88</td>
</tr>
<tr>
<td>Long. cabeza/diám. ojo</td>
<td>2,69 (jóv)-3,69</td>
</tr>
<tr>
<td>Distancia interior./diám. ojo</td>
<td>1,00-1,36</td>
</tr>
<tr>
<td>Long. cabeza/long. hocio</td>
<td>3,20-3,87</td>
</tr>
<tr>
<td>Barbilla ant./diám. ojo</td>
<td>0,87-1,90</td>
</tr>
<tr>
<td>Barbilla post./diám. ojo</td>
<td>1,06-1,76</td>
</tr>
<tr>
<td>Long. dorsal/altura cuerpo</td>
<td>0,79-0,98 (jóv)</td>
</tr>
<tr>
<td>Long. cabeza/long. caudal</td>
<td>0,81-1,04</td>
</tr>
<tr>
<td>Escamas, línea long.</td>
<td>21 22 23 24</td>
</tr>
<tr>
<td>Escamas en línea transv.</td>
<td>1 11 23 6</td>
</tr>
<tr>
<td>Escamas alred. pedic. caud.</td>
<td>4 4 4 ½</td>
</tr>
</tbody>
</table>

Afinidades

VINCEGUERRA (1953) describe la especie *Barbus nicholsi* basándose en la figura en colores de la lámina LXXXI de la publicación de Nichols (1917), como él mismo lo indica (y que hemos compulsado), para separar los ejemplares por él estudiados de la especie *Barbus holotaenia* (Günther) y dedicarla al ictiólogo americano.

Se basa en la carencia de la zona negra en la parte externa de la dorsal y en la mancha negra que cada escama de los costados posee en el punto de contacto con la precedente; también basa la diferencia específica en la menor robustez del tercerradio simple de la dorsal respecto a *Barbus holotaenia*, y en el origen de la dorsal, respecto al de la anal que el autor considera algo más por delante en *Barbus nicholsi*.

Indica además VINCEGUERRA que *Barbus holotaenia* tiene un área de dispersión que va desde el Camerún a Angola mientras que *Barbus nicholsi* lo cree conocido sólo del Congo.

No menciona este autor la mancha negra de la base de la dorsal formada por varias escamas grandes muy ricas en melanóforos; con todo, dicha mancha se observa en todos los ejemplares de la colección del Museo Real de Tervuren que hemos examinado y que ya a primera vista separa *Barbus nicholsi* de *Barbus holotaenia*. También en la figura en colores de que antes hemos hablado hay esta mancha.

Parte de los ejemplares que describe VINCEGUERRA fueron recogidos
en Buta, sobre el río Rubi, que al echarse en el Congo por la derecha recibe el nombre de Itimbi; otros lo fueron en el río Telé, tributario del Rubi o en el Aruwini a poca distancia de Stanleyville; otros vienen de Dungu y de Napudu sobre el alto Uele.

Hemos examinado el material de todas estas regiones en el Museo; y también ejemplares procedentes de Yangole sobre el río Lilanda, recogidos y determinados por Gosse en 1955, y que este autor atribuye a la especie Barbus nicholsi. El número de escamas de los ejemplares de Gosse varía de 21 a 23.

Damos a continuación el cuadro comparativo de los ejemplares de Barbus nicholsi descritos por Vinceguerra, con los de Barbus n. sp. de Río Muni y de Barbus holotaenia también de Río Muni.

<table>
<thead>
<tr>
<th></th>
<th>Barbus nicholsi</th>
<th>Barbus n. sp.</th>
<th>Barbus holotaenia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long. stand./altura cuerpo</td>
<td>3 - 3,20</td>
<td>3,05-3,96</td>
<td>2,66-3,97</td>
</tr>
<tr>
<td>Long. stand./long. cabeza</td>
<td>3,6-3,66</td>
<td>3,89-4,08</td>
<td>3,17-3,92</td>
</tr>
<tr>
<td>Cabeza, longitud/anchura</td>
<td>1,50</td>
<td>1,56-1,88</td>
<td>1,56-1,82</td>
</tr>
<tr>
<td>Long. cabeza/diám. ojo</td>
<td>cerca de 4</td>
<td>2,69-3,69</td>
<td>3,06-4,34</td>
</tr>
<tr>
<td>Distancia interior/diám. ojo</td>
<td>1,50</td>
<td>1,00-1,35</td>
<td>1,06-1,56</td>
</tr>
<tr>
<td>Long. cabeza/long. hocico</td>
<td>2,75</td>
<td>3,20-3,67</td>
<td>2,82-3,87</td>
</tr>
<tr>
<td>Barbilla ant./diám. ojo</td>
<td>1,30</td>
<td>0,87-1,30</td>
<td>0,88-1,20</td>
</tr>
<tr>
<td>Barbilla post./diám. ojo</td>
<td>1,50</td>
<td>1,06-1,76</td>
<td>1,22-1,81</td>
</tr>
<tr>
<td>Long. dorsal/altura cuerpo</td>
<td>0,66</td>
<td>0,70-0,98</td>
<td>0,67-1,05</td>
</tr>
<tr>
<td>Escamas, línea long.</td>
<td>22</td>
<td>2,22-23</td>
<td>22-23</td>
</tr>
<tr>
<td>Hileras de escamas sobre los cólculos caudal</td>
<td>numerosas</td>
<td>escasas</td>
<td>muy escasas</td>
</tr>
<tr>
<td>Mancha extremidad dorsal</td>
<td>ausente</td>
<td>débil</td>
<td>intensa</td>
</tr>
<tr>
<td>Mancha base dorsal</td>
<td>presente</td>
<td>presente</td>
<td>ausente</td>
</tr>
</tbody>
</table>

Las proporciones del cuerpo se componen en las tres especies que comparamos. Llama la atención el valor que Vinceguerra da a la relación long. cabeza/diám. ojo : cerca de 4 ; hemos verificado esta relación en ejemplares del Museo procedentes de la misma región y hallamos : 3,20-3,69. Observamos en el cuadro comparativo que esta relación tiene valores más bajos en Barbus n. sp. que en Barbus nicholsi y en Barbus holotaenia en los ejemplares jóvenes.

Las mayores diferencias entre las tres especies las hallamos en el número de escamas en línea longitudinal:

Barbus nicholsi: 21-23 (Gosse), sobre todo 22
Barbus n. sp.: 21-24, sobre todo 23
Barbus holotaenia: 22-26 (Boulenger), sobre todo 24

Además Barbus n. sp. se separa de Barbus holotaenia por la ausencia, en todos los ejemplares de ésta de la mancha negra en la base de la dorsal; y de Barbus nicholsi porque en esta especie falta la mancha negra de la extremidad de la dorsal, mientras que en Barbus n. sp.
existe, aunque oculta in vivo por la coloración anaranjada, pero visible en formol o alcohol.

Las series de escamas pequeñas sobre la base de los lóbulos de la caudal son muy abundantes, y nos han llamado la atención, en *Barbus nicholsi* ya que no dejan libres más que una zona en la parte extrema de los lóbulos; en *Barbus n. sp.* son escasas y mucho más en *Barbus holotaenia*.

No hemos observado en *Barbus n. sp.*, ni siquiera en los ejemplares de gran tamaño, la mancha con reflejos rojo carmín sobre el opérculo, que existe en *Barbus holotaenia*.

A todos estos caracteres específicos de cada especie podemos añadir la distinta distribución zoogeográfica de cada una. Vinciguerra indica el Congo para *Barbus nicholsi* y del Camerún a Angola para *Barbus holotaenia*. Por nuestra parte indicamos que esta última especie ha sido hallada en las zonas costeras y que *Barbus n. sp.* lo ha sido en la cuenca del Ntem, sobre todo hacia la del río Kie, su afluente, y ninguna vez en la zona costera; ni *Barbus holotaenia* en la cuenca del Kie.

Podemos pues considerar como bien específica *Barbus n. sp.* para la que proponemos el nombre de *Barbus martorelli* que dedicamos al señor Fernando Martorell en testimonio de gratitud.

Como apéndice a esta descripción añadimos que en el Museo Real de Tervuren hemos hallado, entre los ejemplares de *Barbus holotaenia* un ejemplar capturado en el río Lobó, afl. del Dja y éste del Sanagha, cerca de Sangmelima (Sur del Camerún) que fue clasificado como *Barbus holotaenia* en 1962. Este ejemplar de 78 m de longitud total y 59,5 mm de longitud estándar, con escamas 23 $4\frac{1}{2}4\frac{1}{2}12$ debe, sin duda, atribuirse a *Barbus martorelli* ya que se caracteriza por la mancha negra de la base de la dorsal.

Barbus aloyi n. sp.

1 ej. long. tot. 51,5 mm (long. stand. 38,3 mm) río Bolo, afl. del Kie, cuenca del río Ntem, el 9-8-1967.

Descripción

Cuerpo alargado, ojo muy grande, boca infera, escamas con líneas radiales.

Long. stand./altura cuerpo : 4,25 ; long. stand./long. cabeza : 3,48 ; cabeza, longitud/ancho : 1,92 ; longitud cabeza/diám. ojo : 2,72 ; distancia interorbitaria/diám. ojo : 0,76 ; longitud hocico/diám. ojo : 0,76 ; longitud postorbitaria/diám. ojo : 1,02 ; longitud hocico/long. postorbitaria : 0,75.

Sin barbillas.

Dorsal 3 $= 8$ radios; la longitud de esta aleta es igual a la de la
cabeza; su espina es fina y no aserrada, su origen apenas anterior al de la anal.
Anal 3 ÷ 5 radios. Pectoral 15 radios; longitud cabeza/long. pectoral : 1,37. Ventral 10 radios y alcanza al origen de la anal.
Branquispinas 9 en la parte inferior del primer arco branquial y 4 en la superior.
Escamas en línea longitudinal 25 ÷ 2; en línea transversal 4 ½ de cada lado de la línea lateral; 10 escamas alrededor del pedículo caudal.
La línea lateral es incompleta con 11 escamas perforadas en el lado derecho, y en el izquierdo con 9-1-2-5-1-6 escamas, de las que están perforadas las subrayadas.

Librea

Coloración plateada amarillenta uniforme, con las escamas del dorso algo bordeadas de melanóforos; todas las aletas incoloras; una faja negra corre desde el hocico hasta la base de la caudal y por medio de ella pasa la línea lateral; la faja negra no se continúa por los radios centrales de la aleta caudal; una mancha negra en la zona de inserción de la anal con el cuerpo.

Esta especie de Barbus que acabamos de describir posee un conjunto de caracteres específicos que a continuación destacamos: línea lateral incompleta; ausencia de barbillas; faja negra desde el hocico hasta la
base de la caudal; línea lateral que corre por el interior de dicha faja; todas las aletas incoloras; espina de la dorsal fina y no aserrada; caudal muy grande y puntiaguda; ojo muy grande.

Un solo ejemplar ha sido capturado en la cuenca del río Kie en donde las exploraciones han sido numerosas. Los caracteres que hemos mencionado de esta especie nos autorizan a considerarla como nueva.

Dedicamos esta especie con el nombre de Barbus aloyi al Sr. Isidro Aloy, como testimonio de gratitud por su colaboración en todo momento.

Barbus alvarezi n. sp.

1 ej. holotipo long. tot. 119 mm (long. stand. 92 mm) río Bolo, afl. del Kie, a 16 km al Sur de Ebébiyin, el 9-8-1967.

1 ej. paratipo long. tot. 108 mm (long. stand. 88 mm) mismo lugar de captura que el holotipo y misma fecha.

1 ej. paratipo long. tot. 90 mm (long. stand. 77 mm) río Bolo, afl. del Kie, el 9-8-1967; R.G.M.R.A.C. 164.722, depositado en el Museo Real del África Central de Tervuren (Bélgica).

Descripción del holotipo

Boca subinfera, hocico rojizo, estrías verticales numerosas sobre las mejillas y el opérculo; escamas con estrías radiales, las escamas del centro de los costados muy altas; sin barbillas.

Long. stand./altura cuerpo: 3,06; long. stand./long. cabeza: 3,88; cabeza, longitud/anchura: 1,65; long. cabeza/espacio interorbitario: 3,00; long. cabeza/diámetro ojo: 3,20; long. cabeza/long. hocico: 3,69; espacio interorbitario/diámetro ojo: 1,06; long. hocico/diámetro ojo: 0,86; long. postorbitaria/diámetro ojo: 1,36; long. postorbitaria/long. hocico: 1,56.

Dorsal 3÷8 radios; long. dorsal/long. cabeza: 1,31; el origen de esta aleta algo por delante de la perpendicular del de las ventrales; borde posterior de la dorsal cóncavo; tercer radio simple ni robusto ni aserrado.

Anal 3÷5 radios, no llega al origen de la caudal.

Pectoral 17 radios; long. cabeza/long. pectoral: 1,20; llega a la ventral.

Ventral 9 radios, alcanza y sobrepasa algo el origen de la anal.

Pedículo caudal, longitud/altura: 1,21.

Longitud caudal/long. cabeza: 1,12.

Branquispinas 4 en la parte inferior del primer arco branquial.

Escamas en línea longitudinal 27÷1; en línea transversal 3 1/2 de cada lado de la línea lateral; 12 escamas alrededor del pedículo caudal; línea lateral completa.
Fig. 5. — *Barbus alvarezi* n. sp.

Librea

Coloración general plateada con reflejos algo acerados, gris sobre el dorso y blanca sobre el vientre; cada escama de los costados lleva una mancha negra vertical y estrecha en su base; una gran mancha negra en la parte extrema anterior de la dorsal; caudal y dorsal rojizas en su parte basal, atenuándose el color hacia la parte extrema de dichas aletas; las otras aletas son incoloras; ninguna mancha sobre el cuerpo.

Variabilidad de esta especie en los tres ejemplares capturados.

<table>
<thead>
<tr>
<th>Medida</th>
<th>Cifra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long. stand./altura cuerpo</td>
<td>3.06-3.50</td>
</tr>
<tr>
<td>Long. stand./long. cabeza</td>
<td>3.73-4.09</td>
</tr>
<tr>
<td>Cabeza, longitud/anchura</td>
<td>1.65-1.77</td>
</tr>
<tr>
<td>Long. cabeza.espacio interorb.</td>
<td>3.00-3.29</td>
</tr>
<tr>
<td>Long. cabeza/diám. ojo</td>
<td>3.20-3.29</td>
</tr>
<tr>
<td>Long. cabeza/long. hocico</td>
<td>3.08-3.69</td>
</tr>
<tr>
<td>Espacio interorbit./diám. ojo</td>
<td>1.00-1.06</td>
</tr>
<tr>
<td>Long. hocico/diám. ojo</td>
<td>0.86-1.07</td>
</tr>
<tr>
<td>Long. postorbit./diám. ojo</td>
<td>1.34-1.38</td>
</tr>
<tr>
<td>Long. postorbitaria/long. hocico</td>
<td>1.29-1.56</td>
</tr>
<tr>
<td>Sin barbillas</td>
<td></td>
</tr>
<tr>
<td>Dorsal</td>
<td>3 ± 8</td>
</tr>
<tr>
<td>Long. dorsal/long. cabeza</td>
<td>1.22-1.31</td>
</tr>
<tr>
<td>Anal</td>
<td>3 ± 5</td>
</tr>
<tr>
<td>Pectoral</td>
<td>16-17</td>
</tr>
<tr>
<td>Long. cabeza/long. pectoral</td>
<td>1.18-1.23</td>
</tr>
<tr>
<td>Ventral</td>
<td>9</td>
</tr>
<tr>
<td>Pedículo caudal, long./altura</td>
<td>1.17-1.23</td>
</tr>
<tr>
<td>Long. caudal/long. cabeza</td>
<td>0.69-1.12</td>
</tr>
<tr>
<td>Branquispinas parte inf. ler. a.</td>
<td>4-6</td>
</tr>
<tr>
<td>Escamas</td>
<td>27 + 1, 3 1/3/8 1/2, 12</td>
</tr>
</tbody>
</table>
Si comparamos la variabilidad de esta especie con la de *Barbus aspilus* Boulenger dada por este autor en 1907, hallamos el cuadro siguiente:

<table>
<thead>
<tr>
<th></th>
<th>B. n. sp.</th>
<th>B. aspilus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long. stand./altura cuerpo</td>
<td>3,06-3,50</td>
<td>2,33-2,60</td>
</tr>
<tr>
<td>Long. stand./long. cabeza</td>
<td>3,73-4,09</td>
<td>3,75-4</td>
</tr>
<tr>
<td>Long. cabeza/espacio interorb.</td>
<td>3,00-3,29</td>
<td>3,00-3,50</td>
</tr>
<tr>
<td>Long. cabeza/diám. ojo</td>
<td>3,20-3,29</td>
<td>3,00-3,50</td>
</tr>
<tr>
<td>Long. cabeza/long. hocico</td>
<td>3,08-3,69</td>
<td>3,00-3,50</td>
</tr>
<tr>
<td>Espacio interorb./long. hocico</td>
<td>0.90-1,06</td>
<td>1</td>
</tr>
<tr>
<td>Long. hocico/diám. ojo</td>
<td>0.86-1,07</td>
<td>1 ó algo menos</td>
</tr>
<tr>
<td>Dorsal</td>
<td>3 ± 8</td>
<td>3 ± 8</td>
</tr>
<tr>
<td>Long. dorsal/long. cabeza</td>
<td>1.22-1,31</td>
<td>1 ó algo menos</td>
</tr>
<tr>
<td>Long. cabeza/long. pectoral</td>
<td>1.18-1,23</td>
<td>algo más que 1</td>
</tr>
<tr>
<td>Pedículo caudal, long./altura</td>
<td>1.17-1,23</td>
<td>casi 1</td>
</tr>
<tr>
<td>Escamas línea longitud</td>
<td>27</td>
<td>24-27</td>
</tr>
<tr>
<td>Escamas en línea transv.</td>
<td>3 ½-3 ½</td>
<td>3 ½-3 ½</td>
</tr>
<tr>
<td>Escamas alred. pedíc. caud.</td>
<td>12</td>
<td>12</td>
</tr>
</tbody>
</table>

En los ejemplares de Río Muni, el cuerpo es menos elevado que en *Barbus aspilus* (nuestro holotipo mide sólo 11 mm menos que el mayor ejemplar de Boulenger). La dorsal es más larga que la cabeza para nuestros ejemplares y llega a lo más a la longitud de la cabeza en *Barbus aspilus*. El pedículo caudal es más largo que ancho en nuestros ejemplares y poco más o menos tan largo como ancho en la especie comparada.

La gran mancha negra de la dorsal de los ejemplares de Río Muni falta en *Barbus aspilus*. Esto nos autoriza a introducir una nueva especie: *Barbus alvarezi*, que dedico al Sr. Mario Alvarez, en testimonio de gratitud.

Aplocheilichthys macrophthalmus n. sp.

Aplocheilichthys macrophthalmus Meinken 1932.

1 ej. holotipo long. tot. 31 mm (long. stand. 23,3 mm) río Utonde, el 29-8-1966.
1 ej. alotipo long. tot. 30,1 mm (long. stand. 23,1 mm) río Utonde, el 29-8-1966.
19 ej. paratipos long. tot. 20 a 29 mm (long. stand. 15 a 22 mm) río Utonde, a 12 km desembocadura, el 19-8-1966.
20 ej. paratipos long. tot. 21,6 a 30,5 mm (long. stand. 16 a 22,5 mm) río Utonde, el 29-8-1966.
11 ej. paratipos long. tot. 17 a 30 mm (long. stand. 18 a 23 mm) río Ekuko, a 9 km de Bata, el 21-6-1968.
4 ej. paratipos Abrinken 95, Virum, Dinamarca.

Descripción del holotipo (el alotipo entre paréntesis).

Long. stand./altura cuerpo: 4,39 (4,44); long. stand./long. cabeza: 3,94 (3,91); cabeza, longitud/anchura: 1,59 (1,63); long. cabeza/diám.
BENIGNO ROMÁN

ojo: 2,68 (2,8); distancia interorb./diám. ojo: 1,35 (1,42); diám. ojo/long. hocico: 1,57 (1,50); long. postorbitaria/long. hocico: 1,64 (1,57).

Dorsal 6 (7) radios; su origen se halla en la mitad posterior de la perpendicular del de la anal, o casi en el tercio posterior y es más larga en los machos que en las hembras, pues llega en los primeros más allá del origen de la caudal o hasta el medio de esta aleta.

Anal 13 (13) radios; el dimorfismo sexual de esta aleta también es pronunciado. En los machos llega casi tan lejos como la dorsal mientras que en las hembras alcanza apenas a la mitad del pedículo caudal.

Pectoral 9 (9) radios; long. cabeza/long. pectoral: 1,13 (1,15).

Ventral 6 (6) radios; una de las dos bifurcaciones de los radios 2.° y 3.° de esta aleta se prolonga mucho en los machos y puede llegar a sobrepasar la base de la anal. El origen de esta aleta se halla más cerca del comienzo del hocico que del origen de la caudal.

Escamas en línea longitudinal 24 (25), seguidas de 2 sobre la base de la caudal; en línea transversa 5 (5) escamas entre el origen de la anal y el de la dorsal y 16 (16) alrededor del cuerpo por delante de las ventrales; alrededor del pedículo caudal 12 (12) escamas. Un hoyito en cada escama de la línea lateral.

Fig. 6. — Aplocheilichthys macrophthalmus scheeli n. sp. Chiton olivaceus
Librea

Coloración general blanco amarillenta uniforme; todas las escamas se hallan bordeadas de melanóforos y en la parte media de los costados corre una línea fina desde la parte superior de la pectoral hasta el origen de la caudal; todas las aletas pares son incoloras excepto las prolongaciones de las ventrales en los machos que son de color anaranjado; las aletas impares son de color amarillento y algo oscuras debido a los melanóforos que corren de cada lado de las espinas; en los machos hay una serie de puntos negros sobre la caudal formando zonas blancas y negras poco marcadas, y lo mismo sobre la anal pero menos visible que sobre la caudal. In vivo se observa una faja ancha a lo largo de los costados de color verde azulado metálico.

Estos ejemplares, y todos los demás cuya variabilidad daremos a continuación, han sido capturados en todo el cauce de los arroyos hasta donde se hace sentir la influencia de las mareas; pero se les halla también en las aguas dulces durante la baja marea.

Variabilidad sobre 55 ejemplares pertenecientes a la misma subespecie.

<table>
<thead>
<tr>
<th>Medición</th>
<th>Media (rango)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long. stand./altura cuerpo</td>
<td>4.39 — 4.75</td>
</tr>
<tr>
<td>Long. stand./long. cabeza</td>
<td>3.88—4,40</td>
</tr>
<tr>
<td>Cabeza, long./anchura</td>
<td>1.42 — 1,63</td>
</tr>
<tr>
<td>Long. cabeza/diám. ojo</td>
<td>1.75 — 2.80</td>
</tr>
<tr>
<td>Distancia interorb./diám. ojo</td>
<td>1.06 — 1,45</td>
</tr>
<tr>
<td>Diám. ojo/long. hocico</td>
<td>1.50 — 2.00</td>
</tr>
<tr>
<td>Long. postorbitaria/long. hocico</td>
<td>1.27 — 1.64</td>
</tr>
<tr>
<td>Dorsal</td>
<td>6.78 — 7.8</td>
</tr>
<tr>
<td>Anal</td>
<td>12 13 14</td>
</tr>
<tr>
<td>Long. cabeza/long. pectoral</td>
<td>1.65 — 1.85</td>
</tr>
<tr>
<td>Long. caudal/long. cabeza</td>
<td>1.15 — 1.54</td>
</tr>
<tr>
<td>Pedículo caudal, long./altura</td>
<td>1.89 — 1.72</td>
</tr>
<tr>
<td>Escamas línea longitudinal</td>
<td>24 25 26 27</td>
</tr>
<tr>
<td>Escamas entre dorsal y anal</td>
<td>17' 25' 12' 1</td>
</tr>
<tr>
<td>Escamas alrededor cuerpo</td>
<td>5</td>
</tr>
<tr>
<td>Alrededor pedículo caudal</td>
<td>12</td>
</tr>
</tbody>
</table>

La característica más importante de esta subespecie es la prolongación extraordinaria de las ventrales en los machos, prolongación que no se da en los ejemplares de *Aplocheilichthys macrophthalmus* de Nigeria en ninguna de las dos subespecies que describe Scheel (1968), es decir, *Aplocheilichthys macrophthalmus hannerzi* para las poblaciones de Umudike y Port Harcourt al Este de Nigeria, y *Aplocheilichthys macrophthalmus macrophthalmus* del Sudoeste de Nigeria, que pertenecen a dos áreas geográficas distintas, según este autor.
En carta recibida del Sr. Scheel en fecha del 29-7-1969, me indica haber capturado 7 ejemplares de esta subespecie en un afluente del Lobé, entre Kribi y Ebolowa, al Este del Camerún. En estos ejemplares halla los caracteres siguientes: D : 7/7; A : 11/6, 13/1; Sq-I : 27/1, 28/6. El origen del primer radio de la dorsal se halla sobre el 5.° o el 6.° radio del de la anal.

Para los ejemplares de Río Muni el origen de la dorsal parece más retrasado como puede muy bien observarse en las fotografías; respecto al número de escamas si nuestra manera de contar da variabilidades distantes de las de Scheel hacemos notar que las contamos para la línea longitudinal desde el opérculo hasta la base de la caudal.

Según este autor esta subespecie que describimos parece restringida al río Ntem en las zonas de su desembocadura y a los otros ríos pequeños al Norte y al Sur de dicho río. Para estos ejemplares proponemos la subespecie Aplocheilichthys macrophthalmus scheeli que dedico al Sr. Coronel J. J. Scheel en testimonio de gratitud, por la autorización que me concede de servirme de su documentación.

En carta posterior añade el Sr. Scheel: «With your material I forward to your my material of the new subspecies (which undoubtedly is just as good a species as is Aplocheilichthys runcureli Daget, and Aplocheilichthys macrophthalmus hannerzi) of A. macrophthalmus Meinken. The Lobé material should be placed in the same museum, where the types are deposited, I think».

SUMMARY

In this note are described six new species of fishes from Río Muni (Republic of Equatorial Guinea). These species appertains to genera Gymnallabes, Tilapia, Barbus and Aplocheilichthys.

In the description are given all the characteristic data and features at the highest precision. This new aportation is very interesting for the biology of African fresh waters and also for the fluvial ichthyological fauna of the World.
PECES DE RÍO MUNI

BIBLIOGRAFÍA

— 1970. Peces de Río Muni. (En prensa.)

Nota sobre la presencia de *Chiton olivaceus* en las Islas Baleares

por

FRANCISCO CASTELLÓ

Pertenece *Chiton olivaceus* a la familia Chitonidae Guilding, 1829, notable por la ausencia casi total de caracteres primitivos. Las placas están, en general, divididas en áreas bien diferenciadas, con bordes de inserción fuertemente pectinados y finamente dentados. La cintura está recubierta de escamas y a veces presenta finas espinas.

Chiton olivaceus es uno de los más bellos representantes de la familia. Los individuos son, en general, de tamaño bastante grande (30-35 mm), con las placas fuertemente carenadas y estriadas y fuertemente convexas. La coloración es básicamente verde o pardo claro, pero abundan las variedades cromáticas con manchas radiales y asimétricas que cubren algunas de las placas (corriente las dos primeras o las quinta y sexta) y llegan hasta la cintura; dichas manchas pueden ser rojas, marrón oscuro, verde oscuro, etc.

Chiton olivaceus Spengler, 1797, tiene como sinonimias: *C. squamosus* Poli, 1791, y *C. sulcatus* Deshayer, 1832.

Los ejemplares utilizados para la presente nota fueron recolectados por el autor en las costas de las islas de Mallorca e Ibiza. En el momento de la recolección fueron colocados en agua dulce, para conseguir que murieran completamente relajados, y a continuación fueron fijados en alcohol de 65°.
Algunas particularidades externas

El aspecto general del cuerpo es oval, bastante alto, debido a la fuerte convexidad de las placas. Estas están recubiertas de finísima granulación y divididas en áreas perfectamente delimitadas.

Cintura

Es bastante estrecha en estos animales y recubre apenas los bordes laterales de las placas. Por la cara dorsal está completamente recubierta de pequeñas escamas, de forma ovalada, finamente estriadas e imbricadas unas con otras, lo cual proporciona a la cintura una respetable consistencia (fig. 1-a). En la periferia, la cintura está bordeada de finas espinas, cortas y de punta poco aguda (fig. 1-b y c). La coloración es pardo-olivácea con manchas radiales, de distinta anchura y distribución, en tonos más oscuros (fig. 2). Por la cara ventral, la cintura presenta una tonalidad uniforme de color pardo claro y está completamente recubierta de finísimas espinas.

Las branquias, del tipo holobranquio abanal, están formadas por grandes ctenidios dispuestos en una fila continua, que se inicia a nivel de la segunda placa y acaba en las inmediaciones de la inserción de las placas 7-8. En este sitio el canal branquial de la cintura origina dos característicos lóbulos que ciegan el canal dejando el ano aislado (fig. 3), (foto n.° 1).

Placas

La placa oral (fig. 4) tiene forma de medio cono, cortado según un plano que pasara por el vértice y llegara hasta la base. Desde el vértice salen innumerables y finas estrías que se extienden surcando el tegumentum a modo de generatrices. Observando la placa por la cara interna se ve el articulamentum de color azul pálido, con manchas radiales de color violeta, y que apenas sobresale del tegumentum. Determina dicho articulamentum una lámina de inserción de forma semicircular, finamente dentada, con 9 visibles fisuras, las cuales se continúan por otras tantas inflexiones que se dirigen radialmente hacia el vértice de la placa y que dividen al articulamentum en nueve áreas bien definidas.

Placas intermedias

Son todas prácticamente de la misma forma, excepto la segunda placa que es bastante distinta a las demás (fig. 5 a-b). El tegumentum,
Chiton olivaceus en las Baleares

finamente granulado, está dividido en dos áreas laterales (a. 1), fuertemente estriadas por tres surcos radiales; dos áreas pleurales (a. p), también estriadas pero con los surcos en dirección transversal; y un área central (a. c) sin estrías y de forma triangular. El vértice de

este triángulo ocupa la parte posterior de la placa y separa a las dos áreas laterales; la base ocupa todo el seno jugal que determinan las láminas de inserción anteriores. El tegumentum tiene esquemáticamente forma trapezoidal en todas las placas, excepto en la segunda, en la cual y por la parte anterior el tegumentum está fuertemente abombado hacia el exterior por entre el seno jugal (fig. 5-b; foto n.º 2).
Por la cara interna de las placas, el articulamentum, de color azul pálido, está finamente dentado en las láminas de inserción laterales. En esta región presenta dos cisuras (una a cada lado de la placa) las cuales sirven de origen a dos inflexiones que se dirigen en sentido radial hacia la parte posterior de la placa. Por la parte anterior el articulamentum origina dos grandes láminas de inserción, grandes, lisas y circulares separadas por el seno jugal finamente dentado.

Placa anal

De sección parecida a la placa oral (fig. 6), tiene el tegumentum dividido en dos áreas anteriores, estriadas longitudinalmente, separadas por un área central, lisa, subtriangular y con el vértice en el micro. El área posterior de la placa está finamente estriada con surcos radiales. Casi en la base de la placa, hay un surco circular que bordea toda el área posterior.

El articulamentum, finamente dentado en la parte posterior de la placa, determina una lámina de inserción circular con nueve cisuras, de las cuales se originan otras tantas inflexiones radiales. Por la parte anterior, hay dos láminas de inserción circulares y lisas, separadas también por el seno jugal (fotos 3 y 4).

Distribución

Hasta el momento hemos realizado campañas en las islas de Mallorca y de Ibiza. En ambas islas hemos podido recolectar individuos pertenecientes a la especie estudiada, la cual es bastante frecuente, aunque no demasiado abundante, y siempre hemos encontrado los individuos fijos en piedras libres del fondo (entre 20 y 80 cm), acompañados de una fauna bastante constante (Acanthochiton, Mytilus, Patella, Cerithium, Pentagonaster, Erizos de mar, Poliquetos, etc.) y una flora casi uniforme (Acetabularia, Padina pavonia, Ulva lactuca, Cystoseira, Lithothamnium, Zoostera, etc.).

En Mallorca fueron recolectados ejemplares en: 1) Cala Gamba (bahía de Palma); dos ejemplares. 2) Cala Millor; diez ejemplares de gran tamaño y fuerte variabilidad cromática. 3) Mal-pas y Alcanada (bahía de ALCUDIA); dos ejemplares en cada sitio y que no sobrepasan los 16 mm.

En la isla de Ibiza pudimos encontrar ejemplares en mayor cantidad que en Mallorca: 1) Port de San Miguel; una docena de ejemplares cuyo tamaño oscila entre los 15 y los 30 mm. 2) Talamana; seis ejemplares de distinto tamaño. 3) Cala Grassiò; treinta y dos ejemplares con gran variedad de tamaños y formas cromáticas.
Resumen y conclusiones

Con las campañas realizadas por las costas de las islas de Mallorca e Ibiza hemos podido comprobar la existencia, bastante frecuente, de *Chiton olivaceus*, y su gran variabilidad cromática.

Esta gran variabilidad en la coloración la hemos encontrado incluso en individuos de la misma localidad. Las formas más corrientes han sido: a) individuos de tonalidad prácticamente uniforme en todo su cuerpo, de tono verde pálido con ligeras manchas blancas en la cintura (foto b); b) individuos de tonalidad pardo claro, con estrías de color marrón más oscuro en las placas y cintura, con o sin manchas blancas en aquéllas (Foto n.º 6); c) individuos con manchas, en las placas y en la cintura, de color rojo púrpura sobre una tonalidad general de color pardo (foto 7); d) otros presentando algunas placas con un tono marrón oscuro mucho más fuerte que el resto del cuerpo (foto n.º 8).

Los ejemplares pertenecientes a la especie en cuestión los hemos recogido siempre adheridos sobre las piedras sueltas y sumergidas constantemente en el mar y casi siempre pegados por la cara inferior de la piedra. Las piedras han sido recogidas en profundidades que oscilaban entre los 20 y 90 cm.

Departamento de Zoología (1)
Facultad de Ciencias
Universidad de Barcelona

SUMMARY

In this paper is studied *Chiton olivaceus* (Poliplacophora) in attention to their presence and distribution in Balearic Islands. Some particular features of specimens are given, specially in reference to colour and peculiarities of plates. A graphic documentations isaported.

(1) Este trabajo se ha beneficiado de la ayuda concedida a la Cátedra de Zoología (invertebrados) con cargo al crédito destinado a la ayuda a la investigación en la Universidad.
BIBLIOGRAFÍA

Chiton olivaceus en las Baleares

Foto 1. — Detalle de las branquias y los lóbulos que forman la cintura a nivel del último ctenidio.

Foto 2. — Placas II y III, con su diferente forma.

Foto 3. — Vista de las placas oral, II, III y anal por su cara externa.

Foto 4. — Id. por la cara interna.
Foto 5. — Chiton olivaceus var. cromática viridis.

Foto 6. — Chiton olivaceus var. cromática fulva maculata.

Foto 7. — Chiton olivaceus var. cromática rubra maculata.

Foto 8. — Chiton olivaceus var. cromática grisea.
Variación del nitrógeno mineral en praderas experimentales

por

ESTHER SIMÓN-MARTÍNEZ

Introducción

En esta publicación se consideran las variaciones cronológicas en la liberación del nitrógeno mineral, en suelos cultivados con praderas experimentales, y su posible relación con las fluctuaciones anuales de la productividad de los mismos.

El estudio se ha realizado con datos obtenidos durante los años 1967 y 1968 en los Campos Experimentales de la Facultad de Ciencias, Universidad de Barcelona, donde una instalación lisimétrica, ubicada en uno de los conjuntos de parcelas plantadas con Lolium perenne, permite la recogida y análisis de las aguas de percolación.

Ya a finales del siglo pasado, en Rothamsted (citado por Rusell) prestaron atención a las variaciones que experimenta, a lo largo del año, la cantidad de nitrógeno mineral contenido en un suelo sin cultivar, notando la existencia de un máximo poco acusado en el mes de septiembre. En los primeros lustros de este siglo diversos trabajos (Stewart, Sackett y Headden, citados por Waskman) confirmaban la existencia de variaciones semejantes en la liberación del nitrógeno mineral.

En 1915, Rusell y Apleyard, en Inglaterra, ponen en evidencia un máximo de final de primavera y otro de final de otoño, con dos mínimos, uno en verano y otro en invierno. Por el contrario, Hall (1924) en África del Sur, encuentra un máximo en verano y otro en invierno, seguidos de un máximo secundario en primavera; atribuye estas va-
riaciones al efecto de inhibición parcial producido por la sequedad y las heladas.

Hasta mediados de siglo siguen diversos trabajos que confirman variaciones del nitrógeno mineral a lo largo del año en muy distintos tipos de suelos y condiciones climáticas (Sabashnikoff, 1929; Prescott y Piper, 1930; Newton, 1930; Ames, 1931; Thomas y Elliot, 1932; Yankovich, 1933; Nicolitch, 1935; Albrecht, 1937), pero sin que aporten datos de mayor interés para la interpretación de las mismas. Es de destacar, sin embargo, el trabajo de Rao (1934) que halla un máximo de nitrificación en verano, y sugiere como posible causa del mismo la acción de los rayos ultravioletas del sol.

Reviste especial interés para nosotros, el trabajo de Lefèvre (1951) que estudia durante dos años suelos mediterráneos en condiciones naturales. Halla un máximo muy marcado en verano, que interpreta como una mayor actividad mineralizadora asociada al aumento de temperatura. Según este autor la nitrificación del suelo es importante por encima de los 15°C.

Rappe (1952) estudia el contenido de nitrógeno mineral y la capacidad de nitrificación en ocho suelos de cultivo en el sur de Suecia. En ambos casos encuentra cuatro máximos coincidentes con los solsticios de verano e invierno y con los equinoccios de primavera y otoño. Observa una relación inversa entre estas curvas y las de producción de avena.

Estas variaciones distan sensiblemente de las halladas por Libois (1965-1968) en el NE de Francia (Dijon) que reflejan un máximo acusado de fines de verano, un máximo secundario en abril-mayo y un mínimo de verano, pero con fuertes variaciones de periodo más corto.

Griffith (1951), Hagenzieker (1957), Hébert (1960), Maasz (1961), Hébert y Lefèvre (1965) hallan, asimismo, distintas variaciones bruscas, más cortas que las estacionales y que no pueden ser atribuidas a la existencia de variaciones pluviométricas o térmicas. Griffith y Maasz consideran que es posible que exista una cierta periodicidad en el modelo de mineralización e immobilización del nitrógeno del suelo.

Material y métodos

El estudio se ha llevado a cabo en los Campos Experimentales de la Facultad de Ciencias, Universidad de Barcelona, donde en noviembre de 1966 se procedió a la instalación de una caja lisimétrica construida en acero inoxidable, con unas dimensiones de 80 x 80 cm de base y 50 cm de profundidad (fig. 1). El fondo del lisímetro está inclinado y acanalado hacia una de las caras para facilitar la recogida de agua en un punto de salida, donde se inserta un tubo que comunica con el recipiente recolector.
Las paredes interiores del lisímetro se forraron con una lámina de caucho rugosa para favorecer la adhesión del suelo, tratando así de anular o al menos reducir la conocida circulación preferente de fluidos por la superficie de separación entre suelo y paredes del recipiente.

La instalación se efectuó en un suelo cuyas características físicas y químicas se resumen en la tabla I.

Para la colocación de la caja lisimétrica se excavó una fosa en el terreno, de las mismas dimensiones del lisímetro, separando cuidado-

![Fig. 1. — Esquema de la caja lisimétrica utilizada.](image)

samente las diferentes capas de suelo para que no se mezclaran los distintos horizontes. Una vez encajado, se rellenó su fondo con grava y arena silíceas, hasta alcanzar el nivel de 50 cm de profundidad, para mejorar así el avenamiento, superponiéndose luego en orden las capas de suelo antes extraídas.

Después de efectuada la instalación se sembró todo el campo, incluida la superficie del lisímetro, con *Lolium perenne*, cuyas fluctuaciones de crecimiento y producción estudiaba la Cátedra de Fisiología Vegetal de la Facultad de Ciencias, Universidad de Barcelona, en relación con la Colaboración Internacional sobre ritmos de período largo en el crecimiento de plantas (Director Internacional: Dr. G. RAPPE, Vassmolósa, Suecia).

El cultivo correspondiente a la superficie del lisímetro quedó sometido al mismo régimen de irrigación que el resto del campo, sirviendo
incluyendo el agua percolada como base para regular el mencionado régimen.

Con este procedimiento lisimétrico en cultivo irrigado se ha intentado evitar el posible acúmulo del nitrógeno en las capas profundas del suelo o en la capa superficial.

Cada 21 días se procedió al abonado de las parcelas cultivadas con dosis de 3,029 g de N por m², en forma de nitratosulfato amónico, hasta septiembre de 1967, y con dosis de 3,84 g de N por m² a partir de esta fecha. De febrero a septiembre de 1967, se aplicaron dosis dobles de abonado dada la desaparición de nitratos y los síntomas de deficiencia que presentaron las plantas.

Las muestras del agua percolada se recogieron dos o tres veces por semana, analizándose su salinidad, pH, contenido en NO₃⁻, NH₄⁺, Na⁺, K⁺, Ca²⁺ y Mg²⁺. Sin embargo, en la presente nota sólo se consideran las variaciones observadas en cuanto al contenido de nitratos.

La valoración de los nitratos se realizó por el método colorimétrico, basado en la nitración en posición seis del ac. 2-4 fenoldisulfónico y la del NH₄⁺, siguiendo el método de Nessler (Jackson, 1958).

Resultados y discusión

Los resultados obtenidos se representan gráficamente, en las figuras 2 y 3, que muestran la variación del contenido de nitratos durante los años 1967 y 1968 respectivamente.
Fig. 2. — Variación del contenido de NO$_3^-$ en el agua percolada durante el año 1967.
Fig. 3. — Variación del contenido de NO$_3$ en el agua percolada durante el año 1968.
Respecto al NH₄⁺ su cantidad en las muestras analizadas se mantuvo constante y muy baja a lo largo del año, con concentraciones que no alcanzaron de ordinario 1 ppm de ahí que se haya prescindido de su representación gráfica.

Las figuras 4 y 5 muestran la variación de pH, los volúmenes de agua recogidos durante los mismos años y la salinidad de la muestra expresada en mmhos.

Fig. 4. — Volumen de agua percolada durante el año 1967. Variación del pH y de la salinidad de la misma.

Fig. 5. — Volumen de agua percolada durante el año 1968. Variación del pH y de la salinidad de la misma.
En las gráficas de las figuras 6 y 7 se representan las oscilaciones de la temperatura del suelo a 5 cm de profundidad.

Fig. 6. — Variación de las temperaturas máximas y mínimas del suelo a 5 cm de profundidad, durante el año 1967.

Fig. 7. — Variación de las temperaturas máximas y mínimas del suelo a 5 cm de profundidad, durante el año 1968.

Finalmente, en las figuras 8 y 9 se ha superpuesto la curva de contenido de nitratos a lo largo del año y la simultánea variación de la producción media de las ochenta y dos parcelas de *Lolium perenne* durante los años 1967 y 1968.
Estudio de la variación de nitratos

Al observar la curva de concentración de nitratos en las aguas de percolación durante los años 1967 y 1968, destacan unas grandes oscilaciones, que en principio se pueden considerar como estacionales y que estarían en parte condicionadas por los ciclos climáticos y vegetativos.

El análisis de estas variaciones estacionales revela la existencia de tres máximos, dos de los cuales, son constantes en los dos años y un tercero, que si bien es dudoso en la gráfica referente al año 1967, se confirma con datos de 1969 no representados en este trabajo. La distribución de estos tres máximos es la siguiente:
a) máximo de finales de primavera (últimos de mayo, principios de junio) que dura de 50 a 60 días, pero que se desdobra en la parte final en un mínimo y un máximo menos acusados; coincide con un decrecimiento muy rápido en la producción de ray-grass;

b) máximo de verano, fines de agosto principios de septiembre. Es un máximo de corta duración (unos 30 días entre el mínimo anterior y el posterior en 1968). Este máximo no parece guardar la relación inversa con la producción de ray-grass que se observa en las restantes cimas;

c) máximo de otoño, que se inicia a mediados de noviembre y dura de 80 a 90 días. Coincide con el inicio del declive final de la producción de ray-grass y comienza inmediatamente después de un mínimo de septiembre-octubre simultáneo con el máximo otoñal de producción.

Los mínimos son menos constantes en las curvas de ambos años, a excepción del mínimo de primavera, que se inicia de mediados de febrero a mitad de marzo, dura unos 70 días y es muy acusado, ya que generalmente se llega al agotamiento total de los nitratos en el suelo. El descenso coincide con el incremento de la producción de ray-grass y viene en parte determinado por los primeros aumentos sensibles de temperatura de finales de invierno.

A estas oscilaciones de largo período (uno o varios meses), se superponen variaciones de período más corto, que a veces sólo originan pequeñas oscilaciones en la pendiente de la gráfica y otras veces se traducen en máximos y mínimos secundarios que accidentan a los principales.

Se han estudiado detalladamente sus posibles correlaciones con los factores que pueden introducir variaciones debidas al método. En primer lugar se ha procedido a comprobar si existían picos marcados un número determinado de días después del abonado y si la intensidad de éstos variaba con el incremento del abonado, pero no se ha podido llegar a establecer ninguna correlación clara entre ambos.

También se han cotejado estas oscilaciones con la cantidad de agua percolada para saber si la existencia de estas variaciones era debida a efectos de un lavado insuficiente o una dilución excesiva.

Calculando la correlación total para los años 1967 y 1968 existente entre volúmenes de agua recogida y las concentraciones de nitratos medidadas, se obtiene un valor de 0,1823 con doscientos grados de libertad, valor que, debido al elevado número de grados de libertad, es significativo de la existencia de una cierta correlación negativa entre las dos variables consideradas. Sin embargo, al estudiar la nube de dispersión de puntos podemos observar que existe un cambio importante a partir de un volumen de agua percolada de 3-4 litros, ya que, mientras la correlación es clara para valores inferiores a este volumen, la dispersión es muy acusada en volúmenes más elevados.
ENSAYO DE INTERPRETACIÓN

Sólo de forma muy esquemática vamos a intentar dar un principio de interpretación para los principales fenómenos que se observan en la curva de varianción de nitratos en el suelo. Fundamentalmente estos principios de interpretación se basan en observaciones de otros autores que coinciden con los datos obtenidos por nosotros, ya que en el estado actual de este trabajo aún es imposible poder aventurar interpretaciones nuevas para muchos de los fenómenos observados.

En las oscilaciones de largo período destaca la existencia de una cierta correlación negativa entre la curva de varianción de nitratos y la de producción de ray-grass (figs. 8 y 9). Esta correlación explicaría el mínimo de principios de primavera por agotamiento de los nitratos debido al fuerte incremento de la producción en esta época del año, así como el que su posición dependa en parte de las temperaturas de enero y febrero, que determinan el desencadenamiento del crecimiento vegetativo.

También explicaría el máximo de otoño-invierno y el de principios de verano por acumulación de nitratos en la época de escaso crecimiento de la planta. En ambos casos, al igual que en el anteriormente estudiado, interviene de forma predominante el factor climático a través de su influencia sobre el crecimiento de la planta.

Se observa también, coincidiendo con esta correlación negativa, que las cimas de la curva de producción de ray-grass se presentan con un retraso de unos quince o veinte días respecto a la de varianción de nitratos. Este hecho podría relacionarse con el tiempo que tarda la planta en responder al estímulo de la existencia en el suelo de una mayor cantidad de nitrógeno disponible. Ello destaca la importancia relativa de la nitrificación natural del suelo respecto al aporte de fertilizantes por abonado que se mantiene constante durante todo el período.

Una cierta correlación negativa entre la producción vegetal y la cantidad de nitrógeno del suelo fue descrita por Rappe (1952) refiriéndose al poder de nitrificación (contenido en nitratos de una muestra de suelo almacenada durante 21 días).

Sin embargo, las variaciones climáticas no pueden explicar las oscilaciones que aparecen durante el verano (mínimo de julio, máximo de agosto, mínimo de septiembre, 1968), ya que la variación de temperatura es relativamente pequeña en estos tres meses, al mismo tiempo que la cantidad de agua procedente de riego es abundante.

Debido a la similitud observada, tanto en las fluctuaciones estacionales como en tipo de microfluctuaciones, entre las gráficas correspondientes a la producción de Lolium perenne y liberación de nitratos se ha procedido a comparar esta última con el desarrollo gráfico del complejo sinuosidad 1 : 2, 37 : 4,74 con período fundamental de treinta
y cinco días que utiliza CABALLERO (1969) en el estudio de las varia-
ciones de la producción de ray-grass (figs. 2 y 3).

Con esto se pretende comprobar si existe algún otro factor que
pueda justificar o influir en la producción de microfluctuaciones y si el
máximo de verano, difícil de ser explicado en un contexto de varia-
ciones estacionales climáticas, puede tener otras causas ajenas a las im-
putables puramente al ritmo vegetativo.

De momento, la comparación entre el desarrollo gráfico del complejo
sinuosoidal y la gráfica de variaciones de nitratos se ha realizado sim-
plemente comprobando el número de picos que coincidían en ambas
gráficas, ajustando, para ello gradualmente la pendiente de regresión.
De este modo se consigue que diversos puntos secundarios de la curva
de nitratos coincidan con los correspondientes de período lunar del com-
plejo sinuosoidal. Por otra parte una buena coincidencia se obtiene para
una onda compleja de 1968 (mes de agosto) donde además de las fluc-
tuaciones lunares aparece la superposición con la onda principal de
35-36 días. Sin embargo en otros sectores de la curva la correlación en-
tre ambas gráficas parece inversa, hecho que debe explicarse, de existir
dependencia real, por la interacción de otro factor no implícito en el
complejo sinuosoidal.

Considerando todo el tiempo que comprende la serie cronológica du-
rante la cual se obtuvieron lecturas positivas de nitratos, resultarían
40 picos lunares posibles. En la serie empírica se pueden apreciar ne-
tamente 33 picos, de los cuales 28 coinciden prácticamente con las fases
lunares (período básico de 7,4 días) lo que constituye el 84,8 % de coi-
cidencia. Si se consideran estos lunares de lectura con respecto los 40
téricos posibles resultaría un 70 %.

En el año 1967, en el que se obtuvieron lecturas positivas de nitratos
durante un período algo menor, resultarían 38 picos lunares posibles, apreciándose en la correspondiente curva de nitratos 22 picos que coin-
ciden prácticamente en su totalidad con las fases lunares (100 % coin-
cidencia). Considerando estos lunares de lectura con respecto a los 38
téricos resultaría un 58,8 %.

El abonado periódico inherente a la metodología de este ensayo pue-
de implicar el que las fechas de aplicación de nitrógeno provoquen a
continuación un pico que podría originar confusión en los propiamente
lunares. Si a este respecto suprimimos en el cálculo los picos que que-
dan próximos a los correspondientes abonados, los porcentajes que re-
sultan son los siguientes:

Año 1967:

Picos suprimidos por suceder a los abonados	12
Picos teóricos restantes	26
Picos reales restantes utilizables	10
Picos reales coincidentes con teórica	10
de lo que resulta un 38,4 % con respecto a teóricos y un 100 % respecto a los reales.

Año 1968:

Picos suprimidos por suceder a los abonados	13
Picos teóricos restantes	27
Picos reales restantes utilizables	20
Picos reales coincidentes con teóricos	15

lo que nos da un 55 % de coincidencia respecto a la pauta teórica y un 75 % sobre el total de picos reales de la serie.

La diferencia existente entre picos lunares y picos teóricos en el año 1967 puede ser explicada por la escasez de picos en las curvas correspondientes a este año debido a un mayor distanciamiento entre las sucesivas tomas de muestra (en 1968 se tomaron 125 muestras, mientras que en 1967 sólo 77) y a la larga anulación que sufrieron los nitratos durante buena parte del año.

Los elevados porcentajes de coincidencia entre las fluctuaciones reales y las del complejo sinuosoidal propuesto parecen garantizar la existencia de factores comunes entre los fenómenos de producción de Lolium perenne, que ha permitido deducir este complejo, y la liberación de nitratos. Sin embargo, la comprobación de estos resultados es necesario realizarla con datos obtenidos en condiciones de temperatura y cantidad de agua absolutamente controladas para disminuir la influencia que puedan tener las variaciones inherentes al método. Esta comprobación se está realizando actualmente en condiciones de temperatura, humedad y riego controlado, pero no se poseen aún datos suficientes para realizar las oportunas comparaciones.

Conclusiones

La variación de la concentración de nitratos en las aguas de percolación, recogidas en un lisímetro instalado en un suelo cultivado con Lolium perenne, durante los años 1967 y 1968, pone de manifiesto unas fluctuaciones estacionales que presentan una relación inversa con la producción vegetal; se observa, asimismo, un adelanto de 15-20 días en los máximos de la curva de concentración de nitratos respecto a los de la producción vegetal, lo que se relacionaría con el tiempo que precisa la planta para responder al estímulo de una mayor cantidad de nitrógeno. Es de destacar también un máximo de verano que no parece guardar relación alguna con los períodos climáticos y vegetativos.

Accidentan estas variaciones de largo período unas microfluctuaciones que si bien presentan una cierta correlación con el volumen de agua recogida, comparadas con el desarrollo gráfico del complejo sinuosoidal 1 : 2,37 : 4,74 con período fundamental de 35 días, deducido a partir de
The variations of mineral-nitrogen concentration in percolation waters through a cultivated soil with Lolium perenne are studied during 1967 and 1968 (2 or 3 samples per week). The NH₄⁺ concentration stays very low and constant. The level of NO₃⁻ shows strong fluctuation which is inversely correlated to the vegetal production, showing an advance of 15 or 20 days to it. The possible interpretation of secondary microvariations is also studied.

SUMMARY

Las variaciones de producción de Lolium perenne (Caballero, 1969), presentan un elevado número de coincidencias, lo que revelaría la existencia de factores comunes extraestacionales en la producción vegetal y en la liberación de nitrógeno.

Sección de Fisiología Vegetal
Universidad de Barcelona

BIBLIOGRAFÍA

Notas sobre anóbidos (Col.)

por

F. ESPAÑOL

I. II. Los Nicobium americanos

Tal como siguen interpretados en la actualidad los Nicobium americanos forman un pequeño conjunto en apariencia bastante homogéneo, pero constituido en realidad por elementos dispares, parte de los cuales no se ajusta a la estricta definición del género.

Ello me ha llevado a revisar este pequeño conjunto y a dar cuenta, en la presente nota, de los resultados conseguidos.

Para realizar esta labor he dispuesto de los tipos de Pic comunicados por la Dirección del Departamento de Entomología del Museo de Historia Natural de París, de la colección de anóbidos del Museo Nacional de Historia Natural de Santiago de Chile y de un interesante complemento de material chileno facilitado por el Dr. D. Luis Peña del Departamento de Producción Agraria de la Universidad de Chile. A todos ellos mi agradecimiento por la colaboración prestada.

Así he podido reunir la totalidad de especies americanas que figuran con más o menos propiedad en las filas del género Nicobium. Me refiero a: Nicobium castaneum (Ol.) tipo del género y ampliamente extendido por las regiones templadas y tropicales de nuestro planeta, Nicobium lineaticolle Pic del Brasil, Nicobium spinolae (Sol.) descrito de Chile como Anobium y pasado por Pic al gé. Nicobium, y Nicobium expansicolle Pic también de Chile.

Ahora bien, el estudio comparado de estos insectos conduce, por una parte, a separar los dos primeros de los otros dos por constituir, ambas parejas, secciones genéricas independientes; y me lleva, por otra, a invalidar a lineaticolle Pic por sinónimo de villosum Brull.
De este modo la representación americana de *Nicobium* sufre una sensible reducción al contar únicamente con las dos siguientes especies de difusión transatlántica.

Nicobium castaneum (Ol.), 1790

Anobium castaneum Olivier, 1790, *Ent.*, II, n. 16, pág. 7, 8, lám. I, fig. 2.

Insecto de amplia dispersión geográfica, con tendencia al cosmopolitismo, frecuente en el Mediterráneo occidental e importado a los Estados Unidos de Norte América y a otros países americanos (Méjico, Brasil, etc.) en los que parece haberse aclimatado.

Fácil de identificar por el pronoto giboso, en fuerte declive por detrás y con los lados estrechado-redondeados hacia la base en su mitad posterior, como también por la particular estructura del órgano copu-

![Organo copulador, cara ventral: 1, Nicobium castaneum (Ol.); 2, Nicobium villosum (Brull.) (=lineaticolle Pie) del Brasil.](image-url)
ador (fig. 1). La pubescencia se muestra en él bastante variable, tan pronto uniformemente dispuesta sobre la superficie del cuerpo (forma tipo), como tendiendo a diferenciar bandas transversales sobre los elitros (var. *hirtum* III.).

Aunque primitivamente xilófago, en la región mediterránea muestra marcada predilección por los viejos libros, en los que se desarrollan las larvas y en los que puede ocasionar daños irreparables. Sin datos sobre su comportamiento en el continente americano.

Nicobium villosum (Brull.), 1838

Descrito de las islas Canarias y citado después, bajo diferentes nombres, de las islas Maderas, Marruecos occidental, región atlántica de la península Ibérica y de la isla de Santa Helena. Vive también en Brasil (véase *lineaticolle* Pic) y posiblemente en otros países americanos.

Difiere del precedente por el pronoto en declive suave y no o apenas giboso por detrás, con los lados más paralelos, la parte media del disco recorrida por una línea longitudinal glabra y brillante, y la superficie más fuertemente granulosa; distinto también por la pubescencia más larga y por la forma muy diferente del órgano copulador (fig. 2). Al igual que en *castaneum* la pubescencia lo mismo se presenta uniforme en toda la superficie del cuerpo (forma tipo) que se dispone en bandas transversas sobre los elitros (var. *albofasciatum* Esp.).

Como he señalado ya en notas anteriores, tanto *Nicobium velatum* (Woll.) de las islas Atlánticas, como *Nicobium castaneum* var. *subparallelum* Saraiva de Portugal no logro distinguirlos de *Nicobium villosum* (Brull.) al que creo deben reunirse en concepto de sinónimos.

En cuanto a *Nicobium lineaticolle* Pic del Brasil, el examen de una numerosa serie de ejemplares, incluido el tipo, de acuerdo todos ellos con la descripción original, me ha permitido comprobar su extraordinario parecido con *Nicobium villosum* (Brull.) del que copia no sólo los caracteres externos, sino también la genitalia masculina hasta el punto de resultar obligada su reunión a este último.

Por lo que a las dos restantes especies se refiere, *spinolae* Sol. y *expansicolle* Pic, en contra del parecer de este último autor, es mi opinión que poco tienen que ver con el género *Nicobium* del que se separan por el contorno diferente del protórax (compárense figs. 3, 4 y 5.
con la 6), por el mesosternón y la mitad anterior del metasternón excavados longitudinalmente en la zona media, por los tarsos (fig. 7) más gráciles, con el primer artejo bastante más largo que el segundo y que el quinto (apenas más largo que el segundo y más corto que el quinto, fig. 8, en *Nicobium*), por los segmentos abdominales soldados o ten-

Figs. 3-6. — Protórax: 3, *Hadrobregmus (Allobregmus) acutangulus* (Sol.); 4, *Hadrobregmus (Allobregmus) spinolae* (Sol.); 5, *Hadrobregmus (Allobregmus) expansicolle* (Pic); 6, *Nicobium villosum* (Brull.) (= *lincaticolle* Pic) del Brasil.

diando a soldarse en el medio (libres en *Nicobium*), y por la estructura netamente distinta de la genitalia masculina. A decir verdad el único carácter que hace pensar en *Nicobium* y que confundió probablemente a Pic es la pubescencia doble y en parte erizada de la parte superior del cuerpo, pero utilizar esta particularidad para, a despecho de todo lo demás, sentar conclusiones, lo encuentro muy aventurado, máxime si se tiene en cuenta que el citado carácter lo presentan otros *Anobiinae* al margen del género *Nicobium*.

Figs. 7-8. — Tarsos posteriores: 7, *Hadrobregmus (Allobregmus) acutangulus* (Sol.); 8, *Nicobium villosum* (Brull.).
Es evidente, por otra parte, que las dos mencionadas especies junto con el supuesto Anobium acutangulum Sol., también chileno, constituyen una unidad sistemática estrechamente relacionada con el género Hadrobregmus Thoms. (sensu KNUTSON) del que reproducen la genitalia masculina (compárese fig. 9 con las 10 y 11), la estructura de los esternitos torácicos y abdominales, la conformación de antenas y tarsos, etc., sin que por ello se identifiquen del todo con este género por existir entre ambos sensibles diferencias que estimo, por el momento, de alcance subgenérico.

Con la entrada de estos tres representantes chilenos, seguida de la de otros elementos australes que deben, por los mismos motivos, ingresar en sus filas, el género Hadrobregmus, al ampliar su contenido específico, precisa de una nueva ordenación que podría a mi juicio ajustarse al siguiente esquema.

Gén. Hadrobregmus Thoms. 1859

Dendrobium Mulsant y Rey, 1864. Térédiles, págs. 65, 68.

Talla mediana o grande, comprendida entre 3 y 9 mm. Cuerpo alargado, cilíndrico; pubescencia manifiesta. Cabeza cubierta en parte por el protórax que se dispone encima de ella a modo de capuchón; antenas filiformes o muy finamente aserradas, de 11 arcos, los 3 últimos grandes, sueltos y formando una maza muy alargada. Protórax giboso, en curva atenuada por delante, subparalelo después, en su mitad basal, hasta los ángulos posteriores; éstos marcados; elevación del disco hendida, excavada, deprimida o plana por encima; canto lateral fino y completo. Élitros con fuertes estrías de puntos. Mesosternón y mitad anterior del metasternón excavados longitudinalmente en la zona media; primer esternito abdominal más corto que el tercero; del segundo al quinto soldados o tendiendo a soldarse en el medio. Coxas anteriores e intermedias separadas; los dos primeros esternitos torácicos y la mitad anterior del tercero acanalados entre ellas para recibir a las antenas en estado de reposo. Órgano copuiador con los parámeros largos, poco más cortos que el lóbulo medio; éste asímétrico (figs. 9, 10, 11 y 12).

Numerosos representantes repartidos en tres grupos de especies; éstos con buenos caracteres diferenciales que apoyan el establecimiento para cada uno de ellos de una sección subgenérica.
Figs. 9-11. — Órgano copulador, cara ventral: 9, Hadrobregmus (Hadrobregmus) notatus (Say); 10, Hadrobregmus (Allobregmus) acutangulus (Sol.); 11, Hadrobregmus (Allobregmus) spinolae (Sol.).

Subgénero. Hadrobregmus s. str.

Agrupa a los representantes holárticos del género que tienen de común la talla mediana, desde 3,2 hasta 6,5 mm; la pubescencia de la parte superior del cuerpo simple, acostada; el último artejo de los palpos labiales no escotado por delante (figs. 13, 14 y 15); el protórax sin espíneas ni expansiones laterales y con el lóbulo basal corto, poco desarrollado; los lados de la depresión media del mesosternón en lámina apenas elevada, no dentiforme; y el órgano copulador según muestra la figura 9.

Figuran en él las siguientes formas por lo general bien estudiadas y sin problemas de identificación:

Europeas y euroasiáticas: denticollis (Creutz.), pertinax (L.), confusus (Kr.) y carpetanus (Heyd.).

Norteafricanas: pineti (Peyerh.) y pineti subsp. cedretorum (Peyerh.).

Norteamericanas: notatus (Say), americanus (Fall), alternatus (Fall), quadrulus (Lec.) y truncatus (Fall).
NOTAS SOBRE ANÓBIDOS

Subgén. Allobregmus nov.

Exclusivo de América austral y mal interpretado por Pic que lo situó en el género *Nicobium* confundido quizás por un cierto parecido externo y por el revestimiento piloso de la parte superior del cuerpo.

El estudio de la genitalia masculina y el detenido examen de la morfología externa nos muestran, en efecto, sus verdaderas afinidades que lo colocan en la inmediata vecindad de *Hadrobregmus* con el que comparte los caracteres esenciales. Difere no obstante de éste por la pubes-
cencia doble y en parte erizada, por las márgenes del protórax más
exploradas y por los ángulos posteriores del mismo armados de fuertes
espinas. Otras diferencias menos acusadas se refieren a la talla, por lo
general, menor, comprendida entre 3 y 5 mm; al cuerpo proporcional-
mente más ancho, menos alargado; a la depresión media de los ester-
nitos torácicos, de ordinario, menos hundida; al lóbulo basal del pro-
noto algo más desarrollado; y al último artejo de los palpos labiales
tendiéndose a escotarse por delante. El órgano copulador (figs. 10 y 11)
como en el subgénero precedente.

Tres representantes conocidos, los tres chilenos, fáciles de distinguir
uno de otro por la diferente estructura de las márgenes del protórax:
acutantulus (Sol.), con una sola espina en los ángulos posteriores (figu-
ra 3); spinolae (Sol.), con dos espiras en la región de los ángulos poste-
riores (fig. 4); expansicollis (Pic.), asimismo con dos salientes espinosos en
la región de los ángulos posteriores, pero con las explicaciones laterales
más acentuadas que en la especie precedente (fig. 5). El primero de
ellos descrito de Coquimbo y recogido por el Sr. Peña en Las Trancas,
Cord. Chillán, prov. Nube; el segundo señalado en la descripción ori-
ginal de Colchagua e Illapel y recogido por el Sr. Peña en Arrayán,
Santiago; el tercero descrito de Chile sin más precisión geográfica.

Subgé. Megabregmus nov.

Especie-tipo: Hadrobregmus australiensis Pic. Échange, XVII, 1901, pág. 94.

Reúne a un segundo grupo de especies australes más numeroso y
mucho más extendido que el anterior del que se separa por la talla
sensiblemente mayor, a partir de 5 hasta 9 mm; por el protórax mucho
más giboso por encima y con los lados menos fuertemente espinosos en
la región de los ángulos posteriores; por la excavación media de los
esternitos torácicos muy profunda y de bordes abruptos, la del mesos-
ternón limitada por sendas láminas elevadas y dentiformes; y por el
cuerpo más alargado, Distinto a su vez de los típicos Hadrobregmus por
la pubescencia doble y en parte erizada que reviste a la superficie del
cuerpo; por el último artejo de los palpos labiales escotado en la extre-
midad (figs. 16, 17 y 18); y por los lados de la depresión media del
mesosternón en lámina dentiforme. En cuanto al órgano copulador, su
forma es parecida, pero sensiblemente distinta de la de los dos subgé-
neros precedentes (fig. 12).

Entre otros que no he podido examinar, cuentan en sus filas los
seis siguientes representantes australianos y neotrópicos:

Australianos: australiensis Pic, de Australia; areolicollis (Lea), de
Tasmania; y magnus (Dumbl.), de Nueva Zelanda.

Neotrópicos: *aureosignatus* Pic, del Brasil; *incisicollis* Pic, de Argentina; y *punctatipennis* Pic, de Chile.

Laboratorio de Zoología (1)
Facultad de Ciencias
Universidad de Barcelona

RÉSUMÉ

Telle qu'elle est admise dans les catalogues, la représentation américaine du genre *Nicobium* Lee est composée de deux éléments disparates: d'une part *Nicobium castaneum* (Ol.) type du genre, à large répartition géographique, et *Nicobium lineaticolle* Pic du Brésil qui prend place auprès de celui-ci et qui n'est autre que le *Nicobium villosum* (Brull.); d'autre part les prétendus *Nicobium spinolae* (Sol.) et *Nicobium expansicolle* Pic de Chili dont l'ensemble de caractères les rattachent au genre *Hadrobregmus* Thoms. (sensu Knutson), qui doit encore recevoir d'autres éléments australes, tout en créant pour ceux-ci deux coupes sous-génériques: sous-genre *Allobregmus* nov. pour les formes chiliennes *acutangulus* (Sol.), *spinolae* (Sol.) et *expansicolle* (Pic); sous-genre *Megabregmus* nov. pour celles, plus nombreuses, qui se rangent autour d' *australiensis* Pic et d *aureosignatus* Pic.

BIBLIOGRAFÍA

(1) Este trabajo se ha beneficiado de la ayuda concedida a la Cátedra de Zoología (Invertebrados) con cargo al crédito destinado al fomento de la investigación en la Universidad.
Algunas consideraciones sobre las nematocenosis de suelos primordiales

por

ENRIQUE GADEA

Introducción

Se entiende como suelos primordiales, por antonomasia, los briofíticos y liquinígenos. Los medios muscícola y liquinícola son los pioneros del poblamiento biótico sobre la roca desnuda y sobre materiales vírgenes expuestos a la intemperie. El medio de estos suelos primordiales y la micro- y meiofauna que albergan, entre la que se encuentran los nematodos, que constituyen una fracción muy importante y a la vez muy representativa de la misma, presentan ordinariamente una gran antigüedad y estabilidad, con un potencial de variación muy reducido o casi nulo.

La influencia externa apenas se deja sentir en estos medios. Se trata de biotopos muy cerrados ecológicamente, en los que es posible encontrar nematocenosis autóctonas características. Se comportan, en este sentido, como verdaderas «islas ecológicas» con caracteres primitivos. El poblamiento animal de los suelos primordiales ofrece una neta tendencia hacia la uniformidad en todos aquellos parajes cuyas condiciones de vida sean las mismas. No parece que las diferentes especies de musgos o de líquenes, salvo casos muy particulares, puedan tener influencia determinante sobre las especies de nematodos. Puede decirse, a este respecto, que, en iguales condiciones ecológicas, la nematofauna y las nematocenosis presentan una clara tendencia cosmopolita.

Desde el punto de vista expuesto, el conocimiento de los medios liquinícola y muscícola ofrece un extraordinario interés en su proyección ecológica. Hay que tener en cuenta que los líquenes y los musgos son, hasta cierto punto, reactivos muy sensibles del microclima y del subs-
trato. Estos biotopos primordiales, sometidos a alternancias sucesivas de presencia y ausencia de agua en los mismos, albergan necesariamente formas animales con facultad de inmovilización y anabiosis temporales, como es el caso de los nematodos. En definitiva, pues, la nematofauna ubicada en los suelos primordiales depende fundamentalmente de los factores microambientales que las masas de musgos y líquenes determinan. En general puede decirse que los suelos brioadáficos y liqüenígenos constituyen uno de los medios de poblamiento nematódico más interesantes. Hay que notar, sin embargo, que existen diferencias, a veces muy acusadas, entre el medio muscícola y el liqüenícola, razón por la cual se pasa a considerarlos a continuación por separado.

El medio y las nematocenosis liqüenícolas

La microfauna que se alberga en los líquenes y en los suelos liqüenícos constituye uno de los elementos de poblamiento más notables. Ello es particularmente interesante en las pequeñas islas e islotes y en las altas montañas. Los líquenes son la avanzada de los biotopos primordiales petrícolas, saxícolas e incluso corticícolas, no sólo como elemento vegetal terrestre, sino también como medio pionero del poblamiento animal anexo. Conviene considerar que este medio ecológico ofrece, en ciertos parajes, caracteres muy singulares referentes a la configuración física y a las condiciones microclimáticas. Puede decirse, en cierto modo, que el medio liqüenícola viene a ser, bióticamente, el medio petrícola.

Una particularidad que hay que tener en cuenta es la de que, aunque el substrato sea calcáreo, el medio y el suelo liqüenícolas son siempre ácidos, oscilando el pH ordinariamente entre 4 y 6. Esta circunstancia hay que tenerla muy presente de cara a la nematofauna y, en particular, a las nematocenosis.

Los estudios y observaciones hechos por el autor en este campo se han efectuado en medios petr-liqüenícolas formados por Xanthoria parietina, Cladonia endiviaefolia y Roccella fuciformis principalmente, y también por especies de los géneros Squamaria, Ledicea, Diploschistes, Caloplaca, Romalina, Arthonia y Dirina.

Los resultados del análisis microfaunístico en general y nematodológico en particular demuestran, de una manera muy clara, que el medio liqüenícola es notablemente más pobre que el muscícola, sobre todo desde el punto de vista cuantitativo, con diferencias muy acentuadas en ciertos grupos. Sorprende, asimismo, la limitación de orden cualitativo, no sólo dentro de los nematodos, sino también respecto a otros grupos micro- o mediofaunísticos: los tardigrados, por ejemplo, faltan casi de modo absoluto, lo mismo que ciertas formas de rotíferos. En general la presencia se limita a un corto número de especies, pero con una relativa
abundancia de individuos. Es notable comprobar que hay una cierta tendencia en grupos tales como los rotíferos y los nematodos, hacia la dominancia monoespecífica.

Los nematodos, que son los elementos más conspicuos y los más minuciosamente estudiados en este trabajo, integran una de las fracciones más interesantes de esta zoocenosis liquénica. En algunos casos se observa, en el medio en cuestión, un predominio, entre los nematodos, de formas fitodetríticas, representadas por Areolaimoideos (Plectus cirratus, Wilsonema auriculatum) y Monhisteroideos (Monhystera vulgaris), seguidas de formas saprobiónicas (Cefalóbidos) y briófagas (Dorilaimoideos), faltando prácticamente las formas depredadoras. En otros casos, los nematodos liquénicos dominantes comprenden formas saprobiónicas, tales como Tylenchus davainei, Rhabditis producta, Teratokocephalus crassidens, Tylenchus filiformis, Aphelenchoides parietinus y Wilsonema auriculatum; siguen a continuación formas detritófagas y briófagas (Areolaimoideos, Monhisteroideos y Dorilaimoideos), y, aunque en débil proporción, se encuentran también formas depredadoras (Mononcoideos y Tripiloideos). En general la nematofauna se caracteriza, en el medio liquénico, por el predominio de las formas detritófagas y saprobiónicas, con déficit de formas briófagas y falta casi total de formas depredadoras.

En el caso de coexistencia de ambos medios, el liquénico y el muscicola, la nematofauna es más rica y variada, mucho más que el medio briofítico estricto. En éste es, en efecto, más abundante, pero más uniforme, con predominio de formas fitófagas y depredadoras. Pueden considerarse los liquenes y el suelo liquénigeno como un medio ecológico muy precario, cuya micro y meiofauna procede del medio briofítico (fig. 1) y está integrada únicamente por las formas más euritopas y

Fig. 1. — Relaciones de la nematofauna de los medios primordiales y afines. Las flechas indican los sentidos del poblamiento nematódico plausible (los fundamentales, en línea continua; los secundarios, en línea de trazos).
menos exigentes del mismo. Las nematocenosis ecotónicas son altamente interesantes en estos medios edáficos primordiales.

El medio y las nematocenosis muscícolas

Los nematodos que viven entre los musgos y en el suelo brióedáfico son esencialmente una nematofauna terrestre y dulciacuática empobrecida cualitativamente y desplazada hacia las formas más resistentes y euritopas, de régimen detritófago y saprobiónico, aunque con una notable proporción de formas fitófagas y depredadoras. Se encuentran también muchas formas terrícolas frecuentes en las zonas rocosas, sobre todo cuando no existe substrato rocoso bajo los musgos. El 20% de esta nematofauna corresponde a formas fitófagas; el 80% restante pertenece a las otras formas biológicas citadas.

En los musgos las especies nematódicas dominantes son fundamentalmente *Tylenchus filiformis*, *Plectus cirratus*, *Tylenchus davainei*, *Wilsonema auriculatum*, *Eudorylaimus carteri*, *Aphelenchoides parietinus*, *Ditylenchus intermedius*, *Rhadinotus producta* y *Teratocephalus crassidens*, seguidas de *Prionchulus muscorum*, *Tripyla intermedia* y *Monhystera vulgaris*. Existen otras muchas especies, pero se trata de formas cuya presencia y dominancia son secundarias.

En el medio brióedáfico, la composición de la nematofauna dominante es casi la misma que el medio precedente de los líquenes, pero con algunas diferencias. Dominan en ambos medios las mismas formas bióticas, pero la proporción de las briófagas es un poco mayor. En coexistencia con líquenes, la nematofauna es siempre predominantemente del tipo briófilo. No obstante, la presencia de ciertos líquenes, tales como *Xanthoria* y *Roccella*, parece impedir o inhibir la existencia de la totalidad o parte de esta nematofauna. Desde este punto de vista hay que recordar lo que se ha dicho antes acerca del medio liquenícola. Con referencia a la distribución ecológica de la nematofauna, se pueden agrupar los medios aquí considerados en tres grandes conjuntos: a) líquenes; b) musgos, y c) coexistencia de ambos.

Por lo que respecta a los nematodos del medio brióedáfico, el número total de especies típicas que se han hallado es relativamente bajo, ya que sólo alcanza la cifra de 42. Hay que tener en cuenta, sin embargo, los casos en que una especie se encuentra con una abundancia muy acusada en nematocenosis monoespecíficas. En ciertos casos muy particulares se han hallado comunidades nematódicas un tanto extrañas, caracterizadas por la dominancia de especies tales como *Paraphelenchus pseudoparietinus* y *Acroboloides b{"u}tschlii*.

Todas las especies halladas en el medio brióedáfico son formas conocidas y la mayoría son especies comunes. Hay que indicar que existen
grandes diferencias entre la nematofauna de las turberas y la de los musgos típicos (hipnáceos) por una parte, y la de los nematodos brioedáficos por otra. En el primer caso hay una neta preponderancia de formas dulciacuáticas con dominancia de Doriláimidos, lo cual no sucede en el caso de la nematofauna brioedáfica.

Algunas conclusiones generales

Para la totalidad de la nematofauna y de las nematocenosis musci-liquenícolas se pueden formular una serie de conclusiones generales, que se exponen sucintamente a continuación.

En primer lugar, la nematofauna de este conjunto es de tipo terrestre y dulciacuático, empobrecida cualitativamente y desplazada hacia las formas más resistentes y más eurítopas, con régimen detritófago y saprobióntico dominantes.

Teniendo en cuenta las fracciones bióticas, el 0,5% de la nematofauna corresponde a formas depredadoras; el 5%, a formas briófagas; el 22%, a formas fitodetritófagas, y el 72%, a formas saprobiónticas.

Los resultados del análisis nematodológico demuestran, para el conjunto, de una manera muy clara, que el medio liquenícola es notablemente más pobre que el muscícoco, en particular desde el punto de vista cualitativo, con diferencias acentuadas para ciertos grupos.

Por lo que respecta a las diferencias posibles entre la nematofauna estrictamente liquenícola y la exclusivamente muscícola, se puede afirmar que no hay especies de nematodos exclusivas de los líquenes.

El conjunto de la nematofauna se caracteriza por la dominancia de los Tilencoideos, Areolaimoideos y una notable representación de Dori-lainoideos, Rabditoideos y, en una proporción ya mucho más pequeña, Monhysteroideos, Mononcoideos y Tripiloideos.

Estas conclusiones deben considerarse sólo como previas, a pesar de la abundancia y diversidad del material estudiado. Para una mayor seguridad y precisión se requiere un estudio aún más completo de estos biotopos, con inclusión del aspecto corológico, así como de los factores fenológicos.

Departmento de Zoología (1)
Facultad de Ciencias
Universidad de Barcelona

(1) Este trabajo se ha beneficiado de la ayuda concedida a la Cátedra de Zoología (invertebrados) con cargo al crédito destinado a la Ayuda a la Investigación en la Universidad.
SUMMARY

Some considerations on primordial soils inhabiting nematocenosis. — In this note are exposed the principal features on primordial soils milieu in reference to nematofauna. They are compared the lichenic biotope and the bryophytic one in this way. Differences between the both milieus are indicated. The lichens inhabiting nematofauna is similar to the moss inhabiting one, but it is more poor than this one, principally in qualitative aspect. The dominant species of the nematocenosis are given.

BIBLIOGRAFÍA

— 1967. La comunidad nematódica de los suelos muscfneos mediterráneos; Miscel. Zool., II (1), 1-5, Barcelona.

Osservazioni sulla variabilità di due specie di *Glomeris* (Myriapoda, Diplopoda) nella regione di Asiago (Veneto)

per

GIORGIO MARCUZZI, PAOLA PELUSIO e SILIO RIGATTI LUCHINI

Istituto di Biologia animale - Instituto di Statistica
Università di Padova

Ambito e scopi dell'indagine

Per il nostro lavoro abbiamo scelto il metodo dell’analisi statistica multivariata (già adottato da Marcuzzi, Facchin Fabris e Rigatti Luchini (1963) nello studio sull’*Euscorpius carpathicus*; da Marcuzzi, Celotto e Rigatti Luchini (1965) sulle *Glomeris* della regione del Monte Grappa e da Marcuzzi e Celotto (1967) sulle *Glomeris* delle
Puglie) in quanto questo metodo è più sensibile è più corretto di quello dell’analisi univariata.

L’elaborazione e l’analisi statistica come pure la redazione dei paragrafi 8, 9, 11 e 12 sono dovuti ad uno dei tre autori (S.R.L.).

L’ambiente: geografia e geologia

La zona da noi esaminata si estende sul versante meridionale dell’Altopiano di Asiago (o dei Sette Comuni) e precisamente da 11° 27’ 08” a 11° 42’ 08” di longitudine est rispetto a Greenwich. L’Altopiano comprende la zona montuosa, alta in media poco più di 1000 m, che si estende tra il fiume Brenta ad est e il Torrente Astico ad ovest, formando nel suo insieme una scarpata che raccorda l’Altopiano stesso con la pianura vicentina.

L’Altopiano è costituito da una conca centrale nel cui mezzo si trova Asiago ed in cui sono sparsi i paesi fra pascoli e campi non molto fertili, mentre foreste di conifere e di faggi o miste crescono abbondantemente lungo i fianchi dei monti posti attorno alla conca. Carattere comune a tutto il territorio è la natura calcarea del terreno che permette lo sviluppo di numerosi fenomeni carsici, rilevabili o per le numerose doline (dintorni di Cima Dodici) o solo per la mancanza di acqua superficiale, molto accentuata nella parte montuosa occidentale. Nella zona inferiore invece, dove il carsismo è meno sviluppato, non mancano sorgenti, specie dove affiorano le argille, come attorno ad Asiago.

Riguardo alla natura geologica, la regione è costituita da formazioni secondarie, terziarie e quaternarie, con grande sviluppo, soprattutto nella porzione occidentale, di rocce basaltiche.

In genere notiamo un paesaggio ondulato a dossi arrotondati, in cui prevalgono rocce del Cretaceo inferiore e medio. Verso Bassano, invece, dove sono sviluppate quasi equamente le rocce stratificate e quelle vulcaniche, si ha un paesaggio più mosso e vario e si stabilisce una morfologia di collinette allungate con i versanti opposti asimmetrici, più ripidi a nord-ovest e più dolci a sud-est.

Da un punto di vista paleogeografico possiamo notare che l’incisione della Valle del Brenta, che delimita ad est l’Altopiano di Asiago, ha intaccato la massa rocciosa, certamente un tempo continua, che comprende, oltre all’Altopiano dei Sette Comuni, anche il Monte Grappa, la catena del Col Visentin ed il gruppo del M. Cavallo. E’ stata appunto questa continuità geologica che ci ha consigliato di proseguire i lavori già portati a termine sul M. Grappa da MARCUZZI, CELOTTO e RIGATTI LUCHINI (1965). Nello stesso tempo è da tener presente il ruolo che ha avuto, almeno per certi gruppi zoologici, la Val Sugana, come barriera nella distribuzione geografica delle specie.
Il clima

Le condizioni climatiche della zona studiata si possono desumere dall’analisi dei diagrammi riportati nelle figure 1, 2 e 3; essi si riferiscono al comportamento dei due elementi climatici fondamentali: temperatura e precipitazione, osservati nelle località di Asiago (1046 m.s.m.), Crosara (417 m.s.m.) e Bassano (129 m.s.m.), prese come località campione (Fig. 1-2-3).

E’ da tenere presente che, nonostante la moderata estensione del territorio, ci troviamo dinanzi ad una serie di climi o climi regionali o ecoclimi come si può osservare in poche parti delle Prealpi, andando da un clima di tipo mediterraneo ad Ovest di Bassano, per mezzo di vari ecoclimi temperati, fino a quello più interno e fresco della foresta di conifere nei dintorni di Asiago.

Riguardo alle precipitazioni si può notare una ripartizione abbastanza chiara con un massimo principale di piovosità in autunno ed un altro secondario in primavera, registrando le punte massime, per la primavera, in giugno e, per l’autunno, in ottobre nella zona più bassa e in novembre ad Asiago. Da notare ancora che la zona di Bassano presenta un aumento di precipitazioni anche in aprile.

Fig. 1. — Curva ombrotermica (diGaussen) per la località di Asiago (basata sui dati degli anni 1953-66).
Questi massimi inquadrano due minimi, uno estivo ed uno invernale, quest’ultimo più accentuato dato che durante l’estate la zona è soggetta ad abbastanza frequenti precipitazioni sotto forma temporalesca e quindi di breve durata ($1 > P > E > I$).

Dall’osservazione dei diagrammi si può vedere che la temperatura non raggiunge mai valori molto bassi in inverno, aggirandosi sui -2° ad Asiago e $+2^\circ$C a Bassano, mentre in estate non dà mai valori elevati ($+15^\circ$C ad Asiago; $+21^\circ$C a Bassano).

![Diagramma di clima](image)

Fig. 2. — Come nella figura 1 per la località di Crosara.

L’andamento annuo dell’umidità relativa nel decennio 1946-1955 è risultato abbastanza regolare. Normalmente si osserva un leggero aumento dell’umidità relativa al sopraggiungere delle pioggie primaverili mentre, con l’estate, essa tende a diminuire fino a che, con la progressiva diminuzione della temperatura e l’inizio delle pioggie autunnali, ritorna di nuovo ad aumentare. Però una frazione rilevante della pioggia viene assorbita dall’ evaporazione particolarmente intensa nelle zone boschive esposte a mezzogiorno ed al libero movimento dell’aria.

Per quanto riguarda le precipitazioni nevose si osserva (F. Donà, 1950) che la loro altezza e la durata del periodo di continuo innevamento aumentano gradualmente con l’altitudine, non sempre corrispondendo, però, alla maggiore altezza delle precipitazioni la maggior durata che invece corrisponde sempre alla maggiore altitudine.
La vegetazione

Osservando la vegetazione possiamo distinguere un piano basale (dai 200 ai 900 metri di altitudine) ed un piano montano (sopra i 900 m.).

Il piano basale geograficamente è rappresentato dal fondo di alcune valli e da una fascia basale del versante meridionale dell’Altopiano stesso. La particolare mitezza del clima durante la stagione invernale consente a piante spontanee e coltivate di superare più facilmente la stagione fredda. Questo piano si può dividere in orizzonte submediterraneo e submontano.

Nell’orizzonte submediterraneo crescono: Leccio (Quercus ilex), Lauro (Laurus nobilis), Pino marittimo (Pinus pinaster), Pino domestico (Pinus pinea), Cipresso (Cupressus sempervirens), Ginepro (Juniperus communis), Coccolone (Juniperus oxycedrus), Olivo (Olea europaea). Si trovano in questa zona elementi della zona del Castanetum quali il Noce (Juglans regia), Acero, Frassino, Tigli, Carpino bianco e Carpino nero, Olmo, Ontano, Pioppo, Salice, Castagno. Come vegetazione del sottobosco troviamo il Ginepro comune, e il Ginepro sabina, la Coronilla emerus ed altre specie varie.

Nell’orizzonte submontano abbiamo rappresentate soprattutto diverse
specie di querce e castagni, ma solo il castagno forma boschi di qualche estensione, mentre le querce formano grossi cespugli o più spesso boscaioli che rivestono i fianchi delle valli principali. La vegetazione in questa zona è la seguente: Castagno (Castanea sativa), Quercia (Quercus pedunculata e Q. sessiliflora), Cerro (Q. cerris), Leccio (Q. ilex), Acero (Acer platanoides, A. pseudoplatanus, A. campestre), Frassino (F. excelsior), Orniello (F. ornus), Carpino (Carpinus betulus), Nocciolo (Corylus avellana), Tigli (Tilia), Sorbo (Sorbus), Corniolo (Cornus mas), Maggiociondolo (Cytisus laburnum), Robinia (Robinia pseudoacacia), Pino marittimo (P. pinaster), Pino domestico (P. pinea), Pino di Corsica (P. laricio), Cipresso (Cupressus sempervirens), Cedro (Cedrus deodara).

Per il piano montano è difficile applicare la distinzione in orizzonti montano inferiore e superiore in quanto in quasi tutta la zona il faggio è accompagnato dalle conifere. In questa zona la flora forestale è la seguente: Faggio (Fagus silvatica), Abete bianco (Abies alba), Acero montano (Acer pseudoplatanus), Olmo montano (Ulmus montana), Frassino (Fraxinus excelsior), Ontano bianco (Alnus incana), Sorbo (Sorbus aucuparia e S. aria), Salicone (Salix capreae), Pioppo (Populus nigra), Pino di Corsica (P. laricio), Pino silvestre (P. silvestris).

In questa divisione, oltre alla zona del Fagetum, è compresa anche la zona del Picetum, la cui flora è la seguente: Betulla (Betula alba), Ontano (Alnus incana), Sorbo (Sorbus aucuparia e S. aria), Acero montano (Acer pseudoplatanus), Pioppo tremulo (Populus tremula), Larice (Larix decidua), Abete rosso (Picea excelsa), Pino silvestre (P. silvestris), Pino cembro (P. cembra), Pino mugo (P. mugo).

L’altopiano di Asiago in relazione alla sua vegetazione si può assegnare alla Regione medioeuropea, Dominio centroeuropeo, Provincia alpina, Distretto alpino propriamente detto, Settore prealpino.

Tutta la zona dell’Altopiano è boscosa lungo i versanti dei monti che la limitano a Nord, tranne verso Gallio ove la montagna fu diboscata; nelle zone più basse, invece, è un altopiano pratico, ondulato, a dossi più a meno accentuati.

Le località di raccolta

I luoghi esaminati per la raccolta delle Glomeris oggetto del nostro studio sono compresi tra le longitudini 11° 27’ 08” e 11° 35’ 08” est di Greenwich e le latitudini 45° 45’ 00” Nord e 45° 54’ 00” Nord.

Il nome dato alla singola stazione di raccolta è preso dalla località o dal colle più vicino se la località stessa non ha un toponimo, i toponimi essendo quelli segnati nelle tavolette topografiche in scala 1:25000 dell’Istituto Geografico Militare. Di seguito sono elencate le località prese...
in considerazione; abbiamo però tralasciato quelle in cui le ricerche non hanno dato esito positivo (1).

1. Valle S. Floriano —125 m. s. m.— ciottoli e sassi sparsi; foglie di nocioli e rovi;
2. Monte Miesa —130 m. s. m.— macereto con foglie di nocioli e rovi;
3. San Michele —138 m. s. m.— nocioli, castagni e pochi olivi. In questa località si sono raccolte le seguenti piante: Corylus avellana, Plantago media, Saponaria officinalis, Acer campestre, Clematis vitalba, Plantago major, Oxalis stricta, Malva alcea, Sambucus racemosa, Helleborus viridis, Melandrium album;
4. Val d’Inverno (Vallonara) —178 m. s. m.— luogo piuttosto umido con rovi, nocioli e robinie;
5. Valle San Floriano —220 m. s. m.— piccoli macereti con pietrisco sparso, robinie e nocioli;
6. San Michele —258 m. s. m.— dietro la chiesa; ambiente piuttosto umido, castagni e nocioli;
7. Valrovina —319 m. s. m.— macereti con foglie di nocioli e robinie. In questa località si sono raccolte le seguenti piante: Plantago media, Acer campestre, Clematis vitalba, Juniperus communis, Quercus pubescens, Ostrya carpinifolia, Ligustrum vulgare, Rhus cotinus, Ononis spinosa, Cytisus nigricans, Robinia pseudoacacia, Rubus ulmifolius, Pimpinella major, Campanula glomerata, Brunella vulgaris, Cychorium intybus, Achillea millefolium, Pteris aquilina, Castanea sativa;
8. Costa Romanella —324 m. s. m.— nocioli, rovi, robinie, castagno;
9. Monte Gaggion —325 m. s. m.— rovi, nocioli, robinie;
10. Valrovina —330 m. s. m.— nocioli, rovi, robinie e castagni;
11. Ca’ Perozzi —340 m. s. m.— pietrisco sparso con detrito organico;
12. Rovole —350 m. s. m.— cespugli, nocioli, leccio;
13. Caluga —380 m. s. m.— piccoli macereti con foglie di rovi e nocioli;
14. Miglioretti (Crosara) —410 m. s. m.— macereto calcareo sparso fra nocioli, querce e ginepro;
15. Sopra Caluga —470 m. s. m.— smuovendo i sassi di delimitazione tra i campi;
16. Santa Caterina —540 m. s. m.— rari pini, nocioli;
17. Pradipaldo —570 m. s. m.— pini e nocioli;
18. Ca’ Bressani —610 m. s. m.— ambiente molto umido, numeroso.

(1) La classificazione delle piante è dovuta alla cortesia del Dr. G. G. Lorenzoni dell’Istituto Botanico di questa Università, che ringraziamo vivamente. I muschi sono stati classificati dalla Prof. C. Cortini Pedrotti dell’Università di Camerino, alla quale esprimiamo la nostra riconoscenza.
GIORGIO MARCUZZI, PAOLA PELUSIO E SILIO RIGATTI LUCHINI

pietrisco. In questa località sono state raccolte le seguenti piante:
Corylus, Castanea sativa, Acer campestre, Rhamnus alaternus, Clematis vitalba, Cornus mas, Geranium sylvaticum, Thalictrum flavum, Lotus corniculatus, Achillea millefolium;

19. Fontanelle —750 m. s. m.— a destra, prima del paese, seguendo un sentiero ben tracciato. In questa località si sono raccolte le seguenti piante: *Fagus sylvatica, Gentiana cruciata, Fraxinus ornus, Clematis vitalba, Epipactis latifolia, Orchis maculata, Juniperus communis, Helleborus viridis, Anemone hepatica, Crataegus monogyna, Achillea millefolium*;

20. Osteria al Tornante (Stringari) —790 m. s. m.— lungo il letto di un torrente secco. In questa località si sono raccolte le seguenti piante: *Eurhynchium praerolongum swartzii, Corylus avellana, Castanea sativa, Daphne mezereum, Lonicera xylosteum, Cornus mas, Tanus communis, Arum italicum, Cytisus laburnum, Acer pseudoplatanus*;

21. Ciscati (Fontanelle) —835 m. s. m.— sfasciume di roccia calcarea con ciottoli: faggi ed abeti;

22. Val Frenzela (Gallio) —950 m. s. m.— seguendo il sentiero che porta al fondo valle, sotto ed a sinistra della prima piccola centrale idroelettrica. In questa località abbiamo raccolto le seguenti piante: *Himalothecium philippeanum recognitum, Corylus avellana, Galium mollugo, Clematis vitalba, Lonicera xylosteum, Prunus spinosa, Salvia verticillata, Thymus serpyllum, Achillea millefolium, Knautia silvestris*;

23. Gritti (Rubbio) —960 m. s. m.— località molto umida: nocioli, pochi abeti, muschi;

24. Case Fratte (Boschetta di Conco) —1020 m. s. m.— a destra, prima del caffè «da Giorgio»: nocioli e faggi;

25. Casere Pozzolo (Rubbio) —1050 m. s. m.— abeti e muschio;

26. Tagliata Val d’Assa (Camporovere) —1060 m. s. m.— a destra, dopo l’osteria. Bosco di faggi, larici ed abeti. In questa località si sono raccolte le seguenti piante: *Pseudosclerodium purum, Larix decidua, Fagus sylvatica, Orchis maculata, Cephalanthera pallens, Picea excelsa, Pinus silvestris, Cytisus laburnum, Melandrium rubrum, Silene cucubalus, Scrophularia canina, Echium italicum, Phyteuma michelii, Tussilago farfara, Achillea millefolium*;

27. Malghe Mosca —1071 m. s. m.— bosco di faggi ed abeti, numerosi nocioli.
Variabilità di due specie di Glomeris

Specie raccolte e loro diffusione

Le nostre ricerche hanno portato al ritrovamento di tre specie: *Glomeris undulata*, *Glomeris conspersa* e *Glomeris pustulata*. Da notare però che della *Glomeris pustulata* sono stati raccolti a San Michele (138 m. s. m.) solo due esemplari ed essendo un tale campione statisticamente inutilizzabile essi non sono stati studiati.

La classificazione è stata fatta seguendo le chiavi dicotomiche di Schubart (1).

Il sottogenere *Stenopleuromeris* sull’Altopiano di Asiago è presente solo con la specie *Glomeris pustulata* che presenta due file mediane di macchie chiare su colore fondamentale scuro. Il sottogenere *Eurypleuromeris* è presente con le specie: *Glomeris conspersa*, con macchiettatura scura su colore fondamentale più chiaro e fila mediana di macchie rombiche con l’asse maggiore sagittale che arriva sino al pigidio ma non ne raggiunge il margine posteriore; *Glomeris undulata*, con la fila mediana di macchie pentagonali che raggiunge l’orlo posteriore del pigidio.

La specie più comune risulta essere la *Glomeris conspersa*, di cui complessivamente sono stati raccolti 485 esemplari (183 ♂♂ e 302 ♀♀). Segue la *Glomeris undulata* con 225 esemplari (73 ♂♂ e 152 ♀♀). Come già detto la *Glomeris pustulata* è presente con solo 2 esemplari. La cifra totale è di 712 esemplari. E’ da notare che la specie *G. conspersa* non solo è più abbondante ma è anche più diffusa della specie *G. undulata*.

Come si è visto, gli animali sono stati raccolti in 27 località a diverse altitudini tra un minimo di 125 m. sul livello del mare ed un massimo di 1071 m. s. m. Le località sono state ripartite in 5 gruppi, comprendendo in ogni gruppo le località che si trovavano rispettivamente tra 100 e 300, tra 300 e 500, tra 500 e 700, tra 900 e 1100 metri di altitudine.

Nella tab. 1 sono stati riportati, per ciascuna delle 5 zone altimetriche cosiffatte, il numero delle località visitate ed il numero degli animali ivi reperiti distinti per specie e sesso.

La diminuzione del numero di esemplari fra i 500 ed i 900 m. di altitudine può essere imputata essenzialmente al fatto che entro tale intervallo si è raccolto in numero minore di località per la mancanza, nella zona, di habitat favorevoli alle *Glomeris*. Infatti, se si calcola, zona per zona, il numero medio di esemplari raccolti in ogni località, si ottengono i dati della tab. 2, nella quale la apparente disparità tra il numero di esemplari raccolti si attenua per la *Gl. undulata* e scompare per la *Gl. conspersa*.

(1) Nella classificazione del materiale raccolto uno dei tre autori (P.P.) è stato aiutato del Dr. A. Celotto.
GIORGIO MARCUZZI, PAOLA PELUSIO E SILIO RIGATTI LUCCHINI

TAB. 1
Numero di località visitate e numero di esemplari ivi reperiti distinti per specie e sesso

<table>
<thead>
<tr>
<th>Zone (alititudine in m. s. m.)</th>
<th>Località visitate</th>
<th>Gl. undulata</th>
<th>Gl. conspersa</th>
<th>Gl. fustulata</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>♂ ♂ ♀ ♀ Tot.</td>
<td>♂ ♂ ♀ ♀ Tot.</td>
<td>♂ ♂ ♀ ♀ Tot.</td>
<td></td>
</tr>
<tr>
<td>100-300</td>
<td>6</td>
<td>22 54 76</td>
<td>48 86 134</td>
<td>— 2 2</td>
</tr>
<tr>
<td>300-500</td>
<td>9</td>
<td>31 60 91</td>
<td>70 89 159</td>
<td>— — —</td>
</tr>
<tr>
<td>500-700</td>
<td>3</td>
<td>4 5 9</td>
<td>13 38 51</td>
<td>— — —</td>
</tr>
<tr>
<td>700-900</td>
<td>3</td>
<td>7 8 15</td>
<td>22 37 59</td>
<td>— — —</td>
</tr>
<tr>
<td>900-1100</td>
<td>6</td>
<td>9 25 34</td>
<td>30 52 82</td>
<td>— — —</td>
</tr>
<tr>
<td>Nel complesso</td>
<td>27</td>
<td>73 152 225</td>
<td>183 302 485</td>
<td>— 2 2</td>
</tr>
</tbody>
</table>

TAB. 2
Numero medio di esemplari per località di raccolta, specie per specie

<table>
<thead>
<tr>
<th>Zone (alititudine in m. s. m.)</th>
<th>Gl. undulata</th>
<th>Gl. conspersa</th>
</tr>
</thead>
<tbody>
<tr>
<td>100-300</td>
<td>12.7</td>
<td>22.3</td>
</tr>
<tr>
<td>300-500</td>
<td>10.1</td>
<td>17.3</td>
</tr>
<tr>
<td>500-700</td>
<td>3.0</td>
<td>17.0</td>
</tr>
<tr>
<td>700-900</td>
<td>5.0</td>
<td>19.7</td>
</tr>
<tr>
<td>900-1100</td>
<td>5.7</td>
<td>13.7</td>
</tr>
</tbody>
</table>

Materiale e tecnica

Dimensioni: si sono misurate, con un margine di errore di mezzo millimetro, la lunghezza e la larghezza di ogni animale precedentemente disteso su un copri-oggetto grande sovrapposto ad una carta millimetrata.

Colore fondamentale e colore delle macchie: dopo aver asciugato gli animali, ponendoli su carta bibula, si è stabilito il colore dei tergiti e della macchiattatura. Si è cercato di ridurre al minimo la soggettività della valutazione operando nelle stesse condizioni di luce e stato fisico.

Numero e lunghezza dei solchi del bisintergite: ruotando lentamente ciascun animale nel piano focale del microscopio binoculare, a debole ingrandimento, in modo che la superficie del bisintergite diventi superficie riflettente per tutta la sua larghezza, si sono numerati i solchi cominciando dall’anteriore. Per la misurazione, data la difficoltà di misurare microscopicamente la lunghezza dei solchi su di una superficie curva, si è cercato di esprimerla in frazioni di lunghezza della metà destra del bisintergite, indicandola con 1 quando i solchi occupavano questa lunghezza e continuavano nella metà sinistra, con 3/4, 1/2, 1/4
quando occupavano rispettivamente i 3/4, 1/2, 1/4 di detta lunghezza. Si sono indicati con delle frazioni fra parentesi rotonda (1), (1/2), (1/4) dei piccoli solchi, frammisti agli altri, che non cominciavano al limite destro del bisintergite.

Confronti tra le varie popolazioni

Il primo problema che abbiamo dovuto risolvere era se gli esemplari raccolti potevano ritenersi provenienti da un'unica popolazione oppure da popolazioni diverse. Si doveva decidere cioè se accettare l'ipotesi che i 5 campioni appartenessero ad una stessa popolazione o, il che è lo stesso, a popolazioni eguali (ipotesi che indicheremo con H_0), oppure se accettare l'ipotesi che appartenessero a popolazioni diverse, non aventi tutte gli stessi parametri (ipotesi che indicheremo con H_1).

Nel procedere abbiamo preso innanzitutto in considerazione i caratteri quantitativi: la lunghezza e la larghezza, cioè, e li abbiamo analizzati congiuntamente. Si è trattato quindi di un confronto tra 5 campioni (corrispondenti alle 5 zone altimetriche) a due dimensioni.

Assumendo, come abbiamo fatto, che le distribuzioni siano normali (normali bivariate), la verifica della verità di H_0 contro la verità di H_1 è stata eseguita nel modo appresso descritto.

Ricordando che più distribuzioni normali bivariate sono eguali (ipotesi H_0) se hanno:

1. le stesse matrici di varianza e covarianza,
2. le stesse medie;

risulta chiaro allora che la verifica di H_0 contro H_1 è equivalente alla verifica dei punti 1) e 2).

Per ciò che riguarda il punto 1), il criterio, proposto da Wilks e modificato da Box, per saggiare l'ipotesi che più campioni estratti da popolazioni normali provengano da popolazioni con eguali matrici di varianze e covarianze consiste:

— nell'accettare tale ipotesi se risulta

$$\frac{1}{C} \left[(N - c) \ln |\sigma| - \sum_{s=1}^{c} (n_s - 1) \ln |\sigma_s| \right] = \chi^2 < \chi^2_a$$

— nel rifiutarla in caso contrario;

essendo: c il numero dei campioni posti a confronto,
n_s il numero degli individui dell's-mo campione ($1 \leq s \leq c$),
$|\sigma_s|$ il determinante della matrice delle varianze e covarianze dell's-mo campione ($1 \leq s \leq c$),
$|\sigma|$ il determinante della matrice delle varianze e covarianze gene-
ralizzate, ottenute cioè come media aritmetica ponderata di quelle dei singoli campioni,

In. il logaritmo naturale o neperiano,

\[
\frac{1}{C} = 1 - \frac{6 k^2 + 3 k - 1}{6(k+1)(c-1)} \left[\sum_{s=1}^{c} \frac{1}{(n_s - 1)} - \frac{1}{N - c} \right]
\]

un fattore correttivo che si impone essendo i campioni piccoli e di numerosità diversa,

\(k \) il numero di variabili considerate. Nel nostro caso \(k = 2 \) (lunghezza e larghezza),

\(N = \sum_{s=1}^{c} n_s \) il numero degli individui di tutti i campioni,

\(\chi^2 \) il valore critico di \(\chi^2 \) con \(f = \frac{1}{2} (c - 1) k (k+1) \) gradi di libertà al livello \(\alpha \) di significatività.

Per quanto concerne invece il punto b) il criterio, proposto da Wilks, per saggiare l’ipotesi che più campioni estratti da popolazioni normali bivariate, con eguali matrici di varianze e covarianze, provengano da popolazioni con eguali medie consiste:

— nell’accettare tale ipotesi se risulta

\[
\left(\sqrt{\frac{|a|}{|\sigma|}} - 1 \right) \frac{N - c - 1}{c - 1} = F < F'_a
\]

— nel rifiutarla in caso contrario;

essendo: \(|\sigma|, N \) e \(c \) precedentemente definiti,

\(|a| \) il determinante della matrice di varianze e covarianze calcolate su tutti gli \(N = \sum_{s=1}^{c} n_s \) individui,

\(F'_a \) il valore critico della \(F \) di Snedecor al livello \(\alpha \) di significatività, in corrispondenza dei gradi di libertà

\[
g_1 = 2(c - 1) \quad \text{e} \quad g_2 = 2(N - c - 1).
\]

Nel nostro caso, il calcolo delle quantità

\[
|\sigma|, |a| \quad \text{e} \quad |\sigma_s| \quad (\text{essendo} \ s = 1, 2, \ldots, c)
\]

che compaiono nei criteri per la verifica dell’ipotesi \(H_0 \), è stato abbastanza facile.

Si sono indicate con \(x_{si} \) e \(y_{si} \) (\(s = 1, 2, \ldots, c ; i = 1, 2, \ldots, n_s \)) ris-
potivamente le intensità del carattere X e del carattere Y nell'i-mo individuo dell's-mo campione e si sono calcolate le quantità:

\[
\bar{x}_s = \frac{\sum_{i=1}^{n_s} x_{si}}{n_s}; \quad \bar{y}_s = \frac{\sum_{i=1}^{n_s} y_{si}}{n_s};
\]

\[
\bar{x} = \frac{\sum_{s=1}^{c} n_s \bar{x}_s}{\sum_{s=1}^{c} n_s}; \quad \bar{y} = \frac{\sum_{s=1}^{c} n_s \bar{y}_s}{\sum_{s=1}^{c} n_s};
\]

\[
\sigma^2_s(x) = \frac{\sum_{i=1}^{n_s} (x_{si} - \bar{x}_s)^2}{n_s - 1}; \quad \sigma^2_s(y) = \frac{\sum_{i=1}^{n_s} (y_{si} - \bar{y}_s)^2}{n_s - 1};
\]

\[
\sigma_s(x,y) = \frac{\sum_{i=1}^{n_s} (x_{si} - \bar{x}_s)(y_{si} - \bar{y}_s)}{n_s - 1};
\]

\[
\sigma^2(x) = \frac{\sum_{s=1}^{c} (n_s - 1) \sigma^2_s(x)}{\sum_{s=1}^{c} (n_s - 1)}; \quad \sigma^2(y) = \frac{\sum_{s=1}^{c} (n_s - 1) \sigma^2_s(y)}{\sum_{s=1}^{c} (n_s - 1)};
\]

\[
\sigma(x,y) = \frac{\sum_{s=1}^{c} (n_s - 1) \sigma_s(x,y)}{\sum_{s=1}^{c} (n_s - 1)};
\]

\[
a^2(x) = \frac{\sum_{s=1}^{c} \sum_{i=1}^{n_s} (x_{si} - \bar{x})^2}{N - 1}; \quad a^2(y) = \frac{\sum_{s=1}^{c} \sum_{i=1}^{n_s} (y_{si} - \bar{y})^2}{N - 1};
\]

\[
a(x,y) = \frac{\sum_{s=1}^{c} \sum_{i=1}^{n_s} (x_{si} - \bar{x})(y_{si} - \bar{y})}{N - 1}.
\]

A questo punto si sono rapidamente ottenuti i valori cercati. Infatti:

\[
|\sigma_s| = \sigma^2_s(x) \cdot \sigma^2_s(y) - \sigma^2_s(x,y)
\]

\[
|\sigma| = \sigma^2(x) \cdot \sigma^2(y) - \sigma^2(x,y)
\]

\[
|a| = a^2(x) \cdot a^2(y) - a^2(x,y)
\]
Come livello α di significatività abbiamo preso, e nella verifica del punto a) e nella verifica del punto b), il valore del 5% e dell'1% per rendere i nostri risultati omogenei con quelli di altri autori ed a quelli comparabili. Dobbiamo però ricordare che la verifica dell'ipotesi H_0 corrisponde alla verifica di quanto asserito ai punti a) e b). E poiché si può dimostrare che i due criteri usati per la verifica di questi due punti sono tra loro indipendenti il livello di significatività nel verificare l'ipotesi H_0 diviene 2α.

Infatti, se è vera H_0, la probabilità che si verifichi il punto a) è $1 - \alpha$, ed è anche $1 - \alpha$ la probabilità che si verifichi il punto b); ma la verifica del punto a) è indipendente dalla verifica del punto b) e quindi la probabilità che contemporaneamente siano verificati i due punti — il che è equivalente a verificare la verità di H_0— diviene:

$$(1 - \alpha)(1 - \alpha) = 1 - 2\alpha + \alpha^2 \approx 1 - 2\alpha$$

Analizzando, come abbiamo descritto, separatamente le specie ed i sessi siamo pervenuti ai risultati esposti nelle tabelle 3, 4, 5 e 6. In queste tabelle, come anche in quelle che compariranno in seguito, ciascun valore calcolato di χ^2 e di F è stato seguito da nessuno, uno o due asterischi a seconda sia risultato essere minore del rispettivo valore critico al 5%, oppure compreso tra il valore critico al 5% e quello all'1%, oppure maggiore di quello all'1%.

Dai dati relativi ai $\mathcal{C}\mathcal{C}$ di *Glomeris undulata* si è trovato un valore di χ^2 più piccolo del valore critico di confronto al livello del 5%, per cui possiamo attribuire al caso la differenza tra le matrici di dispersione dei 5 campioni. Il valore di F, invece, è risultato maggiore di quello critico al livello del 5%, ma inferiore di quello al livello dell'1%. La conclusione è per una significativa differenza tra le medie dei vari campioni.

TAB. 3

Glomeris undulata $\mathcal{C}\mathcal{C}$: numero di esemplari, medie, varianze, covarianze e valori calcolati di χ^2 e F

<table>
<thead>
<tr>
<th>Zone (m. s. m.)</th>
<th>Numerosità</th>
<th>Lunghezza media</th>
<th>Larghezza media</th>
<th>Varianza lunghezza media</th>
<th>Varianza larghezza media</th>
<th>Covarianza</th>
</tr>
</thead>
<tbody>
<tr>
<td>100-300</td>
<td>22</td>
<td>12.73</td>
<td>6.79</td>
<td>5.16</td>
<td>0.68</td>
<td>1.06</td>
</tr>
<tr>
<td>300-500</td>
<td>31</td>
<td>11.26</td>
<td>5.98</td>
<td>8.38</td>
<td>1.59</td>
<td>3.22</td>
</tr>
<tr>
<td>500-700</td>
<td>4</td>
<td>11.55</td>
<td>6.80</td>
<td>5.38</td>
<td>1.33</td>
<td>2.93</td>
</tr>
<tr>
<td>700-900</td>
<td>7</td>
<td>9.57</td>
<td>4.71</td>
<td>8.61</td>
<td>0.99</td>
<td>2.86</td>
</tr>
<tr>
<td>900-1100</td>
<td>9</td>
<td>10.00</td>
<td>5.22</td>
<td>5.50</td>
<td>0.94</td>
<td>1.87</td>
</tr>
<tr>
<td>Nel complesso</td>
<td>73</td>
<td>11.41</td>
<td>6.01</td>
<td>7.68</td>
<td>1.53</td>
<td>2.88</td>
</tr>
</tbody>
</table>

$\chi^2 = 12.50$, $f = 12$, $\chi^2_{5\%} = 21.09$, $\chi^2_{1\%} = 26.22$, $\chi^2_{0.5\%} = 28.30$

$F = 2.17^*$, $g_1 = 8$, $g_2 = 134$, $F_{5\%} = 2.01$, $F_{1\%} = 2.64$, $F_{0.5\%} = 2.90$
Variabilità di due specie di *Glomeris*

TAB. 4

Glomeris undulata ♀ ♂: numero di esemplari, medie, varianze, covarianze e valori calcolati di \(\chi^2 \) e \(F \)

<table>
<thead>
<tr>
<th>Zone (m. s. m.)</th>
<th>Numerosità</th>
<th>Largh. MEDIA</th>
<th>Varianza MEDIA</th>
<th>Varianza LUNGH.</th>
<th>Covarianza</th>
</tr>
</thead>
<tbody>
<tr>
<td>100- 300</td>
<td>54</td>
<td>14,90</td>
<td>7,42</td>
<td>10,08</td>
<td>2,13</td>
</tr>
<tr>
<td>300- 500</td>
<td>60</td>
<td>13,98</td>
<td>7,36</td>
<td>8,12</td>
<td>1,35</td>
</tr>
<tr>
<td>500- 700</td>
<td>5</td>
<td>17,00</td>
<td>8,70</td>
<td>6,12</td>
<td>0,38</td>
</tr>
<tr>
<td>700- 900</td>
<td>8</td>
<td>11,12</td>
<td>5,75</td>
<td>3,27</td>
<td>0,50</td>
</tr>
<tr>
<td>900-1100</td>
<td>25</td>
<td>10,50</td>
<td>5,66</td>
<td>13,79</td>
<td>3,43</td>
</tr>
<tr>
<td>Nel complesso</td>
<td>152</td>
<td>13,68</td>
<td>7,06</td>
<td>12,01</td>
<td>2,44</td>
</tr>
</tbody>
</table>

\(\chi^2 = 40,93 \quad f = 12 \quad \chi^2_{.05} = 21,03 \quad \chi^2_{.01} = 26,22 \quad \chi^2_{.005} = 28,30 \)

\(F = 5,55^{**} \quad g_1 = 8 \quad g_2 = 292 \quad F_{.05} = 2,51 \quad F_{.01} = 2,74 \)

TAB. 5

Glomeris conspersa ♂ ♂: numero di esemplari, medie, varianze, covarianze e valori calcolati di \(\chi^2 \) e \(F \)

<table>
<thead>
<tr>
<th>Zone (m. s. m.)</th>
<th>Numerosità</th>
<th>Largh. MEDIA</th>
<th>Varianza MEDIA</th>
<th>Varianza LUNGH.</th>
<th>Covarianza</th>
</tr>
</thead>
<tbody>
<tr>
<td>100- 300</td>
<td>48</td>
<td>14,25</td>
<td>7,20</td>
<td>5,94</td>
<td>1,07</td>
</tr>
<tr>
<td>300- 500</td>
<td>70</td>
<td>12,20</td>
<td>6,46</td>
<td>8,65</td>
<td>1,49</td>
</tr>
<tr>
<td>500- 700</td>
<td>13</td>
<td>11,69</td>
<td>6,31</td>
<td>3,96</td>
<td>0,90</td>
</tr>
<tr>
<td>700- 900</td>
<td>22</td>
<td>10,32</td>
<td>5,39</td>
<td>3,11</td>
<td>0,74</td>
</tr>
<tr>
<td>900-1100</td>
<td>30</td>
<td>9,33</td>
<td>4,94</td>
<td>8,87</td>
<td>2,25</td>
</tr>
<tr>
<td>Nel complesso</td>
<td>183</td>
<td>12,00</td>
<td>6,26</td>
<td>9,58</td>
<td>1,97</td>
</tr>
</tbody>
</table>

\(\chi^2 = 61,56 \quad f = 12 \quad \chi^2_{.05} = 21,03 \quad \chi^2_{.01} = 26,22 \quad \chi^2_{.005} = 28,30 \)

\(F = 9,52^{**} \quad g_1 = 8 \quad g_2 = 354 \quad F_{.05} = 2,51 \quad F_{.01} = 2,74 \)

TAB. 6

Glomeris conspersa ♀ ♀: numero di esemplari, medie, varianze, covarianze e valori calcolati di \(\chi^2 \) e \(F \)

<table>
<thead>
<tr>
<th>Zone (m. s. m.)</th>
<th>Numerosità</th>
<th>Largh. MEDIA</th>
<th>Varianza MEDIA</th>
<th>Varianza LUNGH.</th>
<th>Covarianza</th>
</tr>
</thead>
<tbody>
<tr>
<td>100- 300</td>
<td>86</td>
<td>15,61</td>
<td>7,67</td>
<td>5,93</td>
<td>1,09</td>
</tr>
<tr>
<td>300- 500</td>
<td>89</td>
<td>13,97</td>
<td>7,21</td>
<td>12,26</td>
<td>2,19</td>
</tr>
<tr>
<td>500- 700</td>
<td>38</td>
<td>13,08</td>
<td>6,92</td>
<td>7,26</td>
<td>1,80</td>
</tr>
<tr>
<td>700- 900</td>
<td>37</td>
<td>11,28</td>
<td>6,81</td>
<td>12,06</td>
<td>3,81</td>
</tr>
<tr>
<td>900-1100</td>
<td>52</td>
<td>9,98</td>
<td>5,41</td>
<td>12,21</td>
<td>3,32</td>
</tr>
<tr>
<td>Nel complesso</td>
<td>302</td>
<td>13,30</td>
<td>6,87</td>
<td>13,76</td>
<td>2,82</td>
</tr>
</tbody>
</table>

\(\chi^2 = 50,48 \quad f = 12 \quad \chi^2_{.05} = 21,03 \quad \chi^2_{.01} = 26,22 \quad \chi^2_{.005} = 28,30 \)

\(F = 14,37^{**} \quad g_1 = 8 \quad g_2 = 592 \quad F_{.05} = 2,51 \quad F_{.01} = 2,74 \)
Per le $\Phi \Phi$ di *Glomeris undulata* e per i $\sigma \sigma$ e le $\Phi \Phi$ di *Glomeris conspersa*, sia i valori di χ^2 che di F' sono risultati in tutti i casi esaminati maggiori dei rispettivi valori critici al livello dell'1 % ed anche dello 0,5 %. Da ciò si conviene di ritenere le differenze, e tra le matrici di varianze e covarianze e tra le medie dei vari campioni, non dovute solamente al caso ma anche a cause sistematiche e si decide perciò di accettare l'ipotesi H_1, di provenienza, cioè, dei campioni da popolazioni diverse.

Abbiamo confrontato poi i nostri risultati con quelli ottenuti da Marcuzzi, Celotto e Rigatti Luchini (1965) nello studio delle stesse specie provenienti dal Monte Grappa. Questi autori avevano ripartito gli animali studiati in tre gruppi, a seconda dell'altitudine delle località di raccolta, e considerato i tre gruppi come campioni. In base ai loro risultati essi avevano ritenuto —sia per i $\sigma \sigma$ che per le $\Phi \Phi$ della specie *G. undulata*— che le differenze tra le matrici di varianze e covarianze dei tre campioni fossero di natura puramente accidentale, e che erano invece di natura sistematica le differenze tra le medie. Per la specie *G. conspersa*, al contrario, l'analisi li portava a ritenere —sia per i $\sigma \sigma$ che per le $\Phi \Phi$— che le differenze tra le matrici di varianze e covarianze dei tre campioni fossero di natura non casuale, ma sistematica. Per le medie di quest'ultima specie l'analisi non era stata condotta.

Mettendo assieme schematicamente i risultati attuali con quelli di Marcuzzi, Celotto e Rigatti Luchini siamo pervenuti alle tabelle 7 e 8.

TAB. 7

Glomeris undulata: confronto tra i risultati di Asiago e del Monte Grappa

<table>
<thead>
<tr>
<th>Località</th>
<th>Maschi</th>
<th>Femmine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Asiago</td>
<td>M. Grappa</td>
</tr>
<tr>
<td>Variabilità Medie</td>
<td>Omogenee</td>
<td>Omogenee</td>
</tr>
</tbody>
</table>

TAB. 8

Glomeris conspersa: confronto tra i risultati di Asiago e del Monte Grappa

<table>
<thead>
<tr>
<th>Località</th>
<th>Maschi</th>
<th>Femmine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Asiago</td>
<td>M. Grappa</td>
</tr>
<tr>
<td>Variabilità Medie</td>
<td>Eterogenee</td>
<td>Eterogenee</td>
</tr>
</tbody>
</table>

Si può dire allora, parlando della specie *Glomeris undulata*, che, nel massiccio del Monte Grappa, i campioni —sia per i $\sigma \sigma$ che per le $\sigma \Phi$— provengono da popolazioni con eguali matrici di varianze e
covarianze e diverse medie; mentre nell’Altopiano di Asiago i $\varphi \varphi$ sembrano provenire da popolazioni con eguali matrici di variabilità e le $\sigma \sigma$ no, ma entrambi da popolazioni con medie diverse.

Considerando poi la specie Glomeris conspersa si può affermare la provenienza dei campioni — per i $\sigma \sigma$ e per le $\varphi \varphi$ — da popolazioni con diverse matrici di variabilità sul Monte Grappa (dove non è stata svolta l’analisi sulle medie) e da popolazioni contemporaneamente diverse per matrici di variabilità e per medie sull’Altopiano di Asiago.

Colore fondamentale e colore delle macchie

Il colore fondamentale delle Glomeris dell’Altopiano di Asiago è rappresentato dal giallo, dal giallo arancio e dal giallo chiaro, mentre le macchie si presentano sempre di un colore scuro: marrone, marrone più scuro o marrone grigio.

Mantenendo la suddivisione iniziale degli esemplari raccolti in cinque gruppi, corrispondenti a 5 fasce altimetriche, si sono costruite le tab. 9 e 10, nelle quali sono riportati, specie per specie, il numero di esemplari — complessivamente e distinti per sesso — classificati secondo il colore fondamentale e quello delle macchie.

Il problema di risolvere se gli esemplari raccolti, considerati come appartenenti a 5 campioni — le 5 zone —, potevano ritenersi provenienti da un’unica popolazione oppure da popolazioni diverse si è riproposto poi in funzione dei caratteri qualitativi summenzionati.

TAB. 9

Glomeris undulata: numero di esemplari classificati secondo la zona di raccolta, il sesso e il colore fondamentale o quello delle macchie.

<table>
<thead>
<tr>
<th>Zone (altitudine m.s.m.)</th>
<th>Colore fondamentale</th>
<th>Colore delle macchie</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GIALLO</td>
<td>G. ARANCIO</td>
</tr>
<tr>
<td>100-300</td>
<td>42</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>σ 35 φ</td>
<td>σ 14 φ</td>
</tr>
<tr>
<td>300-500</td>
<td>45</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>σ 11 φ</td>
<td>σ 17 φ</td>
</tr>
<tr>
<td>500-700</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>σ 0 φ</td>
<td>σ 3 φ</td>
</tr>
<tr>
<td>700-900</td>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>σ 1 φ</td>
<td>σ 6 φ</td>
</tr>
<tr>
<td>900-1100</td>
<td>19</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>σ 7 φ</td>
<td>σ 2 φ</td>
</tr>
</tbody>
</table>
GIORGIO MARCUZZI, PAOLA PELUSIO E SILIO RIGATTI LUCHINI

TAB. 10

Glomeris conspersa: numero di esemplari classificati secondo la zona di raccolta, il sesso e il colore fondamentale o quello delle macchie.

<table>
<thead>
<tr>
<th>Zone (altitudine m.s.m.)</th>
<th>Colore fondamentale</th>
<th>Colore delle macchie</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GIALLO</td>
<td>G. ARANCIO</td>
</tr>
<tr>
<td>100-300</td>
<td>56</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>19.5 37°</td>
<td>23.5 42°</td>
</tr>
<tr>
<td>300-500</td>
<td>63</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>29.5 34°</td>
<td>31.5 42°</td>
</tr>
<tr>
<td>500-700</td>
<td>9</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>3.5 6°</td>
<td>10.5 27°</td>
</tr>
<tr>
<td>700-900</td>
<td>19</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>9.5 10°</td>
<td>9.5 24°</td>
</tr>
<tr>
<td>900-1100</td>
<td>37</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>13.5 24°</td>
<td>11.5 24°</td>
</tr>
</tbody>
</table>

Innanzi tutto va premesso che di ciascuno di questi due caratteri abbiamo utilizzato solamente due modalità: le tonalità chiare e le tonalità scure. Per il colore fondamentale, quindi, unitamente le modalità «giallo chiaro» e «giallo» in contrapposizione alla modalità «giallo arancio»; per il colore delle macchie, invece, la modalità «marrone» in contrapposizione alle modalità «marrone scuro» e «marrone grigio» prese congiuntamente.

La classificazione degli esemplari, zona per zona, secondo due sole modalità ci ha permesso di ottenere delle frequenze un po' più consistenti e di pervenire, perciò, a dei risultati statisticamente più attendibili.

Con queste premesse, l'ipotesi di appartenenza dei 5 campioni ad una stessa popolazione (ipotesi che indichiamo con H_0) è equivalente all'ipotesi di provenienza dei 5 campioni da popolazioni con la stessa ripartizione percentuale degli esemplari tra le due modalità del carattere considerato. L'ipotesi di appartenenza dei 5 campioni a popolazioni diverse (ipotesi che indichiamo con H_1) è equivalente, invece, all'ipotesi di provenienza dei 5 campioni da popolazioni con diverse ripartizioni percentuali degli esemplari tra le due modalità del carattere considerato.

Il criterio, proposto da Pearson, per saggiare l'ipotesi H_0, sopra descritta, consiste:

— nell'accettare tale ipotesi se risulta:

$$\frac{1}{T_1 (N - T_1)} \sum_{z=1}^{c} \frac{(Nf_{zi} - n_z T_1)^2}{n_z} = \chi^2 < \chi^2_{\alpha}$$
— nel rifiutarla in caso contrario;

essendo:
- c il numero dei campioni posti a confronto,
- n_s la numerosità dell'${s}$-mo campione,

\[N = \sum_{s=1}^{c} n_s \]
il numero totale dei casi presi in esame,

\[T_1 \]
il numero totale dei casi appartenenti alla prima delle
due modalità del carattere considerato,

\[f_{s1} \]
il numero dei casi dell'${s}$-mo campione appartenenti alla
prima modalità del carattere considerato,

\[\chi^2_{r} \]
il valore critico di χ^2 con $f = c - 1$ gradi di libertà al
livello α di significatività.

Analizzando separatamente le specie ed i sessi, e per il colore fon-
damentale e per il colore delle macchie, si sono ottenuti i risultati esposti
nelle tab. 11, 12, 13 e 14. In ogni casella di codesto tabelle sono riportate
e le frequenze effettivamente rilevate (sopra la diagonale) e le fre-
quenze teoriche (sotto la diagonale) calcolate nell'ipotesi di identica
ripartizione degli esemplari tra le due modalità del carattere —di volta
in volta considerato— indipendentemente dalla zona di raccolta.

Confrontiamo ora i valori χ^2 così calcolati con i relativi valori critici
al livello di significatività del 5% e dell'1% riportati ai piedi di cias-
cuna delle tabelle 11, 12, 13 e 14.

Si può innanzitutto osservare che, sia per i maschi che per le fem-
mine della specie Glomeris undulata, le differenze tra i 5 campioni pos-
sono essere attribuite a cause di natura puramente accidentale, sia nel
caso di classificazione degli animali a seconda del colore fondamentale
sia a seconda di quello delle macchie.

Per la Glomeris conspersa, invece, le differenze, tra la ripartizione
degli esemplari nelle due modalità del colore fondamentale nei 5 cam-
pioni, possono ritenersi accidentali per i maschi ma sistematiche per
le femmine. Per ciò che riguarda il colore delle macchie, ancora —e per
i maschi e per le femmine— i campioni debbono ritenersi estratti da
popolazioni diverse.

A questo punto abbiamo ritenuto utile ricorrere alla proprietà addi-
tiva del χ^2. Tale proprietà ci permette di sommare più indici χ^2, cal-
colati su eventi tra loro indipendenti, ed anche i rispettivi gradi di li-
bertà, allo scopo di controllare nel complesso una qualche significatività.
Abbiamo allora sommato il valore di χ^2 calcolato sui maschi al valore
calcolato sulle femmine ed operato analogamente con i rispettivi gradi
di libertà. I risultati sono stati riportati nella tab. 15. Come si può
notare in questa tabella, il giudizio che si può dare non muta: per la
specie Glomeris undulata i 5 campioni si possono ritenere provenienti
da un'unica popolazione; per la specie Glomeris conspersa, invece, i 5
campioni possono ritenersi provenienti da popolazioni diverse.
TAB. 11

G. undulata: frequenze effettive e frequenze teoriche del colore fondamentale e valore calcolato di χ^2

<table>
<thead>
<tr>
<th>Zone (altitudine in m.s.m.)</th>
<th>$\varnothing \varnothing$</th>
<th>$\varrho \varrho$</th>
<th>$\varrho \varrho$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Giallo e Giallo-chiaro</td>
<td>Giallo-arancio</td>
<td>Totale</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>Total</td>
<td>Total</td>
</tr>
<tr>
<td>100-300</td>
<td>8</td>
<td>9.34</td>
<td>14</td>
</tr>
<tr>
<td>300-500</td>
<td>14</td>
<td>13.16</td>
<td>17</td>
</tr>
<tr>
<td>500-700</td>
<td>1</td>
<td>1.70</td>
<td>3</td>
</tr>
<tr>
<td>700-900</td>
<td>1</td>
<td>2.97</td>
<td>6</td>
</tr>
<tr>
<td>900-1100</td>
<td>7</td>
<td>3.82</td>
<td>2</td>
</tr>
<tr>
<td>Totale</td>
<td>31</td>
<td>42</td>
<td>73</td>
</tr>
</tbody>
</table>

$X^2_{(\varnothing \varnothing)} = 7.79$

$f = 4$

$X^2_{(\varrho \varrho)} = 4.06$

$\chi^2_\% = 9.49$

$\chi^2_\% = 13.28$

TAB. 12

G. conspersa: frequenze effettive e frequenze teoriche del colore fondamentale e valore calcolato di χ^2

<table>
<thead>
<tr>
<th>Zone (altitudine in m.s.m.)</th>
<th>$\varnothing \varnothing$</th>
<th>$\varrho \varrho$</th>
<th>$\varrho \varrho$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Giallo e Giallo-chiaro</td>
<td>Giallo-arancio</td>
<td>Totale</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>Total</td>
<td>Total</td>
</tr>
<tr>
<td>100-300</td>
<td>25</td>
<td>25.97</td>
<td>23</td>
</tr>
<tr>
<td>300-500</td>
<td>39</td>
<td>37.87</td>
<td>31</td>
</tr>
<tr>
<td>500-700</td>
<td>3</td>
<td>7.03</td>
<td>10</td>
</tr>
<tr>
<td>700-900</td>
<td>13</td>
<td>11.90</td>
<td>9</td>
</tr>
<tr>
<td>900-1100</td>
<td>19</td>
<td>16.23</td>
<td>11</td>
</tr>
<tr>
<td>Totale</td>
<td>99</td>
<td>84</td>
<td>183</td>
</tr>
</tbody>
</table>

$X^2_{(\varnothing \varnothing)} = 6.44$

$f = 4$

$X^2_{(\varrho \varrho)} = 9.82$

$\chi^2_\% = 9.49$

$\chi^2_\% = 13.28$
TAB. 13

Glomeris undulata: frequenze effettive e frequenze teoriche del colore delle macchie e valore calcolato di χ^2

<table>
<thead>
<tr>
<th>Zone (altitudine in m.s.m.)</th>
<th>$\sigma \sigma$</th>
<th>$\varphi \varphi$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Marrone scuro</td>
<td>Marrone grigio</td>
</tr>
<tr>
<td>100-300</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2,41</td>
<td>19,59</td>
</tr>
<tr>
<td>300-500</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>3,40</td>
<td>27</td>
</tr>
<tr>
<td>500-700</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0,44</td>
<td>3,56</td>
</tr>
<tr>
<td>700-900</td>
<td>0</td>
<td>0,77</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0,99</td>
</tr>
<tr>
<td>900-1100</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>TOTALE</td>
<td>65</td>
<td>73</td>
</tr>
</tbody>
</table>

$\chi^2(\sigma) = 2,72$

$\chi^2(\varphi) = 6,46$

$f = 4$

$\chi^2_{5\%} = 9,49$

$\chi^2_{1\%} = 13,28$

TAB. 14

Glomeris conspersa: frequenze effettive e frequenze teoriche del colore delle macchie e valore calcolato di χ^2

<table>
<thead>
<tr>
<th>Zone (altitudine in m.s.m.)</th>
<th>$\sigma \sigma$</th>
<th>$\varphi \varphi$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Marrone scuro</td>
<td>Marrone grigio</td>
</tr>
<tr>
<td>100-300</td>
<td>4</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>11,28</td>
<td>44</td>
</tr>
<tr>
<td>300-500</td>
<td>21</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>16,45</td>
<td>49</td>
</tr>
<tr>
<td>500-700</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>3,05</td>
<td>13</td>
</tr>
<tr>
<td>700-900</td>
<td>8</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>5,17</td>
<td>14</td>
</tr>
<tr>
<td>900-1100</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>7,05</td>
<td>22,95</td>
</tr>
<tr>
<td>TOTALE</td>
<td>43</td>
<td>111</td>
</tr>
</tbody>
</table>

$\chi^2(\sigma) = 15,35$

$\chi^2(\varphi) = 12,85$

$f = 4$

$\chi^2_{5\%} = 9,49$

$\chi^2_{1\%} = 13,28$
Calcolo del χ^2 complessivo per specie e carattere

<table>
<thead>
<tr>
<th>Specie</th>
<th>Carattere</th>
<th>χ^2</th>
<th>Grado di libertà</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glomeris undulata</td>
<td>colore fondamentale</td>
<td>$\chi^2 = 7.79 + 4.06 = 11.85$</td>
<td>4</td>
</tr>
<tr>
<td>Glomeris conspersa</td>
<td>colore delle macchie</td>
<td>$\chi^2 = 6.44 + 9.82 = 16.26$</td>
<td>4</td>
</tr>
</tbody>
</table>

Solchi del bisintergite

Abbiamo voluto analizzare un’altra caratteristica morfologica: l’estensione dei solchi del bisintergite. I risultati dell’analisi sono stati riassunti nelle tabelle 16 e 17.

Il fenomeno è stato espresso anche graficamente con istogrammi in cui è riportato il numero degli esemplari che presentano una determinata lunghezza del solco del bisintergite, mentre in ascissa è riportata la lunghezza del solco.

Per quanto riguarda i solchi del collo, si è notata una completa uniformità essendoci sempre due solchi completi che percorrono il collo sia nei ♂♂ che nelle ♀♀ delle due specie. In qualche raro esemplare il solco posteriore non è completamente sviluppato (fig. 4-5-6-7).

Dai dati riportati si ricava che, sia nella specie Glomeris undulata che nella specie Glomeris conspersa, la maggior parte degli animali presenta l’estensione del primo solco del bisintergite eguale a $3/4$, l’estensione del secondo solco, invece, varia da $1/2$ nella zona di minore alti-

TAB. 16

<table>
<thead>
<tr>
<th>Zone (altitudine in m.s.m.)</th>
<th>Sesso</th>
<th>1.° Solco</th>
<th>2.° Solco</th>
<th>3.° Solco</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1/3</td>
<td>1/2</td>
<td>1/4</td>
</tr>
<tr>
<td>100-300</td>
<td>♂♂</td>
<td>1</td>
<td>19</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>♀♀</td>
<td>8</td>
<td>33</td>
<td>10</td>
</tr>
<tr>
<td>300-500</td>
<td>♂♂</td>
<td>4</td>
<td>23</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>♀♀</td>
<td>12</td>
<td>43</td>
<td>3</td>
</tr>
<tr>
<td>500-700</td>
<td>♂♂</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>♀♀</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>700-900</td>
<td>♂♂</td>
<td>4</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>♀♀</td>
<td>3</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>900-1100</td>
<td>♂♂</td>
<td>4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>♀♀</td>
<td>7</td>
<td>10</td>
<td>5</td>
</tr>
</tbody>
</table>
VARIABILITÀ DI DUE SPECIE DI *Glomeris*

TAB. 17

Glomeris conspersa: numero di animali secondo la zona di raccolta, il sesso e la lunghezza dei solchi

<table>
<thead>
<tr>
<th>Zone (altitudine in m.s.m.)</th>
<th>Sesso</th>
<th>1.° solco</th>
<th>2.° solco</th>
<th>3.° solco</th>
</tr>
</thead>
<tbody>
<tr>
<td>100-300</td>
<td>♂♀</td>
<td>13 29 6</td>
<td>24 22 1</td>
<td>8 32 7</td>
</tr>
<tr>
<td>300-500</td>
<td>♂♀</td>
<td>26 54 5</td>
<td>1 28 43</td>
<td>5 14 60 4</td>
</tr>
<tr>
<td>500-700</td>
<td>♂♀</td>
<td>10 49 3</td>
<td>8 4 28 36</td>
<td>2 15 52 1 2</td>
</tr>
<tr>
<td>700-900</td>
<td>♂♀</td>
<td>15 60 11</td>
<td>3 1 28 52</td>
<td>4 16 58 10 1</td>
</tr>
<tr>
<td>900-1100</td>
<td>♂♀</td>
<td>11 14 5</td>
<td>3 16 9</td>
<td>2 2 11 16 1</td>
</tr>
<tr>
<td>1000-1200</td>
<td>♂♀</td>
<td>14 23 3</td>
<td>2 3 17 11</td>
<td>3 15 32 2 3</td>
</tr>
</tbody>
</table>

La tabella mostra che il numero di animali è maggiormente predominante nel secondo solco, specialmente nelle zone più alte. L'estensione del terzo solco è in prevalenza 1/2.

Si ricorda che per la specie *Glomeris undulata* i dati sono scarsamente significativi, data l'esiguità del numero degli esemplari raccolti.

Rapporto sessi

Anche nel genere *Glomeris*, come in moltissimi altri generi di Diplopodi riproducendosi anfigonicamente, il numero delle femmine supera quello dei maschi. Un'occhiata alla tabella 18 conferma subito questa affermazione. In questa tabella sono stati riportati infatti il numero di maschi, il numero di femmine ed il rapporto di femminilità (n. di ♀/♂/♀/♂) —zona per zona ed in totale—, distintamente per la specie *Glomeris undulata* e per la specie *Glomeris conspersa*. Si è presentato allora, inizialmente, il problema di verificare l'ipotesi che i 5 campioni (le 5 zone) provenissero da un'unica popolazione o, il che è lo stesso, da popolazioni con il medesimo rapporto tra i sessi; in un secondo tempo si è presentato il problema di verificare l'ipotesi che i campioni provenissero da popolazioni con rapporto tra i sessi uguale ad 1, contro l'alternativa che tale rapporto fosse diverso da 1.

Nella soluzione del primo di questi problemi ci ha soccorso il test χ^2 di Pearson. I risultati esposti nella stessa tabella 18 ci permettono di affermare, per entrambe le specie, che i 5 campioni provengono dalla medesima popolazione o da popolazioni con indentico rapporto tra i sessi. Questo fatto ci porta ad escludere l'influenza dell'altitudine sulla composizione delle popolazioni secondo il sesso.
Per risolvere il secondo nostro problema, allora, verificata la provenienza dei campioni da un’unica popolazione, abbiamo potuto utilizzare i dati complessivi relativi a tutti e 5 i campioni. Il criterio per sag-
— nell’accettare tale ipotesi se risulta
\[
\frac{|M - F|}{\sqrt{M + F}} = |Z| < |Z_\alpha|
\]
— nel rifiutarla in caso contrario;

essendo:

\[M\] il numero dei maschi campione,

\[\overset{\circ}{M} \text{ Specie Conspersa}\]

Fig. 5. — Lo stesso della figura 4 per G. conspersa ♀.
F il numero delle femmine campione,

Z_{a} il valore critico bilaterale della normale standardizzata al livello α di significatività.

TAB. 18

Numero di maschi, numero di femmine e rapporto di femminilità per la *Gl. undulata* e la *Gl. conspersa*

<table>
<thead>
<tr>
<th>ZONE (altitudine in m.s.m.)</th>
<th>N. DI ESEMPLARI</th>
<th>RAPP. DI FEMMINILITÀ</th>
<th>χ^2</th>
<th>VALORI CRITICI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tot. $\delta\delta$ \varOmega</td>
<td>($\varOmega / \delta\delta$)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gl. undulata</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100-300</td>
<td>76</td>
<td>22</td>
<td>54</td>
<td>2.45</td>
</tr>
<tr>
<td>300-500</td>
<td>91</td>
<td>31</td>
<td>60</td>
<td>1.93</td>
</tr>
<tr>
<td>500-700</td>
<td>9</td>
<td>4</td>
<td>5</td>
<td>1.25</td>
</tr>
<tr>
<td>700-900</td>
<td>15</td>
<td>7</td>
<td>8</td>
<td>1.14</td>
</tr>
<tr>
<td>900-1100</td>
<td>34</td>
<td>9</td>
<td>25</td>
<td>2.78</td>
</tr>
<tr>
<td>Totale</td>
<td>225</td>
<td>73</td>
<td>152</td>
<td>2.08</td>
</tr>
</tbody>
</table>

$|Z| = 5.27^{**}$

Gl. conspersa				
100-300	134	48	86	1.79
300-500	159	70	89	1.27
500-700	51	13	38	2.92
700-900	59	22	37	1.68
900-1100	82	30	52	1.73
Totale	485	183	302	1.65

$|Z| = 5.40^{**}$

Analizzando il numero totale di esemplari, sia della specie *Glomeris undulata* che della specie *Glomeris conspersa*, sono stati calcolati i valori di $|Z|$ esposti, anch'essi, nella tabella 18. Possiamo, in base a questi risultati, respingere l'ipotesi che i due campioni di *Glomeris* provengano da popolazioni in cui sia eguale ad 1 il rapporto tra i sessi. L'accettazione di questa ipotesi avrebbe portato a concludere che l'eccedenza del numero di femmine nei campioni fosse dovuta esclusivamente al caso.

Confrontando i risultati da noi ottenuti con quelli ricavati precedentemente da altriAutori su esemplari delle stesse specie e di specie diverse raccolti in varie località, si hanno i dati espressi nella tabella 19.

Come si vede, in tutte queste specie di *Glomeris*, indipendentemente dalle località, le femmine prevalgono numericamente sui maschi. Analizzando il numero totale di esemplari di ogni specie, località per località, sono stati calcolati i valori di $|Z|$ riportati nella stessa tabella 19. Per le specie raccolte in esiguo numero di esemplari ($M + F < 60$) si è ricorso invece ad un altro metodo.

Nel caso di campioni scarsamente numerosi il criterio per saggia
l'ipotesi che un campione provenga da una popolazione in cui il rapporto
dei sessi sia 1 : 1 consiste:
— nell'accettare tale ipotesi se risulta
\[
2^{1-M-F} \sum_{r=F}^{M+F} \left(\frac{M+F}{r} \right) = q < \alpha
\]
— nel rifiutarla in caso contrario;

essendo M, F ed \(\alpha \) già precedentemente definiti.
Nei tre casi in cui questo metodo è stato adottato (Glomeris pulchra
delle Murge e del Salento e Glomeris pustulata del Monte Grappa) il

\(\breve{\text{♂ Specie Undulata}} \)

Fig. 6. — Frequenza dei diversi tipi di solchi del bisintergite nelle popolazioni di
quote diverse di Glomeris undulata \(\breve{\text{♂}} \). A, B e C come nelle figure precedenti.
valore calcolato di \(q \) è stato riportato nella tabella 19. In base ai risultati di questa tabella, se si fa eccezione per il campione di *Glomeris pulchra* delle Murge e per quello del Gargano, i risultati discordanti dei quali ha giocato un ruolo importante l’esiguo numero di animali reperiti, possiamo respingere l’ipotesi che uno qualsiasi degli altri campioni esaminati provenisse da popolazioni in cui il rapporto dei sessi fosse 1:1.

TAB. 19
Numero di maschi, numero di femmine e rapporto di femminilità per diverse specie di *Glomeris*

<table>
<thead>
<tr>
<th>SPECIE E LOCALITÀ</th>
<th>N. DI ESEMPLARI</th>
<th>RAPP. DI FEMMINILITÀ</th>
<th>Valori critici</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tot. (\delta \delta) (\phi \phi) (\phi / \delta \delta)</td>
<td>(</td>
<td>Z</td>
</tr>
<tr>
<td>Gl. pulchra</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tremiti (1)</td>
<td>165</td>
<td>60 105 1,75</td>
<td>3,51**</td>
</tr>
<tr>
<td>Gargano (1)</td>
<td>77</td>
<td>25 52 2,08</td>
<td>3,08**</td>
</tr>
<tr>
<td>Murge (1)</td>
<td>36</td>
<td>16 20 1,25</td>
<td>0,618</td>
</tr>
<tr>
<td>Salento (1)</td>
<td>14</td>
<td>5 9 1,80</td>
<td>0,424</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G. euganeorum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colli Euganei (2)</td>
<td>1803</td>
<td>841 962 1,14</td>
<td>2,85**</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(</td>
</tr>
<tr>
<td>G. pustulata</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colli Euganei (2)</td>
<td>629</td>
<td>263 366 1,39</td>
<td>4,11**</td>
</tr>
<tr>
<td>Monte Grappa (3)</td>
<td>80</td>
<td>8 22 2,75</td>
<td>0,016**</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G. undulata</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colli Euganei (2)</td>
<td>492</td>
<td>147 255 1,73</td>
<td>5,39**</td>
</tr>
<tr>
<td>Monte Grappa (3)</td>
<td>730</td>
<td>179 551 3,08</td>
<td>13,77**</td>
</tr>
<tr>
<td>Asiago (4)</td>
<td>225</td>
<td>73 152 2,08</td>
<td>5,27**</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G. conspersa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colli Euganei (2)</td>
<td>209</td>
<td>82 127 1,55</td>
<td>3,11**</td>
</tr>
<tr>
<td>Monte Grappa (3)</td>
<td>391</td>
<td>115 276 2,40</td>
<td>8,14**</td>
</tr>
<tr>
<td>Asiago (4)</td>
<td>485</td>
<td>183 302 1,65</td>
<td>5,40**</td>
</tr>
</tbody>
</table>

(4) Dati desunti dal presente lavoro.

E’ da notare però che, in realtà, noi abbiamo saggio non tanto l’ipotesi che i due sessi siano stati egualmente rappresentati nella popolazione, quanto che essi siano stati altrettanto facilmente reperibili. Bisogna considerare ancora che sui rapporti di femminilità può influire la differenza tra l’epoca di passaggio dallo stato larvale allo stato adulto...
dei maschi e quella delle femmine; inoltre possono agire in diverso modo anche le diverse condizioni ambientali delle località di raccolta.

Dimorfismo sessuale

Come è normale nei Diplopodi le femmine del genere *Glomeris* sono più grandi e piùrosse dei maschi. Per saggiare l’ipotesi che le differenze, riscontrate tra le dimensioni dei maschi e quelle delle femmine degli animali oggetto di studio, potessero essere considerate indice proprio di dimorfismo sessuale e non invece imputate all’effetto del caso si è ricorsi ancora agli indici di Box e di Wilks precedentemente illustrati.

♀ Specie Undulata

![Graphs](image-url)
Infatti si è voluto saggire l’ipotesi che i due campioni (i maschi e le femmine) provenissero dalla medesima popolazione o, il che è lo stesso, da popolazioni eguali — con eguali medie, cioè, ed eguale matrice di varianze e covarianze — contro l’ipotesi che ciò non fosse vero. I risultati riportati nelle tabelle 20 e 21 ci portano ad accettare l’ipotesi che i due campioni provengano da popolazioni diverse, con diverse matrici di varianze e covarianze e con diverse medie (più grandi quelle delle femmine).

Per entrambe le specie i nostri risultati concordano con quelli ottenuti da G. Marcuzzi, A. Celotto e S. Rigatti Luchini (1965) sugli esemplari raccolti sul Monte Grappa.

TAB. 20

Glomeris undulata: numero di esemplari, medie, varianze e covarianze e valori calcolati di χ^2 e F

<table>
<thead>
<tr>
<th>Sesso</th>
<th>Numerosità</th>
<th>Lungh. media</th>
<th>Largh. media</th>
<th>Varianza lungh.</th>
<th>Varianza largh.</th>
<th>Covarianza</th>
</tr>
</thead>
<tbody>
<tr>
<td>♂ ♂</td>
<td>78</td>
<td>11,41</td>
<td>6,01</td>
<td>7,68</td>
<td>1,53</td>
<td>2,88</td>
</tr>
<tr>
<td>♀ ♀</td>
<td>152</td>
<td>13,68</td>
<td>7,06</td>
<td>12,01</td>
<td>2,44</td>
<td>4,62</td>
</tr>
<tr>
<td>Nel complesso</td>
<td>225</td>
<td>12,94</td>
<td>6,72</td>
<td>11,79</td>
<td>2,37</td>
<td>4,58</td>
</tr>
</tbody>
</table>

$\chi^2 = 7,92^{**}$ $f = 3$
$F = 11,87^{**}$ $g_1 = 2$ $g_2 = 222$

TAB. 21

Glomeris conspersa: numero di esemplari, medie, varianze e covarianze e valori calcolati di χ^2 e F

<table>
<thead>
<tr>
<th>Sesso</th>
<th>Numerosità</th>
<th>Lungh. media</th>
<th>Largh. media</th>
<th>Varianza lungh.</th>
<th>Varianza largh.</th>
<th>Covarianza</th>
</tr>
</thead>
<tbody>
<tr>
<td>♂ ♂</td>
<td>183</td>
<td>12,00</td>
<td>6,26</td>
<td>9,58</td>
<td>1,97</td>
<td>3,47</td>
</tr>
<tr>
<td>♀ ♀</td>
<td>302</td>
<td>13,80</td>
<td>6,87</td>
<td>13,76</td>
<td>2,82</td>
<td>5,55</td>
</tr>
<tr>
<td>Nel complesso</td>
<td>485</td>
<td>12,81</td>
<td>6,64</td>
<td>12,54</td>
<td>2,58</td>
<td>4,94</td>
</tr>
</tbody>
</table>

$\chi^2 = 14,75^{**}$ $f = 3$
$F = 9,68^{**}$ $g_1 = 2$ $g_2 = 482$

Conclusioni

Sia per le due specie che per i due sessi c’è una differenza nelle dimensioni delle diverse popolazioni che interessa la variabilità e le medie. Limitatamente ai ♂ ♂ di *Glomeris undulata* le differenze nella variabilità sono minori, ma probabilmente ciò è da attribuirsi al numero
VARIABILITÀ DI DUE SPECIE DI *Glomeris*

esiguo di esemplari esaminati. In quanto alla colorazione, ci sono delle differenze tra le diverse popolazioni esclusivamente nella specie *conspersa*, sia per quanto riguarda il colore fondamentale che il colore delle macchie.

Sembra che ci sia una differenza nel pattern dei solchi del bisintergite in funzione dell'altitudine che al momento attuale non è facilmente spiegabile. Mentre il rapporto sessi o sex-ratio è spostato decisamente in favore delle ♀♀, non si riscontra una differenza tra le diverse popolazioni esaminate. Da notare che anche nelle altre specie di *Glomeris* finora esaminate c'è costantemente una prevalenza di ♀♀, statisticamente significativa. Esiste inoltre un dimorfismo sessuale per quanto riguarda le dimensioni corporee in tutte le due specie di *Glomeris* presenti ad Asiago.

RIASSUNTO

Si prendono in esame dimensioni, colore del fondo e delle macchie, pattern dei solchi del bisintergite, rapporto sessi e dimorfismo sessuale in numerose popolazioni delle due specie di Miriapodi Diplopodi *Glomeris undulata e conspersa*. Le differenze tra le diverse popolazioni sono limitate alle dimensioni in entrambe le specie e al colore nella specie *conspersa*. Il rapporto sessi è spostato in favore delle ♀♀. Esiste un dimorfismo sessuale in entrambe le specie interessante le dimensioni corporee.

SUMMARY

Size, colour of the ground and the spots, pattern of the furrows of the bisynertgite, sex ratio and sexual dimorphism of a number of populations of the two species of Diplopods *Glomeris undulata* and *G. conspersa* are taken into consideration. The differences within the various populations are limited to size in both species and to colour in *G. conspersa*. The sex ratio is displaced towards ♀♀. A sexual dimorphism concerning the body size exists in both species.

RESUMEN

Se toman en consideración el tamaño, el color fundamental y el de las manchas, el tipo o pattern de los surcos del bisintergite, el sex-ratio y el dimorfismo sexual de un cierto número de poblaciones de dos especies de Diplópodos, *Glomeris undulata* y *G. conspersa*. Las diferencias entre las varias poblaciones están limitadas al tamaño en ambas especies y al color en la especie *conspersa*. El sex-ratio está desplazado en favor de las hembras. Hay un dimorfismo sexual relacionado al tamaño en ambas especies.
BIBLIOGRAFIA

Fig. 1. — San Michele, versante sud-est.

Fig. 2. — Versante sud-est di una collina nella zona di San Michele (m 258) dove si sono fatte le raccolte.

Fig. 3. — San Michele, bosco di latifoglie, a m 138.

Fig. 4. — Dettaglio dello stesso, macereto dove sono stati raccolti gli esemplari di Glomeris.
Fig. 1. — Valrobina, a m 319; bosco di latifoglie a nocciolo e robinia.

Fig. 2. — Dettaglio dello stesso; si nota un ramo di *Ulmus campestris* e in primo piano varie Gramineae.

Fig. 3. — Ca' Bressani, limite tra il bosco e un prato secondario.

Fig. 4. — Particolare del boschetto di Ca' Bressani dove sono state fatte le rilevazioni; si osservano varie Gramineae e dettagli delle foglie di Ulmus campestris.
Fig. 3. — Ca' Bressani, limite tra il bosco e un prato secondario.

Fig. 2. — Particolare del terreno in cui si sono raccolti gli esemplari; si nota l'abbondante lettiera di faggio e di altre essenze.

Fig. 4. — Particolare del biotopo di Ca' Bressani dove sono state fatte le raccolte; si osservano una pianta di Scheideggi a destra delle foglie di una Campanucina scoperta sorseggianti un vivo.

Fig. 1. — Fontanelle, a m 750; bosco di faggio (Fagus sylvatica) con ricco sottobosco.

Fig. 3. — Stringari a m 789; pianta di betulla (Betula alba) in mezzo a vari castagni e accanto a radure artificiali.

Fig. 4. — Particolare del terreno di raccolta.
Fig. 1. — Val Frenzela, a m 350, pescata coetaniforme con sottobosco molto povero.

Fig. 2. — Luogo di raccolta ai piedi di un abete.

Fig. 3. — Bocchetta di Conco a m 1006; bosco misto a conifero e latifoglie, in regione carrsica.

Fig. 4. — Stessa regione, aspetti estremi del carso (campli carrusciati); il prato in primo piano è di origine antropica.
Interrelación de nematodos fitoparásitos de algunos cultivos de solanáceas

por

M.* DOLORES ROMERO, F. JIMÉNEZ MILLÁN
y MARÍA ARIAS

Como continuación a nuestro reciente trabajo sobre el mismo tema «Nematodos de solanáceas cultivadas en la zona mediterránea del Sur de España. I Tylenchida» (1969), intentamos ver la relación existente entre la abundancia de nematodos, posibles fitoparásitos y los cultivos de solanáceas: patata, tomate, pimiento y berenjena.

Hemos estudiado 121 muestras procedentes de localidades de la Costa de Málaga y Granada comprendidas entre Estepona y Calahonda. Las muestras de tierra de cultivo se elaboraron según el método usual de vía húmeda.

En cada muestra se calculó la frecuencia relativa de cada especie, expresándola en %, con respecto a los nematodos totales estudiados; separando en dos apartados los posibles fitoparásitos de los saprófagos, etcétera. De este primer grupo seleccionamos, a su vez, 42 muestras en las que el total de nematodos fitoparásitos supera al 50% de los nematodos totales y, en ellas, efectuamos el estudio de los índices para cada especie, haciendo mención del lugar de procedencia de la muestra.

Los géneros estudiados muestran una dispersión bastante uniforme en los cuatro cultivos, teniendo en cuenta el número diferente de muestras recogidas en cada tipo de cultivo.

En los cuatro tipos de cultivo han aparecido: Aphelenchus spp., Tylenchorhynchus spp.; Helicotylenchus spp., Criconemoides spp., Ditylenchus spp. y Tylenchus spp. De ellos Aphelenchus spp. es el más frecuente, puesto que ha sido estudiado en casi la mitad de las muestras.
estudiadas. *Tylenchorhynchus* también está presente en cifras próximas al 40 % de la totalidad de las muestras, pero no presenta la misma selectividad para los cuatro cultivos de solanáceas; mientras que la única especie encontrada en el primer génera ha sido *Aphelenchus avenae*, en *Tylenchorhynchus* aparecieron varias distribuidas del siguiente modo:

<table>
<thead>
<tr>
<th>Especie</th>
<th>Cultivo de:</th>
<th>Pimiento</th>
<th>Tomate</th>
<th>Berenjena</th>
<th>Patata</th>
</tr>
</thead>
<tbody>
<tr>
<td>T. brassicae</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>1 muestra</td>
<td></td>
</tr>
<tr>
<td>T. curvis</td>
<td>1</td>
<td>4</td>
<td>—</td>
<td>4 »</td>
<td></td>
</tr>
<tr>
<td>T. gofarti</td>
<td>—</td>
<td>2</td>
<td>—</td>
<td>— »</td>
<td></td>
</tr>
<tr>
<td>T. küsingi</td>
<td>—</td>
<td>1</td>
<td>—</td>
<td>1 »</td>
<td></td>
</tr>
<tr>
<td>T. indicus</td>
<td>5</td>
<td>7</td>
<td>3</td>
<td>— »</td>
<td></td>
</tr>
<tr>
<td>T. nanus</td>
<td>3</td>
<td>—</td>
<td>—</td>
<td>— »</td>
<td></td>
</tr>
<tr>
<td>T. rhopalocercus</td>
<td>—</td>
<td>1</td>
<td>—</td>
<td>— »</td>
<td></td>
</tr>
<tr>
<td>Tylenchorhynchus sp.</td>
<td>3</td>
<td>7</td>
<td>1</td>
<td>1 »</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>12</td>
<td>22</td>
<td>4</td>
<td>7</td>
<td>4</td>
</tr>
</tbody>
</table>

Las especies del género *Tylenchorhynchus* tienen su máxima frecuencia en cultivo de tomate, ya que han aparecido todas las especies excepto *T. nanus* y *T. brassicae* en 22 muestras de dicho cultivo. *T. brassicae* solamente ha sido encontrado en cultivos de patata (cultivo con el que suele alternar el tomate).

Como puede observarse en los cuadros que acompañan, la especie más frecuente y, por tanto, menos selectiva para los cultivos estudiados, es *Helicotylenchus pseudorobustus*, que, a pesar de la diferencia numérica de muestras de tomate y patata recogidas, el número de veces que ha aparecido en ambos cultivos permite suponer que dicha especie resultaría dominante en cultivos de patata. Por la misma razón —abundancia de muestras de tomate— no ha de extrañar que de las 28 veces en que aparece *Helicotylenchus* en muestras de los cuatro cultivos, 12 corresponden a cultivos de tomate.

Hay que destacar que apenas han aparecido *Helicotylenchus* en muestras de pimiento, solamente *H. pseudorobustus* en cifras de 9,1 % de los nematodos totales de la muestra, lo cual concuerda con los antecedentes de la bibliografía.

Helicotylenchus pseudorobustus y *H. dihystera* aparecen asociados en muestras de berenjena en la localidad de El Morche. Igualmente se encuentran asociados *H. dihystera* y *H. crenacea* en cultivos de tomate, pero en cifras tan bajas que no hemos consignado en los cuadros.

La distribución de las especies de *Helicotylenchus* en los cuatro cultivos estudiados es como sigue:
Las especies del género *Griconemoides* presentan una frecuencia mínima, si bien en el muestreo se encuentran dispersas; casi todas las halladas han aparecido por lo menos una vez en cultivos de tomate. *Griconemoides mutabilis* y *Cr. sphaerocephalus* aparecen en cifras muy pequeñas con respecto a las especies de los restantes género, excepto en una muestra de patata en la que *Cr. sphaerocephalus* se encuentra en una proporción del 54,5 % de los nematodos totales. *Cr. duplicivestitus* y *Cr. c. f. maritimum* aparecen asociados en un 33,2 %, y *Cr. ferniae* y *Cr. solivagum* en un 16,4 %, ambos en muestras de tomate. *Cr. sphaerocephalus* es la única especie del género que apareció en berenjena. La distribución de especies de *Griconemoides*, en número de muestras, en los cultivos estudiados es la siguiente:

<table>
<thead>
<tr>
<th>Especie</th>
<th>Cultivo de:</th>
<th>Pimiento</th>
<th>Tomate</th>
<th>Berenjena</th>
<th>Patata</th>
</tr>
</thead>
<tbody>
<tr>
<td>H. crenacauda</td>
<td>—</td>
<td>1</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>H. digonicus</td>
<td>—</td>
<td>1</td>
<td>—</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>H. dhystera</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>H. microcephalus</td>
<td>—</td>
<td>—</td>
<td>2</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>H. pseudorobustus</td>
<td>2</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>—</td>
</tr>
<tr>
<td>H. varicaudatus</td>
<td>1</td>
<td>1</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Total</td>
<td>4</td>
<td>12</td>
<td>6</td>
<td>6</td>
<td>—</td>
</tr>
</tbody>
</table>

Los géneros *Tylenchus* y *Ditylenchus* se han mostrado como inespecíficos, puesto que han aparecido en los cuatro tipos de cultivo; no obstante, su distribución geográfica es desigual. Las cifras de 2,5 y 5,8 % de dichos géneros en muestras de Marbella y Cártama no aparecen resenadas en los cuadros ya que los índices de nematodos posibles fitoparásitos en dichas muestras son inferiores al 20 % de los nematodos totales.

Tylenchus spp. es más abundante en muestras de pimiento y tomate —algunas muestras de tomate y pimiento en las proximidades de
Torre del Mar muestran como nematodos dominantes especies del género *Tylenchus* en cifras del 30 al 50 % de los totales—; mientras que las especies de *Ditylenchus* resultan muy poco frecuentes en pimiento. Ambos géneros guardan cierto paralelismo en el caso de cultivos de patata. Cabe destacar que en alguna localidad, como por ejemplo en Almuñécar, casi el 100 % de las muestras (94,7 %) estaban constituidas por especies del género *Tylenchus*.

La especie *Ditylenchus dipsaci* únicamente ha sido hallada en muestras de tomate, dato curioso, teniendo en cuenta que las otras tres especies del género halladas aparecieron por lo menos en muestras de dos cultivos diferentes, en patata y berenjena *Ditylenchus destructor* y en patata y pimiento *D. triforis*.

La especie *Pratylenchus thornei* apareció en los cuatro tipos de cultivos estudiados, si bien ha mostrado los índices más bajos de las especies posibles fitoparásitas, ya que solamente dos veces superó el 10 % en cultivo de tomate en muestras en que los posibles fitoparásitos apenas excedieron el 30 % de los totales.

El género *Meloidogyne* apareció en todos los cultivos excepto en patata. Los índices más altos corresponden a algunas muestras de cultivo de tomate, en las que *Meloidogyne incognita acrita* y *Meloidogyne* sp. aparecen aproximadamente en un 30 % de los nematodos totales. También se ha encontrado *Meloidogyne incognita acrita* en berenjena, pero igual que *M. incognita incognita*, no aparece reseñado en los cuadros por no ser las especies fitoparásitas dominantes. Sólo en una muestra de pimiento (Alora) se encontró en *Meloidogyne* sp. un índice de algún interés.

Merece destacar la presencia de *Nothotylenchus* sp. y *Hemicyclophora* sp. que fueron encontrados en algunas muestras de tomate en cifras interesantes, 40 %, y más del 30 % respectivamente. *Trichodorus* sp. y *Paratylenchus* sp. también se encontraron en muestras de patata como posibles fitoparásitos dominantes, aunque sus índices respectivos fueron del 10 % y 20 % respectivamente.

<table>
<thead>
<tr>
<th>Nematodo</th>
<th>% del total de nematodos de cada muestra</th>
<th>Localidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aphelenchus avena</td>
<td>29,5</td>
<td>Churriana</td>
</tr>
<tr>
<td>Helicotylenchus pseudorobustus</td>
<td>9,1</td>
<td>Alora</td>
</tr>
<tr>
<td>Meloidogyne sp.</td>
<td>9,1</td>
<td>Alora</td>
</tr>
<tr>
<td>Tylenchus sp.</td>
<td>48,5</td>
<td>Churriana</td>
</tr>
<tr>
<td>Tylenchus sp.</td>
<td>38,5</td>
<td>La Mayorra (Algarrobo)</td>
</tr>
<tr>
<td>Tylenchus sp.</td>
<td>36,6</td>
<td>Almuñécar</td>
</tr>
<tr>
<td>Tylenchus sp.</td>
<td>16,7</td>
<td>Churriana</td>
</tr>
</tbody>
</table>
Tabla II

<table>
<thead>
<tr>
<th>Nematodo</th>
<th>% del total de nematodos de cada muestra</th>
<th>Localidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aphelenchus avenae</td>
<td>55,5</td>
<td>Km. 279 Carretera Cádiz-Barcelona</td>
</tr>
<tr>
<td>Aphelenchus avenae</td>
<td>46,2</td>
<td>Km. 319 Carretera Cádiz-Barcelona</td>
</tr>
<tr>
<td>Aphelenchus avenae</td>
<td>25,0</td>
<td>Estepona</td>
</tr>
<tr>
<td>Criconemoides duplicivestitus</td>
<td>16,6</td>
<td>Km. 385-386 Ctra. Cádiz-Barcelona</td>
</tr>
<tr>
<td>Criconemoides c. f. maritimum</td>
<td>16,6</td>
<td>Km. 385-386 Ctra. Cádiz-Barcelona</td>
</tr>
<tr>
<td>Helicotylenchus pseudorobustus</td>
<td>56,4</td>
<td>Vélez-Málaga</td>
</tr>
<tr>
<td>Helicotylenchus dihystera</td>
<td>30,0</td>
<td>Vélez-Málaga</td>
</tr>
<tr>
<td>Hemicycliophora sp.</td>
<td>32,0</td>
<td>Vélez-Málaga</td>
</tr>
<tr>
<td>Meloidogyne sp.</td>
<td>28,5</td>
<td>Vélez-Málaga</td>
</tr>
<tr>
<td>Meloidogyne incognita acrita</td>
<td>31,3</td>
<td>Vélez-Málaga</td>
</tr>
<tr>
<td>Nbothylenchus sp.</td>
<td>40,0</td>
<td>Km. 177 Carretera Cádiz-Barcelona</td>
</tr>
<tr>
<td>Tylenchorhynchus sp.</td>
<td>75,0</td>
<td>Km. 269 Carretera Cádiz-Barcelona</td>
</tr>
<tr>
<td>Tylenchorhynchus sp.</td>
<td>50,0</td>
<td>La Mayor (Algarrobo)</td>
</tr>
<tr>
<td>Tylenchorhynchus curvus</td>
<td>20,0</td>
<td>Mezquilla</td>
</tr>
<tr>
<td>Tylenchus sp.</td>
<td>45,5</td>
<td>Km. 302 Carretera Cádiz-Barcelona</td>
</tr>
<tr>
<td>Tylenchus sp.</td>
<td>32,3</td>
<td>Km. 288 Carretera Cádiz-Barcelona</td>
</tr>
<tr>
<td>Tylenchus sp.</td>
<td>28,6</td>
<td>La Mayor (Algarrobo)</td>
</tr>
</tbody>
</table>

Tabla III

<table>
<thead>
<tr>
<th>Nematodo</th>
<th>% del total de nematodos de cada muestra</th>
<th>Localidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Helicotylenchus dihystera</td>
<td>16,1</td>
<td>El Morche</td>
</tr>
<tr>
<td>Helicotylenchus pseudorobustus</td>
<td>25,8</td>
<td>El Morche</td>
</tr>
<tr>
<td>Helicotylenchus microcephalus</td>
<td>40,0</td>
<td>Almuñécar</td>
</tr>
<tr>
<td>Tylenchorhynchus sp.</td>
<td>50,1</td>
<td>Km. 288 Carretera Cádiz-Barcelona</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Finca El Pozuelo)</td>
</tr>
</tbody>
</table>

Tabla IV

<table>
<thead>
<tr>
<th>Nematodo</th>
<th>% del total de nematodos de cada muestra</th>
<th>Localidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aphelenchus avenae</td>
<td>26,3</td>
<td>Km. 279 Carretera Cádiz-Barcelona</td>
</tr>
<tr>
<td>Aphelenchus avenae</td>
<td>14,8</td>
<td>La Mayor (Algarrobo)</td>
</tr>
<tr>
<td>Citonemoides spheaecephalus</td>
<td>54,5</td>
<td>Motril, término</td>
</tr>
<tr>
<td>Ditylenchus virtudaeae</td>
<td>48,6</td>
<td>Km. 5 Carretera Motril-Almería</td>
</tr>
<tr>
<td>Ditylenchus destructor</td>
<td>14,8</td>
<td>La Mayor (Algarrobo)</td>
</tr>
<tr>
<td>Ditylenchus triforms</td>
<td>15,4</td>
<td>Km. 173 Carretera Cádiz-Barcelona</td>
</tr>
<tr>
<td>Helicotylenchus pseudorobustus</td>
<td>18,2</td>
<td>Motril, término</td>
</tr>
<tr>
<td>Helicotylenchus pseudorobustos</td>
<td>25,0</td>
<td>Torremolinos</td>
</tr>
<tr>
<td>Helicotylenchus pseudorobustos</td>
<td>38,5</td>
<td>Km. 300 Carretera Cádiz-Barcelona</td>
</tr>
<tr>
<td>Paratylenchus sp.</td>
<td>23,1</td>
<td>Churriana (Camino de San Isidro)</td>
</tr>
<tr>
<td>Tylence sp.</td>
<td>94,7</td>
<td>Almuñécar término</td>
</tr>
<tr>
<td>Tylence sp.</td>
<td>25,0</td>
<td>Torremolinos</td>
</tr>
<tr>
<td>Tylence sp.</td>
<td>45,4</td>
<td>Km. 275 Carretera Cádiz-Barcelona</td>
</tr>
<tr>
<td>Trichodorus sp.</td>
<td>9,5</td>
<td>La Mayor (Algarrobo)</td>
</tr>
<tr>
<td></td>
<td>Patata</td>
<td>Tomate</td>
</tr>
<tr>
<td>------------------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>Aphelenchoides</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aph. sacchari</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Aphelenchus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aph. avenae</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Criconemoides</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cr. sphaerocephalus</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Cr. mutabilis</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Cr. duplicivestitus</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Cr. lobatum</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Cr. ferniae</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Cr. solivagum</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Ditylenchus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. destructor</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>D. triformis</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>D. virtudesae</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Helicotylenchus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H. pseudorobustus</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>H. digonicus</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>H. dihystera</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>H. microcephalus</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>H. crenacauda</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>H. varicaudatus</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Pratylenchus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. thornei</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Tylenchorhynchus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T. brassicane</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>T. curvus</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>T. hüsingi</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>T. nanus</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>T. indicus</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>T. goffarti</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Nematodos fitoparásitos de Solanaceas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tabla VI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Especies de nematodos clasificadas y especificidad que presentan para los cuatro tipos de solanáceas</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Patata</th>
<th>Tomate</th>
<th>Pimiento</th>
<th>Berenjena</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tylenchorhynchus:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T. brassicace</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>T. curvis</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>T. goffarti</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>T. hisingi</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>T. indicus</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>T. nanus</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>T. rhopalocercus</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Ditylenchus:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. destructor</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>D. dipsaci</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>D. triforium</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>D. viridusse</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Meloidogyne:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M. incognita acrita</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>M. incognita acrita</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>M. incognita incog.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Helicotylenchus:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H. crenacauda</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>H. digonicus</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>H. dihyystera</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>H. microcephalus</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>H. pseudorobustus</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>H. varicaudatus</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Pratylenchus:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pr. thornei</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Criconemoides:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cr. duplicivestitus</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Cr. ferniae</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Cr. lobatum</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Cr. mutabilis</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Cr. sphaerocephalus</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Cr. solivagum</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Cr. c. f. maritimum</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Aphelenchus:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aph. avenae</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Aphelenchoides:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aphs. sp.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Aphs. sacchari</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
</tbody>
</table>
RESUMEN

En el estudio de 121 muestras de tierra de cultivo de las solanáceas: Lycopersicon esculentum (tomate), Solanum tuberosum (patata), Capsicum annuum (pepper) y Solanum melongena (berenjena) en la región costera de las provincias de Málaga y Granada, entre las localidades de Estepona (Málaga) y Calahonda (Granada), hemos encontrado:

Las especies del género Aphelenchus han aparecido en un 50 % aproximadamente de las muestras de algún cultivo (47 % en tomate, 57 % en pimiento y 50 % en berenjena) y las de Tylenchus en un 62 % en pimiento.

Las especies más polífagas, presentes en los cuatro cultivos estudiados, son: Aphelenchus avenae, Helicotylenchus pseudorobustus y Pratylenchus thornei. Por el contrario, las especies de los géneros Hemicriconemoides, Psilenchus y Paratylenchus sólo fueron encontradas en una muestra y las de Trichodorus en dos, el primero en tomate, los restantes en patata.

Las especies del género Meloidogyne no se han encontrado en patata y las de Aphelenchoïdes no han aparecido ni en patata ni en berenjena.

Citamos por primera vez en cultivos de patata: Tylenchorhynchus brassicae, T. husingi y Criconemoides mutabilis. Tylenchorhynchus curvus y Ditylenchus triformis son nuevas especies para este cultivo y el de pimiento. Criconemoides spherocephalus es nuevo en patata y berenjena y Helicotylenchus diagonicus lo es en patata y tomate.

En cultivos de tomate aparecen por primera vez: Tylenchorhynchus goffarti, Aphelenchoïdes sacchari, Helicotylenchus dihystera, H. crenacauda, Criconemoides ferniae, Cr. lobatum y Cr. solivagum. Tylenchorhynchus indicus y Helicotylenchus varicaudatus se citan por primera vez en tomate y pimiento. Ditylenchus virtudesae y Tylenchorhynchus nanus son nuevos en pimiento. Ditylenchus destructor es nuevo en berenjena. Pratylenchus thornei lo es en patata, pimiento y berenjena. Aphelenchus avenae, en tomate, pimiento y berenjena y Helicotylenchus pseudorobustus aparece citado por primera vez en los cuatro cultivos.

SUMMARY

In a study of 121 soil samples of solanaceous crops: Lycopersicon esculentum (tomato), Solanum tuberosum (potato), Capsicum annuum (Pepper) and Solanum melongena (eggplant) from the South Coast of Spain, between Estepona (Málaga) and Calahonda (Granada), we found:

Aphelenchus spp. appeared in about a 50 % of the samples (47 % on tomato, 57 % on pepper and 50 % on eggplant), and *Tylenchus* spp. in a 62 % on pepper. The most polyphagous species in the four studied crops were: *Aphelenchus avenae*, *Heliocytlenchus pseudorobustus* and *Pratylenchus thornei*. On the contrary *Hemicriconemoides* spp, *Psilenchus* and *Paratylenchus* spp. were only found in one sample and *Thichodorus* spp. on two samples, the first on tomato and the others on potato.

Meloidogyne spp. have not been found on potato and those of *Aphelenchoides* spp. neither on potato nor on eggplant.

We report for the first time on potato crops: *Tylenchorhynchus brassicae*, *T. husingi* and *Criconemoides mutabilis*. *T. curvus* and *Ditylenchus triformis* are new on potato and pepper crops. *Cr. spherocephalus* appeared for the first time on potato and eggplant and *Heliocytlenchus diagonicus* on potato and tomato.

On tomato crops appeared for the first time *T. goffarti*, *Aphelenchoides sacchari*, *H. dihystera*, *H. crenacauda*, *Cr. ferniae*, *Cr. lobatum* and *Cr. solivagum*. *T. indicus* and *H. varicaudatus* are reported for the first time on tomato and pepper crops.
Cr. duplicivestitus, *D. virtudesae* and *T. nanus* are new on pepper *D. destructor* is new for eggplant, *Pratylenchus thornei* is new on potato, pepper and eggplant. *Aphelenchus avenae* is new on tomato, pepper and eggplant and *H. pseudorobustus* is reported for the first time on the four crops.

BIBLIOGRAFÍA

Notas sobre vegetación

por

F. J. FERNANDEZ CASAS

Se reúnen aquí unas notas sobre la vegetación de diversos puntos de la Península Ibérica. Se estudian, en primer lugar, tres asociaciones de las gleras del Pirineo Central y se propone una nueva alianza. A continuación, tras describir brevemente una asociación rupícola de Galicia, se comientan dos asociaciones nuevas del SE español, incluibles en Oleo-Ceratonion Br.-Bl. 1936.

1. Gymnocarpion robertiani nova all.

Nueva alianza que se propone para reunir las comunidades que colonizan los grandes bloques calizos en los pisos montano y subalpino de los Pirineos. Estas comunidades parecen preferir pedregales poco móviles en ambiente nemoral o al pie de cinglos que le den sombra, también se las observa a veces cerca de arroyos.

Son sus características:

Gymnocarpium robertianum (Hoffm.) Newm.
Rumex acutatus L.
Silene vulgaris (Moench) Gaceke subsp.
Valeriana montana L.
Hordelymus europaeus (L.) Jessen

Características algo más amplias:

Aquilegia pyrenaica DC.
Convallaria majalis L.
Scrophularia canina L. var.
Polystichum lonchitis (L.) Roth (pref.)
Algunas especies propias de Adenostylion presentan aquí un óptimo secundario como:

- *Molopospermum peloponesiacum* (L.) Koch
- *Polygonatum verticillatum* (L.) All.
- *Polygonatum odoratum* (Mill.) P. Fourn.

También son buenas compañeras:

- *Cystopteris frágilis* L.
- *Polystichum aculeátum* (L.) Roth
- *Rubus idaeus* L.
- *Aquilegia vulgaris* L.
- *Geranium robertianum* L.

Buenos ejemplos de comunidades referibles a esta alianza pueden observarse en Supermolina, en la sierra de Chía, en el Cotiella, en Sierra Negra, etc., las referimos al orden *Thlaspietalia rotundifolii* Br.-Bl. 1926 de la clase *Thlaspietea rotundifolii* Br.-Bl. 1947. Describimos a continuación una asociación.

2. **Gymnocarpietum robertiani** nova as.

Coloniza grandes bloques, bastante fijos, en las sierras de Chía y Cotiella. No es muy homogénea y posee bastante amplitud altitudinal.

3. **Crepidétum pygmaeae** Br.-Bl. 1948 *convolvuletósum* subas. nova

Se trata de un *crepidétum* ya en su límite altitudinal inferior, se empobrece en características a la vez que adquiere especies de significado oromediterráneo.

Los inventarios proceden de las proximidades de Cuello Arenas, entre los valles de Ordesa y Añisclo. Gleras menudas y bastante móviles, colindando con formaciones de *Genista hórrida* (Vahl.) DC.

4. **Violétum lapeyrousianae** nova as.

Asociación extendidísima en la parte superior de Sierra Negra, pico Espax, pico Castanesa, Royero y limitrofes. Coloniza los esquistos descompuestos en cantos de pequeño tamaño desde algo más de 2000 m hasta casi los 2900 m.

La asignación sociológica de esta asociación resulta dificultosa, presenta plantas calcícolas y silicícolas en proporciones semejantes. Hacia la roca firme entra en contacto con comunidades de *Androsacion van-
dellii, pero el prado que raramente llega a constituirse sobre estos pedregales se acerca mucho a un Festucion scopariae. Nos inclinamos a situarla, por el momento, en Iberidion spathulatae Br.-Bl. 1948.

Procedencia de los inventarios:
1, 2, 3, 4, 5, 6, 8, en diversos puntos de la parte alta de Sierra Negra (denominación local), por encima y a la izquierda de la cabaña de Ardonés en unos 7 km.
7, 9, 10, 11, cerca del pico Castanesa y en la sierra que desde el collado del mismo nombre se dirige hacia Vallibierna.

Especies que no figuran en la tabla:

\[\begin{align*}
\text{Antennaria dioica} & \text{ en 1,2 y 8: +.} \\
\text{Draba sp.} & \text{ en 7:+ y en 9:11.} \\
\text{Plantago monosperma} & \text{ en 6 y 10:+.} \\
\text{Galium pumilum} & \text{ en 5 y 8:+.} \\
\text{Alchemilla saxatilis} & \text{ en 1:+.} \\
\text{Festuca skia} & \text{ en 8:+2.} \\
\text{Adonis pyrenaica} & \text{ en 8:+.} \\
\text{Saxifraga mosekata} & \text{ en 7:+.} \\
\text{Oxytropis pyrenaica} & \text{ en 9:+.} \\
\text{Gnaphalium supinum} & \text{ en 11:+.} \\
\text{Sedum candollei} & \text{ en 11:+.} \\
\text{Salix retusa} & \text{ en 11:+.} \\
\text{Trifolium alpinum} & \text{ en 11:+.} \\
\end{align*}\]

5. Lunulario-Anogrammétum leptophyllae nova as.

Pequeña asociación copiosa en el SW de Galicia, quizás el lugar preferido en la región por el helecho anual Anogramma leptophylla (L.) Link. Es propia de las fisuras umbrosas de rocas ácidas, siempre que posean cierta cantidad de tierra, pero también se extiende por la superficie de las rocas, paredes de conducciones de agua, muros urbanos, etc. Para desarrollarse no necesita más que un ambiente húmedo algo abrigado y la poca tierra que Lunularia cruciata es capaz de retener entre sus falsos rizoides.

6. Comunidades de Zizyphus lotus (L.) Lamk en Almería

Cerca de la ciudad de Almería se encuentran dos comarcas naturales, una al W y otra al E, conocidas como campo de Dalias y campo de Níjar respectivamente. Asientan sobre terreno plioceno en su totalidad si exceptuamos una franja costera que es cuaternario. Están surcadas por abundantes ramblas, pese a lo cual, una buena parte de su superficie no desagua al mar: son terrenos endorreicos. Se extienden desde el nivel del mar hasta una altura de 300 m o poco más.

Los suelos de las partes no cultivadas son de dos tipos generales, unos arenosos o limoso-arenosos, que abundan en la banda litoral y sus
proximidades, así como en el lecho de las ramblas; otros son arcillosos, bastante profundos e impermeables, muy extendidos por el llano interior.

La vegetación de estos llanos está sumamente degradada, los espacios no cultivados se cubren de un tomillar bastante laxo y de vez en cuando se presentan pequeñas formaciones de espinas que raramente rebasan los 150 metros cuadrados de superficie y cuya altura oscila entre 1,5 y 5 m, siendo esta última talla más bien rara.

La especie directora de estos espinales es el Azufaifo silvestre, conocido por *arzo* en la región. Este arbusto, entrelazando sus ramas con otros como *Gymnosporia europaea*, *Whytania frutescens*, *Lycium intricatum*, etc., forma unos montículos, erizados de espinas, en cuyo interior se alberga la liana *Rubia peregrina*, el geófto *Arum arisarum* y algunas hierbas más, semejando, de cerca, un bosque en miniatura.

Estos *bosquecitos* estarían mucho más extendidos de no ser por las cabras, que los recomen con gran frecuencia, y por los pastores que los incendian de cuando en cuando. Posiblemente son la cuasiclimax de la región.

El *Periploca-Gymnosporietum* Rivas Goday y Esteve no es una asociación propia de estos llanos, su habitat es más petrano, plantas como *Periploca laeavigata*, *Chamaerops humilis*, *Lapiadera martinezzi* y otras de dicha asociación no parecen desarrollarse bien en suelos profundos y relieve llano.

Buenos ejemplos de estas formaciones pueden observarse en la loma del Onayar, cerca de Guardias Viejas, en el llano del Aguila, cerca de Santa María del Aguila, en el Alquián, donde pudimos medir un azufaifo de 5 m de alto y 30 cm de diámetro a 60 cm del suelo, etc. También se ven espinales de este tipo invadiendo las ramblas, como en la de Nijar, o bien en las arenas costeras en el Cabo de Gata, localidad y circunstancia descritas por RIVAS GODAY y BELLOT en 1944. Por último también los hemos visto en la Solana de la Sierra de Gádor, a 400 m, conviviendo con *Salsola webbi*, *Osyris alba*, *Pistacia lentiscus*, etc.

Dejaremos para otra ocasión la descripción detallada de variantes que pueden observarse y expondremos en tabla sintética las dos asociaciones fundamentales de la región.

7. **Asociación de Gymnosporia europaea** Boiss. y **Zizyphus lotus** (L.) Lamk. nova as.

Es la asociación del llano arcilloso de suelo profundo, está particularmente extendida por el Campo de Dalías.

En la tabla 5, columna 1, se sintetizan 11 inventarios escogidos entre los más completos, se distribuyen así:

4 de la loma del Onayar, cerca de Guardias Viejas.
NOTAS SOBRE VEGETACIÓN

2 de cerca de Torre García, pero no precisamente de las dunas.
5 de los alrededores de El Ejido de Dalias.

S. Asociación de *Zizyphus lotus* (L.) Lamk.

Es la asociación que cubre los llanos arenosos y el lecho de las ramblas.

En la tabla 5 se dan cuatro grupos de inventarios que suman un total de 23 distribuidos del siguiente modo:

Columna 2, cinco inventarios procedentes de distintas ramblas.
Columna 3, ocho inventarios de Torre García (dunas).
Columna 4, cuatro inventarios de suelos arenosos del Alquián.
Columna 5, seis inventarios de diversas repoblaciones de *Agave*, todos ellos entre el aeropuerto de Almería y Torre García.

Tabla I

<table>
<thead>
<tr>
<th>Características</th>
<th>N</th>
<th>NE</th>
<th>E</th>
<th>N</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gymnocarpietum Robertianum</td>
<td>22</td>
<td>12</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Silene cf. alpina</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Rumex scutatus</td>
<td>—</td>
<td>+2</td>
<td>+</td>
<td>—</td>
<td>+</td>
</tr>
<tr>
<td>Crepis pygmaea</td>
<td>11</td>
<td>—</td>
<td>+</td>
<td>+</td>
<td>—</td>
</tr>
<tr>
<td>Cystopteris fragilis</td>
<td>—</td>
<td>—</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Aquilegia pyrenaica</td>
<td>+</td>
<td>+</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Hordelymus europaeus</td>
<td>+2</td>
<td>+</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Geranium robertianum</td>
<td>+</td>
<td>+</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Carduus calychnoides</td>
<td>—</td>
<td>—</td>
<td>+</td>
<td>—</td>
<td>+</td>
</tr>
<tr>
<td>Pulystichum setiferum</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Compañeras presentes en un solo inventario:
1: *Leontodon pyrenaeus*, *Mycelis muralis*, *Linum catharticum*, *Erimus alpinus*.
2: *Asperula cynanchica*, *Festuca sp.*, *Poa compressa*.
3: *Chenopodium bonus-henricus*, *Avena montana*, *Euphorbia cyparisia*, *Sideritis hyssopifolia*.
4: *Festuca scoparia*, *Urtica sp.*
5: *Juniperus communis*, *Asplenium viride*.

Procedencia de los inventarios:
1. Subiendo desde Plan al ibón del mismo nombre en el Cotiella.
2. Contigo al anterior.
3. En las márgenes de Ibón de Plan, Cotiella.
4. Sierra de Chía, vertiente N del pico Casania.
5. Adyacente con 4.
TABLA I

Crepódetum pygmaeae Br. B. 1948 *convolvulosum*

<table>
<thead>
<tr>
<th>Exposición</th>
<th>S</th>
<th>SW</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inclinación (*)</td>
<td>20</td>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td>Altitud (m. s. m.)</td>
<td>1680</td>
<td>1670</td>
<td>1700</td>
</tr>
<tr>
<td>Cobertura (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area (m²)</td>
<td>100</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>N.º de especies</td>
<td>12</td>
<td>13</td>
<td>10</td>
</tr>
<tr>
<td>N.º de orden</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Características y diferenciales de la subasociación

<table>
<thead>
<tr>
<th>Características</th>
<th>Galeopsis angustifolia</th>
<th>Convolvulus arvensis</th>
<th>Linaria minor</th>
<th>Erodium macradenum</th>
</tr>
</thead>
<tbody>
<tr>
<td>N.º de especies</td>
<td>21</td>
<td>11</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>N.º de orden</td>
<td>11</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
</tbody>
</table>

Características de las unidades superiores

<table>
<thead>
<tr>
<th>Características</th>
<th>Crepis pygmaea</th>
<th>Carduus carlynoides</th>
<th>Rumex scutatus</th>
<th>Campanula cochlearifolia</th>
<th>Silene cf. angustifolia</th>
<th>Verónica nummulariaefolia</th>
</tr>
</thead>
<tbody>
<tr>
<td>N.º de especies</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>N.º de orden</td>
<td>11</td>
<td>11</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Compañeras

<table>
<thead>
<tr>
<th>Compañeras</th>
<th>N.º de especies</th>
<th>N.º de orden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sideritis hyssopifolia</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Euphorbia cyparissias</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Thymelaea calycula</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Galium caespitosum</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Calamintha alpina</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Carlyna acaulis</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Plantago lanceolata</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>
TABLA III

Violetum lapeyrousianae

<table>
<thead>
<tr>
<th>Características</th>
<th>Exposición</th>
<th>NW</th>
<th>SW</th>
<th>SW</th>
<th>W</th>
<th>NW</th>
<th>E</th>
<th>NE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposición</td>
<td>30</td>
<td>80</td>
<td>2</td>
<td>15</td>
<td>15</td>
<td>2</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Inclinación (°)</td>
<td>30</td>
<td>2</td>
<td>15</td>
<td>2</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Altura (m. s. m.)</td>
<td>2200</td>
<td>2170</td>
<td>2650</td>
<td>2660</td>
<td>2350</td>
<td>2660</td>
<td>2820</td>
<td>2250</td>
</tr>
<tr>
<td>Cobertura (%)</td>
<td>5</td>
<td>10</td>
<td>2</td>
<td>20</td>
<td>—</td>
<td>2</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Área (m²)</td>
<td>200</td>
<td>100</td>
<td>150</td>
<td>150</td>
<td>100</td>
<td>150</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>N.º de especies</td>
<td>19</td>
<td>14</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>12</td>
<td>13</td>
<td>11</td>
</tr>
<tr>
<td>N.º de orden</td>
<td>1</td>
<td>2</td>
<td>8</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>

Características

- **Viola lapeyrousiana**
- **Gregoria vitaliana**
- **Iberis spathulata**
- **Jasione laevis**
- **Astrocarpus sesamoides**
- **Papaver suaveolens**
- **Galiun comiterhizon**
- **Poa cf. fontqueri**
- **Crepis pygmaea**
- **Linaria aciculifolia**
- **Ranunculus parnassifolius**
- **Tansedrum alpinum**
- **Carduus erynoides**
- **Rumex scutatus**
- **Murbeckiella pinnatifida**
- **Campanula cochlearifolia**
- **Cerastium alpinum**
- **Veronica nummulariaefolia**
- **Paronychia serpilfolia**
- **Cardamine resedifolia**

Compañeras

- **Avena montana**
- **Galiun pyrenaicum**
- **Thymus cf. nervosus**
- **Festuca glacialis (de clase?)**
- **Festuca scoparia**
- **Myosotis alpestris**
- **Antennaria dioica**
- **Alsine cherleri**
TABLA IV

Lunulario-anogrammetum leptophyllae

<table>
<thead>
<tr>
<th>Características</th>
<th>Anogramma leptophylla</th>
<th>Asplenium obovatum</th>
<th>Parietaria officinalis</th>
<th>Oxalis cornutum</th>
<th>Anarrhinum bellidifolium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposición</td>
<td>N</td>
<td>NW</td>
<td>NE</td>
<td>N</td>
<td>NW</td>
</tr>
<tr>
<td>Inclinación (°)</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>Altitud (m.s.m.)</td>
<td>40</td>
<td>50</td>
<td>—</td>
<td>50</td>
<td>40</td>
</tr>
<tr>
<td>Cobertura (%)</td>
<td>100</td>
<td>80</td>
<td>70</td>
<td>100</td>
<td>90</td>
</tr>
<tr>
<td>Área (m²)</td>
<td>4</td>
<td>50</td>
<td>4</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>N.° de especies</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>N.° de orden</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Compañeras

<table>
<thead>
<tr>
<th>Características</th>
<th>Lunularia cruciata</th>
<th>Chelidonium majus</th>
<th>Geranium robertianum</th>
<th>Sonchus oleraceus</th>
<th>Stellaria media</th>
<th>Pellia sp.</th>
<th>Cladonia pyxidata gr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposición</td>
<td>44</td>
<td>33</td>
<td>33</td>
<td>12</td>
<td>23</td>
<td>44</td>
<td>12</td>
</tr>
<tr>
<td>Procedencia de los inventarios:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 al 8 de diversos puntos de Vigo.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 y 10 de Samil, Pontevedra.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Unidades superiores:

NOTAS SOBRE VEGETACIÓN

TABLA V
Comunidades de Zizyphus lotus (L.) Lamk.

1. Gymnosporio + Zizyphetum
2, 3, 4., 5. Zizyphetum loti

<table>
<thead>
<tr>
<th>Características</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zizyphus lotus</td>
<td>V</td>
<td>5</td>
<td>V</td>
<td>4</td>
<td>V</td>
</tr>
<tr>
<td>Lycium intricatum</td>
<td>V</td>
<td>5</td>
<td>V</td>
<td>4</td>
<td>V</td>
</tr>
<tr>
<td>Rubia perigrina</td>
<td>II</td>
<td>---</td>
<td>V</td>
<td>---</td>
<td>V</td>
</tr>
<tr>
<td>Whytania frutescens</td>
<td>V</td>
<td>5</td>
<td>---</td>
<td>4</td>
<td>---</td>
</tr>
<tr>
<td>Asparagus stipularis</td>
<td>II</td>
<td>2</td>
<td>I</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Asparagus albus</td>
<td>V</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Gymnosporia europaea</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Rhamnus lycioides</td>
<td>V</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Capparis spinosa</td>
<td>I</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Chamaerops humilis</td>
<td>(I)</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Arum arisarum</td>
<td>V</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Salsola oppositifolia (dif.)</td>
<td>---</td>
<td>4</td>
<td>V</td>
<td>1</td>
<td>I</td>
</tr>
<tr>
<td>Launaea arborescens (dif.)</td>
<td>---</td>
<td>3</td>
<td>I</td>
<td>4</td>
<td>---</td>
</tr>
<tr>
<td>Olea oleaster</td>
<td>I</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Compañeras</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Orizopsis miliacea</td>
<td>V</td>
<td>1</td>
<td>I</td>
<td>---</td>
<td>III</td>
</tr>
<tr>
<td>Thymelae hirsuta</td>
<td>III</td>
<td>---</td>
<td>II</td>
<td>---</td>
<td>V</td>
</tr>
<tr>
<td>Ballota hispanica</td>
<td>III</td>
<td>3</td>
<td>III</td>
<td>4</td>
<td>---</td>
</tr>
<tr>
<td>Alyssum maritimum</td>
<td>III</td>
<td>---</td>
<td>V</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Stellaria media</td>
<td>III</td>
<td>---</td>
<td>III</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Caroxylon tamariscifolium</td>
<td>I</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Micromeria obovata</td>
<td>I</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Seilla verna</td>
<td>I</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Narcissus serotinus</td>
<td>II</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Allium subhirsutum</td>
<td>II</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Lavandula multifida</td>
<td>II</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Convovulus althaeoidis</td>
<td>III</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>II</td>
</tr>
<tr>
<td>Aristolochia betica</td>
<td>I</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Eringium ilicifolium</td>
<td>II</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Solanum nigrum</td>
<td>I</td>
<td>---</td>
<td>I</td>
<td>---</td>
<td>I</td>
</tr>
<tr>
<td>Urginea maritima</td>
<td>I</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Opuntia inermis</td>
<td>I</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Oxalis cernua</td>
<td>I</td>
<td>4</td>
<td>---</td>
<td>4</td>
<td>---</td>
</tr>
<tr>
<td>Carrichtera velca</td>
<td>I</td>
<td>4</td>
<td>---</td>
<td>4</td>
<td>---</td>
</tr>
<tr>
<td>Eragrostis crenata</td>
<td>III</td>
<td>3</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Phagnalon rupestre</td>
<td>I</td>
<td>---</td>
<td>I</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Sonchus tenerrimus</td>
<td>---</td>
<td>2</td>
<td>V</td>
<td>2</td>
<td>III</td>
</tr>
<tr>
<td>Urtica cf. membranacea</td>
<td>---</td>
<td>1</td>
<td>V</td>
<td>---</td>
<td>1</td>
</tr>
<tr>
<td>Cynomorium cocineum</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>I</td>
</tr>
<tr>
<td>Chenopodium murale</td>
<td>---</td>
<td>---</td>
<td>II</td>
<td>---</td>
<td>I</td>
</tr>
<tr>
<td>Stellaria media</td>
<td>III</td>
<td>---</td>
<td>III</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Atriplex rosea</td>
<td>---</td>
<td>---</td>
<td>II</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Alyssum libicium</td>
<td>---</td>
<td>2</td>
<td>---</td>
<td>2</td>
<td>---</td>
</tr>
<tr>
<td>Androccymbium gramineum</td>
<td>---</td>
<td>---</td>
<td>1</td>
<td>I</td>
<td>---</td>
</tr>
<tr>
<td>Cakile maritima</td>
<td>---</td>
<td>---</td>
<td>I</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Artemisia sp.</td>
<td>II</td>
<td>3</td>
<td>---</td>
<td>4</td>
<td>---</td>
</tr>
<tr>
<td>Agave sp.</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>V</td>
</tr>
</tbody>
</table>

BIBLIOGRAFÍA

RESUMEN

Se reúnen unas notas sobre la vegetación de diversos puntos de la Península Ibérica. Se estudian en primer lugar tres asociaciones de las gleras del Pirineo central y se propone una nueva alianza. A continuación, tras describir brevemente una asociación rupícola de Galicia, comentamos dos asociaciones nuevas del SE, incluyendo en Oleo-Ceratoniion Br.-Bl., 1936.

SUMMARY

In this paper are grouped some notes on vegetation of several countries of Spain. Three associations of Central Pyreneans are studied and a new alliance is proposed, following a description of a rupicole association of the SE of Spain, appertaining to the Oleo-Ceratonion Br.-Bl., 1936.
Algunos datos sobre los roedores de los Picos de Europa

por

VALENTÍN SANS-COMA

Los micromamíferos del norte de la Península Ibérica han sido estudiados por especialistas como F. Malec, G. Storch, J. Niethammer, H. Heim de Balsac y F. de Beaufort, cuyos trabajos ofrecen una amplia visión sobre la distribución de las distintas especies, que habitan en el mencionado territorio. La presente nota tiene por objeto la aportación de algunos datos sobre los roedores de dicha fauna, obtenidos al estudiar el contenido de unas egagrópilas de Tyto alba, recolectadas en Potes —agosto de 1970— (Picos de Europa; prov. de Santander). Esta localidad ha sido citada en las publicaciones de F. Malec, G. Storch y J. Niethammer, por lo cual reduciré esta exposición a la enumeración de aquellos datos que, por su interés, se pueden sumar a los ya existentes.

Las especies halladas son las siguientes:

O. Rodentia ; F. Muridae: *Apodemus sylvaticus* —36,8 %— (Murinae); *Pitymys mariae* —8,3 %—, *Microtus agrestis* —5,3 %—, no identificados —2,2 %— (Microtinae).

O. Insectivora ; F. Soricidae: *Crocidura russula* —45,1 %— y *Sorex araneus* —2,3 %—.

Apodemus sylvaticus Linnaeus, 1758 es el roedor que se ha presentado con mayor frecuencia. Aunque F. Malec y G. Storch hayan citado la presencia de *Apodemus flavicolis flavicolis* Melchior, 1834 en Espinama, creo que todos mis presentes ejemplares pertenecen a la especie *A. sylvaticus*, según indica las medidas particulares de cada uno de ellos. Según la distribución de subespecies expuesta por J. Niethammer (1956), debe tratarse de *A. sylvaticus callipides* Cabrera, 1907, pero, a través de restos craneales solamente, no llego a asegurar dicha versión.

Los *Pitymys* hallados quedan incluidos, por su morfología dentaria,
en el grupo «ibericus» Miller, 1912. Sus medidas craneales y dentarias permiten diagnosticarlos como *Pitymys mariae* F. Mayor, 1905.

Los ejemplares del género *Microtus* corresponden claramente a la especie *Microtus agrestis* Linnaeus, 1761. Según J. Niethammer (1964), las subespecies *M. agrestis rozianus* Bocage, 1865 y *M. agrestis orioecus* Cabrera, 1924 deben incluirse dentro de *M. agrestis bailloni* de Séllys-Longchamps, 1841, razón por la cual los ejemplares de Potes pueden pertenecer a dicha subespecie.

Las tablas I, II y III expresan las medidas globales de los ejemplares citados. Las abreviaturas utilizadas son las siguientes: ET = espacio interorbitario; DIAST = longitud del diastema; SMS = longitud de la serie molar superior; SMI = longitud de la serie molar inferior; LM = longitud de la mandíbula.

TABLA I
Medidas de *Apodemus sylvaticus*

<table>
<thead>
<tr>
<th></th>
<th>EI</th>
<th>DIAST</th>
<th>SMS</th>
<th>SMI</th>
<th>LM</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>36</td>
<td>29</td>
<td>33</td>
<td>24</td>
<td>45</td>
</tr>
<tr>
<td>Interv.</td>
<td>3,8-4,5</td>
<td>6,2-7,2</td>
<td>3,4-4,7</td>
<td>3,3-4,1</td>
<td>13,1-15,0</td>
</tr>
<tr>
<td>x</td>
<td>4,2</td>
<td>6,7</td>
<td>3,9</td>
<td>3,8</td>
<td>14,2</td>
</tr>
</tbody>
</table>

TABLA II
Medidas de *Pitymys mariae*

<table>
<thead>
<tr>
<th></th>
<th>EI</th>
<th>DIAST</th>
<th>SMS</th>
<th>SMI</th>
<th>LM</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>Interv.</td>
<td>3,6-3,8</td>
<td>5,6-7,1</td>
<td>4,9-5,9</td>
<td>4,8-5,7</td>
<td>12,8-14,7</td>
</tr>
<tr>
<td>x</td>
<td>3,7</td>
<td>6,5</td>
<td>5,3</td>
<td>5,3</td>
<td>13,6</td>
</tr>
</tbody>
</table>

TABLA III
Medidas de *Microtus agrestis*

<table>
<thead>
<tr>
<th></th>
<th>EI</th>
<th>DIAST</th>
<th>SMS</th>
<th>SMI</th>
<th>LM</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Interv.</td>
<td>3,3-3,8</td>
<td>6,6-8,1</td>
<td>5,8-6,9</td>
<td>5,6-6,6</td>
<td>15,0-16,8</td>
</tr>
<tr>
<td>x</td>
<td>3,5</td>
<td>7,3</td>
<td>6,2</td>
<td>6,0</td>
<td>15,9</td>
</tr>
</tbody>
</table>
RESUMEN

En esta nota se estudia los restos craneanos de *Apodemus sylvaticus*, *Pitymys mariae* y *Microtus agrestis*, contenidos en unas egagrópilas de *Tyto alba*, recolectadas en Potes (Picos de Europa; prov. de Santander).

ZUSAMMENFASSUNG

In dieser Arbeit werden die Schädelreste von drei Kleinsäugetierarten — *Apodemus sylvaticus*, *Pitymys mariae* und *Microtus agrestis* —, die in Gewöllen von *Tyto alba* eingeschlossen waren, behandelt. Die Gewölle stammten aus Potes, das im Norden der Iberischen Halbinsel (Picos de Europa; prov. Santander) liegt.

BIBLIOGRAFÍA

Sobre la distribución de Clethrionomys glareolus (Schreber, 1780) y Pitymys duodecimcostatus (de Sélys-Longchamps, 1839) en la Península ibérica

por

V. SANS-COMA y J. NADAL-PUIGDEFÁBREGAS

Introducción

La fauna de micromamíferos, que habita en la Península Ibérica, ha sido estudiada por diversos autores, pero su variedad y riqueza son la causa de que existan todavía una serie de problemas zoológicos por resolver, que ofrecen al especialista un amplio campo de investigación. El presente trabajo tiene por objeto aportar algunos datos sobre la presencia, en la región nororiental de nuestro país, de dos especies, Clethrionomys glareolus y Pitymys duodecimcostatus, de la subfamilia Microtinae. Los datos obtenidos constituyen el resultado del estudio de unos ovillos, regurgitados por aves estrigiformes, recolectados en Vidreras (30-II-70) y en Arbucias (22-XI-70) —La Selva—. Tenemos que agradecer a los Sres. Dalmau y a la Srita. Cabañas, la colaboración que nos han prestado en la obtención del material.

Los ovillos de Vidreras preceden de Mas Pibitller, situado a unos 3 km de dicha población, en una zona de bosque, con abundantes claros, integrado por Pinus y Quercus (Q. suber, Q. pubescens y Q. ilex). También hay áreas con Castanea sativa y Populus nigra, destacando, en el estrato arbustivo Cistus (C. albidus y C. monspeliensis), Ulex parviflorus, Erica y Arbutus unedo. Cerca de la casa hay campos, en los que se cultivó antiguamente alfalfa, trigo, maíz, nabos y otras hortalizas. A medio kilómetro de dicho lugar hay un gran claro con campos de alfalfa y hortalizas. Creemos que las egagrópilas son de Strix aluco, ya que su presencia en la casa ha sido observada en varias ocasiones.
En el término de Arbucias, las egagrópilas fueron recolectadas en C'an Blanch, masía situada a 2 km de dicha población, en el valle recorrido por la riera de Arbucias, en cuyas riberas, hay extensos campos de cultivo. La vegetación natural forma un bosque, en el que dominan, en áreas distintas, Q. suber, Q. ilex y Castanea sativa. El estrato arbustivo está integrado básicamente por Cistus, Erica, Pistacea lentiscus, Sarothamnus scoparius, Spartium junceum, Arbutus unedo y helechos. En esta vegetación se observa abundantes pinos (P. halepensis y P. pinea) irregularmente repartidos, al igual que diversas zonas con Populus nigra. Hemos podido comprobar, que los ovillos pertenecen a Tyto alba, cuya nidificación hemos verificado.

Estudio del material y resultados

La tabla I reproduce la lista de especies de micromamíferos contenidos en los ovillos estudiados, que suman un total de 651 individuos (Mas Pibitller : 413 ; C'an Blanch : 238).

TABLA I

<table>
<thead>
<tr>
<th></th>
<th>MAS PIBITLLER</th>
<th></th>
<th>C'AN BLANCH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>%</td>
<td>n</td>
</tr>
<tr>
<td>O. Rodentia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F. Muridae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subf. Murinae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apodemus sylvaticus</td>
<td>92</td>
<td>22.3</td>
<td>43</td>
</tr>
<tr>
<td>Mus musculus</td>
<td>107</td>
<td>25.9</td>
<td>72</td>
</tr>
<tr>
<td>Rattus rattus</td>
<td>1</td>
<td>0.2</td>
<td>—</td>
</tr>
<tr>
<td>Murinae no identificados</td>
<td>15</td>
<td>3.6</td>
<td>—</td>
</tr>
<tr>
<td>Subf. Microtinae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arvicola terrestris</td>
<td>1</td>
<td>0.2</td>
<td>—</td>
</tr>
<tr>
<td>Clethrionomys glareolus</td>
<td>17</td>
<td>4.2</td>
<td>15</td>
</tr>
<tr>
<td>Pitymys duodecimcostatus</td>
<td>71</td>
<td>17.2</td>
<td>15</td>
</tr>
<tr>
<td>O. Insectívora</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F. Soricidae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crocidura sp.</td>
<td>94</td>
<td>22.8</td>
<td>34.0</td>
</tr>
<tr>
<td>Suncus etruscus</td>
<td>15</td>
<td>3.6</td>
<td>6</td>
</tr>
<tr>
<td>Sorex sp.</td>
<td>—</td>
<td>—</td>
<td>6</td>
</tr>
</tbody>
</table>

Los porcentajes de Roedores e Insectívoros son los siguientes:

Mas Pibitller : Rodentia = 73.6 % ; Insectívora = 26.4 %

C’an Blanch : Rodentia = 61.0 % ; Insectívora = 39.0 %
Las abreviaturas, utilizadas en la exposición de las medidas halladas, son las siguientes:

LCB = longitud condilobasal;
EI = espacio interorbitario;
DIAST = longitud del diastema;
SMS = longitud de la serie molar superior;
SMI = longitud de la serie mol lar inferior;
LM = longitud de la mandíbula.

Clethrionomys glareolus Schreber, 1780

Esta especie, tan difundida por el continente europeo, ha sido escasamente citada en la Península Ibérica. Los datos, que se posee actualmente son los siguientes:

A. Cabrera (1924): 2 ♂♀ adultos, 1 ♂ semiadulto, 1 ♀ adulta y 1 ejemplar sin sexo determinado, de Viladrau (La Sala); 1 cráneo, sin piel, de Sta. Fe del Montseny.

Fig. 1. — Localidades ibéricas en las que se ha hallado la especie Clethrionomys glareolus. Los círculos negros corresponden a las referencias de los autores citados en el texto. Los círculos blancos localizan nuestros hallazgos: 1. Mas Fubitter, Vidreras; 2. C'an Blanch, Arbucies.

Todos los ejemplares capturados o recolectados corresponden a la subespecie C. glareolus vasconiae Miller, 1900.

De los 32 ejemplares hallados en nuestro trabajo (tabla I), 15 poseen un DIAST mayor de 7,0 mm, lo cual les acredita como ejemplares adultos (F. Malec y G. Storch, 1964), sobrepasando los tres meses de edad (U. Gruber y H. Kaimann, 1968). Sus medidas craneales, expresadas en milímetros, están expuestas en las tablas II y III.

TABLA II
Mas Pibitller; medidas de Clethrionomys glareolus

<table>
<thead>
<tr>
<th>EI</th>
<th>DIAST</th>
<th>SMS</th>
<th>SMI</th>
<th>LM</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interv.</td>
<td>4,0-4,1</td>
<td>7,2-7,5</td>
<td>5,2-5,8</td>
<td>5,4-5,7</td>
</tr>
<tr>
<td>\bar{x}</td>
<td>4,11</td>
<td>7,37</td>
<td>5,48</td>
<td>5,56</td>
</tr>
</tbody>
</table>

TABLA III
C’an Blanch; medidas de Clethrionomys glareolus

<table>
<thead>
<tr>
<th>EI</th>
<th>DIAST</th>
<th>SMS</th>
<th>SMI</th>
<th>LM</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interv.</td>
<td>3,8-4,5</td>
<td>7,2-7,5</td>
<td>5,3-5,8</td>
<td>5,4-5,6</td>
</tr>
<tr>
<td>\bar{x}</td>
<td>4,15</td>
<td>7,28</td>
<td>5,55</td>
<td>5,45</td>
</tr>
</tbody>
</table>

Los ejemplares restantes, con DIAST y LM, que oscilan de 6,3 a 6,9 mm y de 13,1 a 14,8 mm respectivamente, pueden pertenecer a cualquiera de las tres agrupaciones, según las edades (I, II, III), descritas por U. Gruber y H. Kaimann (1967): I = 0 a 3 meses, II = 3 a 5 meses y III = mayores de 5 meses.

Los valores de DIAST y de SMS se ajustan perfectamente a los obtenidos por F. Malec y G. Storch (1963), lo cual, junto con las citas de A. Cabrera (1924) referentes a la región del Montseny, próxima a las
localidades estudiadas, nos induce a pensar, que nuestros ejemplares deben pertenecer a la subespecie *C. glareolus vasconiae*.

Pitymys duodecimcostatus de Sélys-Longchamps, 1839

Los trabajos más recientes sobre los *Pitymys* de la región ibérica se deben a J. Niethammer, H. Heim de Balsac y F. de Beaufort, quienes han dejado establecida la presencia de tres especies, *P. savii* de Sélys Longchamps, 1838, *Pitymys mariae* Forsyth Mayor, 1905 y *Pitymys duodecimcostatus* de Sélys Longchamps, 1839, las cuales a su vez se subdividen en numerosas subespecies. En la región catalana solamente se ha citado la especie *P. duodecimcostatus*, correspondiendo a A. Carrera (1924) la descripción de la subespecie *P. duodecimcostatus flavescens*, a base de 2 ♀♂ adultos de Artesa de Segre (Lérida) y de Pobla de Segur (Lérida) capturados ambos por J. Maluquer.

![Fig. 2. Localidades catalanas en las que se ha hallado la especie *Pitymys duodecimcostatus*. Los círculos negros corresponden a las referencias de los autores citados en el texto. Los círculos blancos localizan nuestros hallazgos: 1. Mas Pibitler, Vidreras; 2. Can Blanch, Arbucias.](attachment:image.png)

J. Nadal y X. Palau (1967) citan la presencia de Pitymys en la Roca del Vallés; Sarriá (Barcelona), Prat de Llobregat, Mollerusa, Balaguer, Seo de Urgel y Bellmunt.

En la tabla I está indicada la cantidad de individuos de dicha especie suministrada por las egagrópilas de Mas Pibitller y C'an Blanch. Para su diagnóstico hemos seguido el método empleado por J. Niethammer (1970), quien utiliza básicamente las medidas del M3, del EI y del DIAST.

Los valores tomados por dicho autor, en el M³, son los siguientes:

\(a = \) retracción del ángulo mediano externo; \(b = \) distancia entre el primero y el tercer ángulos externos; \(c = \) longitud del lóbulo terminal (para metodología, ver J. Niethammer, 1970).

En los resultados, expuestos por J. Niethammer, cada unidad de medida equivale a 0,044 mm. En nuestras mediciones, cada unidad representa 0,036 mm, por lo cual hemos recurrido a un cambio de escala, que hace comparables nuestros valores con los del citado especialista.

Las tablas IV-VII reflejan los resultados obtenidos, en las mediciones del M³ y del EI, de nuestros especímenes con DIAST mayores de 7,0 mm. Designamos por N la escala de valores equivalentes a los de J. Niethammer y por SN los valores directamente obtenidos por nosotros (cada unidad = 0,036 mm).

TABLA IV
Frecuencia de los valores de \(a \)

<table>
<thead>
<tr>
<th>N:</th>
<th>0,8</th>
<th>1,6</th>
<th>2,4</th>
<th>3,2</th>
<th>4,1</th>
<th>4,9</th>
<th>(n)</th>
<th>(\bar{x}_{sn})</th>
<th>(\bar{x}_n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SN:</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mas Pibitller:</td>
<td>1</td>
<td>7</td>
<td>8</td>
<td>18</td>
<td>14</td>
<td>4</td>
<td>52</td>
<td>3,9</td>
<td>3,2</td>
</tr>
<tr>
<td>C'an Blanch:</td>
<td>—</td>
<td>1</td>
<td>—</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>12</td>
<td>4,9</td>
<td>3,9</td>
</tr>
</tbody>
</table>

TABLA V
Frecuencia de los valores de \(c \)

<table>
<thead>
<tr>
<th>N:</th>
<th>6,5</th>
<th>7,3</th>
<th>8,1</th>
<th>8,9</th>
<th>9,7</th>
<th>10,5</th>
<th>11,3</th>
<th>12,2</th>
<th>13,0</th>
<th>13,8</th>
</tr>
</thead>
<tbody>
<tr>
<td>SN:</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
</tr>
<tr>
<td>Mas Pibitller:</td>
<td>1</td>
<td>2</td>
<td>9</td>
<td>7</td>
<td>8</td>
<td>15</td>
<td>7</td>
<td>—</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>C'an Blanch:</td>
<td>—</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>(n)</td>
<td>52</td>
<td>12,1</td>
<td>9,8</td>
<td>12</td>
<td>12,2</td>
<td>9,1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fig. 3. — Relación entre las medidas EI y b de los ejemplares de la especie *Pitymys daudiae* encontrados en Villeras y Atruchas. Los signos numerados corresponden a valores medios obtenidos por J. Navarrete (1970). 1= *Pitymys* araucana. Los gráficos inferior y superior incluyen las frecuencias respectivas de EI y b en los ejemplares de Villeras con DASTI superiores a 7,0 mm.
TABLA VI
Frecuencias de los valores de b

<table>
<thead>
<tr>
<th>N</th>
<th>8,9</th>
<th>9,7</th>
<th>10,5</th>
<th>11,3</th>
<th>12,2</th>
<th>13,0</th>
<th>13,8</th>
<th>14,6</th>
<th>15,4</th>
</tr>
</thead>
<tbody>
<tr>
<td>SN</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
</tr>
</tbody>
</table>

\[
\begin{array}{lllllllll}
\text{Mas} & 2 & 2 & 3 & 16 & 11 & 7 & 4 & 5 & 2 \\
\text{Pi-bitller} & & & & & & & & & \\
\text{C'an} & 2 & 3 & 3 & 2 & 1 & - & 1 & - & \\
\text{Blanch} & & & & & & & & & \\
\end{array}
\]
\[
\begin{array}{lllllllll}
\text{SN} & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 \\
\text{n} & 52 & 52 & 52 & 52 & 52 & 52 & 52 & 52 & 52 \\
\text{\bar{x}} & 15,0 & 14,0 & 14,0 & 14,0 & 14,0 & 14,0 & 14,0 & 14,0 & 14,0 \\
\end{array}
\]

TABLA VII
Frecuencia de los valores de EI (en mm)

<table>
<thead>
<tr>
<th>3,4</th>
<th>3,5</th>
<th>3,6</th>
<th>3,7</th>
<th>3,8</th>
<th>3,9</th>
<th>4,0</th>
<th>4,1</th>
<th>4,2</th>
<th>4,3</th>
<th>4,4</th>
<th>4,5</th>
<th>n</th>
<th>\bar{x}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mas</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>4</td>
<td>10</td>
<td>9</td>
<td>10</td>
<td>7</td>
<td>6</td>
<td>3</td>
<td>52</td>
</tr>
</tbody>
</table>
| Pi-bitller | & & & & & & & & & & & & & \\
| C'an | & & & & & & & & & & & & & \\
| Blanch | & & & & & & & & & & & & & \\

En el gráfico de la figura 3 se relaciona los valores de b y de EI, incluyéndose, en el mismo, los ejemplares con un disatema inferior a 7,0 mm. Se puede apreciar con claridad, que éstos están situados en el área correspondiente a Pitymys duodecimcostatus, tratándose seguramente de ejemplares jóvenes, lo cual excluye la posibilidad de diagnosticarlos como P. mariae. El único ejemplar que posee un EI (3,4 mm) muy inferior al valor medio, presenta un DIAST de 8,3 mm que le sitúa dentro de P. duodecimcostatus. Los datos expuestos, junto con los valores del DIAST, en los ejemplares adultos, nos inclinan a diagnosticar los especímenes hallados como P. duodecimcostatus. Las tablas VIII y IX expresan las medidas craneales de los ejemplares con DIAST superiores a 7,0 mm.

TABLA VIII
Mas Pi-bitller; medidas de Pitymys duodecimcostatus

<table>
<thead>
<tr>
<th>LCB</th>
<th>NAS</th>
<th>EI</th>
<th>DIAST</th>
<th>SMS</th>
<th>SMI</th>
<th>LM</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>18</td>
<td>32</td>
<td>59</td>
<td>59</td>
<td>58</td>
<td>34</td>
</tr>
<tr>
<td>Interv</td>
<td>23,0-25,6</td>
<td>6,1-7,4</td>
<td>3,4-4,5</td>
<td>7,0-8,6</td>
<td>5,3-6,7</td>
<td>5,8-6,8</td>
</tr>
<tr>
<td>\bar{x}</td>
<td>26,94</td>
<td>6,75</td>
<td>4,15</td>
<td>7,64</td>
<td>5,99</td>
<td>6,32</td>
</tr>
</tbody>
</table>
distribución de Clethrionomys y Pitymys

TABLA IX

C’an Blanch; medidas de Pitymys duodecimcostatus

<table>
<thead>
<tr>
<th></th>
<th>EI</th>
<th>DIAST</th>
<th>SMS</th>
<th>SMI</th>
<th>LM</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>Interv.</td>
<td>3,8-4.4</td>
<td>7,0-8.3</td>
<td>5,4-5.8</td>
<td>5,5-5.9</td>
<td>14,9-16.8</td>
</tr>
<tr>
<td>x</td>
<td>4,11</td>
<td>7,63</td>
<td>5,73</td>
<td>5,80</td>
<td>15,80</td>
</tr>
</tbody>
</table>

La resolución del problema de la subespeciación de P. duodecimcostatus presenta todavía grandes dificultades al trabajar exclusivamente con restos óseos. Los ejemplares estudiados poseen en general, incisivos poco proclives, lo cual parece situarles en la subespecie P. duodecimcostatus flavescens. Por otro lado, no tenemos conocimiento de ningún dato sobre la posible presencia de otras subespecies en la zona estudiada. Ambas premisas nos llevan a la conclusión de que debe tratarse de individuos de la citada subespecie, aunque la comprobación de dicha hipótesis sólo será posible mediante el estudio de ejemplares capturados.

Laboratorio de Zoología (1)
Facultad de Ciencias
Universidad de Barcelona

RESUMEN

En este trabajo se estudia los restos de Clethrionomys glareolus y Pitymys duodecimcostatus hallados en esprópolis de aves estrigiformes, recolectadas en Vidreras y Arbucias (La Selva). Se ha efectuado una recopilación de las referencias existentes hasta hoy, sobre ambas especies en la región catalana, ampliándose el campo de estudio a toda la Península en el caso de Clethrionomys glareolus. Mediante distintas tablas, se expresa las medidas craneales de los ejemplares hallados. Las mediciones realizadas en Pitymys duodecimcostatus, que se ajustan a la metodología empleada por J. Niethammer, han permitido llegar a un claro diagnóstico de los individuos de dicha especie.

ZUSAMMENFASSUNG

(1) Este trabajo se ha beneficiado del crédito concedido con cargo a la Ayuda a la Investigación en la Universidad.
BIBLIOGRAFÍA

INICIE

TOMO XL
JUNIO 1966

M.ª ANGELES GONZÁLEZ NICOLÁS. — Influencia de la alimentación sobre el ciclo de longevidad de Anagasta kühniella (Zell.) .. 5
Joaquín Templado. — Larvas de Paranthrene tabaniformis Rott. en madera seca .. 29
A. Caballero, J. Andrés, J. F. Aguilá y M. Berbel. — Invernadero de plástico adecuado para el cultivo del clavel en la comarca de El Maresme (Barcelona) .. 33
Juan Isart. — Algunos datos acerca de un “topillo” que ataca a la remolacha: Pitymys ibericus (Gerbe) .. 59
F. Español. — Interesantes descubrimientos biospeleológicos en la provincia de Castellón .. 67
Antonio Vidal. — Estudio biológico de las islas Pitiusas: Anfibios .. 81
Martín Nadal Puigdefábregas. — Estudio comparativo de las especies Alternaria dianthi Stevens et Hall y Alternaria dianthicola Neerg. .. 113
Jorge F. Aguilá y Montserrat Ubach. — Acción de los herbicidas en los cultivos tardíos de gladiolo en El Maresme .. 129
Jaime Bech Borras. — Percolador automático con capacidad para regular condiciones edáficas o de meteorización .. 135
Enrique Gadea. — Sobre la biocenótica de los nematodos terrestres .. 145
María Rambla. — Contribución al estudio de los Opiliones de la fauna ibérica. Sobre el género Dentizacheus Rambla 1956. Descripción de Dentizacheus minor n. sp. .. 153

TOMO XLI
DICEMBRE 1966

José M.ª Rev. — Aspectos del mecanismo de acción de los insecticidas .. 5
Francisco Castelló. — Sobre algunos aspectos de la anatomía de los Poliplacóforos .. 41
F. Español. — Los Peterostíquidos cavernícolas de la Península Ibérica e Islas Baleares (col. Caraboidea) .. 49
M.ª Concepción Rigau. — Correlaciones de los pigmentos foliares con el crecimiento y la producción .. 69
MIGUEL DE RENZI. — Sobre la filogenia de los Cnidarios, particularmente la de la clase de los Antéropos 89
MANUEL GONZÁLEZ. — Contribución al conocimiento de los circuliónidos del Mediterráneo occidental .. 103
FERNANDO PARLOS. — Sobre la presencia de Oniscus asellus var. jacetanus, en el Pirineo aragonés ... 109

TOMO XLII
JULIO 1967

JACINTO NADAL Y XAVIER PALAUS. — Micromamíferos hallados en egagrópilas de Tyto alba ... 5
F. ESPAÑOL. — Misión entomológica. Hakan Lindberg y M. Melander a Marruecos. Col. tenebríonidos ... 17
MANUEL GONZÁLEZ. — El género Orthococetes Germar (Col. Curculiónidos) .. 49
B. H. DUBRAY. — Contribution à l'étude des Copépodes d'Espagne 87
S. RIVAS-MARTÍNEZ. — Algunas notas taxonómicas sobre la flora española ... 107
TRUMAN CEDC. — Contributions à la connaissance de la faune des diplopodes cavernícolas d'Espagne .. 127
MARÍA RAMBLA. — Contribución al estudio de los Opiliones de la Fauna Ibérica. Descripción de una n. sp. de Dicranopalpus Doleschall 1852 (Opiliones Palpatores) .. 133

TOMO XLIII
DICIEMBRE 1967

M. DE RENZI DE LA FUENTE. — Estudio de la variabilidad individual en los distintos estados de crecimiento en el gasterópodo Bitium reticulatum (COSTA) ... 5
FERNANDO PARLOS. — Sobre la presencia de Gluvia dorsalis, var. conquensis en los puertos de Conrreras (Cuenca) 45
MARÍA RAMBLA. — Contribución al conocimiento de los Opiliones de la Fauna ibérica. Sobre Eudasylobus nicaensis (Thorell 1879) 49
MONTSEHARL UBACH Y JORGE F. AGUJAL. — La eliminación de las malas hierbas en los cultivos de Dianthus cariothylus L. II. Métodos aplicados en la actualidad .. 57
L. VALLMITJANA. — Sobre ciertos corpúsculos de las neuronas 65
S. RIVAS-MARTINEZ. — Linh-Genistaefum pumilae, nueva asociación del pino mediterráneo ibérico de parámera ... 75
F. ESPAÑOL. — Notas sobre anóbidos (Coleóptera) 85
ANDRÉS DE HARO. — Picnogónidos de la fauna española. Picnogónidos de las posidoniáceas de Blanes (Gerona) ... 103
ENRIQUE GADEA. — Sobre la nematófauna musculosa del Atlas marroquí 125
<table>
<thead>
<tr>
<th>TOMO XLIV</th>
<th>JULIO 1968</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. Rivas-Martínez. — Estudio fitosociológico de los bosques y matorrales pirenaicos del piso subalpino</td>
<td>5</td>
</tr>
<tr>
<td>M.ª del Pilar Gracia. — Nota sobre Nebula carinata (Archer.) Leidy (Thecamedoidea)</td>
<td>45</td>
</tr>
<tr>
<td>Manuel González. — Contribución al conocimiento de los Curculiónidos del Mediterráneo Occidental</td>
<td>57</td>
</tr>
<tr>
<td>María Ramila. — Sobre el género Crosbycus Roewer 1914 (Opiliones, fam. Nemastomatidae)</td>
<td>65</td>
</tr>
<tr>
<td>Guillermo Mateu. — Contribución al conocimiento de los Foraminíferos que sirven de alimento a los moluscos bivalvos</td>
<td>81</td>
</tr>
<tr>
<td>F. Español. — Notas sobre Anóbidos (Coleoptera)</td>
<td>103</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TOMO XLV</th>
<th>DICIEMBRE 1968</th>
</tr>
</thead>
<tbody>
<tr>
<td>F. Español. — Notas sobre anóbidos (Col.)</td>
<td>5</td>
</tr>
<tr>
<td>M.ª del Pilar Gracia. — Nota sobre algunas Tecamebas (Protozoos Rizópodos) de Nueva Guinea</td>
<td>27</td>
</tr>
<tr>
<td>María Ramila. — Contribución al estudio de los Opiliones de la Fauna Ibérica. Las especies del grupo Nemasoma bacilliferum Simon 1879 en la Península Ibérica (Opiliones, Fam. Nemastomatidae)</td>
<td>33</td>
</tr>
<tr>
<td>Enrique Gadea. — Sobre la nematofauna muscelosa de los Gates orientales (India)</td>
<td>57</td>
</tr>
<tr>
<td>L. Vallmitjana. — Consideraciones sobre la morfología y propiedades de las mitocondrias</td>
<td>65</td>
</tr>
<tr>
<td>S. Rivas-Martínez. — Contribución al estudio geobotánico de los bosques arandeses (Pirineo iberense)</td>
<td>81</td>
</tr>
<tr>
<td>Manuel González. — Contribución al conocimiento de los curculiónidos del Mediterráneo occidental. - VII. Los Pachytychius ibéricos</td>
<td>107</td>
</tr>
<tr>
<td>Carmen Bach Piella. — Tisanuros de la fauna española. Tisanuros hallados en sotobosque de robles de Salamanca</td>
<td>129</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TOMO XLVI</th>
<th>JULIO 1969</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. Rivas Martínez. — Vegetatio Hispaniae. Notula I</td>
<td>5</td>
</tr>
<tr>
<td>F. Vergós-Serra. — Los Éumenes de la región catalana (Hymenoptera Eumenidae)</td>
<td>35</td>
</tr>
<tr>
<td>F. Español. — Notas sobre anóbidos</td>
<td>49</td>
</tr>
<tr>
<td>Jaime Bech. — La precipitación bioquímica, mecanismo generador de traverinos y calizas lacustres</td>
<td>65</td>
</tr>
<tr>
<td>Manuel González. — Contribución al conocimiento del Mediterráneo occidental</td>
<td>75</td>
</tr>
<tr>
<td>Enrique Gadea. — Sobre la nematofauna de Arbahr (Atlas marroquí)</td>
<td>81</td>
</tr>
<tr>
<td>C. Altamira. — Notas malacológicas</td>
<td>91</td>
</tr>
<tr>
<td>Jaime Isern. — Sobre las urnas de Sipunculus nudus</td>
<td>115</td>
</tr>
</tbody>
</table>
TOMO XLVII
DICIEMBRE 1969

José Antonio Arroyo Merino. — Estudio de la flora bacteriana presente en la gamba (Parapenaeus longirostris) de consumo en Madrid ... 5
Enrique Gadea. — La nematosoenosis típica de los medios musselinos montanos centrobélicos ... 75
Manuel González. — Sobre el género Phaenotherium Friv. (Col. Anthribidae) 79
F. Español. — Notas sobre anóridos (Col.) .. 97
Christian P. Vivarés et Manuel Rubió. — Protozoa parasites de Crustacea Decapoda Brachyura de la côte nordest de l'Espagne ... 111
J. P. Mauries. — Myriapodes de Sierra Nevada (Espagne). Une nouvelle es-pèce du genre Ceratosphys Ribaut, 1920 (Diplopoda) .. 131

TOMO XLVIII
JULIO 1970

E. Petitpierre. — Variaciones morfológicas y de la genitalia en las Timarcha Lat. (Col. Chrysomelidae) .. 5
Jorge Sabater-Pi. — Aportación a la ecología de los Colobus polyhemos satanas, Waterhouse 1838, de Río Muni (República de Guinea Ecuatorial). 17
F. Español. — Notas sobre anóridos (Col.) .. 33
Manuel González. — El género Desbrochersella Reitter (Col. Curculionidae). 49
Francisco Castelló. — Sobre la presencia del género Achanthochiton (Mol. Poliplacophora) en las costas de la isla de Ibiza (Baleares) 73
María Ramírez. — Contribución al estudio de los Opiliones de la Fauna Ibérica. La especie Cosmobunu granarius (Lucas 1847) en la Península Ibérica y Norte de África .. 81
Jaime Isern. — Sobre Aspidosiphon clavatus (Sipunculoides) del litoral de Blanes .. 107
Enrique Gadea. — Sobre la nematofauna muscícola de los Andes venezolanos. 113
Valentín Sans-Coma. — Sobre la distribución de micromamíferos del N. E. de la península ibérica, con algunas consideraciones metodológicas . 125
OTRAS REVISTAS SOBRE BIOLOGIA

ANALES DE BROMATOLOGIA. — Publicación de la Sociedad Española de Bromatología. Recoge esta revista los trabajos sobre alimentos efectuados en diversos Institutos del Consejo Superior de Investigaciones Científicas. — Trimestral. Ejemplar, pesetas 85. Subscripción, pesetas 120.

ANALES DEL JARDÍN BOTÁNICO DE MADRID. — Publica trabajos y notas científicas que abarcan todos los campos de la botánica. — Anual. Subscripción, 100 pesetas. Número atrasado, 110 pesetas.

ANTROPOLOGIA Y ETNOLOGIA. — Publicación del Instituto «Bernardino de Sahagún». Revista dedicada a la Antropología, Etnología y en general a las Ciencias del Hombre; Trabajos originales; Noticieros; Reseñas bibliográficas. — Semestral. Ejemplar, 60 pesetas. Subscripción, 100 pesetas.

ARCHIVO DE LA SOCIEDAD OPTALMOLÓGICA HISPANOAMERICANA. — Son sus colaboradores todos los miembros de la Sociedad Oftalmológica, sin que ello excluya otras colaboraciones, y sus páginas se ven honradas con la aportación de los médicos, naturalistas, físicos, químicos y, en general, de todo cuanto pueda contribuir al mejor conocimiento de esta ciencia. — Mensual. Ejemplar, 20 pesetas. Subscripción, 210 pesetas.

ARCHIVO DE MEDICINA EXPERIMENTAL. — Publicación del Instituto Nacional de Ciencias Médicas. En esta revista, ilustrada con numerosas fotografías de los casos de experimentación, se reúnen todos los trabajos que se realizan en las distintas Secciones del Instituto Nacional de Ciencias Médicas. — Cuatrimestral. Ejemplar, 30 pesetas. Subscripción, 75 pesetas.

BOLETIN DE LA REAL SOCIEDAD ESPAÑOLA DE HISTORIA NATURAL. — Publicación del Instituto «José de Acosta». — Se publican 5 números al año. Subscripción, 200 pesetas.

REVISTA ESPAÑOLA DE FISIOLOGÍA. — Publica trabajos de investigación sobre temas de Fisiología humana, normal y patológica. Fisiología animal y comparada y Bioquímica. Inserta, a continuación de los originales, un resumen de los mismos en idiomas extranjeros. La sección de libros recibidos publica notas críticas de cuantos, españoles o extranjeros, se envían a la redacción de la revista. — Trimestral. Subscripción anual, 400 pesetas.

Galenica Acta. — Publicación del Laboratorio de Farmacia Galénica. — Recoge en sus páginas la investigación realizada sobre temas que interesan a farmacéuticos y médicos, ocupándose en la correcta preparación y valoración de los medicamentos y en el de las formas farmacéuticas apropiadas para su administración, y abarca un amplio conjunto de cuestiones relacionadas con la Química, Farmacognosia, Terapéutica y Técnica industrial. — Trimestral. Ejemplar, 40 pesetas. Subscripción, 150 pesetas.

Investigación Pesquera. — Publicación del Instituto de Investigaciones Pesqueras. Portavoz de las actividades científicas del mencionado Instituto, abarca toda clase de investigaciones relacionadas con la Biología Marina y los problemas pesqueros.

Revista Ibérica de Parasitología. — Publicación del Instituto Nacional de Parasitología. Dedicada a cuestiones relacionadas con las parasitología de la Península Ibérica y sus colonias. Órgano de publicidad de las investigaciones realizadas por la Sección de Helmintología del Instituto «José Acosta». — Trimestral. Ejemplar, 25 pesetas. Subscripción, 100 pesetas.
