
Available online at www.sciencedirect.com
www.elsevier.com/locate/gca

ScienceDirect

Geochimica et Cosmochimica Acta 243 (2018) 186–204
Genesis of mud volcano fluids in the Gulf of Cadiz using a
novel basin-scale model approach

Christopher Schmidt a,⇑, Ewa Burwicz a, Christian Hensen a, Klaus Wallmann a

Sara Martı́nez-Loriente b, Eulàlia Gràcia c
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Abstract

Mud Volcanism and fluid seepage are widespread phenomena in the Gulf of Cadiz (SW Iberian Margin). In this seismically
active region located at the boundary between the African and Eurasian plates, fluid flow is typically focused on deeply rooted
active strike-slip faults. The geochemical signature of emanating fluids from various mud volcanoes (MVs) has been inter-
preted as being largely affected by clay mineral dehydration and recrystallization of Upper Jurassic carbonates. Here we pre-
sent the results of a novel, fully-coupled 1D basin-scale reactive-transport model capable of simulating major fluid forming
processes and related geochemical signatures by considering the growth of the sediment column over time, compaction of sed-
iments, diffusion and advection of fluids, as well as convective and conductive heat flow. The outcome of the model is a real-
istic approximation to the development of the sediment pore water system over geological time scales in the Gulf of Cadiz.
Combined with a geochemical reaction transport model for clay mineral dehydration and calcium carbonate recrystallization,
we were able to reproduce measured concentrations of Cl, strontium and 87Sr/86Sr of emanating mud volcano fluids. These
results support previously made qualitative interpretations and add further constraints on fluid forming processes, reaction
rates and source depths. The geochemical signature at Porto MV posed a specific problem, because of insufficient constraints
on non-radiogenic 87Sr/86Sr sources at this location. We favour a scenario of basement-derived fluid injection into basal
Upper Jurassic carbonate deposits (Hensen et al., 2015). Although the mechanism behind such basement-derived flow, e.g.
along permeable faults, remains speculative at this stage, it provides an additional source of low 87Sr/86Sr fluids and offers
an idea on how formation water from the deepest sedimentary strata above the basement can be mobilized and eventually
initiate the advection of fluids feeding MVs at the seafloor.

The dynamic reactive-transport model presented in this study provides a new tool addressing the combined simulation of
complex physical-geochemical processes in sedimentary systems. The model can easily be extended and applied to similar geo-
logical settings, and thus help us to provide a fundamental understanding of fluid dynamics and element recycling in sedimen-
tary basins.
� 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
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1. INTRODUCTION

Fluid seepage and mud volcanoes (MVs) have been
ubiquitously observed on- and offshore on earth. Several
thousand MVs worldwide have been described in diverse
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tectonic environments. To date, the majority of these fea-
tures are located in compressional tectonics settings (e.g.
Milkov, 2000; Kopf, 2002; Mazzini and Etiope, 2017). Cold
seeps and MVs play an important role for the global ele-
ment budget of hydrocarbons, such as CO2 and CH4 and
some other major elements such as Sr, B or Li (Kopf,
2003; Milkov et al., 2003). The emanated fluid composition
of MVs typically differs from seawater (Kopf, 2002). How-
ever, deviations from seawater are not uniform and vary
according to underlying processes, such as the transforma-
tion of clay minerals (Kastner et al., 1991; Hensen et al.,
2004), microbial mineralization of organic matter (Martin
et al., 1993; Fehn et al., 2007; Tomaru et al., 2007), high
temperature interactions with sediment and rocks (Martin
et al., 1991; Mazzini et al., 2017), dissolution and recrystal-
lization of carbonates (Martin et al., 1996; Luff and
Wallmann, 2003; Castellini et al., 2006), formation and dis-
sociation of gas hydrates (Kopf, 2002; Hensen et al., 2004,
2007; Paull et al., 2015), and rise of salt-diapirs and disso-
lution of evaporites (Charlou et al., 2003; Reitz et al.,
2007; Haffert et al., 2013).

During the last two decades numerous multidisciplinary
studies have been carried out to better understand mud
Fig. 1. Bathymetric map (modified after Hensen et al., 2015) of the Gulf o
�90 m digital grid (Zitellini et al., 2009). White lines depict the main tecto
(Bartolome et al., 2012). Black circles represent some selective MVs, whil
lines represent the seismic line SW02 (Martı́nez-Loriente et al., 2018) acro
SW07 (Hensen et al., 2015) across ATI MVs and DSDP site 135.
volcanism and underlying processes in the Gulf of Cadiz
(GoC; Fig. 1; Gràcia et al., 2003a,b, 2010; Pinheiro et al.,
2003; Somoza et al., 2003; Hensen et al., 2007, 2015;
Medialdea et al., 2009; Nuzzo et al., 2009; Scholz et al.,
2009, 2010a,b; Bartolome et al., 2012; Haffert et al., 2013;
Martı́nez-Loriente et al., 2013, 2018; Toyos et al., 2016).
Here, most of the known MVs are found along lineaments
crossing the accretionary wedge, e.g. Captain Arutyunov
MV (CAMV) or Porto MV (Fig. 1). Only a few MVs,
including Abzu MV, Tiamat MV, and M. Ivanov MV (also
referred as ATI MVs), were discovered along a major
strike-slip fault system outside the accretionary wedge
(Fig. 1), and hence outside their typical tectonic setting
(Hensen et al., 2015).

In general, most of the MVs on the accretionary wedge
show a strong dilution of conservative elements, e.g. Cl
compared to modern seawater (Hensen et al., 2007; 2015;
Scholz et al., 2009; Haffert et al., 2013). In combination
with a characteristic d18O/dD signature, the pore water
freshening is a clear indicator for clay mineral dehydration
(i.e. smectite to illite transformation; Hensen et al., 2015).
Clay mineral dehydration is most pronounced on the upper
continental margin and decreasing westward (Scholz et al.,
f Cadiz and the surrounding areas in the NE Atlantic Ocean from a
nic features in the region LS: lineament south; LN: lineament north
e red circles label the 5 representative MVs used in this study. Black
ss the Horseshoe abyssal plain and over Porto MV, and seismic line
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2010b). Some MVs on the upper slope show highly enriched
Cl concentrations due to the dissolution of evaporites (e.g.
CAMV and Mercator MV in Fig. 1; Hensen et al., 2007;
Haffert et al., 2013). MVs in the west of the GoC, such as
ATI MVs and Porto MV show higher dD and lower d18O
values accompanied by a strong enrichment of Sr with a
low Sr isotope ratio. These findings have been interpreted
as recrystallization of carbonates (Hensen et al., 2015).

To explain the fluid composition observed at Porto MV
the advection of crustal derived fluids with 87Sr/86Sr ratios
of 0.704 or below has been hypothesized (Scholz et al.,
2009; Hensen et al., 2015). Fluid advection trough oceanic
crust of an age older than 140 Ma is a process that has
not been verified by geochemical evidence of active seepage
up to date. Results of previous studies (e.g. Stein et al.,
1995) propose that fluid advection in oceanic crust older
than �65 Ma is usually inhibited by thick layers of imper-
meable sediments accumulating over an old oceanic crust.
However, Von Herzen (2004) showed that fluid advection
along strong topographic contrasts in the crust is possible
in oceanic crust older than 65 Ma. Furthermore, seismic
studies at the Tydeman fracture zone in the tropical Atlan-
tic Ocean (e.g. Calvert and Potts, 1985) indicate that fluid
flow through several faults affecting oceanic crust older
than 80 Ma maybe still active, and Fisher and Von
Herzen (2005) show evidence for fluid advection in
106 Ma old oceanic crust of the Madeira Abyssal Plain.

The approach of the current manuscript is to use numer-
ical methods to improve a general, quantitative understand-
ing of fluid formation processes in sedimentary basins
related to geochemical processes and the potential role of
fluid advection through old oceanic crust. Mud volcano flu-
ids typically provide a window into the processes occurring
underneath. To date, however, interpretations were mostly
based on conventional methods only, such as property-
property plots of fluid data or simple numerical models
used to draw conclusions about fluid sources or fluid advec-
tion rates in surface sediments. To overcome this lack of
knowledge, we designed a novel, basin-scale reactive trans-
port model to simulate and quantify important fluid form-
ing processes, such as the ubiquitous smectite to illite
transformation, constrained by geochemical tracers in the
pore fluid. The procedure described below enables the
determination of the quantitative interaction of major pro-
cesses affecting pore fluid geochemistry, and provides a
more reliable approximation to the formation at depth of
mud volcano fluids and their implications for processes that
induce upward advection.

2. GEOLOGICAL SETTING OF THE GULF OF CADIZ

The GoC, located SW of the Iberian Peninsula in the
NE Atlantic Ocean, has undergone a complex tectonic his-
tory (Maldonado et al., 1999). The opening of the Central
Atlantic Ocean in the Early Jurassic (e.g. Rovere et al.,
2004), represented the development from a passive conti-
nental margin into a convergent margin (Gràcia et al.,
2003b; Duarte et al., 2013). The WNW – ESE running
South West Iberian Margin (SWIM) fault system, a diffu-
sive deep rooted strike-slip fault system (Bartolome et al.,
2012), marks the boundary between the African and Eura-
sian plates (Zitellini et al., 2009). The convergence between
the African and Eurasian plates in the GoC started in the
Oligocene and continues with a present-day convergence
of 4–5 mm a�1 (Argus et al., 1989; Schettino and Turco,
2009). In the late Tortonian, the progression of the Gibral-
tar Arc into the Atlantic Ocean, and the coeval subduction
and detachment of the oceanic plate in the Alboran Sea
(Wortel and Spakman, 2000), caused the development of
a U-shaped accretionary wedge in the GoC (Duarte et al.,
2013). Numerous authors suggested that the progression
of the arc into the Atlantic Ocean ceased at the beginning
of the Pliocene (e.g. Lonergan and White, 1997). However,
Gutscher et al. (2012) suggested that subduction remained
active until today. The main tectonic structures identified
in the GoC are NE-SW trending thrust faults (Gràcia
et al., 2003b; Zitellini et al., 2004; Martı́nez-Loriente
et al., 2013, 2018), and WNW-ESE trending strike-slip
faults (Terrinha et al., 2009; Zitellini et al., 2009;
Bartolome et al., 2012; Martı́nez-Loriente et al., 2013,
2018). The GoC is a seismically active region where two
large earthquakes occurred in the last 300 years. For
instance, the 1755 the great Lisbon earthquake with an esti-
mated magnitude of Mw > 8.5, which combined with a
destructive tsunami devastated the city of Lisbon
(Baptista et al., 1988). The most recent great earthquake
occurred in 1969, in the Horseshoe Abyssal Plain with a
magnitude of about Mw = 7.9–8.0 (Fukao, 1973). A total
of eight events of great magnitude (Mw � 8) occurred in
the area during the Holocene (Gràcia et al., 2010).

The seismo-stratigraphic interpretation of the GoC and
the Horseshoe abyssal plain is based on the results of the
DSDP Site 135 on the Coral Patch Ridge (Fig. 1; Hayes
et al., 1972). By using multichannel seismic profiles of the
SWIM dataset, Martı́nez-Loriente et al. (2013) defined the
seismo-stratigraphy of six main units. The uppermost unit
I is composed of Upper Oligocene to Quaternary age sedi-
ments. Unit II is characterized by terrigenous sediments
from Upper Cretaceous to Lower Eocene age. Units III–
IV are built-up of terrigenous sediments from Cretaceous
and Lower Cretaceous. Unit V, contain Upper Jurassic car-
bonates, which are underlain by the basement (Unit VI).
The basement is composed of different domains, however,
below the area of ATI MVs, the oceanic crust is of Early
Jurassic age (Martı́nez-Loriente et al., 2014). All units
highly vary in their thickness. On the basis of geochemical
findings, the 10 km thick accretionary wedge (Gutscher
et al., 2009) on the easternmost part of the GoC is built
mainly of terrigenous material, with no evidence of Upper
Jurassic carbonates underneath (Hensen et al., 2015).

3. REACTIVE-TRANSPORT MODEL

3.1. General concept

In this study, we present a newly developed vertical 1D
fully-coupled basin-scale reaction-transport model. We
approximately reconstruct the sedimentary sequences with
their physical properties over time. The reaction-transport
part accounts for clay mineral dehydration and carbonate
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recrystallization, as well as the advection of fluids through
aged oceanic crust. Overall, five dissolved (Ca, Cl, K, Na,
Sr, and 87Sr) and four solid (smectite, illite, carbonate,
strontium) species are considered in the model. We used
MATLAB R2014a (The MathWorks Inc.) to implement
the non-steady-state model. An advantage of this model is
the adaptive numerical mesh, which simulates the growing
sediment column over time with a progressive compaction
of the sediments. With this method, we are able to simulate
the spatial and temporal evolution of the sedimentary
sequences of the GoC. The governing transport equations
as well as temperature and pressure equations of the model
approach can be found in the appendix.

3.2. Reaction solver

3.2.1. Clay dehydration

A widespread dehydration reaction causing substantial
pore fluid freshening in marine sediments is the transforma-
tion of smectite to illite (Brown et al., 2001). Freshening is
caused by the release of interlayer H2O, which typically
ranges from 20 to 25 wt% of the minerals (Fitts and
Brown, 1999). Numerous studies, mostly based on deep
ODP/IODP drilling data and MV fluids, have shown that
this dehydration process causes dilution of conservative ele-
ments, e.g. Cl and the release of fluid mobile elements like
Li, B and Sr (Chan and Kastner, 2000; Scholz et al.,
2009, 2010a). The usual temperature range for this process
appears to be between 60 �C and 150 �C (Kastner et al.,
1991; Hensen et al., 2004). For this reaction, various
numerical models have been described in the literature. In
this study, we use a modified model by Cuadros and
Linares (1996) where the reaction rate is defined as:

RClay ¼ Sa � Kþð Þb � k ð1Þ
where S – smectite/(smectite + illite), K+ – dissolved con-
centration of K, a and b – rate order parameters for smec-
tite and K, and k – depth dependent rate constant. In
contrast to Cuadros (2006), we used an Arrhenius type,
temperature dependent reaction rate which reads as
follows:

k ¼ A � exp � E
R� Tþ273:15ð Þ

� �
ð2Þ

where A – frequency factor, E – activation energy, and R –
universal gas constant.

The amount of Sr released into the pore fluid is deter-
mined after following equation:

RSr ¼
RClay

100
� qs �

1� h
h

� �
� 106 �MSmectite � XSr ð3Þ

where Rclay is the reaction rate of Eq. (1) in (wt%), the fac-
tor of 106 is introduced to achieve the unit of mM, MSmectite

is the molar weight of smectite and XSr is the portion
described as a ratio of Sr in smectite.

3.2.2. Carbonate recrystallization

At seafloor pressure and temperature conditions marine
carbonate deposits typically undergo a process called
recrystallization. This process includes micro-solution and
precipitation of carbonates to transfer the carbonate phase
into a thermodynamic more stable state (Morse and
Mackenzie, 1990). This process has been inferred from
observations made on DSDP/ODP drill cores; most nota-
bly, the increase of Sr in ambient pore water after deposi-
tion (Richter and DePaolo, 1987; Fantle and DePaolo,
2006; Fantle, 2015). Obviously, biogenic carbonates
undergo a transformation into a more stable form of cal-
cite. While the composition and texture are largely main-
tained (Baker et al., 1982), grain growth is concomitant
(Morse and Casey, 1988).

For our numerical model approach we adapted a kinetic
rate for Sr release due to the recrystallization of bulk car-
bonate as suggested by Richter and DePaolo (1987):

dCSr

dt
¼ ds � 1� hð Þ

h

� �
� Rage � CS � K � Cf

� �
ð4Þ

where CSr – concentration of Sr released into the pore fluid,
Cs and Cf – concentrations of Sr in solid and in fluid respec-
tively, Rage – rate parameter, and K – effective distribution
coefficient. For numerical reasons we could not use the car-
bonate concentrations directly. Therefore, we implemented
an additional solid species called Sr concentration of car-
bonates in the model.

The rate parameter for the recrystallization reads as
follows

Rage ¼ Ra þ Rb � exp
�age
Rc

� �
ð5Þ

in 1/Ma where Ra, Rb and Rc are model constants, and age

is the sediment age. Ra is the parameter that controls the
long-term recrystallization where Rb and Rc control the
early recrystallization.

3.2.3. Fluid injection from basement

The injection from the basement into the basal sediment
column for the Porto case study in scenario 4 is solved by
using the pressure solver of the numerical model. When
activated, at each time step an additional water mass, in
kg s�1 m�2, was injected with a distinct chemical composi-
tion to the lowermost model knot. In the following time
step, this pressure pulse starts to be equilibrated resulting
in an additional advective component in the model column.

3.2.4. Strontium isotopes

The strontium isotopic ratio of 87Sr/86Sr is calculated
after Hoefs (2004)

U87 ¼
87Sr

84Sr þ 85 Sr þ 86 Sr þ 87 Sr
¼

87Sr
Sr

¼ R87

9:43þ R87

ð6Þ
with U87 – mol fraction of 87Sr, R87 – ratio of 87Sr/86Sr, and
the constant 9.43 is defined by the abundance of other Sr
isotopes. Due to the fact that the ratio of 87Sr/86Sr cannot
be transported as a species, the bulk concentration of Sr,
as well as 87Sr are handled separately in the model domain.
From the geological record of 87Sr/86Sr in marine carbon-
ates (McArthur et al., 2001), the concentration of 87Sr
can be defined through earth history using Eq. (6). The
two Sr species, Sr and 87Sr, can react and are transported
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in the sediment column. At the end of the simulation values
of 87Sr and Sr are used to calculate 87Sr/86Sr as model
output.

3.3. Boundary conditions and initial conditions

3.3.1. Dissolved species

Several upper and lower boundary conditions were
applied in the case studies; Table 1 shows a compilation
of all boundary conditions. The upper boundary conditions
(UBC) for the dissolved species Cl, Na and K are set to a
constant modern seawater-like concentration
(Cl = 557 mM; Na = 477 mM; Demicco et al., 2005) and
concentration of 10 mM for K (Horita et al., 2002). For
Ca, variations through Earth’s history in seawater over
the past are published by Horita et al. (2002). For Sr, the
Sr/Ca ratio from Steuber and Veizer (2002) and the Ca con-
centration was taken to determine the Sr concentration in
seawater over time. The 87Sr/86Sr ratio of seawater over
time is available from McArthur et al. (2001) and has been
used to determine the concentration of 87Sr. The variations
trough time for Ca, Sr/Ca, Sr and 87Sr/86Sr are shown in
Fig. 2. For all scenarios, the UBC is an open boundary.

For the first two case studies and Porto MV case study
scenario 1 to 3, closed boundary conditions are applied to
Table 1
Boundary conditions of all case studies and modeled scenarios.

UBC LBC

Case study 1 + 2Case study 3
(scenario 1–3)

Open Closed

Case study 3 (scenario 4) Open Open

(1) UBC: Upper boundary condition; (2) LBC: Lower boundary conditi

Fig. 2. Upper boundary conditions for the last 15
the lower boundary, effectively resulting in a zero-gradient
boundary condition for diffusive transport and in a no flow
boundary condition for advection. In the fourth scenario of
Porto MV case study, the lower boundary is treated as an
open boundary for diffusion and for advection to allow
for fluid inflow through the base of the sediment column.
Here, fixed concentrations are applied to the injected fluids.
In this scenario, we tested the potential effect of the injec-
tion of crustal derived fluids on the pore water composition,
predominantly with respect to variations in Sr, 87Sr/86Sr,
and Cl. Fluids circulating in the oceanic crust (lower
boundary) are difficult to constrain, essentially, because
data from this or a similar, deeply buried site are generally
unavailable. Useful constraints are only available from
hydrothermal vents, ridge flank systems or old, less deeply
buried crust sections. Hydrothermal vent solutions typically
have 87Sr/86Sr values between 0.7030 and 0.7040, Sr con-
centrations close to or slightly enriched with respect to nor-
mal seawater and variable Cl concentrations depending on
the occurrence of subsurface phase separation (e.g.
Douville et al., 2002). Known ranges of values from
ridge-flank systems (up to �60 �C) are between 0.70715
and 0.70745 for 87Sr/86Sr, Sr concentrations up to 130 lM
and normal chlorinity (e.g. Wheat et al., 2000). On the basis
of the available measurements and that fact the crustal
Diffusion LBC Advection LBC

Zero gradient diffusion No flow

Concentration gradient Inflow

on.

5 Ma; A: Ca; B; Sr/Ca; C: Sr; D: 87Sr/86Sr.
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temperatures are �150 �C below Porto MV, we use a hypo-
thetical fluid composition with 87Sr/86Sr of 0.706, Sr con-
centrations of 130 mM and normal seawater chlorinity. In
addition to that, several test runs have shown that the
impact of a change of ±25 mM in Sr and ±0.002 in the iso-
tope ratio has just a small impact in the overall result.

3.3.2. Solid species

The sediment input over the whole model period of
�155 Ma was generally characterized by the deposition of
smectite, illite, and calcium carbonate. The aim was not
to build a detailed reconstruction of the sedimentary his-
tory, but rather to analyse the geochemical impact caused
by the change from carbonate-dominated sedimentation
to terrigenous sedimentation in the early Cretaceous.

Initial conditions for the solid phase were set for smec-
tite to 70 wt% and illite 15 wt%. Since no information on
the clay mineral composition at DSDP Site 135 was avail-
able, we used data from the DSDP Site 398 at the Vigo Sea-
mount off Northwest Iberia with similar sedimentary units
compared to DSDP Site 135 in order to constrain our
assumptions. At DSDP Site 398, smectite contents average
between 40 and 60% (Chamley et al., 1979). Further evi-
dence for the deposition of smectite-rich sediments comes
from DSDP Site 547 on the Morocco continental margin,
where clay mineral content is up to 90% with a smectite
fraction of more than 70 wt% (Chamley and Debrabant,
1984). However, measured smectite contents represent val-
ues mostly after smectite to illite transformation occurred
so that a higher input (above measured average concentra-
tions) seems to be a reasonable assumption. Sr isotope
ratios for clay minerals were defined using the values mea-
sured in mud clasts, sampled from the MVs, varying
between 0.7095 and 0.7120 (Hensen et al., 2015). Therefore,
we used an average isotope ratio of 0.710 in the model.

As for the clay mineral composition, also no bulk data
for Jurassic carbonate deposits are available for the Gulf
of Cadiz. DSDP Site 135 did not reach the depth of Jurassic
deposits. However, the Western Atlantic counterpart to
DSDP Site 135, DSDP Site 105 reached Upper Jurassic lay-
ers described as clayey limestones (Hollister et al., 1972),
suggesting a carbonate content of about 70 wt%. If Upper
Jurassic carbonates are present in the sediment column of
the model, we assume 70 wt% of calcium carbonate. Car-
bonate deposits contain isotopic ratio of the time of their
deposition. For Upper Jurassic Carbonates a isotopic ratio
of 0.7068 corresponds to the seawater ratio at 155 Ma
(Fig. 2D; McArthur et al., 2001).

Eq. (4) requires the Sr concentration of carbonates. To
solve this numerically stable a fourth solid species was
introduced. To determine the initial condition, we used
the following equation to approximate the Sr concentration
of carbonates:

Cs ¼
CCarbonate

100
� qs �

0:4

MCa
� DSr �

Sr2þ

Ca2þ
ð7Þ

where Cs is the concentration of Sr in carbonate (in mM),
Carbonate is the carbonate concentration (in wt%), the factor
of 0.4 is introduced since only 40 wt% of CaCO3 is Ca, MCa

is the molar weight of Calcium, DSr is the Sr distribution
coefficient between seawater and carbonate, Sr2+/Ca2+ is
the seawater ratio of Sr and Ca. The distribution coefficient
for deep sea carbonates after Stoll et al. (1999) is
DSr = 0.176.

3.4. Solution algorithm

At the beginning of each model run, initial states of
lithostatic pressure, pore fluid pressure, effective stress,
porosity and temperature are initialized. The two first grid
nodes with a cell size of 5 meter are predetermined. Each
time step starts with the deposition of a new sediment layer.
Therefore, the lithostatic pressure and the pore pressure
solutions are updated by using the Finite Element (FE)
scheme. Based on the new lithostatic and pore pressure cal-
culations, a new effective stress is obtained for each of the
grid nodes. The change in the effective stress field determi-
nes the degree of porosity reduction (i.e. compaction),
which is performed on every mesh node.

Finally, the reference frame adjustment takes place and
results in the growing of the sediment column and the new
top node marking the seafloor. Based on the new pressure,
the density of fluids, permeability, and the Darcy velocity
for the fluid is recalculated. Darcy velocity is used to deter-
mine the state of the boundary condition at every time step.
Upper boundary conditions adapt automatically according
to the presence of the potential venting induced by the addi-
tional pore fluids entering the system (i.e. pore fluid re-
freshening due to the smectite-illite transition). The temper-
ature equation is solved for diffusion (FE) and advection
(Finite Volume – FV) for the solid and fluid phase. The dif-
fusion coefficients are determined using the new tempera-
ture profile. Advection and diffusion of each solute are
solved separately using a FV and a FE scheme, respectively.

The last part of the solution algorithm contains the geo-
chemical reactions. To maintain the numerical stability of
the code, a sub-stepping method is applied to the geochem-
ical reaction solver. This method adjusts the main model
time-step to the rates of kinetically-resolved chemical reac-
tions, which are commonly much faster than the transport
steps. The sub-steps are solved within the main model loop.
First, the smectite-illite transformation with the release of
freshwater and Sr is accomplished, followed by the recrys-
tallization of carbonates, and the release of Sr into the
ambient pore waters. At the end of each time step, the iso-
tope ratio for Sr is computed.

4. MODEL CASE STUDIES

The numerical model approach is tested in three case
studies, which show a characteristic fluid composition for
their location within the GoC. In a first case study based
on CAMV, we tested the ability of the model to simulate
clay dehydration, which apart from evaporite dissolution
(not considered in this study), is the dominant fluid forming
process on the upper continental slope. The ATI MVs were
used as a case study to test the interplay of carbonate
recrystallization and clay dehydration as source for the
mud volcano fluids. For Porto MV, we tested the combina-
tion of both mineral reaction and the advective inflow of
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fluids trough altered oceanic crust. Parameters used for dif-
ferent model scenarios of the reaction package can be found
in the appendix.

4.1. Case study I: Captain Arutyunov MV

CAMV is located on the upper continental margin at
850 m water depth. Using Cl concentrations corrected for
evaporite dissolution after Hensen et al. (2007), this MV
shows very low Cl concentrations of �160 mM. At the
same time, Sr concentrations are well above 790 mM with
a pronounced radiogenic isotopic ratio of 0.7099 on aver-
age. The underlying sediments of the MV are of terrigenous
origin within the accretionary wedge. The sediment column
has a thickness of up to 9 km (Gutscher et al., 2009), and
the oldest sediments above the crust are presumably of Late
Cretaceous age (Hensen et al., 2015). Based on the age of
the sediments, the model run time is set to 135 Ma. The
key reaction is clay dehydration, where the activation
energy and the frequency factor of the Arrhenius type reac-
tion rate equation (Eq. (2)), as well as the temperature are
the most crucial parameters. Values for the activation
energy and the frequency factor, which can be found in
the literature, are distributed over a brought range. After
Cuadros and Linares (1996) the activation energy needed
for the transformation of smectite to illite can be between
13,000 and 140,000 J mol�1. The frequency factor varies
over several orders of magnitude (Pytte and Reynolds,
1989; Huang et al., 1993). Below, we show three model runs
for CAMV to calibrate the reaction to the measured data.
The three scenarios consider: (1) low activation energy com-
bined with a low frequency factor, (2) high activation
energy combined with a high frequency factor, and (3) med-
ium activation energy combined with a low frequency
factor.

In the first scenario, the transformation from smectite to
illite starts almost on the seafloor, at a temperature of 4 �C
(Fig. 3). According to the present-day thermal limits of the
Fig. 3. Depth profile for solids of CAMV (A and B) and Temperature pr
present-day smectite-illite transformation, below this area smectite-illite t
reaction of 50–160 �C (shaded area in Fig. 3), this scenario
is unrealistic. With a high activation energy tested in the
second scenario, we see the opposite effect on the reaction.
The smectite to illite transformation starts at a temperature
of more than 80 �C. Medium activation energy like in sce-
nario 3, results in a smectite to illite transformation which
begins at about 50 �C in 1.5 km sediment depth. The high-
est decrease of smectite and increase of illite can be seen
between 4 and 6 km depth. Downwards, the reaction slows
down again due to the smaller smectite amount in the
sediment.

Nevertheless, all three scenarios result in low Cl concen-
trations with less than 200 mM (Fig. 4A), but the profiles
show a different behavior for the various scenarios. The
Sr concentration released by the reaction is controlled by
the reaction rate (see Eq. (3); Fig. 4B). The isotopic ratio
of 87Sr/86Sr released from clays is set to 0.7100 in all scenar-
ios (according to data reported by Hensen et al., 2015). This
value is reached from a depth of 4 km downwards
(Fig. 4C). The profiles reveal considerable differences that
are explained by the differing onset of clay-mineral dehy-
dration and diffusive exchange with seawater. Comparing
the modeling results to measured concentrations of CAMV,
it is clear that the model approach is able to reproduce the
observed fluid signature for all three scenarios, in a sedi-
ment depth between 5.5 km and 7.5 km (Fig. 4). In sum-
mary, the third scenario delivers the most satisfying
results. In comparison to previous studies where this
numerical model of clay dehydration has been applied
(e.g. Cuadros, 2006), the observed decrease of smectite in
this scenario is the most realistic one.

The third critical parameter for clay dehydration is the
temperature. The model considers convection and conduc-
tion of heat to determine the temperature distribution using
a heat flow at the lower boundary of the model domain,
and the constant T0 value at the seafloor surface. Measure-
ments of modern heat flow data by Grevemeyer et al. (2009)
show a value of �45 mW m�2 in the east and �60 mW m�2
ofile (C) for all three scenarios. Shaded area marks depth range for
ransformation is completed.



Fig. 4. Depth profiles of dissolved Cl (A), Sr (B) and 87Sr/86Sr (C) for CAMV. Measured concentrations are plotted in identified source depth.
Black solid line is the average measured concentration of MV. Dashed line marks the modern seawater composition.
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in the west for the GoC. However, applying only modern
values to the time span of plate forming, this may cause
an underestimation of the thermal state of the sediments,
as at young crustal ages, the heat flow values may reach
up to 300 mW m�2 (e.g. Stein and Stein, 1993). According
to plate cooling models (e.g. Hasterok, 2013), the heat flow
decreases fast at the beginning and reaches levels similar to
modern heat flow values 50–60 Ma after plate formation. In
the following, we test two variations for CAMV with (1)
high heat flux of 300 mW m�2 in the beginning decreasing
with time to present day heat flux, and (2) a constant heat
flux 45 mW m�2 over time (Fig. 5) to see the impact of a
high heat flow at the beginning of the model run time.

The fast decrease of heat flux from plate cooling models
to a 135 Ma oceanic plate can be observed in Fig. 5, where
the heat flow drops to a level of 45 mW m�2 after 55 Ma.
Therefore, both tested scenarios have for at least the last
80 Ma of model run time a heat flow equivalent to the pre-
sent one.

The temperature profile for the scenario with the ele-
vated heat flow shows a positive temperature offset of up
to 30 �C for the first 35 Ma compared to the low, constant
heat flow scenario (Fig. 6). After 50–60 Ma, the difference
between both scenarios is negligible. The higher tempera-
ture at the beginning results in an earlier dehydration of
Fig. 5. Heat flow variations vs. time (Ma) for CAMV.
smectite. This causes a stronger decrease of Cl by up to
40 mM in the first 35 Ma of model run time (Fig. 6). How-
ever, with a decreasing smectite content also the rate of
dehydration drops. Therefore, with the same amount of
smectite transformed into illite at the end of the model
run time, the effect of lower Cl values also disappears after
�65 Ma. At this stage, the plate cooled down to its present-
day heat flux. Hence, most of the sediments have likely not
experienced a higher heat flow than 45–65 mW m�2. As a
consequence, and for simplicity, a constant heat flow over
time has been chosen for all subsequent scenarios.

Overall, the implemented reaction transport module is
able to simulate a fluid composition within the sedimentary
units that is similar to the one at CAMV and other MVs on
the accretionary wedge, reported by Scholz et al. (2009) and
Hensen et al. (2015). The rate of clay-mineral dehydration
could be constrained by the temperature distribution and
key control factors from previous studies, resulting in a
main reaction window between 50 and 150 �C as suggested
by Cuadros and Linares (1996).

4.2. Case study 2: ATI MVs

The three ATI MVs are located in the south-eastern part
of the Horseshoe Valley at a water depth of �4500 m
(Fig. 1). Emanating fluids of the MVs show a decrease of
about 50 mM in Cl compared to modern seawater. Sr con-
centrations vary between 500 mM and 1000 mM, whereas
the 87Sr/86Sr ratios are close to 0.7075 for all three MVs.
According to Hensen et al. (2015), the two main processes
affecting the fluid genesis are clay mineral dehydration
and recrystallization of Upper Jurassic carbonates.

The sedimentary structure for the basin model of the
ATI MVs is derived from multichannel seismic profile
SW07 from the ESF funded SWIM cruise 2006
(Martı́nez-Loriente et al., 2013; Hensen et al., 2015). It con-
sists of about �1.3 km of Upper Jurassic carbonates fol-
lowed by �3.7 km of terrigenous sediments. The
carbonates are underlain by oceanic crust, which has been
formed during the Jurassic (Martı́nez-Loriente et al.,



Fig. 6. Cl vs. depth and temperature vs. depth profiles for model runtime after 5 Ma, 15 Ma, 35 Ma, 65 Ma and 135 Ma for high heat flow
(300 mW m�2, Scenario 1) and constant heat flow (45 mW m�2, Scenario 2) of CAMV.
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2014) and are characterized by the low Sr isotope ratio
reported for the Upper Jurassic. The overall run time for
the model is set to 155 Ma, while during the first 30 Ma
mainly carbonate with a small amount of clay (7.5 wt%
smectite and 2.5 wt% illite) is deposited, the last 125–
0 Ma are followed by a sequence of predominantly terrige-
nous clay sedimentation.

The numerical model approach of Richter and DePaolo
(1987) for the recrystallization of carbonates has been used
by other authors e.g. Richter and Liang (1993), Fantle and
DePaolo (2006), and Fantle et al. (2010, 2015). The effective
distribution coefficient K in Eq. (4), defined as the ratio of
the Sr concentration in the carbonate, to the Sr concentra-
tion in fluid, is the most crucial parameter to control the
reaction. Aforementioned authors typically used values
between 12 and 20 for this parameter, derived from existing
Fig. 7. Depth profiles of dissolved Cl (A), Sr (B) and 87Sr/86Sr (C) for AT
at the estimated source depth. Dashed line marks the modern seawater c
Sr2+ data of pore fluids and Sr concentrations of carbonates
of ODP/IODP drill cores, while reported values for an
effective distribution coefficient from experimental data
range between <15 to >50 (Katz et al., 1972; Lorens,
1981). Since DSDP Site 135 did not reach the carbonate
deposits there is no data set for the Sr content of carbonates
in the working area. As a consequence, two values for K
have been tested for the ATI MVs (Fig. 7).

During the recrystallization of carbonates no fresh water
is released and hence, there is no effect on conservative ele-
ments by dilution. This explains why Cl concentration
depth profiles for both scenarios are identical (Fig. 7A).
The lower Cl concentration of about 495 mM at maximum
depth compared to seawater (550 mM), results from a diffu-
sive equilibration from the part of the model column where
clay minerals are present. In this model section Cl shows a
I MVs with varying K values. Measured concentrations are plotted
omposition.



C. Schmidt et al. /Geochimica et Cosmochimica Acta 243 (2018) 186–204 195
minimum of �400 mM. The Cl values present in the part of
carbonate sediments, are in the range of the observed ema-
nating fluid composition of the MVs. Applying effective dis-
tribution coefficients of K = 20, results in Sr concentrations
within the fluid of �1850 mM (Fig. 7B). Concentrations
above 1000 mM have not been observed, but the highest
concentration measured is 978 mM and the large scatter of
data implies that also higher concentrations are not unli-
kely. An effective distribution coefficient of 50 leads to Sr
Fig. 8. Sr concentrations depth profiles for 6 time steps at 1 Ma, 5 Ma, 35
of ATI MV with an effective distribution coefficient of 50. Dashed line is
Fig. 2C). For the last time step the measured concentrations are plotted

Fig. 9. Schematic sketches of the four s
concentrations representing the average observed concen-
trations of emanating fluids in a depth range from 3.0 to
5.0 km.

The combination of a high isotopic ratio from the clay
dehydration and a medium isotope ratio from the carbon-
ate recrystallization, should lead to a ratio lying between
the two sources. Both tested model scenarios are able to
reproduce the observed isotopic ratios, where K = 20 leads
to the lowest ratio and K = 50 to the highest ratio.
Ma, 60 Ma, 100 Ma and 155 Ma model run time, for third scenario
indicating the seawater Sr concentration for the point in time (see
(blue points) at the estimated source depth.

cenarios tested for the Porto MV.
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However, the variation between the scenarios is fairly small
and the isotope ratio for all scenarios plots between 0.7070
and 0.7075 in the presumed source area (Fig. 7C).

Fig. 8 shows the Sr evolution over time for the second
scenario of the ATI MVs. Reaction rates for recrystalliza-
tion are highest right after deposition, the Sr concentration
rises to about 850 mM in the lower part of the model
domain within the first few million years. With ongoing
sedimentation of terrigenous material, the Sr concentration
decreases in the upper part of the modeling domain. Essen-
tially, it becomes obvious that the major geochemical signal
we see today in the emanating MV fluids has largely been
formed shortly after the deposition of the carbonates.
Fig. 10. Depth profiles of dissolved Cl (A), Sr (B) and 87Sr/86Sr (C) for the
the estimated source depth of MV fluids. Dashed line marks the modern

Fig. 11. Stratigraphic interpretation of pre-stack depth migrated multi
Martı́nez-Loriente et al., 2018). AW: Accretionary wedge, LS: Lineament
Quaternary; II: Upper Cretaceous to Lower Eocene; III: Cretaceous; IV
4.3. Case study 3: Porto MV

Porto MV is located at the toe of the accretionary wedge
at 3800 m water depth (Fig. 1) and shows the most complex
combination of geochemical tracers investigated in this
study. Endmember MV fluids are characterized by low Cl
concentrations of 350 mM, Sr concentrations of about
400 mM, and a 87Sr/86Sr ratio of 0.7078.

Results of the first scenario (Fig. 9; sedimentation of ter-
rigenous clay over 135 Ma forming a sedimentary column
of �3.8 km thickness) clearly indicate that the fluid compo-
sition, specifically the 87Sr/86Sr ratio (Fig. 10C), cannot be
explained by smectite to illite transformation only. An
first scenario of Porto MV. Measured concentrations are plotted at
seawater composition.

channel seismic profile SW02 crossing Porto MV (modified from
South; HGU: Horseshoe gravitational unit; I: Upper Oligocene to

: Lower Cretaceous; V: Upper Jurassic. See Fig. 1 for location.
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additional Sr source with a low to medium isotope ratio
(e.g. from carbonate recrystallization as considered in case
study 2) is required to obtain a better fit. Previously,
Hensen et al. (2015) suggested that Upper Jurassic carbon-
ates are absent in this area. However, Martı́nez-Loriente
et al. (2018) showed that the area is marked by a number
of horst and graben structures, which are illustrated by a
depth-migrated seismic line crossing Porto MV (Fig. 11).
According to the stratigraphic interpretation, Upper Juras-
sic carbonates may be present to some extent in the graben
structures northwest of Porto MV (kilometre 140–160 in
seismic profile SW02). Southeast of Porto there is no
evidence for the existence of Upper Jurassic carbonates;
Fig. 12. Depth profiles for solutes Cl and Sr and isotope ratio of 87Sr/86Sr
MV. Measured concentration is plotted in the estimated source depth. D
sediments there are generally of Mesozoic age and their
composition cannot be clearly identified.

Based on this evidence, we tested two scenarios explicitly
considering carbonate recrystallization occurring in car-
bonate layers of about 240 m (Fig. 12A–C) and 670 m
(Fig. 12D–F) thickness below the overlying �3.6 km and
3.2 km of terrigenous sediments (Fig. 9). The run time
was set to 155 Ma considering the longer time of sediment
deposition since the Upper Jurassic. The results show that a
relatively thin layer of carbonate is not sufficient to obtain
an acceptable fit to the data (Scenario 2). Recrystallization
rates result in a good fit to the Sr concentrations (Fig. 12B),
although fail to obtain sufficiently low 87Sr/86Sr ratios
, for second (A–C), third (D–F) and fourth (G–I) scenarios of Porto
ashed line marks the modern seawater composition.
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(Fig. 12C). Vice versa, enhanced carbonate recrystallization
due to a thick carbonate layer (Scenario 3) result in a good
fit to the data with only slightly over-predicted Sr concen-
trations (Fig. 12E). However, the evidence for the existence
of thick carbonate deposits at this location is weak. Gener-
ally, the alteration of mafic materials like volcanic ash is
known to create low isotopic 87Sr/86Sr ratios in pore fluids.
However, such deposits have not been reported for the
GoC (Scholz et al., 2009). Alternatively, admixing of fluids
from the underlying oceanic crust has been proposed
(Scholz et al., 2009; Hensen et al., 2015). Although such a
scenario remains speculative as the precise mechanism
and the driving force for an upward advection are currently
not known, we simulated such hypothetic injection into
basal sediments (for about 30 Ma years) assuming concen-
trations and isotope values of crustal fluids as detailed in
Section 3.3. In addition to the smectite to illite transforma-
tion in the terrigenous section, we combined carbonate
recrystallization within a carbonate layer of 240 m thick-
ness and the injection of fluids from the oceanic crust
(Fig. 9). With this combination of parameters, we also
achieved a good approximation to the measured MV end-
member data (Fig. 12G–I), with a predicted source area
of the MV fluids located above the carbonate sequence at
roughly 3.25 km sediment depth. Assuming fluid advection
through aged oceanic crust, major unknown parameters are
the onset and the velocity of the flow. For our hypothetic
scenario, we assume that it is related to the onset of subduc-
tion of the oceanic crust beneath the Gibraltar Arc, which
started in the Tortonian (e.g. Duarte et al., 2013). Interest-
ingly, mud volcanism in the GoC is reported to occur since
the Mid-Tortonian (Toyos et al., 2016). The continuing
convergence of the Eurasian and African plates could have
provided the development of suitable conditions for
focussed fluid advection, for example the opening of perme-
able fault systems. Analogously, the existence of MVs in
front of the Barbados accretionary wedge has been ascribed
to the reorganization of the fluid-flow regime in the igneous
oceanic crust due to the change of tectonic stress along a
fracture zone (see Section 4.4; Sumner and Westbrook,
2001).
Fig. 13. Endmember plots of measured vs. mod
It must be admitted at this stage that a sufficient pres-
sure gradient leading to the upward advection of fluids
from the oceanic crust can likely only be assumed along
deep-reaching high permeability zones such as the LS fault
(Figs. 1 and 11). However, a fully appropriate simulation of
such a scenario would require at least a 2D model
approach, which is beyond the scope of the present study.
Nevertheless, the results of our simplified model approach
show that the injection of crustal-derived fluids offers a
potential explanation for the observed fluid composition
at Porto MV. In addition, the existence of such a transport
pathway provides also a general mechanism to mobilize flu-
ids from the oldest carbonate units deposited on top of the
basement, since in situ fluid mobilization in such sediments
is unlikely to occur.

4.4. Summary of case studies

Overall, all three case studies reveal that the numerical
approach is appropriate to reproduce measured endmem-
ber concentrations of MV fluids at certain subsurface depth
levels, indicating possible source regions of the fluids. The
simulation results of all case studies are summarized
together with fluid endmember data from respective mud
volcanoes in cross plots of Cl vs Sr and 87Sr/86Sr in
Fig. 13, where the simulated data point always represents
the concentration in the depth horizon with the closest
match to the data. For the CAMV case study the best fit
was obtained at 6.5 km (Fig. 4), for ATI at 4.5 km
(Fig. 7), and for Porto at 3.25 km sediment depth
(Fig. 12). Generally, these results confirm previously made,
but less constrained, estimates of the source depths of fluids
or their approximate stratigraphic origin (e.g. Pinheiro
et al., 2005; Hensen et al., 2007, 2015; Scholz et al., 2009).

The source depth of fluids decreases to the west and
seems to be correlated with the total sediment thickness
(Gutscher et al., 2009), which is a rough indicator for the
potential of producing low-salinity fluids by clay-mineral
dehydration (Scholz et al., 2010b), being one of the major
processes driving fluid advection and mud volcanism
on the accretionary wedge. Analogously, this may imply
eled data; A: Cl vs Sr. B: Cl vs. 87Sr/86Sr.
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that – due to the reduced potential of clay-mineral dehydra-
tion below the distal mud volcanoes – other process like
fluid flow through the oceanic crust (as discussed for the
Porto case study) might be necessary to initiate mud
volcanism in this area. The predicted source depth in
the ATI case study and Porto scenario 4 is located within
the Upper Jurassic carbonates. As indicated above,
carbonate recrystallization is a process affecting the fluid
composition, but not generating fluids. Hence, also in the
ATI area fluid injection from the oceanic basement might
stimulate fluid flow and by this capturing chemical signals
even from the oldest sedimentary strata above the basement
(cf. Hensen et al., 2015).

Interestingly, the mechanisms described above do not
seem to represent an isolated, special case only, but can be
considered of being of broader significance. Deep-seated flu-
ids expelled at MVs located offshore the deformation front
of the Barbados Accretionary Prism have been generally
ascribed to be the result of dewatering processes occurring
in the subducting slab sediments and migrating upward
along major fault systems such as the décollement (e.g.
Dia et al., 1995; Godon et al., 2004). However, a closer look
at the geotectonic setting shows a close analogy to the situ-
ation observed in the Gulf of Cadiz. Similar to ATI MVs
and Porto MV being aligned along the LS fault, Barbados
MVs are aligned parallel to the Mercurus Fracture Zone
in front of the accretionary prism. Sumner and Westbrook
(2001) alternatively suggested that mud volcanism in this
area was initiated by changes in plate motion along this frac-
ture zone and driven by water released by the smectite to
illite transformation affected by the circulation of fluids in
the oceanic crust. Altogether, these observations call for a
reassessment of previously made conclusions on fluid
sources of the Barbados MVs and, in general, a closer inves-
tigation of the potential fluid flow in aged oceanic crust
(>65 Ma). Numerical modeling as presented in this study
may play a key role to identify and quantify major physical
and geochemical processes involved.

5. CONCLUSIONS AND IMPLICATIONS

With our novel, fully-coupled, basin-scale model
approach, we are able to simulate ubiquitous fluid forming
processes, largely affecting the pore water geochemistry in
deeply buried marine sedimentary environments. Using
fluid data from MVs in the GoC we were able to constrain
reaction rates and source depths of fluid generation. In
summary, the most important aspects are:

� The numerical model approach is able to reproduce fluid
signatures that have been observed in MV fluids on the
upper continental slope and the deep sedimentary basin.

� Clay dehydration results in the dilution of conservative
elements and the enrichment of fluid mobile Sr with
radiogenic 87Sr/86Sr ratios. Carbonate recrystallization
produces Sr enriched fluids with a distinct 87Sr/86Sr ratio
shortly after the deposition of carbonates. With these
reactions most of the fluid compositions measured at
MVs within the GoC can be described satisfactorily
and approximate source depths can be assigned.

� Fluid injection from the basement as suggested byHensen
et al. (2015) might play a role at the distant MVs in order
to explain the geochemical signature at Porto MV and
more generally, as a mechanism of mobilizing pore water
from the oldest strata above the basement.

Overall, we were able to substantiate previously made
conventional geochemical interpretations and the under-
standing of fluid genesis in the area. This novel model
approach provides a powerful tool to analyse fluid genera-
tion and geochemical processes in sedimentary basins and is
easily transferable to other regions and geochemical sys-
tems. Future models of this type will be expanded to 2D
to enable adequate simulations of fluid generation and
potential advection along low-permeability conduits.
Finally, analogies to observations at the Barbados accre-
tionary margin imply that fluid circulation in old oceanic
crust – in combination with the occurrence of strike-slip
fault systems and fracture zones – is a process with cur-
rently unknown importance to fluid dynamics and element
cycling in sedimentary systems, which deserves systematic
investigation in the future.
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APPENDIX A

A.1 Governing equations

The 1D model used for this study is based on the
assumption that the pore space is fully saturated by fluids.
Sediment grains and fluids are transported downwards
according to the burial velocity. The burial velocity of
solids is derived from the sedimentation rate from DSDP
Site 135 on Coral Patch Ridge (Hayes et al., 1972). The
mass balance for solids reads as follows:

@ðð1� UÞqsÞ
@t

¼ �r � ðð1� /Þqs V s

*
Þ þ Qs ðA1Þ

where / – porosity, qs – solid density, Vs – burial velocity of
solids, t – time and Qs – source term for mineral reactions.

The mass balance for fluids reads as follows:

@ð/qf Þ
@t

¼ �r � ð/qf V f

*
Þ þ Qf ðA2Þ

where qf – fluid density, Vf – fluid phase velocity and
Qf – source term for biogeochemical reactions in the fluid
phase.
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Concentrations of dissolved species are transported by
diffusion and advection after following equation:

@ð/CÞ
@t

¼ �r � ð/DsrCÞ � r � ð/ C V f

*
Þ þ Qfc ðA3Þ

where C – concentration of solutes, Ds – diffusion coeffi-
cient, and Qfc – source term for biogeochemical reactions
of each chemical species in the fluid phase. Fluid velocity
Vf was calculated after the Darcy formulation which reads
as

Uf

*
¼ /ðV f

*
� V s

*
Þ ¼ � k

lf
ðrP � qf g

*Þ ðA4Þ

where Uf – Darcy fluid velocity, k – intrinsic permeability,
mf – viscosity of fluid phase, rP – pressure gradient, and g –
gravitational acceleration. The viscosity of fluids depends
on temperature and pressure, however, here we used a con-
stant average value (see Table A1).

The temperature-dependent molecular diffusion coeffi-
cients of dissolved species in the fluid are calculated accord-
ing to Boudreau (1997). The diffusion coefficient Ds is the
molecular diffusion coefficient scaled by the tortuosity,
which is calculated using the following equation
(Boudreau 1997):

T o ¼ 1� 2 � logð/Þ ðA5Þ
The intrinsic permeability can be derived with the

Kozeny-Carman relation. This relationship is defined after
Hantschel and Kauerauf (2009) as:

k ¼ B � /3

T 2
o � S2

ðA6Þ
Table A1
Parameters used in the governing equations of the basin model.

Parameter Symbol V

Gravitational acceleration g 9
Time step dt 2
Density of solids qs 2
Density of fluids qf 1
Geometrical factor B 1
Specific surface area S 1
Dynamic viscosity of fluid lf 1
Thermal conductivity of solids ks 2
Thermal conductivity of fluid kf 0
Specific heat capacity of solids Cps(clay) 9

Cps(carbonate) 8
Specific heat capacity of fluid Cpf 4
Sedimentation rate of solids 155–120 Ma VS 155–120 Ma 5
Sedimentation rate of solids 120–25 Ma VS 120–25 Ma 2
Sedimentation rate of solids 25–0 Ma VS 25–0 Ma 1
Seawater temperature T0 4
Atmospheric pressure Paero 1
Compressibility of fluid bf 4
Initial porosity /0(clay) 0

/0(carbonate) 0
Sediment compaction parameter 1clay 1

1carbonate 1
Intrinsic permeability k E
where B – is the scaling factor and S – is the specific sedi-
ment surface area. Values for S and B that are applied to
characterize the permeability of the GoC lithologies are
based on Hantschel and Kauerauf (2009) (Table A1).

Pressure equations

The lithostatic pressure, assuming a constant sediment
grain density, has been calculated according to following
equation after Hantschel and Kauerauf (2009)

PLithoðzÞ ¼ qseawater � g � wd þ PAero þ g �
Zz

z0

ðqf/þ qsð1� /ÞÞdz

ðA7Þ
where PLitho – lithostatic pressure, qseawater – seawater
density, wd – water depth, PAero – atmospheric pressure,
z0 – seafloor and z – sediment depth.

The effective pore fluid pressure P calculation is based
on the Terzaghi’s effective stress definition and accounts
for compressible fluids and incompressible grains. P is cal-
culated according to the following equation:

qf ð/bf þ
1

ð1�/ÞÞ
@P
@t

�r� ðqf k

lf
rP Þ

¼r � ðqf k

lf
ðqf g

*ÞÞþ qf 1

ð1�/Þ
@PLitho

@t
�@qf

@t
þQReaction ðA8Þ

where bf – compressibility factor for fluids, 1 – sediment
compaction parameter, P the effective pore fluid pressure,
and QReaction source term for pore fluid released from chem-
ical reactions.
alue References

.81 m s�2 –
00,000 years –
600 kg m�3 –
000 kg m�3 –
0 Based on Hantschel and Kauerauf (2009)
05 m2 m�3 Based on Hantschel and Kauerauf (2009)
0�3 Pa s Xu and Germanovich (2006)
.0 W m�1 K�1 Hantschel and Kauerauf (2009)
.6 W m�1 K�1 Hantschel and Kauerauf (2009)
40 J kg�1 K�1 Hantschel and Kauerauf (2009)
40 J kg�1 K�1 Hantschel and Kauerauf (2009)
181.3 J kg�1 K�1 Hantschel and Kauerauf (2009)
5 m Ma�1 Modified after Hayes et al. (1972)
5 m Ma�1 Modified after Hayes et al. (1972)
50 m Ma�1 Modified after Hayes et al. (1972)
�C –
01,325 Pa –
∙ 10�10 Pa�1 Hantschel and Kauerauf (2009)
.6 Hantschel and Kauerauf (2009)
.5 Hantschel and Kauerauf (2009)
.7 ∙ 10�7 Pa�1 Hantschel and Kauerauf (2009)
.176 10�7 Pa�1 Hantschel and Kauerauf (2009)
q. (A6) Hantschel and Kauerauf (2009)



ab
le

B
1

ar
am

et
er

va
ri
at
io
n
s
fo
r
ca
se

st
u
d
ie
s
an

d
sc
en
ar
io
s.

C
la
y
d
eh
yd

ra
ti
o
n

C
ar
b
o
n
at
e
re
cr
ys
ta
ll
iz
at
io
n

A
d
ve
ct
io
n
tr
o
u
gh

cr
u
st

in
k
g
s�

1
�
2

A
lp
h
a

B
et
ta

F
re
q
u
en
cy

fa
ct
o
r

A
ct
iv
at
io
n

en
er
gy

8
7
S
r/
8
6
S
r
o
f

sm
ec
ti
te

w
t%

w
at
er

in
sm

ec
ti
te

S
r
in

sm
ec
ti
te

(X
S
r)

A
lp
h
a

B
et
ta

G
am

m
a

K
F
lo
w

ra
te

th
ro
u
gh

L
B
C

(5
–0

M
a)

A
M
V

P
a
ra
m
et
er

te
st

ce
n
ar
io

1
5

0.
25

3.
00

E
�1

0
20

00
0

0.
71

00
22

.5
0.
4

–
–

–
–

–
ce
n
ar
io

2
5

0.
25

90
12

00
00

0.
71

00
22

.5
0.
4

–
–

–
–

ce
n
ar
io

3
5

0.
25

3.
5e
�8

38
50
0

0.
71

00
22

.5
0.
4

–
–

–
–

A
M
V

H
ea
t
fl
o
w
te
st

ce
n
ar
io

1
5

0.
25

3.
50

E
�0

8
38

50
0

0.
71

00
22

.5
0.
4

–
–

–
–

ce
n
ar
io

2
5

0.
25

3.
50

E
�0

8
38

50
0

0.
71

00
22

.5
0.
4

–
–

–
–

T
I
M
V

ce
n
ar
io

1
5

0.
25

3.
50

E
�0

8
38

50
0

0.
71

00
22

.5
0.
4

1.
00

E
�0

7
0.
05

4
20

–
ce
n
ar
io

2
5

0.
25

3.
50

E
�0

8
38

50
0

0.
71

00
22

.5
0.
4

1.
00

E
�0

7
0.
05

4
50

–

o
rt
o
M
V

ce
n
ar
io

1
5

0.
25

3.
50

E
�0

8
38

50
0

0.
70

95
25

.0
0.
2

–
–

–
–

ce
n
ar
io

2
5

0.
25

3.
50

E
�0

8
38

50
0

0.
70

95
25

.0
0.
2

1.
00

E
�0

7
0.
05

4
50

ce
n
ar
io

3
5

0.
25

3.
50

E
�0

8
38

50
0

0.
70

95
25

.0
0.
2

1.
00

E
�0

7
0.
05

4
50

ce
n
ar
io

4
5

0.
25

3.
50

E
�0

8
38

50
0

0.
70

95
25

.0
0.
2

1.
00

E
�0

7
0.
05

4
50

1.
5E

�0
4

C. Schmidt et al. /Geochimica et Cosmochimica Acta 243 (2018) 186–204 201
The first term on the LHS of the pore pressure Eq. (A8)
accounts for a density change of fluid with time. A com-
pressibility factor for fluids (bf) is calculated as:

bfqf ¼ @qf

@P
ðA9Þ

The first term on the RHS accounts for mobility of a
fluid due to the pressure change and gravitational flow.
The second last term on the RHS, the volume expansion
term, describes changes in fluid density with time, and the
last term is the source term.

The effective stress calculation is used to estimate the
porosity reduction due to sediment compaction. Thus, the
actual state of the pore fluid pressure P is used to calculate
the amount of pore fluids expelled from the matrix. The
effective stress reads as follows:

r0
z ¼ PLitho � P ðA10Þ

where r‘
z – the effective stress. The porosity is calculated

after modified Athy’s law taking into account the effective
stress:

/ ¼ /res þ /0e
�1r0z ðA11Þ

where /res – residual porosity, /0 – initial porosity. The
residual porosity stands for the irreducible fraction of the
pore space filled by pore fluids.

Temperature

The temperature field is determined using an average
constant basement heat flow over time, and constant sedi-
ment water interface temperature (T0). Heat is transported
via advection and diffusion in the model domain. The tem-
perature distribution (T) reads as follows:

@

@t
ððqCpÞbulkT Þ ¼ �r � ðððqCpÞbulk V s

*
Þ T Þ

� r � ððqf Cf Uf

*
Þ T Þ þ r � ðkbulkrT Þ ðA12Þ

where (qCp)bulk – volumetric heat capacity, Cpf – heat
capacity of fluids, and kbulk – thermal conductivity.

The bulk volumetric heat capacity accounts for the solid
and fluid phase and reads as follows:

ðqCpÞbulk ¼ ð1� /ÞqsCqs þ /qf Cqf ðA13Þ

where qs – density and Cps – heat capacity for solids, and
respectively qf and Cpf for fluids. The bulk thermal conduc-
tivity can be expressed after Deming and Chapman (1989)
as

kbulk ¼ k1�/
s k/f ðA14Þ

where ks – average thermal conductivity for solids, and kf –
fluid respectively. Here we used constant values for thermal
conductivities for solids and species. A list of all input
parameters is provided in Table A1.

APPENDIX B

Table B1.
T P C S S S C S S A S S P S S S S
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and Zitellini N. (2012) Evidence for active strike-slip faulting
along the Eurasia-Africa convergence zone: implications for
seismic hazard in the southwest Iberian margin. Geology 40,
495–498.

Boudreau B. P. (1997) Diagenetic models and their implementation:

modelling transport and reactions in aquatic sediments. Springer,
Berlin, Heidelberg, New York.

Brown K. M., Saffer D. M. and Bekins B. A. (2001) Smectite
diagenesis, pore water freshening, and fluid flow at the toe of
the Nankai wedge. Earth Planet. Sci. Lett. 194, 97–109.

Calvert A. J. and Potts C. G. (1985) Seismic evidence for
hydrothermally altered mantle beneath old crust in the Tyde-
man fracture zone. Earth Planet. Sci. Lett. 75, 439–449.

Castellini D. G., Dickens G. R., Snyder G. T. and Ruppel C. D.
(2006) Barium cycling in shallow sediment above active mud
volcanoes in the Gulf of Mexico. Chem. Geol. 226, 1–30.

Chamley H. and Debrabant P. (1984) Mineralogical and geochem-
ical investigations of sediments on the Mazagan Plateau,
Northwestern African Margin (Leg-79, Deep-Sea Drilling
Project). Init. Rep. Deep Sea Drill. Proj. 79, 497–508.

Chamley H., Debrabant P., Foulon J., d’Argoud G. G., Latouche
C., Maillet N., Maillot H. and Sommer F. (1979) Mineralogy
and geochemistry of Cretaceous and Cenozoic Atlantic sedi-
ments off the Iberian peninsula (Site 398, DSDP Leg 47B). Init.
Repts. DSDP 47, 429–449.

Chan L.-H. and Kastner M. (2000) Lithium isotopic compositions
of pore fluids and sediments in the Costa Rica subduction zone:
implications for fluid processes and sediment contribution to
the arc volcanoes. Earth Planet. Sci. Lett. 183, 275–290.

Charlou J. L., Donval J. P., Zitter T., Roy N., Jean-Baptiste P.,
Foucher J. P. and Woodside J. (2003) Evidence of methane
venting and geochemistry of brines on mud volcanoes of the
eastern Mediterranean Sea. Deep Sea Res. Part I. 50, 941–958.

Cuadros J. (2006) Modeling of smectite illitization in burial
diagenesis environments. Geochim. Cosmochim. Acta 70,
4181–4195.

Cuadros J. and Linares J. (1996) Experimental kinetic study of the
smectite-to-illite transformation. Geochim. Cosmochim. Acta 60,
439–453.

Deming D. and Chapman D. S. (1989) Thermal histories and
hydrocarbon generation- example from the Utah-Wyoming
thrust belt. AAPG Bull. – Am. Assoc. Petr. Geol. 73, 1455–1471.

Demicco R. V., Lowenstein T. K., Hardie L. A. and Spencer R. J.
(2005) Model of seawater composition for the Phanerozoic.
Geology 33, 877–880.
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Gràcia E., Dañobeitia J., Verges J. and Bartolome R. (2003a)
Crustal architecture and tectonic evolution of the Gulf of Cadiz
(SW Iberian margin) at the convergence of the Eurasian and
African plates. Tectonics 22. https://doi.org/10.1029/
2001TC901045.
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