β decays of the heaviest \(N = Z - 1 \) nuclei and proton instability of \(^{97}\text{In}\)

1RIKEN Nishina Center, Wako-shi, Saitama 351-0198, Japan
2Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
3RIKEN Nishina Center, Wako-shi, Saitama 351-0198, Japan
4RIKEN Nishina Center, Wako-shi, Saitama 351-0198, Japan
5Institute of Nuclear Physics, University of Cologne, D-50937 Cologne, Germany
6Institute of Nuclear Physics, University of Cologne, D-50937 Cologne, Germany
7Centre d’Études Nucléaires de Bordeaux-Gradignan, 19 Chemin du Solarium, CS 10120, F-33175 Gradignan Cedex, France
8Institute of Nuclear Physics, University of Cologne, D-50937 Cologne, Germany
9Rapid Communications
10Centre d’Études Nucléaires de Bordeaux-Gradignan, 19 Chemin du Solarium, CS 10120, F-33175 Gradignan Cedex, France
11Centre d’Études Nucléaires de Bordeaux-Gradignan, 19 Chemin du Solarium, CS 10120, F-33175 Gradignan Cedex, France
12RIKEN Nishina Center, Wako-shi, Saitama 351-0198, Japan
13RIKEN Nishina Center, Wako-shi, Saitama 351-0198, Japan
14RIKEN Nishina Center, Wako-shi, Saitama 351-0198, Japan
15RIKEN Nishina Center, Wako-shi, Saitama 351-0198, Japan
16RIKEN Nishina Center, Wako-shi, Saitama 351-0198, Japan
17RIKEN Nishina Center, Wako-shi, Saitama 351-0198, Japan
18RIKEN Nishina Center, Wako-shi, Saitama 351-0198, Japan
19RIKEN Nishina Center, Wako-shi, Saitama 351-0198, Japan
20RIKEN Nishina Center, Wako-shi, Saitama 351-0198, Japan
21RIKEN Nishina Center, Wako-shi, Saitama 351-0198, Japan
22RIKEN Nishina Center, Wako-shi, Saitama 351-0198, Japan

(Received 7 June 2017; revised manuscript received 11 January 2018; published 15 May 2018)

We report on new or more precise half-lives, \(\beta \)-decay endpoint energies, and \(\beta \)-delayed proton emission branching ratios of \(^{91}\text{Pd}, ^{95}\text{Cd}, ^{97}\text{In} \), and \(^{99}\text{Sn}\). The measured values are consistent with known mirror transitions in lighter \(T_\beta = -1/2 \) nuclei, shell-model calculations, and various mass models. In addition to the \(\beta \)-decaying \((9/2^-)\) ground state, circumstantial evidence for a short-lived, proton-emitting isomer with spin \((1/2^-)\) was found in \(^{97}\text{In} \). Based on the experimental data, a semiempirical theory on proton emission, and shell-model calculations, the proton separation energy of the \(^{97}\text{In} \) ground state was determined to be \(-0.10 \pm 0.19 \text{ MeV} \). The existence of the short-lived, proton-unstable \((1/2^-)\) isomer in \(^{97}\text{In} \) establishes \(^{98}\text{Cd}\) as an \(rp \)-process waiting point.

DOI: 10.1103/PhysRevC.97.051301

The heaviest \(N = Z \) doubly magic \(^{100}\text{Sn} \) and atomic nuclei in its vicinity have been actively investigated both theoretically and experimentally [1], because several important topics in nuclear structure and astrophysics converge in this region of the chart of nuclides. Significant efforts have been made to address questions concerning the robustness of the \(N = Z = 50 \) shells and evolution of single-particle energies [2–8], the effect of proton-neutron \((pn)\) isoscalar/isovector interactions in heavy \(N \approx Z \) nuclei [9,10], and the location of the proton drip line. The most notable results were reported along the \(N = Z \) line [11–13], where the production rates of such exotic radioactive isotopes were at the lowest allowed limit. Many of the \(N \approx Z \) nuclei are also relevant for the rapid proton capture \((rp)\) process [14] of nucleosynthesis. Their decay properties have been reported in several works in this context [15–18] to determine more precisely the contribution of the \(rp \)-process to the observed elemental abundance in the solar system and the galaxy.

The first experimental results on the heaviest \(N = Z - 1 \) nuclei have emerged in recent years. The even-\(Z \) nuclei \(^{91}\text{Pd}, ^{95}\text{Cd}, \) and \(^{99}\text{Sn}\) have been found to be stable against proton
TABLE I. Implantation counts, parent β-decay correlation fractions, random background correlation rates, β-decay $T_{1/2}$, Q_{EC}, log f_t, and $b_{p\beta}$ values of 91Pd, 95Cd, 97In, and 99Sn. Theoretical $T_{1/2}$ values for 91Pd, 95Cd, and 99Sn are taken from Ref. [35]. An isomeric state in 97In is hypothesized to emit a proton and become 96Cd, whose decay correlation fraction and the half-life range are listed separately.

<table>
<thead>
<tr>
<th>Nucleus</th>
<th>Implantation counts</th>
<th>Correlation (%)</th>
<th>Background rate (Hz/nucleus)</th>
<th>$T_{1/2}^{\text{exp}}$ (ms)</th>
<th>$T_{1/2}^{\text{th}}$ (ms)</th>
<th>Q_{EC} (MeV)</th>
<th>log f_t (s)</th>
<th>$b_{p\beta}$ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>91Pd</td>
<td>390</td>
<td>70(4)</td>
<td>0.35(2)</td>
<td>32(3)</td>
<td>>1.5 μs [19]</td>
<td>44.5</td>
<td>11.8(22)</td>
<td>3.4(5)</td>
</tr>
<tr>
<td>95Cd</td>
<td>476</td>
<td>68(3)</td>
<td>0.41(2)</td>
<td>32(3)</td>
<td>29(8) [23]</td>
<td>31.7</td>
<td>10.2(17)</td>
<td>3.1(5)</td>
</tr>
<tr>
<td>97In</td>
<td>278</td>
<td>50(4)</td>
<td>0.31(2)</td>
<td>36(6)</td>
<td>26$^{+7}_{-5}$ [20]</td>
<td>73$^{+53}_{-28}$</td>
<td>10.0(30)</td>
<td>3.0(9)</td>
</tr>
<tr>
<td>97In/97mIn</td>
<td>35(3)/29(2)</td>
<td>0.31(2)</td>
<td>28(5)</td>
<td>1.3–230 μs</td>
<td>20.6</td>
<td>14.7(36)</td>
<td>3.8(7)</td>
<td>3.9$^{+3.4}_{-1.7}$</td>
</tr>
<tr>
<td>99Sn</td>
<td>77</td>
<td>62(6)</td>
<td>0.32(3)</td>
<td>24(4)</td>
<td>>200 ns [20]</td>
<td>31.0</td>
<td>14.7(36)</td>
<td>3.8(7)</td>
</tr>
</tbody>
</table>

emission [19,20], through which noticeable reaction flows occur in type-I x-ray bursts and steady-state burning processes [21]. On the other hand, the odd-Z species 89Rh and 91Ag have been shown to be proton unbound [22]. 97In is an interesting case, since its experimental half-life of 26$^{+4}_{-10}$ ms [20] is similar to $T_{1/2} = 29(8)$ ms of 95Cd [23]. If proton emission from 97In is hindered, then the assumption of 96Cd as a waiting-point nucleus in the $r\beta$-process must be scrutinized. One possible implication of a proton-stable 97In is the reduction in the population of $A = 96$ isotobars, which reduces the contribution from x-ray bursts to the production of 96Ru found in large quantities in the solar system [24].

This Rapid Communication reports on β-decay $T_{1/2}$, Q_β, and $b_{p\beta}$ measurements of 91Pd, 95Cd, 97In, and 99Sn, enabling a quantitative description of their roles in the $r\beta$-process and tests of the mass and shell-model theories at the proton drip line. The nuclei of interest were produced via fragmentation of a 345-MeV/u 125Xe primary radioactive-isotope (RI) beam on a 740-mg/cm2 9Be target at the RIKEN RI Beam Factory. Isotopes of similar mass-overflow-charge ratios A/q and atomic number Z were separated at the first stage of the RIKEN projectile fragment separator (BigRIPS) by a B_β–ΔE–B_0 method with a 3-mm Al wedge degrader, dipole magnets, and slits at the dispersive foci. The filtered beam was identified on an event-by-event basis by B_β-TOF–ΔE measurements at the later stages of BigRIPS and the ZeroDegree spectrometer [25,26] using position-sensitive parallel-plate avalanche counters [27], plastic scintillators, and a gas-filled ionization chamber [28]. The particle identification plot obtained in this experiment is shown in Fig. 1 of Ref. [22]. The flight time through the separation and identification systems was calculated for each isotope in its rest frame with LISE++ [29], which ranged from 600 to 630 ns depending on A and Z.

Ion implantation and particle decay measurements took place in the wide-range active silicon strip stopper array for β and ion detection (WAS3ABi) [30]. The nuclei were implanted in one of the three double-sided silicon strip detectors (DSSSDs) of WAS3ABi, each with 1-mm thickness. Each DSSSD was segmented into 60 \times 40 1-mm strips in x and y directions, respectively. For every ion implantation event, its implantation pixel position was determined by evaluating the x-side strip with the minimum time-to-digital converter (TDC) time and the y-side strip with the maximum energy deposit. In the offline analysis, noise events of WAS3ABi were suppressed by setting a minimum energy threshold of 100 keV per strip. Ten single-sided segmented strip detectors (SSSSDs) were placed farther downstream for Q_β measurements. Events accompanying proton emission were separated from positron events by requiring a minimum of 1500 keV energy deposited in a single pixel of a DSSSD as described in Ref. [31].

Decay events were correlated to a previously implanted ion if an energy above 100 keV was registered within one-pixel distance of the implantation position in the same DSSSD. The time correlation window was set to 5 s before and after ion implantation, where the $t < 0$ time events were used to determine the random background correlation rate in the half-life analysis. A maximum likelihood method (MLH) on unbinned data was used to determine the half-life of each nucleus, where the fit function contained the parent, β-daughter, and β-p-daughter decay components with half-lives and $b_{p\beta}$ values listed in Ref. [32] and a constant background for random correlations. Only two generations of isotopes were considered in the Bateman equation, as the half-lives of the granddaughter species were comparable or greater than the 5-s MLH evaluation range. Electron capture branching ratios were negligible for the parent nuclei. For 97In the β-daughter component was based on the $(9/2^+)$ ground-state half-life of 1.10(8) s for 97Cd [16]. The Q_β values were determined also by the MLH method on the total positron energy spectrum, where the probability density function was derived from GEANT4 simulations of positrons inside WAS3ABi at various trial Q_β inputs [33,34]. For the Q_β analysis, only the correlation events between 0 to 150 ms were analyzed to maximize the parent-decay component. Q_β spectra with $t < 0$ ms and $t > 500$ ms were used to determine background contributions from random correlations and daughter decays.

Figure 1 shows the β-decay time distributions and positron energy spectra, as well as the extracted half-life and Q_β values of 91Pd, 95Cd, 97In, and 99Sn. The $T_{1/2}$ values are either new or more precise than literature values (see Fig. 2), and they agree well with the predictions given in Ref. [35]. The half-lives and large Q_β values of these $T_{1/2} = -1/2$ nuclei are consistent with the hypothesis of mixed ground-state to ground-state Fermi and Gamow-Teller decays of $T_{1/2} = -T_{1/2}$ mirror nuclei, where the isobaric analog states are easily accessible due to the large β-decay energy window. With this assumption the binding energy...
difference Q_{EC} between the parent and the daughter nucleus was calculated as $Q_{EC} = Q_{\beta} + 2m_e$. In addition, βp emission branching ratios $b_{\beta p}$ were determined for the first time based on the number of single-pixel events with $\Delta E > 1500$ keV. The small $b_{\beta p}$ values are consistent with the current type-I x-ray burst $r p$-process reaction flow calculations which involve 91Pd, 95Cd, and 99Sn with negligible $b_{\beta p}$ [36]. Aside from the βp events, all of the remaining β-decay branch was assumed to populate the ground states of the daughter nuclei for log ft calculations. The results are given in Table I, where the log ft values are consistent with other decays of 91Pd, 95Cd, and 99Sn.

The decay properties of the four nuclei are summarized in Table I. The initial analysis of the decay curve fit yielded a β-decay correlation percentage of 50(4)% for 97In, much lower than the expected value of 66(4)% from a linear interpolation of the values obtained from 91Pd, 95Cd, and 99Sn. These percentages were determined by dividing the integral of the parent β-decay fit components by the number of implanted ions which have not decayed by βp events. Regarding 97In, we propose the existence of an isomeric state 97mIn which has decayed within the 600-µs dead time of WAS3ABi after implantation. Based on the discovery of the odd-Z proton emitters 89Rh and 93Ag [22], 97mIn was assumed to decay into 96Cd by $1p$ emission. Therefore an additional β-decay component of 95Cd [$T_{1/2} = 0.93(6)$ s] from weighted average of Refs. [10,15,20,23], green dashed line in Fig. 1] was included in the half-life analysis of 97In. With this alternative hypothesis, the combined β-decay correlation was 64(4)%, consistent with the expected value. The $b_{\beta p}$ value for 97mIn in Table I is attributed to its ground state. Taking the 2σ-low value as the initial sample size, the upper limit on the half-life of 97mIn was derived by solving the exponential decay equation with an elapsed time of 600 µs; the final sample size was assumed to be 3.57, which is the 2σ upper limit of zero observations in Poisson statistics [40]. The resultant upper limit was 230 µs. The lower limit on the half-life of the isomer was calculated by assuming a 2σ reduction of 97mIn counts during the 600-ns flight through the separator, which yielded 1.3 µs. The $T_{1/2}$ limits of the isomer are shown in Fig. 2.

The existence of the two states in 97In was investigated with a semiempirical theory of proton emission [41], which relates the partial $T_{1/2}$ of a state to its emitted proton energy Q_p and the angular momentum l. Below the $Z = 50$ shell, an unpaired proton may be emitted from either the $p_{1/2}$ orbital ($l = 1$) or the $g_{9/2}$ orbital ($l = 4$), corresponding to the 1/2− and 9/2+ states. The proton-emitting state in 97In is likely to be 1/2− due to its lower centrifugal barrier and higher energy relative to the 9/2+ state. The energy of the 97In 1/2− state was calculated with multiple sets of shell-model (SM)
the presence of 96Cd can be explained by the proton emission from some of the experimental isomeric ratios in this region [51].

The γ-ray was 1.7(7) s, consistent with the $T_{1/2}$ of 96Cd.

The identification of a proton-unbound (1/2−) isomer in 97In supports the designation of 96Cd as a waiting-point nucleus.
of the rp-process path. Despite the existence of the β-decaying ground state in 97In with a larger spectroscopic factor, proton capture by 96Cd would likely populate the $(1/2^+)$ isomer as the Coulomb barrier penetration rate is proportional to e^{-2L+1}. Thus the rp-process reaction flow through 97In will be minimal.

In conclusion, the heaviest bound $N = Z - 1$ nuclei 91Pd, 95Cd, 97In, and 99Sn were produced and their β-decay properties were studied at the RIKEN Nishina Center. New and more precise half-life and β-decay endpoint measurements of these nuclei were consistent with the mixed Fermi/Gamow-Teller decays of lighter $T_\alpha = -1/2$ nuclei. The measured values are also consistent with various mass- and shell-model predictions assuming robust $N = Z = 50$ shell closures in 100Sn. In 97In, we report a proton-unbound isomer with spin $(1/2^-)$ and $1.3 < T^{\text{expt}}_{1/2} (\mu s) < 230$ with a signature of the 421-keV γ-ray from the β decay of the proton daughter 96Cd. The proton separation energy of the ground state of 97In was determined from the combination of experimental half-life analysis, a semiempirical theory on proton emission, and shell-model calculations. The resulting S_p value of $-0.10\pm(19)$ MeV is much larger than that of 89Rh and 93Ag, explaining the apparent proton stability of 97In. Despite the proton stability of the $(9/2^+)$ ground state of 97In, the proton instability of the $(1/2^-)$ establishes 96Cd as the rp-process waiting point.

The authors thank the personnel at the RIKEN Nishina Center for providing the exotic radioactive isotope beam with record intensities. This experiment was performed at RI Beam Factory operated by RIKEN Nishina Center and CNS, University of Tokyo. We acknowledge the EUROBALL Owners Committee for loaning the germanium detectors and the PreSpec Collaboration for the readout electronics of the cluster detectors of EURICA. Support for the WAS3ABi setup was provided by the Rare Isotope Science Project, funded by the Ministry of Education, Science and Technology (MEST) and National Research Foundation (NRF) of Korea, as well as KAKENHI (Grant No. 25247045) of the Japan Society for the Promotion of Science (JSPS). The authors acknowledge the support of the DFG cluster of excellence “Origin and Structure of the Universe,” German BMBF under Contract No. 05P15PKFNA and the Spanish Ministerio de Economía y Competitividad via Project No. FPA2014-57196-C5-4-P. Part of the research was funded by the Natural Sciences and Engineering Research Council (NSERC) of Canada and also supported by FJ-NISP (French-Japanese International Associated Laboratory for Nuclear Structure Problems).
