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SUMMARY

Paxillin is a scaffold protein that participates in focal
adhesion signaling in mammalian cells. Fission yeast
paxillin ortholog, Pxl1, is required for contractile
actomyosin ring (CAR) integrity and collaborates
with the b-glucan synthase Bgs1 in septum forma-
tion. We show here that Pxl1’s main function is to re-
cruit calcineurin (CN) phosphatase to the actomyosin
ring; and thus the absence of either Pxl1 or calci-
neurin causes similar cytokinesis defects. In turn,
CN participates in the dephosphorylation of the
Cdc15 F-BAR protein, which recruits and concen-
trates Pxl1 at the CAR. Our findings suggest the exis-
tence of a positive feedback loop between Pxl1 and
CN and establish that Pxl1 is a crucial component
of the CN signaling pathway during cytokinesis.
INTRODUCTION

Calcineurin (CN) is a type 2B phosphatase dependent on Ca2+/

calmodulin that is highly conserved from yeast to human (Cyert,

2001). CN is a heterodimer composed of a catalytic subunit

(CN A) that includes a calmodulin-binding domain and an auto-

inhibitory domain, as well as a regulatory subunit (CN B) that

binds to Ca2 + through four EF hands.

In mammals, CN dephosphorylates and activates transcrip-

tion factors of the NFAT (nuclear factor of the activated T cell)

family that promote the transcription of a wide range of genes

participating in different processes, such as T cell activation,

muscle heart development, apoptosis, learning and memory,

neuronal plasticity, and oxidative stress (Minami, 2014). In fungi,

CN regulates survival responses to environmental stresses (Juv-

vadi et al., 2014) and is important for pathogenic fungi virulence

(Juvvadi et al., 2017). CN signaling is partially mediated by

dephosphorylation and nuclear localization of conserved fungal

transcription factors such as Crz1 in Saccharomyces cerevisiae
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and Candida albicans (Stathopoulos and Cyert, 1997; Hameed

et al., 2011), Prz1 in Schizosaccharomyces pombe (Hirayama

et al., 2003), CrzA in Aspergillus nidulans (Cramer et al., 2008),

and SP1 in Cryptococcus neoformans (Adler et al., 2011). Addi-

tionally, CN signals through many targets that differ among

divergent fungi (Goldman et al., 2014; Park et al., 2016).

Fission yeast S. pombe has a single gene encoding the CN

catalytic subunit, Ppb1 (Yoshida et al., 1994), and a single

gene encoding the regulatory subunit, Cnb1 (Sio et al., 2005).

In this organism, CN activates at least two distinct signaling

pathways, Prz1-dependent and Prz1-independent. The latter

participates in the regulation of chloride homeostasis, cytoki-

nesis, cell polarity, membrane trafficking, cell integrity, and mat-

ing (Hirayama et al., 2003; Fang et al., 2009; Kume et al., 2011;

Ma et al., 2011; Cadou et al., 2013; Viana et al., 2013).

Cytokinesis is the final process of the cell cycle that produces

two daughter cells. It involves the assembly of a contractile acto-

myosin ring (CAR) that is connected to the plasma membrane

and promotes the cleavage furrow formation. In fungi, which

have a cell wall, cytokinesis requires the synthesis of a division

septum coordinated with the CAR constriction. Fission yeast

septum forms in the cell middle and includes a primary septum

containing linear b(1,3)glucan synthesized by the membrane

enzyme Bgs1 (Cortés et al., 2007) and a secondary septum

that forms the cell wall of the daughter cells’ new ends. Loss of

Bgs1 results in CAR sliding and instability, suggesting that

CAR linkage to the membrane and cell wall is important for its

maintenance (Arasada and Pollard, 2014).

A variety of fission yeast proteins have been implicated in the

CAR anchorage to themembrane (Willet et al., 2015; Pérez et al.,

2016; Rincon and Paoletti, 2016). Two major proteins with this

role are Cdc15 and Imp2, which have an N-terminal Fes/CIP4

homology Bin-amphiphysin-RVS (F-BAR) domain and aC-termi-

nal SH3 domain. The F-BAR domain allows membrane binding

and oligomerization. Additionally, through its F-BAR domain,

Cdc15 recruits the formin Cdc12 to promote F-actin nucleation

(Carnahan and Gould, 2003).

The SH3 domain is a scaffold that binds many proteins,

including the paxillin ortholog Pxl1 (Roberts-Galbraith et al.,
.
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Figure 1. Calcineurin Localizes to the CAR

during Cytokinesis and Is Important for

CAR Contraction

(A) Fluorescence microscopy of cells with Ppb1-

GFP and Rlc1-tdTomato. Right: fluorescence line

scan of the region in the insert.

(B) Time-lapse images (single focal planes

captured at 5 min intervals) from cells expressing

Ppb1-GFP, Rlc1-tdTomato, and Hht1-RFP. As-

terisks indicate the first appearance of Ppb1 or

Rlc1 as a ring.

(C) Calcofluor-stained images of wild-type (wt),

pxl1D, ppb1D, and pxl1D ppb1D cells. Arrows

show some double septa, and asterisks indicate

some off-centered septa.

(D) Micrographs of the same strains carrying Rlc1-

tdTomato and stained with calcofluor. Arrows

mark aberrant and double CARs. The inserts

show three-dimensional maximum projection re-

constructions (28 z slides at 0.3 mm intervals) from

the CARs inside the white boxes.

(E–G) Quantification of the cytokinesis defects:

septation and multiseptation (E), septum devia-

tion (F), and double rings (G) observed in

(C) and (D); n = 150 cells for each strain and

graph; in (E) three technical replicates were

made.

Scale bars, 5 mm. See also Figure S1A.
2009; Ren et al., 2015). Paxillin is a LIM domain-containing pro-

tein localized at focal adhesions in animal cells, in which it

serves to adhere the plasma membrane to the extracellular ma-

trix. In S. pombe, Pxl1 plays an important role in CAR anchoring

and integrity (Ge and Balasubramanian, 2008; Pinar et al., 2008)

and collaborates with Bgs1 in the formation of a furrow for

septum progression (Cortés et al., 2015). We describe here

the function of Pxl1, as a scaffold protein that enables CN func-

tion in cytokinesis by mediating its localization to the CAR. Pxl1

physically interacts with CN catalytic subunit Ppb1. Artificial
Cell R
localization of CN to the CAR by its

fusion with the N terminus of Pxl1 is

enough to suppress the cytokinesis de-

fects caused by the absence of Pxl1

LIM domains. Our findings establish

that paxillin is a crucial component of

the CN signaling pathway that regulates

cytokinesis.

RESULTS

CN Localizes to the CAR during
Cytokinesis, and the Absence of CN
CausesCytokinesis Defects Similar
to Those Caused by the Lack of
Paxillin
S. pombeCN-deficient cells have defects

in cell separation and some cells exhibit

aberrant CARs. Additionally, they have

negative genetic interactions with myosin

and the septation initiation network
(Yoshida et al., 1994; Zhang et al., 2000; Yada et al., 2001; Cheng

et al., 2002; Fujita et al., 2002; Lu et al., 2002). To further under-

stand the function of CN in septum formation and/or separation,

we first studied its localization in a strain carrying the type II

myosin regulatory chain fused to the tandem tomato protein

(Rlc1-tdTomato) and the CN catalytic subunit fused to GFP

(Ppb1-GFP). Ppb1-GFP localized to the cytoplasm during inter-

phase and also concentrated to the CAR during cytokinesis

(McDonald et al., 2017), co-localizing with Rlc1-tdTomato

(Figure 1A). We then constructed a strain that expressed
eports 25, 772–783, October 16, 2018 773



Ppb1-GFP, Rlc1-tdTomato, and Hht1 histone fused to RFP in

order to determine the time of Ppb1 arrival to the division site.

Time-lapse fluorescence microscopy showed that Ppb1-GFP

was recruited when the CAR was already formed and the nuclei

separation was initiated but contraction had not started (Fig-

ure 1B). Ppb1-GFP remained at the ring until the end of contrac-

tion, suggesting that CN function during cytokinesis is performed

from the CAR and occurs during CAR contraction and simulta-

neous septum synthesis.

The cytokinesis phenotypes of CN-null strains are very similar

to those described in pxl1D cells (Fujita et al., 2002; Lu et al.,

2002; Ge and Balasubramanian, 2008; Pinar et al., 2008), sug-

gesting that CN and paxillin may function in the same signaling

pathway. We analyzed the percentage of septated and multi-

septated cells, as well as the percentage of cells with off-

centered septa in cultures of wild-type, pxl1D, ppb1D (lacking

the CN catalytic subunit), and pxl1D ppb1D double-mutant

strains (Figures 1C–1F). We also visualized double rings formed

in the same strains expressing Rlc1-tdTomato (Figures 1D and

1G). The percentages of septated, multiseptated cells, off-

centered septa, and double rings were similar in pxl1D,

ppb1D, and pxl1D ppbD double-mutant cells (Figures 1E–1G).

These results indicate that the two mutations were not additive

and suggest that CN and paxillin act in the same signaling

pathway. Supporting this hypothesis, cells lacking Pxl1 ex-

hibited certain phenotypes characteristic of ppb1D cells, such

as hypersensitivity to MgCl2, and pxl1D ppbD double-mutant

cells were only slightly more sensitive (Figure S1A). Moreover,

several gene mutations that are synthetically lethal with pxl1D,

such as cdc15DSH3, imp2DSH3, and fic1D, were also synthet-

ically lethal with ppb1D (Roberts-Galbraith et al., 2009; Cortés

et al., 2015).

To corroborate that Pxl1 and CN were in the same signaling

pathway, we checked if CN and Bgs1, the enzyme responsible

for the synthesis of the primary septum, collaborated in

septum formation, as Pxl1 and Bgs1 do (Cortés et al., 2015).

We used a strain where bgs1+ gene was expressed under the

nmt1-81 promoter repressible by thiamine (Cortés et al.,

2015). Pnmt81-bgs1+ repression in wild-type, pxl1D, and

ppb1D cells stained with calcofluor was examined. As already

described, repression of bgs1+ in the presence of sorbitol

caused septation defects, but the cells remained viable for

more than 60 hr. After 15 hr of repression, most cells contained

one septum. At longer times (24 and 40 hr), most cells were

multiseptated (Figures 2A and 2B). In contrast, bgs1+ repres-

sion in either ppb1D or pxl1D cells caused a significant

decrease in the number of septa (Figures 2A and 2B). These

results indicate that CN, like paxillin (Cortés et al., 2015), col-

laborates with Bgs1 and plays an important role in septum syn-

thesis and CAR ingression.

In cells lacking Pxl1 upon bgs1+ repression, Ags1 and Bgs4,

the main synthases of the cell wall and secondary septum, ap-

peared in the cytoplasm, extended along the membrane, and

did not concentrate at the septation area as they do in bgs1+-

repressed cells with Pxl1 (Cortés et al., 2015). Thus, the localiza-

tion of either Ags1-GFP or GFP-Bgs4 synthases was analyzed in

Pnmt81-bgs1+cells treated with the CN-specific inhibitor FK506

(5mg/mL) during the repression with thiamine. As in pxl1D cells,
774 Cell Reports 25, 772–783, October 16, 2018
upon bgs1+ repression (24 hr +T), both synthases appeared in

the cytoplasm and extended along the plasma membrane of

cells treated with the CN inhibitor (Figure 2C). These data sug-

gest that CN, like Pxl1, cooperates with Bgs1 to concentrate in

the division area the synthases required for the synthesis of the

septum.

Pxl1 Binds to theCatalytic Subunit of CNand Is Required
for Its Localization to the CAR
The above results strongly suggest that paxillin and CN function

in the same signaling pathway. Therefore we analyzed the local-

ization of both proteins during cytokinesis by performing time-

lapse fluorescence microscopy in cells expressing Ppb1-GFP

and mCherry-Pxl1. Although Pxl1 was detected earlier than

Ppb1 (3–6 min), both localized to the CAR during cytokinesis

(Figure 3A). Line scan analysis of red and green fluorescence

confirmed that mCherry-Pxl1 and Ppb1-GFP co-localize (Fig-

ure 3B). Co-immunoprecipitation of endogenous HA-Pxl1 and

Ppb1-GFP from yeast extracts confirmed that both proteins

associate in vivo (Figure 3C).

Because Pxl1 appeared at the CAR slightly before Ppb1, we

checked if Ppb1 localization was dependent on Pxl1. In most

cells lacking Pxl1, Ppb1-GFP was not observed in the CAR,

which was visualized using Rlc1-tdTomato. Only in a small per-

centage of pxl1D cells (7% [n = 165 cells]) with contracted rings,

a faint signal of Ppb1-GFPwith an intensity 10 times lower than in

wild-type cells was observed (Figure 3D, arrows). Therefore CN

localization to the CAR is mediated mainly by Pxl1, although

other as yet unidentified proteins may contribute to localize CN

to the CAR during late septation.

CN is a heterodimer composed of a catalytic and a regulatory

subunit. In Aspergillus fumigatus, the CN catalytic subunit local-

izes at the hyphal septum independent of the regulatory subunit

(Juvvadi et al., 2011). However, we observed that the catalytic

subunit Ppb1-GFP was unable to localize to the CAR in the

absence of Cnb1, the regulatory subunit of S. pombe CN (Fig-

ure 3E). Similarly, Cnb1-GFP did not localize to the ring in the

absence of Ppb1 (Figure S1B). Additionally, in the absence of

either subunit, there was no CN activity, as determined by using

a strain carrying in the genome GFP under the control of CDRE

(CN-dependent response element) as a reporter (Kume et al.,

2011) (Figure S1C). These results suggest that CN activity is

necessary for its localization to the CAR. Indeed, treatment of

cells with FK506 during 6 hr caused disappearance of Ppb1-

GFP from the CARs (Figure S1D).

To see if Pxl1 interacts with the catalytic or the regulatory sub-

unit of CN, we performed in vitro pull-down assays with bacteri-

ally expressed GST or GST-Pxl1 and extracts from S. pombe

cells expressing Ppb1-HA in the presence or absence of Cnb1,

as well as extracts of cells expressing Cnb1-HA in the presence

or absence of Ppb1 (Figure 3F). GST-Pxl1 pulled down Ppb1-HA

from both wild-type and cnb1D extracts, whereas Cnb1-HA was

pulled down only from wild-type extracts but not from ppb1D

extracts (Figure 3F). These results indicate that paxillin binds to

CN through the catalytic subunit Ppb1. Additionally, we used

GST or GST-Pxl1 to pull-downMBP-Ppb1-HA purified from bac-

teria and proved a direct interaction between both proteins

(Figure S1E).



Figure 2. Calcineurin, as Paxillin, Collaborates with Bgs1 in Septum Formation

(A) Fluorescence micrographs of Pnmt81-bgs1+, ppb1D Pnmt81-bgs1+, and pxl1D Pnmt81-bgs1+ cells stained with calcofluor. Cells were grown to early log

phase in EMM + sorbitol and imaged at the indicated times after adding thiamine (+T) for bgs1+ repression.

(B) Histograms showing the indicated percentages of septa in the strains used in (A); n = 150 cells or mycelial units for each time and strain; three technical

replicates were made.

(C) Fluorescence micrographs of Pnmt81-bgs1+without or with FK506 (5 mg/mL), and pxl1D Pnmt81-bgs1+ cells expressing Ags1-GFP and Rlc1-tdTomato (top)

or GFP-Bgs4 Rlc1-tdTomato (bottom) and stained with calcofluor. Cells were grown as in (A) and imaged at the indicated times.

Scale bars, 5 mm.
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Figure 3. Pxl1 Binds toCalcineurin Catalytic

Subunit and Is Required for Its Localization

to the CAR

(A) Time-lapse fluorescence microscopy of cells

endogenouslyexpressingPpb1-GFPandmCherry-

Pxl1 to see the CAR localization of both proteins

during cytokinesis. Asterisks indicate the first Pxl1

and Ppb1 detection at the ring.

(B) Line scan of mCherry-Pxl1 and Ppb1-GFP.

(C) Co-immunoprecipitation of endogenous HA-

Pxl1 and Ppb1-GFP from yeast extracts.

(D) Fluorescence microscopy of wild-type (wt) and

pxl1D cells expressing Ppb1-GFP and Rlc1-

tdTomato. Arrows indicate Ppb1-GFP localization

in late contraction rings of cells lacking pxl1+.

(E) Fluorescence microscopy of wt and cnb1D

cells expressing Ppb1-GFP and Rlc1-tdTomato.

Scale bars, 5 mm. See also Figure S1B.

(F) In vitro interaction of Pxl1 and Ppb1. Bacterially

expressed GST-Pxl1 was mixed with extracts of

ppb1-HA, cnb1D ppb1-HA, cnb1-HA, and ppb1D

cnb1-HA cells. GST-Pxl1 pull-down was done

with glutathione-Sepharose beads and blotted

with anti-HA antibodies. See also Figure S1C.
The N-Terminal 257 Amino Acid Residues and the
C-Terminal LIM Domain of Pxl1 Are Necessary for CN
Binding and Localization to the CAR
Pxl1 contains a N-terminal region with a polyproline motif that

binds toCdc15SH3domainand is responsible for the localization

of Pxl1 to the CAR, and three LIM domains necessary for its func-

tion (Pinar et al., 2008; Roberts-Galbraith et al., 2009). To deter-

mine the contribution of Pxl1 domains to Ppb1 localization and

function during cytokinesis, several truncated forms of Pxl1 (Fig-

ure 4A) were individually expressed in a pxl1D strain carrying

Ppb1-GFP and Rlc1-tdTomato. We did not use the GFP-pxl1DN

construct, which lacks the N terminus, because it does not

localize to the CAR. On the basis of the Ppb1-GFP fluorescence

intensity at the CAR (Figures 4B and 4C), we concluded that the

C-terminal LIM domain was necessary for Ppb1 localization to

theactomyosin ring. The strain lacking theC-terminal LIMdomain

had septation defects, although they were not as pronounced as

the strain carrying the N-Pxl1 lacking the three LIM domains,

which was similar to pxl1D strain (Pinar et al., 2008; Figure 4B).
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CN recognizes its substrates primarily

via two short linear motifs (SLiMs), PxIxIT,

and LxVP. Multiple degenerate PxIxIT

motifs exist, and the hydrophobic resi-

dues at positions 3 and 5 or the hydrophil-

ic residue at position 6 is not always a

perfect match (Aramburu et al., 1998;

Roy and Cyert, 2009). Analysis of Pxl1

sequence identifies two possible CN

docking motifs located in the N-terminal

region (PTLPLQ; amino acids 181–186)

and in the C-terminal LIM domain

(PILGIS; amino acids 384–389). Mutation

of these amino acids to alanine (Pxl1-M3

and Pxl1-M4, respectively) verified that
PILGIS amino acids at the LIM domain were necessary for the

localization of CN to the CAR and for the function of Pxl1. On

the other hand, PTLPLQ motif at the N-terminal region was not

required (Figures 4B and 4C).

Pxl1 interaction with Ppb1 was also studied by using bacteri-

ally expressed GST fusions of the different Pxl1 fragments and

S. pombe extracts expressing Ppb1-HA. Pull-down assays of

GST fusions with glutathione Sepharose beads showed that

theN-terminal half of Pxl1, but not the PTLPLQmotif, was neces-

sary for the binding of Pxl1 to Ppb1 and confirmed that the C-ter-

minal LIM domain and its PILGISmotif participated in the binding

of Pxl1 to Ppb1 (Figure 4D).

Artificial Localization of Ppb1 to the CAR Suppresses
pxl1D ppb1D Cytokinesis Defects
Our results indicate that Pxl1 links CN to the CAR. If this is the

major function of Pxl1, we predict that the LIM domains might

be dispensable if Ppb1 is artificially bound to the N-terminal

part of Pxl1 in order to reach the CAR.We constructed a chimeric



Figure 4. Pxl1 N-Terminal 257 Amino Acid

Residues and C-Terminal LIM3 Domain Are

Necessary for Ppb1Binding and Localization

to the CAR

(A) Schematic representation of Pxl1domains

and the different truncations and/or mutations

generated.

(B) Fluorescence micrographs of wild-type (wt),

pxl1D, and cells expressing different Pxl1 versions.

The histogram represent percentages of septating

and multiseptated cells in these strains (n = 150

cells for each strain; three technical replicates were

performed). Scale bar, 5 mm.

(C) Ppb1-GFP fluorescence intensity (a.u.) at the

ring in the cells expressing truncated or mutated

Pxl1. Only cells with the ring expanding the cell

diameter were measured; n = 25 cells for each

strain. Black lines indicate mean ± SEM. ****p <

0.0001 (two-way ANOVA).

(D) Interaction of Pxl1 truncations and Ppb1. Ex-

tracts from cells expressing Ppb1-HA were pulled

down with truncated or mutated Pxl1 produced as

GST fusion in bacteria and GS beads. Input blotted

with anti-GST (top), GS pull-down (middle), and

total Ppb1-HA in cell extracts (bottom) blotted with

anti-HA antibody.
protein containing GFP-N-Pxl1 (1–257 amino acids) fused to

Ppb1. This chimera was expressed from the native pxl1+ pro-

moter (Figure 5A), which depends on the Ace2 transcription fac-

tor. Ace2 activates transcription during the M-G1 transition and

cytokinesis (Rustici et al., 2004). As previously described,

expression of GFP-N-Pxl1 alone did not correct the cytokinesis

defect of a pxl1D strain (Pinar et al., 2008) and did not localize

GFP-Ppb1 (Figure 4B). In contrast, the GFP-N-Pxl1-Ppb1

chimera restored Ppb1 localization to the CAR and suppressed

the multiseptation phenotype of a pxl1D ppb1D double-mutant

strain (Figures 5B and 5C). Therefore, the GFP-N-Pxl1-Ppb1

chimera suppresses the defects of cells lacking the paxillin LIM

domains and the CN catalytic subunit. When we expressed

GFP-N-pxl1-ppb1 in pxl1D ppb1D cnb1D cells lacking both sub-

units of CN, GFP-N-Pxl1-Ppb1 still localized to the CAR, but

because of the lack of CN activity, there was no suppression

of the cytokinesis defects (Figures 5B and 5C).
Cell R
Expression of the GFP-N-Pxl1-Ppb1

caused other defects, such as misshapen

cells and abnormal cell wall accumula-

tions that stained with calcofluor (Fig-

ure 5B). Additionally, some fluorescent

dots of GFP-N-Pxl1-Ppb1 were observed

at the cortex of cells already separated,

while GFP-N-Pxl1 was never detected in

the cells that completed septation and

initiated septum degradation (Figure S2A).

These defects were also present when the

chimera was expressed in wild-type cells

with endogenous Pxl1 and Ppb1 (Fig-

ure S2B), suggesting that the cause could

be an excess of CN activity. Indeed, there
were no abnormal cell wall accumulations in pxl1D ppb1D cnb1D

cells expressing the chimera, with no CN activity (Figure 5B). All

the phenotypes caused by the GFP-N-Pxl1-Ppb1 chimera were

independent of the CN-dependent Prz1 transcription factor

because pxl1D ppb1D prz1D triple-mutant cells displayed the

same phenotype as cells expressing the chimera in the presence

of Prz1 (Figure S2C).

To circumvent the problem of excessive CN activity, we used

FK506. Addition of this inhibitor (5 mg/mL) to wild-type cells dur-

ing 12 hr resulted in a phenotype identical to that of CN-deleted

cells (Yoshida et al., 1994; Sugiura et al., 1998; Figure S2D). In

contrast, addition of FK506 (5 mg/mL, 12 hr) to GFP-N-pxl1-

ppb1 pxl1D ppb1D cells eliminated the cell wall accumulations,

and morphology defects and cells were similar to wild-type (Fig-

ures 5B and 5C). When the FK506 concentration was raised to

20 mg/mL, the cells expressing the chimera presented cytoki-

nesis defects similar to those of pxl1D ppb1D strain (Figure S2D).
eports 25, 772–783, October 16, 2018 777



Figure 5. Artificial Localization of Ppb1 to

the CAR Suppresses pxl1D Cytokinesis

Defects

(A) Schematic representation of GFP-N-pxl1

(control) and GFP-N-pxl-ppb1 constructs used to

link calcineurin to the CAR.

(B) Fluorescence micrographs of calcofluor-

stained (bottom) pxl1D ppb1D and pxl1D ppb1D

cnb1D cells carrying GFP-N-Pxl1 or GFP-N-Pxl1-

Ppb1 fusion. Arrows indicate aberrant septa with a

thicker area at the center. Asterisks point to

abnormal accumulations of calcofluor-stained

material.

(C) Quantification of the phenotypes observed in

(B) (n = 275 cells for each strain or condition).

(D) Western blot analysis of GFP-N-Pxl1-Ppb1

protein expressed in pxl1D ppb1D cells untreated

or treated with FK506 (20 mg/mL) or in pxl1D

ppb1D cnb1D cells. Lysates were run in 6%

acrylamide PhosTag gels (37.5 mM) and probed

with anti-GFP antibodies. Actin was used as a

loading control.

(E) Fluorescence images from cells of the indi-

cated genotype expressing the GFP-N-Pxl1-Ppb1

chimera and stained with calcofluor. Single fic1D,

cdc15DSH3, and imp2DSH3 mutant cells stained

with calcofluor are also shown.

(F) Cells of the indicated genotype expressing

GFP-N-pxl1 or GFP-N-pxl1-ppb1 were grown in

YES medium at 28�C and spotted on plates with

the same medium without or with MgCl2 (50 mM)

at OD600 2 and 1:4 serial dilutions. Plates were

incubated for 2–3 days at 28�C.
Scale bars, 5 mm. See also Figure S2.
CN is a phosphoprotein, and it has been reported that under

certain conditions it can undergo autodephosphorylation, result-

ing in higher phosphatase activity (Hashimoto et al., 1988). Treat-

ment of cells expressing Ppb1-GFP with FK506 during 4 hr

already caused an accumulation of the hyperphosphorylated

form of this phosphatase (Figure S2E). Similarly, the chimeric

GFP-N-Pxl1-Ppb1 protein showed reduced electrophoretic

mobility in pxl1D ppb1D extracts from cells treated with FK506

(20 mg/mL, 4 hr) or in pxl1D ppb1D cnb1D cell extracts, lacking

phosphatase activity (Figure 5D). Together, these results sug-

gest that there is an excess of CN phosphatase activity in the

cells expressing the chimeric protein N-Pxl1-Ppb1.

Expression of the GFP-N-Pxl1-Ppb1 chimera was sufficient to

suppress the synthetic lethality of pxl1D ppb1D with fic1D,

cdc15DSH3, or imp2DSH3 (Figure 5E). The triple-mutant strains
778 Cell Reports 25, 772–783, October 16, 2018
expressing the chimera presented a

phenotype similar to the parental single

mutant strains, fic1D, cdc15DSH3, and

imp2DSH3, indicating that an excess of

CN activity could not suppress other de-

fects of these mutants. Expression of

the chimera was also sufficient to sup-

press the MgCl2 sensitivity of pxl1D

ppb1D double-mutant cells (Figure 5F).

In summary, the functional defects of
pxl1D and ppb1D can be rescued by artificial linkage of Ppb1

to the CAR, suggesting that the main function of Pxl1 LIM do-

mains is to link CN to the CAR.

CN IsNecessary for theConcentration of Pxl1 at theCAR
Pxl1 concentration at the CAR rises during contraction (Cortés

et al., 2015). We have shown here that Pxl1 mediates the locali-

zation of Ppb1 to the CAR. To see if the opposite also occurred

and Ppb1 was necessary for Pxl1 localization and/or concentra-

tion, we quantified the GFP-Pxl1 fluorescence in wild-type and

ppb1D cells at three different stages of septation: early septa

(<0.6 mm), middle septa (0.6–1.2 mm), and advanced septa

(>1.2 mm). As previously described (Cortés et al., 2015), in

wild-type cells GFP-Pxl1 fluorescence at the CAR increased

from the onset of septation until the completion of the septum



Figure 6. Calcineurin Activity Is Necessary

for Paxillin Concentration at the CAR

(A) Fluorescence images showing representative

cells at different stages of septation (early, middle,

and late) of wild-type or ppb1D strains expressing

GFP-Pxl1 and stained with calcofluor.

(B) GFP-Pxl1 fluorescence intensity in these

strains at different stages of septation. Black lines

indicate mean ± SEM; n = 25 cells for each con-

dition and strain. ****p < 0.0001 (Student’s t test).

(C and D) Time-lapse images (3 min intervals) from

wild-type (C) and ppb1D (D) cells expressing GFP-

Pxl1 and mCherry-Atb2 are shown. Spindle mi-

crotubules appearance is used to stablish time 0.

(E) Total GFP-Pxl1 fluorescence was quantified

along the time in cells shown in (C) and (D).

Scale bars, 5 mm.
(Figures 6A and 6B). This accumulation of Pxl1 at constricting

rings was lower in cells lacking CN (Figures 6A and 6B).

Time-lapse analysis of wild-type and ppb1D cells carrying

GFP-Pxl1 and mCherry-Atb2 confirmed the results obtained

in septating cells at different stages (Figures 6C and 6D). The

maximum GFP-Pxl1 fluorescence intensity detected in ppb1D

cells was 50% lower than in wild-type cells. In addition, the pro-

gression of ring contraction and septation was noticeably

slower in ppb1D cells, and the maximum GFP-Pxl1 fluores-

cence intensity was reached with a 30 min delay respect to

wild-type cells (Figure 6E). These results uncover a positive

feedback loop in which paxillin is required to bring CN to the

CAR, and in turn CN promotes the concentration of paxillin in

this structure.

CN Activity Causes In Vivo and In Vitro

Dephosphorylation of the F-BAR Protein Cdc15
Concentration of Pxl1 at the CAR requires its binding to the SH3

domain of the F-BAR protein Cdc15 (Cortés et al., 2015). This

scaffold protein binds many partners and plays a key role in

organizing the CAR (Ren et al., 2015). Because Cdc15 dephos-

phorylation stimulates its scaffolding activity (Roberts-Galbraith

et al., 2010), we considered that CN might dephosphorylate

Cdc15. Co-immunoprecipitation experiments showed that

Ppb1 interacted in vivowith Cdc15 in cells synchronized in cyto-

kinesis (Figure 7A). Hence we analyzed the phosphorylation

state of Cdc15 in cells with different levels of CN activity. We

treated cells expressing GFP-Cdc15 with FK506 to inhibit CN.

In addition, we used GFP-Cdc15 cells expressing the N-Pxl1-
Cell R
Ppb1 chimera to analyze Cdc15 phos-

phorylation under an excess of CN

activity. Asynchronous cultures of wild-

type and pxl1D ppb1D N-pxl1-ppb1 cells

expressing GFP-Cdc15, untreated and

treated with FK506 for 2 hr, already dis-

played changes in GFP-Cdc15 electro-

phoretic mobility. There was a hyper-

phosphorylated form in both types of

FK506-treated cells and a hypophos-

phorylated form in cells expressing
N-pxl1-ppb1 (Figure 7B). These observations suggested that

CN phosphatase was regulating Cdc15 phosphorylation status.

Cdc15 becomes dephosphorylated as cells progress through

mitosis (Fankhauser et al., 1995; Clifford et al., 2008) with

maximum Cdc15 dephosphorylation during anaphase and

Cdc15 phosphorylation reestablished upon septation. We

analyzed GFP-Cdc15 phosphorylation dynamics during mitosis

and cytokinesis in cells without or with FK506 to inhibit CN. Syn-

chronous cultures were generated by using a cdc25-22 strain ar-

rested in G2 at 36�C during 4 hr and released at 25�C. FK506
(5 mg/mL) was added at the beginning of the arrest. GFP-

Cdc15 from FK506-treated cells appeared hyperphosphorylated

at the time of culture release (0 min) (Figure 7C). Sixty minutes

later, GFP-Cdc15 was slightly dephosphorylated but not to the

same extent as in untreated cells (Figure 7C). These results sug-

gest that Cdc15 dephosphorylation during cytokinesis depends

partially on CN phosphatase activity, although other phospha-

tases could be involved as well. Upon septation (90 min after

culture release), GFP-Cdc15 was rephosphorylated in wild-

type cells, reaching the maximum phosphorylation status at

120 min. In FK506-treated cells, Cdc15 phosphorylation rees-

tablishment seemed to be slightly delayed with respect to con-

trol cells (Figure 7C). This delay in the absence of CN activity is

coincident with a delay in septation in these cells. Currently we

cannot determine if it is the cause or the consequence of the sep-

tation delay.

In cdc25-22-synchronous cultures expressing N-pxl1-ppb1,

we observed that at time 0 after culture release, Cdc15 was

already hypophosphorylated compared with wild-type cells. At
eports 25, 772–783, October 16, 2018 779



Figure 7. Calcineurin ActivityCauses In Vivo

and In Vitro Dephosphorylation of the

F-BAR Protein Cdc15

(A) Co-immunoprecipitation of endogenously

tagged Cdc15-HA and Ppb1-GFP from yeast

extracts of cdc25-22 synchronic cultures, ob-

tained 60 min after cultures release at 25�C.
Immunoprecipitation was performed with anti-

GFP antibodies and immunoblotting with anti-HA

antibodies.

(B) Protein extracts form asynchronous cultures of

cells expressing GFP-Cdc15 in a wild-type strain

or both GFP-Cdc15 and the chimeric protein

N-Pxl1-Ppb1 in a pxl1Dppb1D strain, treated or

not with FK506 (20 mg/mL) for 2 hr, were analyzed

by western blot using anti-GFP and anti-actin

antibodies.

(C) Protein extracts from cdc25-22 GFP-Cdc15

synchronous cultures, treated or not with FK506.

Mid-log phase cells were shifted to 36�C for 4 hr

and then released to permissive temperature

(25�C). At the indicated times after release, sam-

ples were analyzed by western blot as in (B).

Percentage of binucleates and septation index are

included to monitor cell cycle progression and

septation.

(D) Protein extracts from cdc25-22 GFP-Cdc15 or

cdc25-22 GFP-Cdc15 pxl1D ppb1D N-pxl1-ppb1

cells collected at different time points after release

were analyzed by western blot as in (B). Progres-

sion of mitosis and cytokinesis was determined

as in (C).

(E) Live cell images of asynchronous or G2-

arrested cultures of wild-type or pxl1D ppb1D

N-pxl1-ppb1 strains, treated or not with FK506

5 mg/mL. Scale bar, 5 mm.

(F) Immunopurified GFP-Cdc15 protein obtained

from cdc25-22 GFP-Cdc15 synchronized cultures

blocked during 4 hr at 36�C and released during

1 hr at 25�C in the presence of FK506 (5 mg/mL)

was treated with l phosphatase, buffer, or human

recombinant calcineurin (CN) and analyzed by

western blot using anti-GFP antibodies.
60 min after release, Cdc15 was also more dephosphorylated,

and rephosphorylation upon septation (90 and 120 min after

release) did not occur in these cells (Figure 7D). We have

described above that the N-Pxl1-Ppb1 chimera remained at

the division site once septation was completed, whereas in

wild-type cells, Pxl1 and Ppb1 disappeared from the cell equator

after septum completion. Thus, the remnant CN phosphatase

activity in cells expressing the chimera could be impeding

Cdc15 rephosphorylation after septation.

A mutated Cdc15 constitutively hypophosphorylated displays

precocious medial localization in G2-arrested cells (Roberts-

Galbraith et al., 2010). To corroborate the role of CN in Cdc15

dephosphorylation, we analyzed the localization of GFP-Cdc15

in wild-type and pxl1D ppb1D N-pxl1-ppb1 cells with or without

FK506. GFP-Cdc15 localized as dots at the cell tips in interphase

and as a single bigger dot in the cytoplasm of G2-arrested wild-

type cells. In contrast, in asynchronousN-pxl1-ppb1-expressing

cells with an excess of CN activity, GFP-Cdc15 dots were not

restricted at the cell tips but were dispersed all around the cell
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cortex (Figure 7E). In G2-arrested cultures of these cells, GFP-

Cdc15 was abnormally localized to the middle of the cell cortex,

similar to what was reported for dephosphorylated mutant forms

of Cdc15 (Roberts-Galbraith et al., 2010).

No change in GFP-Cdc15 localization was observed upon

treatment of wild-type cells with FK506 (5 mg/mL, 4 hr) (Fig-

ure 7E). In agreement, Cdc15 hyperphosphorylated mutant

forms did not change their localization either in asynchronous

or G2-arrested cells (Roberts-Galbraith et al., 2010). However,

in both asynchronous and G2-arrested cultures of cells express-

ing N-pxl1-ppb1, the FK506 treatment (5 mg/mL, 4 hr) changed

Cdc15 localization to that of wild-type cells. GFP-Cdc15 dots

were restricted to the cell tips in interphase, and a single cyto-

plasmic dot appeared in G2-arrested cultures (Figure 7E). In

summary, our findings suggest that CN phosphatase activity is

needed for the proper Cdc15 phosphorylation dynamics and

localization.

We next analyzed if CN dephosphorylates Cdc15 in vitro.

GFP-Cdc15 was immunopurified from cdc25-22-synchronized



cultures in anaphase in the presence of FK506 and was treated

with l phosphatase or human recombinant CN. In both cases

Cdc15 exhibited increased mobility compared with the un-

treated protein (Figure 7F). These results demonstrate that

Cdc15 is a phosphoprotein and a substrate of CN. However,

the possibility that in vivo a different phosphatase works directly

on Cdc15 is not excluded.

DISCUSSION

CN is themain eukaryotic cell transducer of signals generated by

changes in Ca2+ levels (Li et al., 2011). This phosphatase plays

important roles in different processes, ranging from stress

response survival in fungi (Juvvadi and Steinbach, 2015) to

mammalian development (Graef et al., 2001). Fission yeast CN

regulates multiple biological processes, including cytokinesis

(Sugiura et al., 2002). Although CN localization is mainly cyto-

plasmic, it was also observed at the CAR (McDonald et al.,

2017). We show here that CN localizes to the CAR once it is

formed, constricts with the ring, and remains there until the

end of septation. We confirmed previous reports (Fujita et al.,

2002; Cadou et al., 2013) and analyzed in detail the cytokinesis

defects caused by the absence of CN, finding a strong similarity

with the defects detected in cells lacking Pxl1 (Ge and Balasu-

bramanian, 2008; Pinar et al., 2008; Cortés et al., 2015). More-

over, our results indicate that Pxl1 links CN to the CAR and reveal

the importance of CN signaling in the connection between CAR

contraction and septum biosynthesis. Thus, the phenotype of

cells depleted of Bgs1 in the absence of either CN or Pxl1 is

similar and indicates that both collaborate with Bgs1 in the

fission yeast septum ingression.

Pxl1 binds directly to the catalytic subunit of CN, and its major

function is the localization of this phosphatase to the CAR

because artificial localization of Ppb1 to the CAR fused to the

N-terminal domain of Pxl1 can substitute the function of Pxl1

LIM domains. Cells expressing the N-Pxl1-Ppb1 chimera have

morphological defects, likely because of the ectopic hyperactiv-

ity of CN, as FK506 could suppress them, making the cells

similar to wild-type cells. Previous studies showed that simulta-

neous overexpression of constitutively active Ppb1DC and Cnb1

causes cell wall accumulations and aberrant morphology similar

to that observed in cells expressing N-Pxl1-Ppb1 and that these

defects are also suppressed by the addition of FK506 (Sio et al.,

2005). The N-Pxl1-Ppb1 fusion may activate CN or facilitate the

binding to its substrates,making the phosphatasemore efficient.

It may also stabilize CN localization during cytokinesis, extend-

ing its function after the end of cytokinesis.

We have shown here that Pxl1 connects CN to the CAR and

that CN activity is necessary to allow Pxl1 concentration at the

CAR. This positive feedback loop between both proteins could

be mediated by regulation of Cdc15 phosphorylation. Indeed,

we described that CN affected Cdc15 phosphorylation dy-

namics. The absence of CN activity altered Cdc15 phosphoryla-

tion in a manner reminiscent of that described for the absence of

the phosphatase Clp1 (Wachtler et al., 2006; Clifford et al., 2008).

Likely both phosphatases collaborate in Cdc15 dephosphoryla-

tion during cytokinesis. In the absence of CN activity, Cdc15 was

always hyperphosphorylated. This would be in agreement with
lower concentration of Cdc15 binding partners at the cell equa-

tor (Roberts-Galbraith et al., 2010). In fact, Pxl1 is a Cdc15 bind-

ing partner (Roberts-Galbraith et al., 2009), and CN activity is

needed for Pxl1 concentration at the CAR. Moreover, Fic1,

another Cdc15 binding partner, also required CN activity to

concentrate at the CAR (Figure S3).

The function of paxillin in the signaling of CN could be

conserved in other ascomycetes, such asA. nidulans. In this fun-

gus, CN signaling regulates cytokinesis and hyphal growth

(Steinbach et al., 2006), and CN localization to the hyphal

septum is required for the correct deposition of new cell wall

material (Juvvadi et al., 2011). However, how CN binds to the

septum in Aspergillus remains unclear. In the basidiomycete

C. neoformans, CN controls septum positioning and cell separa-

tion in coordination with Cts1 (Fox et al., 2003; Aboobakar et al.,

2011). This protein presents similarity to S. pombe Fic1 (Abooba-

kar et al., 2011), and fic1+ deletion is synthetically lethal with

either pxl1D or ppb1D (Roberts-Galbraith et al., 2009), suggest-

ing that the signaling of thesemolecules during cytokinesis might

be conserved.

Inmammalian cells, CN is required during the abscission stage

of cytokinesis and is specifically localized to the midbody region

(Chircop et al., 2010). Interestingly, one of the three human cat-

alytic subunits of CN, PPP3CA, interacts with a LIM and SH3

domain protein, LASP1 (Q14847, UniProt), important for the

regulation of actin-based cytoskeletal activities, according to

the Human DEPhOsphorylation Database (www.depod.org).

Perhaps there is a conserved interaction between the CN cata-

lytic subunit and LIM domains, as we have proved in this work

that the C-terminal LIM domain of Pxl1 is necessary for its bind-

ing to Ppb1.

A systematic study using bioinformatics and phosphoproteo-

mics in S. cerevisiae identified many new CN targets (Goldman

et al., 2014). Our data reinforce the importance of CN signaling

in the regulation of cytokinesis through targets different from

the transcription factor Prz1. Similarly, in Aspergillus, CN

signaling in cytokinesis and hyphal growth is only partly depen-

dent on the transcription factor CrzA homologous to Prz1, indi-

cating that other CN effectors are required for cytokinesis

(Cramer et al., 2008; Soriani et al., 2008; Juvvadi et al., 2017).

The molecular events that occur during cytokinesis require acti-

vation and inactivation of relevant signaling pathways, likely

through phosphorylation and dephosphorylation of different pro-

teins. This study shows that CN contributes to fission yeast cyto-

kinesis through paxillin-mediated binding to the CAR. In this way

CN can reach other proteins, such as Cdc15, which binds within

the N terminus of paxillin. Future studies will be directed toward

unveiling other elements of this network.
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pombe Pxl1 is a paxillin homologue that modulates Rho1 activity and partici-

pates in cytokinesis. Mol. Biol. Cell 19, 1727–1738.

Ren, L., Willet, A.H., Roberts-Galbraith, R.H., McDonald, N.A., Feoktistova, A.,

Chen, J.S., Huang, H., Guillen, R., Boone, C., Sidhu, S.S., et al. (2015). The

Cdc15 and Imp2 SH3 domains cooperatively scaffold a network of proteins

that redundantly ensure efficient cell division in fission yeast. Mol. Biol. Cell

26, 256–269.

Rincon, S.A., and Paoletti, A. (2016). Molecular control of fission yeast cytoki-

nesis. Semin. Cell Dev. Biol. 53, 28–38.
Roberts-Galbraith, R.H., Chen, J.S., Wang, J., andGould, K.L. (2009). The SH3

domains of two PCH family members cooperate in assembly of the Schizosac-

charomyces pombe contractile ring. J. Cell Biol. 184, 113–127.

Roberts-Galbraith, R.H., Ohi, M.D., Ballif, B.A., Chen, J.S., McLeod, I.,

McDonald, W.H., Gygi, S.P., Yates, J.R., 3rd, and Gould, K.L. (2010). Dephos-

phorylation of F-BAR protein Cdc15 modulates its conformation and stimu-

lates its scaffolding activity at the cell division site. Mol. Cell 39, 86–99.

Roy, J., and Cyert, M.S. (2009). Cracking the phosphatase code: docking in-

teractions determine substrate specificity. Sci. Signal. 2, re9.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

rabbit anti-HA tag antibody-ChIP Grade Abcam Cat# ab9110, RRID:AB_307019

rabbit GFP tag polyclonal antibody Invitrogen Cat#A-6455;RRID AB_221570

rat anti-HA-peroxidase, high affinity (3F10) Roche Cat# 12013819001, RRID:AB_390917

Living colors A.v. monoclonal antibody (JL8) Clontech Cat#632380 RRID:AB_10013427

anti-GST-HRP conjugate GE Healthcare Cat#RPN1236, RRID:AB_771429

mouse anti-actin monoclonal (C4) MP biomedicals Cat# 08691001, RRID:AB_2335127

Chemicals, Peptides, and Recombinant Proteins

Amylose resin New England Biolabs Cat#E8021S

Glutathione Sepharose 4B GE Healthcare Cat#17-0756-01

Protein A Sepharose CL-4B GE Healthcare Cat#17-0780-01

Protease/Phosphatase inhibitor cocktail (100X) Cell Signaling Cat#5872S

Phos-tag acrylamide AAL-107 Wako Cat#304-93521

Lectin from Glycine max (soybean) Sigma Cat#L-1395-5mg

Lambda protein phosphatase New England Biolabs Cat#P0753S

CN (human) recombinant Enzo Cat#BML-SE163-5000

Calmodulin (human) recombinant Enzo Cat#BML-SE329-0001

CN assay buffer (2X) Enzo Cat#BML-KI128-0020

Deposited Data

Raw Data This study Mendeley Data; https://doi.org/10.17632/

bp87npk532.1

Experimental Models: Organisms/Strains

Fission yeast strains used in this study are detailed in Table S1 N/A N/A

Oligonucleotides

Generation of Pxl1-M3 mutation; Fw primer:50 CGCGGATCC

ATATGCATTCACCAATTCCAGAAT30
Biomers N/A

Generation of Pxl1-M3 mutation; Rv primer:50 CTACGAT

TGGAAAGTTTACTGGATTTCgcagcAGcAgcAGcAGc

AAGTTGTTTGGATGCGAAGGTTTTTTGTCTG 30

Biomers N/A

Generation of Pxl1-M4 mutation; Fw primer: 50 GCAA

GAAATGCCGTAAAgCCgcTgcGGcGgcCgc

TGTAAAAGGGTCTGATGGTGAATATCATAG 30

Biomers N/A

Generation of Pxl1-M4 mutation; Rv primer: 50 CGCGGA

TCCTTAATCCAAATTAAACTTGACTGA 30
Biomers N/A

Generation of N-Pxl1-Ppb1 chimera; Fw primer: 50 TATATGCT

AGCATGACTTCGGGTCCTCATAATT 30
Sigma-Aldrich N/A

Generation of N-Pxl1-Ppb1 chimera; Rv primer: 50 ATATAGG

ATCCTACAAAGAGCTTTTCTTATCTG 30
Sigma-Aldrich N/A

Creation of MBP-PPb1-HA; Fw primer: 50 ATATAT TCT AGA

ATGACTTCGGGTCCTCATAATTTAG 30
Sigma-Aldrich N/A

Creation of MBP-PPb1-HA; Rv primer: 50 ATATAT TCT AGA

TCAGCACTGAGCAGCGTAATC 30
Sigma-Aldrich N/A

Recombinant DNA

pJK148-GFP-Pxl1-M3 This study N/A

pJK148-GFP-Pxl1-M4 This study N/A

pJK148-GFP-N-Pxl1-Ppb1 This study N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

pJK148-N-Pxl1-Ppb1 This study N/A

pJC20-GST-Pxl1 This study N/A

pJC20-GST-Pxl1-M3 This study N/A

pJC20-GST-Pxl1-M4 This study N/A

pMAL-p2-Ppb1-HA This study N/A

Software and Algorithms

ImageJ NIH https://imagej.nih.gov/ij/

SoftWorx software 6.0 GE Healthcare N/A

Graphpad Prism Graphpad Software https://www.graphpad.com

Other

m-slide 8 well uncoated Ibidi Cat#80821
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to the Lead Contact, Pilar Pérez (piper@usal.es).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Fission yeast growth conditions
All the Schizosaccharomyces pombe strains used in this study were isogenic to 972 h- and 975 h+, and are enumerated in Table S1.

Standard S. pombemedia and genetic manipulations were used (Moreno et al., 1991). Basically, cells were grown either in rich me-

dium (YES) or in minimal medium (EMM) with appropriate supplements at 25, 28 or 36�C depending on the type of experiment, as

indicated in the figure legends. EMM+S (1.3M sorbitol) was usedwith Pnmt81-bgs1+ and derived strains. For repression experiments

in strains carrying the Pnmt81 promoter, early log-phase cells incubated in EMM+Swere diluted with the samemedium plus 20 mg/ml

thiamine (+T). Cell growth was monitored by measuring the OD600 of early-log phase cell cultures. SPAmedium was used for genetic

crosses and mutant strains were selected by tetrad dissection, random spore dissection or random spore analysis.

METHOD DETAILS

Recombinant DNA methods
All DNA manipulations were carried out by established methods (Sambrook and Russell, 2001). Plasmid DNA was introduced into

S. pombe cells by an improved lithium acetate method (Ito et al., 1983).

The Pxl1 mutated proteins were generated by PCR site-directed mutagenesis using the appropriate primers and a KS Bluescript

plasmid containing the pxl1+ORF as template (lab stock plasmid described in Pinar et al., 2008). All the mutations to generate amino

acid changes were confirmed by DNA sequencing and clones as NdeI/BamHI fragment into the fission yeast integrative vector

pJK148 or into the pJC20 vector for expression in E.coli. GST epitope was 50inserted as NdeI/NdeI into pJC20 carrying the different

ORFs.

GFP-N-Pxl1-Ppb1 chimera was constructed by amplifying the ppb1+ ORF with the appropriate primers, which was then ligated as

NheI-BamHI into a KS Bluescript plasmid containing the GFP ORF fused to the pxl1+ N-terminal fragment (771 base pairs) and the

50 and 30 non coding flanking regions of pxl1+ (lab stock plasmid). Construction of the N-Pxl1-Ppb1 without the GFP was generated

from the KS-GFP-Pxl1-Ppb1 plasmid previously described, digesting with NdeI to split the GFP coding region and re-ligating the

remaining plasmid. The resulting constructs were then cloned into pJK148 as PstI/SacII for S. pombe chromosome integration at

the leu1+ locus.

The Maltose Binding Protein (MBP)-Ppb1-HA was generated amplifying by PCR with the appropriate primers, the ppb1-HA frag-

ment from a strain in which ppb1+ was endogenously tagged in C terminus with the HA epitope. The fragment amplified was then

cloned into the XbaI site of the pMAL-p2 vector.

General protein methods
Whole cell extracts were prepared in lysis buffer (20 mM Tris-HCl, pH 8.0, 2 mM EDTA, 100 mM NaCl, and 0.5% NP-40, containing

100mMp-aminophenyl methanesulfonyl fluoride, 2g/ml leupeptin, and 2g/ml aprotinin). Cell extracts (1mg) were then incubated with

anti-HA polyclonal antibody (ab9110, Abcam) or anti-GFP polyclonal serum (A6455, Invitrogen) and protein A-Sepharose beads for

2-4h at 4�C. The beads were washed four times with lysis buffer and then they were resuspended in sample buffer. The immunopre-

cipitates were then analyzed by western blot.
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Protein extracts for analysis of phosporylation status were obtained by TCA precipitation.

Recombinant protein production in E. coli

E.coliBL-21 strain was used for the expression of recombinant proteins. Bacterial induction was done by the addition of 0.4mM IPTG

during 4h at 28�C. Then, the cells were collected and lysed by sonication (14 mm amplitude for 1 min, 3 repeats) in PBS containing

protease inhibitors and 0.4 mg/ml lysozime. Then 1% Triton X-100 was added and the cells were centrifuged. The supernatant was

collected and incubated with glutathione-Sepharose beads (50% in PBS) during 2h at 4�C. Afterward, glutathione-Sepharose beads

with GST-Pxl1 bound, were washed 4 times with PBS and resuspended in buffer (50 mM Tris-ClH pH 7.5, 20 mMNaCl, 0.5%NP-40,

10%Glycerol; 0,1mMDTT, 1mMNaF, and 2mMMgCl2 containing 100 mMp-aminophenylmethanesulphonyl fluoride, leupeptin, and

aprotinin) before its used in pull-down assays. The amount of purified GST-Pxl1 was quantified by Coomassie Blue staining of SDS-

PAGE gels, and compared to Bovine Serum Albumin (BSA) standards of known concentration.

Recombinant MBP-Ppb1-HA was produced from the pMAL-p2 vector for periplasmic expression, purified by affinity chromatog-

raphy with amylose resin (New England Biolabs) and eluted with maltose.

Pull down of Ppb1-HA or Cnb1-HA with GST-Pxl1
Cell extracts from wild-type, cnb1D or ppb1D cells expressing ppb1-HA or cnb1-HA from their own promoter, were obtained by me-

chanical breakage of the cells using glass beads and a FastPrep. Cells were resuspended in 500 mL of lysis buffer (50 mM Tris-ClH

pH 7.5, 20 mM NaCl, 0.5% NP-40, 10% Glycerol; 0,1mM DTT, 1mM NaF, and 2mM MgCl2 containing 100 mM p-aminophenylme-

thanesulphonyl fluoride, leupeptin, and aprotinin). 10 mg of GST-Pxl1 or GST-Pxl1 fragments previously obtained from E. coli expres-

sion, purified and coupled to gluthatione-Sepharose beads, were used to precipitate Ppb1-HA or Cnb1-HA from 2mg of the total cell

lysates. The extracts were incubated with the beads for 2 h at 4�C, washed four times, and the bound proteins were released. The

proteins were analyzed by SDS-PAGE and blotted against anti-HA high affinity monoclonal antibody (Clone 3F10, Roche Molecular

Biochemicals) to detect the corresponding HA-tagged protein. The total amount of HA-tagged proteins from the extracts were deter-

mined by western blot and using the same anti-HA monoclonal antibody.

For the pull-down of recombinant MBP-Ppb1-HA with GST-Pxl1 equal quantities of recombinant MBP-Ppb1-HA and GST-Pxl1

were mixed in binding buffer (200 mM Tris-HCl pH 8, 137 mM NaCl, 0.1% NP-40, 10% Glycerol, 2mM EDTA) and incubated with

Glutation-Sepharose beads (50% in the same buffer) during 2h at 4�C.
The amount of MBP-PPb1-HA bound to GST-Pxl1 was determined by western blot using anti-HA monoclonal antibody.

Western-Blot of synchronized cell cultures
Cdc25-22 cells containing Cdc15-HA or GFP-Cdc15, treated or untreated with FK506 (5mg/ml) were grown to mid log phase, shifted

to 36�C for 4 h and then released to permissive temperature of 25�C. Samples were collected every 30min and processed for western

blot analysis. Protein extracts from the different time-points were obtained as above and prepared by TCA precipitation. In addition,

another sample of cells for each time-point was collected and fixed with cold 70% ethanol for subsequent DAPI and calcofluor stain-

ing to monitor cell cycle progression and septation.

In vitro CN phosphatase assay
Cell extracts from cdc25-22GFP-cdc15 synchronized cultures (in anaphase, 60minutes after culture release) and treated with FK506

(5mg/ml, 4h) were obtained in lysis buffer (20mM Tris-HCl, 130mM NaCl, 0.5% NP40) supplemented with proteases and phospha-

tases inhibitors cocktail (Cell Signaling) and PMSF. The GFP-Cdc15 protein was immunopurified from the supernatant by incubation

with anti-GFP polyclonal antibody (Molecular Probes. Invitrogen) and protein-A Sepharose beads (GE Healthcare). The immunopre-

cipitates were collected by centrifugation and washed three times with lysis buffer without proteases and phosphatases inhibitors

cocktail. Then GFP-Cdc15 bound to beads was incubated with KI-128 assay buffer (50mM Tris-HCl, 100mM NaCl, 6mM MgCl2,

0.5 mM DTT, 0.025% NP-40 and 0.25mM CaCl2) plus 1mg of human recombinant Calmodulin (Enzo) and 500 units of human recom-

binant CN (Enzo) for 1 hour at 30�C. For lambda phosphatase assay, used as a control, the immunoprecipitated GFP-Cdc15 bound to

beads was incubated with PMP buffer (50 mMHEPES pH 7.5, 100mMNaCl, 2 mMDTT, 0.01%Brij 35, 1mMMnCl2) and 400 units of

lambda phosphatase (New England Biolabs) for 1 hour at 30�C. After the incubation with the CN or lambda phosphatases or with CN

buffer alone, the supernatant was removed and the beads with GFP-Cdc15 bound were resuspended in Laemmli sample buffer,

boiled and centrifuged. Finally, GFP-Cdc15 was detected by western blot using anti-GFP monoclonal antibody (JL-8, Clontech).

Microscopy techniques and data analysis
For calcofluor staining, a solution of Calcofluor White (50 mg/ml final concentration) was directly added to early logarithmic phase

cells.

Fluorescence images obtained with a Personal DeltaVision System (GE Healthcare) were corrected by 3-D deconvolution (conser-

vative ratio, 10 iterations, and medium noise filtering) using the SoftWoRx imaging software (6.0, GE Healthcare).

For maximal projection of the cell and three-dimensional reconstructions of the cell middle region in Figure 1G, images were ob-

tained in Z stacks of 22 slices at 0.25 mm intervals to ensure that the complete cell is covered and the obtained images were pro-

cessed with the 3D projection function of the ImageJ software.
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For time-lapse imaging, 0.3 mL of early log-phase cell cultures were placed in a well from a m-Slide 8 well (Ibidi) previously coated

with 10 ml of 1 mg/ml soybean lectin (Sigma-Aldrich). Cells were left for 1 min to attach to the well bottom and culture media was

removed carefully. Then, cells were washed three times with the same media and finally 0.3 mL of fresh media were added (Cortés

et al., 2012). Experiments were performed at 25�C or 28�C and single middle planes were taken at the time points stated in each

figure. Time-lapse images were acquired using a spinning disk confocal microscope (Olympus IX81 with Roper technology) with a

100X/1.40 Plan Apo lens and controlled by Metamorph 7.7 software.

Line scans in Figures 1 and 3weremade by drawing a line along all the septum length, andmeasuring the intensities of pixels of the

red and green fluorescence through the plot profile function of the ImageJ software. The positions of the offset septa in Figure 1Fwere

calculated from calcofluor-stained images with the ImageJ software by measuring the distance from the septum to the closest tip,

subtracting this value from the value corresponding to half of the cell length, and calculating the percentage of the resulting value

respect to the total cell length.

Total fluorescence analysis of a single focal plane of GFP-Ppb1 and GFP-Pxl1 in Figures 4C and Figure 6 respectively, was quan-

tified with ImageJ software by selecting the middle region of each cell containing the ring. Next the background fluorescence of each

cell was subtracted (ImageJ). After quantification of the GFP-Pxl1 fluorescence, the length of the corresponding septum was

measured by drawing a line through the septum in the calcofluor-staining micrograph. Scatter dot plots were represented using

GraphPad Prism software.

QUANTIFICATION AND STATISTICAL ANALYSIS

No statistical methods were used to predetermine sample size. Bar graphs shown in Figures 1E, 1F, 1G, 2B, 4B and 5C represent the

percentage of cells displaying the indicated phenotypes. Error bars represent the standard deviation of the data. The n value and the

number of technical replicates are indicated in the corresponding figure legends. In the scatterplots in Figures 4C and 6B and S3

the black lines represent the mean and SEM. Statistical analysis were done using Graphpad Prism software using the tests specified

in the figure legends. Comparisons of two conditions were tested by unpaired t test. Multiple comparisons were tested by two-way

ANOVA with post-test (Tukey’s and Bonferroni’s). Statistical significances were marked by ****p < 0.0001.
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