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Abstract

The enhancement of the resonance lifetime that occurs upon interference of two

overlapping resonances excited coherently by two pulses delayed in time, has been

investigated as a function of the pulse temporal width and the delay time between

the pulses. A general law predicting quantitatively the optimal delay time that

maximizes the lifetime enhancement of the two resonances, has been established

in terms of the pulse width and of the lifetimes of both resonances when they are

excited isolatedly. The specific form of the law and all the results found can be closely

related to the characteristic features of the mechanism of interference between the

overlapping resonances, providing a detailed understanding on how the mechanism

operates. The proposed law is envisioned as a useful tool to design experimental

strategies to control the resonance lifetime.
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Resonance states are very interesting objects of quantum nature that can behave

as doorway states from which a variety of molecular processes can be activated.1,2

Photodissociation processes like electronic,3 vibrational,4,5 and rotational6 predisso-

ciation of a molecular system, as well as low-temperature reactive7−12 and nonreactive13−20

molecular collisions, are examples of processes mediated by resonance states. Con-

trol of such molecular processes has been pursued for a long time.21−34 In the case

of resonance-mediated processes, controlling the behavior of the resonance state (or

states) governing the process appears as a real possibility of achieving control of the

process of interest. And the behavior of a resonance is determined by the behavior

of its properties such as the lifetime and the product fragment state distributions

produced upon resonance decay. In this sense, strategies to control both the reso-

nance lifetime35−38 and the product fragment distributions39−42 have been suggested

for overlapping and isolated resonance states.

Many of the schemes proposed to control the resonance properties relay on the

manipulation of quantum interference that takes place between overlapping reso-

nances, which are nonorthogonal states, when they are populated simultaneously.

This is the case of schemes suggested to control the lifetime of a given resonance

state that overlaps with other resonances, by using one,35 two,36,37 and three37 laser

pulses to vary the relative population of the different overlapping resonances ini-

tially excited. When two pulses with a delay time between them were used to excite

two overlapping resonances (each pulse exciting one resonance), the shape of the

survival probability and the associated lifetime of one of the resonances (the target

resonance) was found to vary when the delay between the pulses was varied, reach-

ing a maximum lifetime at a specific delay time.36 A similar behavior is expected

for the other resonance overlapping with the target one.

Changing the delay time between the pulses causes population of the two reso-

nances at different times, which implies changes in their mechanism of interference

and explains variations in the resonance survival probability and lifetime. Now the

interesting question is what determines the specific delay time at wich the maximum
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enhancement of the resonance lifetime takes place. Physical intuition indicates that

this should be determined by the specific mechanism of interference between the

overlapping resonances involved, which should depend on factors like the temporal

width of the pulses applied, and the lifetime of the different resonances when they

are excited isolatedly (i.e., in the absence of population of the other overlapping

resonances). It would be most desirable to have available the knowledge allowing

a quantitative prediction of the optimal delay time between pulses leading to max-

imize the resonance lifetime enhancement for the general case of two overlapping

resonances with different (isolated) lifetimes, and for a given temporal width of the

exciting pulses. The motivation to reach such a knowledge would be twofold. On the

one hand, it would imply a detailed understanding of the mechanisms of quantum

interference between overlapping resonances. On the other hand it would provide a

valuable and useful tool to simplify the experimental design of a control scheme.

In this work, the quantitative relationship between the optimal delay time be-

tween pulses causing maximum lifetime enhancement, and specific conditions of the

control scheme designed, like the different lifetimes of the overlapping resonances

and the temporal width of the pulses used, is explored in the case of two overlap-

ping resonances. To this purpose, different scenarios have been investigated, varying

both the temporal width of the laser pulses applied and the width (and therefore the

lifetime) of the two overlapping resonances excited. In this sense, the vibrational

predissociation of the Ne-Br2(B, v
′ = 35) complex is very convenient to be used as

the subject process of this type of study, since this system supports a variety of

overlapping resonances with different widths.

Upon laser excitation, Ne-Br2(X, v
′′ = 0) + hν → Ne-Br2(B, v

′, n′), an inter-

molecular van der Waals (vdW) resonance n′ or a superposition of resonances is

populated. The labels v′′ and v′ denote the vibrational states of Br2 in the X and

B electronic states, respectively, while the n′ index labels the energy position of

the resonance, with n′ = 0 corresponding to the ground one. Then the resonance

excited decays to the fragmentation continuum through vibrational predissociation,
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Ne-Br2(B, v
′, n′) → Ne + Br2(B, vf < v′). This process has been studied in de-

tail both experimentally43,44 and theoretically.4,45 The Ne-Br2(B, v
′ = 35) excitation

with a laser pulse and the subsequent predissociation was simulated with a full three-

dimensional wave packet method (assuming J = 0) described in detail elsewhere.4,35

It is noted that the lifetime calculated with the present model for the decay of the

Ne-Br2(B, v
′ = 16) ground intermolecular resonance was 69 ps,38 while the corre-

sponding lifetime estimated experimentally is 68 ± 3 ps,44 which assesses the good

quality of the model applied to describe this resonance decay process.

The excitation spectrum associated with the ground vdW resonance n′ = 0 of

Ne-Br2(B, v
′ = 35, n′) was previously investigated,45 and is displayed in Fig. 1. The

main peak located at the energy −56.34 cm−1 corresponds to the Ne-Br2(B, v
′ = 35)

ground resonance, labeled as (v′, gr) in the figure. The spectrum shows several other

peaks and bumps at lower and higher energies than that of the main peak, which were

identified45 as vdW resonances of the v′ − 1 lower manifold in the range n = 5− 13

that overlap between them and also with the v′ ground resonance.

In the simulations carried out, two overlapping resonances are populated simul-

taneously by a laser field consisting of the combination of two Gaussian pulses, each

pulse exciting one of the two resonance states. The two resonances excited are the

n′ = 0 resonance of the v′ = 35 manifold and one vdW resonance of the v′ − 1

manifold overlapping with the v′ ground resonance. In order to analyze the effect

of varying the lifetime of the v′ − 1 resonance excited, two different resonances have

been used in the simulations, namely n = 7 and 9, located at −60.76 and −57.75

cm−1, respectively (see Fig. 1). The laser field applied can be expressed as

Epump(t) = A1e
−(t−t1)2/2σ2

cos[ω1(t−t1)+φ1]+A2e
−(t−t2)2/2σ2

cos[ω2(t−t2)+φ2], (1)

where ω1 and ω2 are the photon frequencies required to excite the resonance energy

of the v′ and v′−1 resonances, respectively, and t1 and t2 are the time centers of the

two pulses. In practice t1 is always fixed at the value t1 = 0, and t2 is varied. Thus

the delay time between the pulses becomes ∆t = t2 − t1 = t2. For simplicity, in all

the simulations it was assumed the same width (related to σ) for the two Gaussian
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pump pulses, and also that φ1 = φ2 = 0. The width of the pulses was varied in

the different simulations. In most of the simulations the amplitudes of the pulses

are also assumed to be equal, A1 = A2 = 1.0 × 10−6 a.u., which corresponds to a

maximum pulse intensity of about 3.5× 104 W/cm2, within the weak-field regime.

Application of the electric field Epump(t) of eqn (1) creates a coherent superposi-

tion of the v′ (ψ1) and v
′ − 1 (ψ2) resonances

Φ(t) = a1(t)ψ1(t) + a2(t)ψ2(t). (2)

We can express the survival probability associated with the ψ1 resonance as

I1(t) = | < ψ1|Φ(t) > |2 = |a1(t) < ψ1|ψ1(t) > +a2(t) < ψ1|ψ2(t) > |2 =

|a1(t)|
2| < ψ1|ψ1(t) > |2 + |a2(t)|

2| < ψ1|ψ2(t) > |2+

a1(t)a2(t)
∗ < ψ1|ψ1(t) >< ψ2(t)|ψ1 > +a1(t)

∗a2(t) < ψ1(t)|ψ1 >< ψ1|ψ2(t) >, (3)

and similarly for the ψ2 resonance

I2(t) = |a2(t)|
2| < ψ2|ψ2(t) > |2 + |a1(t)|

2| < ψ2|ψ1(t) > |2+

a1(t)a
∗

2(t) < ψ2|ψ1(t) >< ψ2(t)|ψ2 > +a∗1(t)a2(t) < ψ1(t)|ψ2 >< ψ2|ψ2(t) > . (4)

The first term of the right hand sides (rhs) of eqns (3) (|a1(t)|
2| < ψ1|ψ1(t) > |2)

and (4) (|a2(t)|
2| < ψ2|ψ2(t) > |2) is the square of the autocorrelation function of ψ1

and ψ2, respectively. This is the traditional definition of the survival probability for

an isolated, nonoverlapping resonance. Actually, survival probabilities of the form

I1(t) = |a1(t)|
2| < ψ1|ψ1(t) > |2 or I2(t) = |a2(t)|

2| < ψ2|ψ2(t) > |2 is what one would

obtain if, instead of exciting simultaneously both ψ1 and ψ2 in the superposition of

eqn (2) (i.e., by making a1(t) and a2(t) simultaneously nonzero), one excites only

ψ1 (with a2(t) = 0) or ψ2 (with a1(t) = 0), by using a single pulse with a relatively

narrow spectral width around the resonance energy of either ψ1 or ψ2. In this case

the shape of I1(t) and I2(t) would be the convolution of the single Gaussian pulse

envelope (the |an(t)|
2 dependence of In(t), n = 1, 2) with the resonance exponential
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decay (the | < ψn|ψn(t) > |2 dependence). The lifetime associated with In(t) in this

case would be the “isolated resonance lifetime”, τ ison .

However, when ψ1 and ψ2 are populated simultaneously (a1(t) 6= 0 and a2(t) 6=

0), since they overlap (i.e., < ψ1|ψ2(t) > 6= 0 and < ψ2|ψ1(t) > 6= 0), three additional

terms originated by quantum interference appear in eqns (3) and (4), and con-

tribute to the survival probabilities I1(t) and I2(t). The effect of these interference

terms is “dressing” the isolated resonance survival probabilities In(t) = |an(t)|
2| <

ψn|ψn(t) > |2, and therefore changing their shape. As a result of this change in

shape, the lifetime associated with In(t) also changes from τ ison to a different value.

By varying the delay ∆t between the pulses, the mechanism of interference between

the resonances is modified, which causes variation of the interference terms and

therefore a change in the In(t) shape and in the associated lifetime.

The following strategy was adopted in the simulations. Once a specific set of

two overlapping resonances is chosen (either (ψ1, ψ2) = (n′ = 0, n = 9) or (ψ1, ψ2) =

(n′ = 0, n = 7)), a superposition of them is prepared with the field of eqn (1) with

a given ∆t. The time evolution of this wave packet is computed and the I1(t) and

I2(t) curves are calculated. In order to extract the lifetimes associated with both

curves, they are fitted to the function4,43

In(tj) = A
∫ tj

−∞

CC(t)[exp(−(tj − t)/τn)]dt, (5)

being CC(t) the laser cross-correlation curve and A an amplitude scaling parameter.

In this way two lifetimes, τ1 and τ2, are obtained for the two resonances in the

specific conditions of ∆t and the temporal width of the pulses used. Fig. 2 shows

an example of a typical fit, of I1(t) in this case to obtain τ1, using eqn (5). The

I1(t) curve displays pronounced oscillations caused by the interference terms of eqn

(3). Simulations are carried out for different ∆t values, providing τ1(∆t) and τ2(∆t)

functions that display a maximum. The above procedure is repeated by changing

the pulse width and the set of two overlapping resonances.

In the simulations three different temporal widths have been used for the pulses

of eqn (1), namely FWHM=100, 200, and 300 ps, with associated spectral widths
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of 0.3, 0.15, and 0.1 cm−1, respectively. These narrow bandwidths ensure that each

pulse of eqn (1) excites essentially a single resonance. Simulations were carried out

for the two sets (n′ = 0, n = 9) and (n′ = 0, n = 7) of resonances with the above

pulses, and the resulting τ1(∆t) and τ2(∆t) functions are shown in Fig. 3.

Additional simulations with a single pulse field (with A1 = 0 or A2 = 0 in

eqn (1)) were performed for the two sets of resonances and the pulse widths used.

They provide the τ ison lifetimes associated with the three resonances used (n′ = 0,

n = 7, and 9). The lifetimes obtained are τ iso1 = 3.8 ps for the (v′ = 35, n′ = 0)

ground resonance, and τ iso2 = 1.0 and 13.0 ps for the v′ − 1 n = 7 and 9 resonances,

respectively. This is done in order to check that the τ ison values coincide with the

corresponding τn values when |∆t| is very large and the two resonances are excited

in an isolated way, which is confirmed from the results of Fig. 3.

The first interesting result of Fig. 3 is that in all cases studied the maximum value

of both τ1(∆t) and τ2(∆t) occurs at the same delay ∆t. This result, not expected a

priori, appears to be related to the nature of the mechanism of interference between

overlapping resonances. Specifically, the maximum lifetime values obtained for the

(n′ = 0, n = 9) set of resonances are τmax
1 = 21.0, 61.0, and 65.0 ps, and τmax

2 = 17.0,

46.0, and 53.0 ps, for the pulse widths of FWHM=100, 200, and 300 ps, respectively,

and they were found at the delays ∆t = 65, 120, and 165 ps, respectively. For the

(n′ = 0, n = 7) resonances the maximum lifetimes are τmax
1 = 37.0 ps and τmax

2 = 3.3

ps for FWHM=200 ps, found at the delay ∆t = 105 ps. Another interesting result

arises from the comparison of the maximum lifetimes obtained for the three pulse

widths for the (n′ = 0, n = 9) resonances. The maximum value of both τ1(∆t)

and τ2(∆t) increases with increasing temporal width of the pulses. This increase,

however, appears to reach a saturation at some point, since the lifetime enhancement

when changing from FWHM=200 to 300 ps is significantly smaller than when going

from FWHM=100 to 200 ps. The increase of maximum lifetime enhancement with

increasing pulse temporal width again seems to be related to the mechanism of

resonance interference. This point will be discussed in more detail below.
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In the results of Fig. 3 the pulse delay at which the maximum lifetime enhance-

ment occurs, ∆tmax, is obtained by varying both the temporal width of the pulses

and the lifetime τ iso2 of the v′ − 1 resonances (changing from n = 9 to n = 7), thus

making possible to establish empirically a quantitative correlation between ∆tmax

and these two parameters. It is found that the law ∆tmax = FWHM/2+ τ iso1 + τ iso2

fits nicely all the four values of ∆tmax of Fig. 3. Thus, in the general case of two

overlapping resonances, each of them excited by a Gaussian pulse, both pulses with

the same temporal width and a delay time, one can determine the delay at which the

maximum lifetime enhancement of the two resonances will occur by simply adding

the isolated lifetimes of both resonances plus half the temporal width of the pulses.

An intriguing question now is why in all cases studied ∆tmax is positive, while

for negative ∆t values the enhancement of the τn lifetimes is rather low. With the

convention adopted here that t1 = 0 and that ∆t = t2 − t1 = t2, an equivalent

question is whether ∆tmax is determined by the order in which the two resonances

are excited by the field of eqn (1). This point is analyzed in the following.

In Fig. 1 the peak associated with the ground resonance n′ = 0 is more intense

than the peaks associated with the v′−1 n = 7 and 9 resonances. Thus, in the case of

A1 = A2 in eqn (1), the n′ = 0 resonance is populated with more intensity than n = 7

and 9. Since quantum interference between the two resonances is determined by the

amount of wave packet amplitude pumped to each resonance at a given time, the

intensity of population of each resonance might determine the order of excitation of

the resonances leading to ∆tmax, and therefore its sign. In order to check this point,

a simulation was carried out for the (n′ = 0, n = 9) set of resonances, applying the

laser field of eqn (1) with a width FWHM=200 ps, but with the pulse amplitudes

A2 = 3A1 instead of A2 = A1, which now ensures that the n = 9 resonance is

populated with more intensity than n′ = 0. The convention t1 = 0 and ∆t = t2 was

still kept. The calculated τ1(∆t) and τ2(∆t) functions are displayed in Fig. 4.

Most interestingly, the maximum lifetime values of τmax
1 = 28.0 ps and τmax

2 =

30.0 ps were found for the negative delay time ∆tmax = −120 ps. The absolute
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value |∆tmax| = 120 ps coincides with that previously found for FWHM=200 ps and

A2 = A1, i.e., when the n′ = 0 resonance was populated with more intensity than

n = 9. The first implication of this result is that the relative intensity of population

of the two resonances indeed determines the resonance excitation sequence leading

to ∆tmax: ∆tmax occurs when the most intensely populated resonance is excited first.

Depending on the specific definition of ∆t (i.e., either ∆t = t2 − t1 or ∆t = t1 − t2),

and on the assignment of the pulses centered at t1 and t2 to each resonance, the sign

of ∆tmax will be positive or negative. Thus, we can reformulate the previous law as

∆tmax = a(FWHM/2 + τ iso1 + τ iso2 ), (6)

where a stands for the sign of ∆tmax, a = ±1. For the definition ∆t = t2 − t1, a = 1

when the pulse centered at t1 excite the most populated resonance, and a = −1

when this resonance is excited by the pulse centered at t2.

The correct prediction of ∆tmax by eqn (6) and the coincidence of the result

|∆tmax| = 120 ps in the two cases of A2 = A1 and A2 = 3A1 for FWHM=200 ps,

seems to indicate that the value of |∆tmax| is not determined (at least strongly) by

the specific relative population of the two resonances. Another interesting result of

Fig. 4 is that τmax
2 > τmax

1 , which is the opposite result to that found in Fig. 3,

when the ψ1 resonance was populated with more intensity. This result would imply

that interference between the two resonances would favor a larger enhancement of

the lifetime of the resonance populated with the largest intensity.

It is now interesting to rationalize all the previous results in relation with the

characteristics of the mechanism of interference between the two overlapping res-

onances. For this analysis, the survival probabilities of the n′ = 0 and n = 9

resonances will be used when they are excited in the absence of population of the

other resonance (i.e., when A2 = 0 and A1 = 0, respectively) with a pulse with

FWHM=200 ps, and with A2 = A1. While what actually interferes is the amplitude

pumped to each resonance, the In(t) curves will similarly serve to illustrate how

the interference mechanism operates. Since each resonance is excited isolatedly, no

interference is possible, and the In(t) curves of Fig. 5 do not show oscillations.
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Resonance interference was found to be most effective in order to enhance the

resonance lifetime when it occurs in the time region of the exponential decay of

In(t).
36 Taking this into account, one can understand from Fig. 5 the result of

∆tmax = 120 ps found in Fig. 3, when the most populated resonance is excited first,

vs. the other possibility of ∆t = −120 ps. Indeed, for ∆t = 120 ps the I1(t) and

I2(t) curves overlap along time in a more favorable way, maximizing the amount of

simultaneous population in both resonances in the time region of the decay of the

two resonances, then maximizing the intensity of interference in that region. This

explains the result that the same ∆tmax leads to maximum lifetime enhancement for

both τ1 and τ2. For ∆t = −120 ps the time overlap between resonance populations

is much less favorable for interference, leading to rather poor lifetime enhancements,

as shown in Fig. 3. Maximizing the time overlap between the resonance populations

in the appropriate time region also explains the dependence of ∆tmax on the pulse

width and on the sum of τ iso1 and τ iso2 . Indeed, as both the pulse width and the

lifetimes τ ison increase, it takes a longer time to reach the region of the resonance

decay, what increases ∆tmax and explains the specific form of eqn (6). In addition,

as the pulse width increases the time range of interference in the optimal region

becomes longer, leading to a larger enhancement of both τmax
n , as found in Fig. 3.

The simple form of eqn (6) appears to reflect the relatively simple physics underlying

the mechanism of interference between overlapping resonances.

In summary, the enhancement of the resonance lifetime that occurs upon interfer-

ence of two overlapping resonances excited coherently by two pulses delayed in time,

has been investigated as a function of the pulse temporal width and the delay time

between the pulses. A general law that predicts quantitatively the optimal delay

time between pulses that maximizes the lifetime enhancement of the two resonances

has been established. This optimal delay time depends on the pulse width and on

the lifetimes of the two resonances when they are excited isolatedly. The specific

form of the law and the results found are readily explained in terms of the features of

the mechanism of interference between the resonances, providing a physical basis for
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the law and a detailed understanding on how the mechanism operates. Finally, the

present findings are general to any situation of two overlapping resonances excited

by two delayed pulses, and are envisioned as a useful tool to design experimental

strategies to control the resonance lifetime.
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(38) A. Garćıa-Vela, Phys. Chem. Chem. Phys., 2015, 17, 29072.
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FIGURE CAPTIONS

Fig. 1. Calculated excitation spectrum associated with the ground vdW resonance of

Ne-Br2(B, v
′ = 35). The energy axis is relative to the Ne + Br2(B, v

′ = 35, j′ =

0) dissociation threshold. The main peak of the spectrum (labeled as (v′, gr))

corresponds to the ground resonance of the v′ = 35 vibrational manifold.

Resonances associated with the v′ − 1 manifold in the range n = 5 − 13 have

been identified, and their positions are indicated by arrows in the figure.

Fig. 2. Survival probability I1(t) of the n
′ = 0 ground resonace of v′ = 35 when the

set (ψ1, ψ2) = (n′ = 0, n = 9) of two overlapping resonances is excited with

the laser field of eqn (1) with pulses having a width FWHM=200 ps, and a

delay time between pulses ∆t = 80 ps. The plain, nonoscillating curve is a fit

to I1(t) obtained using eqn (5).

Fig. 3. Calculated lifetimes of the two overlapping resonances vs. the delay time

between the two pulses exciting the set of resonances (n′ = 0, n = 9) by

applying the pulse width of FWHM=100 ps (left upper panel), FWHM=200

ps (right upper panel), FWHM=300 ps (left lower panel), and exciting the set

of resonances (n′ = 0, n = 7) by applying the pulse width of FWHM=200 ps

(right lower panel). In all cases the ratio A2 = A1 of pulse amplitudes was

used in eqn (1).

Fig. 4. Calculated lifetimes of the n′ = 0 and n = 9 resonances vs. the delay time

between the two exciting pulses, by applying the pulse width of FWHM=200

ps. The ratio A2 = 3A1 of pulse amplitudes was used in eqn (1).

Fig. 5. Survival probabilities I1(t) and I2(t) of the n
′ = 0 and n = 9 resonances, re-

spectively, when they are excited isolatedly using a pulse width of FWHM=200

ps. In the case of n′ = 0 the exciting pulse is centered at t1 = 0, while for

n = 9 the pulse was centered at t2 = −120 and 120 ps.
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