Assessment of SMOS measurements of Arctic Sea Ice Concentration

C. Gabarró, A. Turiel, M. Portabella, P. Elosegui, and BEC team

Physical Oceanography Department Institute of Marine Sciences (ICM), CSIC Pg. Marítim de la Barceloneta 37-49, Barcelona E-mail: vgonzalez@icm.csic.es URL: www.smos-bec.icm.csic.es

7th Data Assimilation and PPP Ice Verification Workshop / ESRIN, Rome 5-7 April 2016

- SMOS Mission and products
- Basic Concepts on Sea Ice
- Theoretical determination of indices
- Determination of empirical tie points values
- Inversion algorithm
- Results and comparison with other sources
- Advantages and drawbacks
- Conclusions
- SSS of the Arctic Ocean

Measuring salinity from space: SMOS

ESA SMOS mission:

- Earth Explorer launched on Nov. 2009
- L-band (1.4 GHz) synthetic aperture radiometer, with many incidence angles (0 to 68°), large swath and full-pol.
- Polar orbit: 6am/6pm, 3-day repeat
- Measures:
 - SSS on the ocean
 - SM on land
 - Cryospheric applications : Ice thickness, sea ice concentration,
 Sea Surface salinity in Arctic Ocean

Water mission

Basic Concepts on Sea Ice

SMOS BARCELONA EXPERT CENTRE

SSMI

AMSR-E on Nasa AQUA

AMSR-2 on JAXA GCOM-W1

- Using combination of TB at frequencies: 6, 19, 37, 89 GHz, H/V pol.
- More than 10 different algorithms : Bootstraap, Bristol, Nasa Team, ASI, OSISAF, etc. -> each one has PROS/CONS

Paper from Ivanova et al., 2015 -> good resume comparison of algorithms.

Ice concentration measurement

Sea Ice Emissivity & Ice Concentration Algorithms

• Indices (combination of TBs) are commonly used

SMOS BARCELONA EXPERT CENTRE

and and

SMOS

 Tie points : typical radiometric meas. for sea ice and open water -> Empirically obtained

Theoretical Models

 State of the Art models used to describe TB from ICE: Vant et al. , Cox and Weeks, Leppäranta & Manninen, Burke et al. -> even theoretical models are not much reliable for ice.

Determination of indices: based on **theoretical** models

Theoretical Models
 Sensitivity of TB and indices to geophysical parameters
 based on theoretical models

Sensitivity	Sea Temp.	Sea surf. Salinity	Ice Temp	Ice salinity
TB sea	0.52 K/ºC	0.51 K/pss		
PD sea	0.26 K/ºC	0.21 K/pss		
AD sea	0.20 K/ºC	0.12 K/pss		
TB ice			0.85 K/ºC	1 K/psu
PD ice			0.66 K/ºC	0.35 K/psu
AD ice			0.35 K/ºC	0.25 K/psu

PD and AD have lower sensitivity to temperature and salinity changes

Better to use indices

Data set: SMOS

- SMOS L1B 503, transformed to BOA, outlier filtered, inter/extrapolated to all incidence angles
- Average of 3 days for each month in 2014
- EASE Northern Hemisphere grid, equal area projection, at 25Km

Algorithm validation: No in situ measurements. There is a data base, but from 2006 to 2009.

Comparison with OSI-SAF algorithm with SSMIs: uses 19 and 37GHz.

Temporal stability in Sea region

SMOS BARCELONA EXPERT CENTRE

uniter

SMOS

10

SMOS Temporal stability of the TP

MY ICE

CSIC

SMOS BARCELONA EXPERT CENTRE

mylun

SMOS

SEA

Comparison between Theoretical and empirical Tie Points

Tie Points	Theoretical	SMOS empirical
PD ice + snow (winter & autumn)	25	20
AD ice + snow	8	10
PD sea	63	62
AD sea	44	42

Small differences, about 20% on Ice, less on Sea

Method 1: Direct linear inversion:

- $PD = c \cdot PD_{ice} + (1 c) \cdot PD_{sea}$
- $AD = c \cdot AD_{ice} + (1 c) \cdot AD_{sea}$

- Where c is ice concentration value
- PD_ice/sea and AD_ice/sea are empirical Tie Points: the most frequent value in 100% of SEA/ICE region -> widely used

Method 2: Maximum Likelihood Estimation, define a normal distribution and assume a linear combination between ICE and Water Tie Points, for the mean and Std Dev of the Tie Points -> **Efficient and unbiased**.

•
$$\rho_{PD} = N(\mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2} \frac{(x-\mu)^2}{\sigma^2}} = N((cPD_{ice} + (1-c)PD_{sea}), \sqrt{c^2 \sigma_{PD_ice}^2 + (1-c)^2 \sigma_{PD_sea}^2})$$

Inversion Algorithm

SMOS BARCELONA EXPERT CENTRE

SMOS

UPC

•
$$\rho_{AD} = N((cAD_{ice} + (1-c)AD_{sea}), \sqrt{c^2 \sigma_{AD_{ice}}^2 + (1-c)^2 \sigma_{AD_{sea}}^2})$$

• MLE \rightarrow max $L = \ln(\rho_{PD}(c)) + \ln(\rho_{AD}(c))$ to get ice conc (c).

SMOS BARCELONA EXPERT CENTRE

ICE region , due to different penetration

Main differences due to thin ice

SMOS BARCELONA EXPERT CENTRE

SMOS

SMOS Sea Ice thickness

- Comparison static vs dynamic tie point on ICE:
 - Static: 1 Tie-Points: averaged TB (Dec to May data) for all year data
 - Dynamic: 2 Tie-points:

SMOS BARCELONA EXPERT CENTRE

SMOS

- Winter TP: averaged TB from Dec to May and applied from Oct to May
- Summer TP: averaged TB Jun to Sep and applied from Jun to Sep

Comprison of MLE vs linear and using AD/PD/Both

Results and comparison

SMOS BARCELONA EXPERT CENTRE

Larger AD vs ADPD diff -> when max extension of thin ice. AD is less sensitive to thin ice Best results (vs OSISAF):

- MLE (lower RMS and noise)
- Only with AD -> main diff. on thin ice

SMOS SIC best configuration: MLE (AD) + 2 TP

SMOS BARCELONA EXPERT CENTRE

Man

SMOS

A priori Error: propagation error from MLE weighted by σAD_sea, σAD_ice & σTB

Jan 2014

SMOS BARCELONA EXPERT CENTRE

SMOS

March 2014

Mai 2014

July 2014

August 2014

2

Quality of the retrieved SIC

24

Both have similar ability to detect 100% sea Good performance in winter, during summer and autumn -> snow gets wet -> differences for the dynamic tie points of SAF algo, every 2 weeks

Quality of the retrieved SIC

SMOS BARCELONA EXPERT CENTRE

WILD.III

SMOS

Algorithm used: MLE AD+2TP

2TP MLE AD 2n to 5th of Gen 2014 180°W 20°W 120°W 0.5 0.5 400 900 900 ရ ရ ရ 60°2 60°4 0 0 to 5th of Gen 201 AF>0.9 & S 0° 0° SMOS **OSISAF** 180°W 180°W 1200 1200 0.5 120°W 120°W SIC from SMOS vs OSISAI 0 0.5 600ч С С 60°h 60°4 -0.5 0 0° 0° **SMOS-OSISAF** SMOS + OSISAF mask

SMOS BARCELONA EXPERT CENTRE

uniter

SMOS

eee UPC

SMOS

SMOS BARCELONA EXPERT CENTRE

und un

SMOS

SAF>0.9 & S

2TP MLE AD 2n to 5th of Mar 2014 20°W 0.5 400 900 900 60°4 0 0° SMOS

SMOS BARCELONA EXPERT CENTRE

und un

SMOS

SMOS-OSISAF

SMOS + OSISAF mask

SMOS

eee UPC

SMOS BARCELONA EXPERT CENTRE

und un

SMOS

2TP MLE AD 2n to 5th of Mai 2014 180°W 120°W 20°W 0.5 0.5 400 900 900 ရ ရ ရ 60% 60% 0 0 0° 0° SMOS **OSISAF** 180°W 180°W 1200 1200 0.5 120°W 20°W 0 0.5 800ч С С 60°h 60°h -0.5 0 0° **0**°

SMOS + OSISAF mask

SMOS-OSISAF

SMOS BARCELONA EXPERT CENTRE

un lun

SMOS

SIC from SMOS vs OSISAI

SAF>0.9 & S

SMOS

000 000 UPC

SMOS BARCELONA EXPERT CENTRE

und un

SMOS

2TP MLE AD 2n to 5th of Jul 2014 180°W 120°W 20°W 0.5 8000 60°4 60°h 0 0° SMOS 180°W 0.5 1200 20°W 120°W 0 500 60°h

0 0° **OSISAF** 180°W 1200 0.5 ୍କ ପୁର୍ଯ୍ଭ

0°

0.5

0

800

SMOS BARCELONA EXPERT CENTRE

und un

SMOS

SMOS + OSISAF mask

SMOS

eee UPC

SMOS BARCELONA EXPERT CENTRE

und un

SMOS

2TP MLE AD 2n to 5th of Set 2014 180°W 20°W 120°W 0.5 0.5 8000 800 60°h Soon 0 0 2p to 5th of Set 201 0° 0° SMOS **OSISAF** 180°W 180°W 1200K 1200 0.5 120°W 120°W SIC from SMOS vs OSISAI 0 0.5 800ч С С 60°h 60°4 -0.5 0 0° 0° **SMOS-OSISAF** SMOS + OSISAF mask

SMOS BARCELONA EXPERT CENTRE

and and

SMOS

AF>0.9 & S

SMOS BARCELONA EXPERT CENTRE

un lun

SMOS

AF>0.9 & S

0.5

0

0.5

0

to 5th of Nov 201

SIC from SMOS vs OSISAI

2TP MLE AD 2n to 5th of Nov 2014 180°W 20°W 20°W 0.5 400 900 900 ရ ရ ရ 60°2 60°h 0 0° 0° SMOS **OSISAF** 180°W 180°W 1200 0.5 1200 20°W 120°W 0 800-୍କ ପୁର୍ଯ୍ଭ 60°h 60°4 -0.5 0° 0°

SMOS + OSISAF mask

SMOS-OSISAF

SMOS BARCELONA EXPERT CENTRE

und un

SMOS

SAF>0.9 & S

eee UPC

SMOS

SMOS BARCELONA EXPERT CENTRE

und un

SMOS

Advantages and drawbacks

Main drawbacks of SMOS SIC:

SMOS BARCELONA EXPERT CENTRE

SMOS

- Underestimation on thin ice -> but detection of thin ice
- Lower spatial resolution (25km)
- Main problems of other SIC, from Ivanova et al. 2015 SMOS almost
 - Atmosphere correction: water vapour and cloud liq low ice concentration
 SMOS annot

al

Advantages and drawbacks

Main drawbacks of SMOS SIC:

SMOS BARCELONA EXPERT CENTRE

SMOS

- Underestimation on thin ice -> but detection of thin ice
- Lower spatial resolution (25km)
- Main problems of other SIC, from Ivanova et al. 2015
 - Atmosphere correction: water vapour and cloud liq low ice concentration
 - Sensitivity wit SMOS is less sensitive
 - Snow cover thickness -> difficult to determine
 - Seasonal changes on ice tie points of up to 10K

SMOS almost

transparent

SMOS not affected

by snow thickness

lal

- AD and PD are robust indices to retrieve SIC, more independent to geophysical changes than TB. AD is less sensitive to ice thickness.
- MLE algorithm is better than linear -> less noisy.

CONCLUSIONS

- SMOS leads to lower SIC than OSISAF on thin ice, due to its different penetration.
- Correlation is high between SMOS and OSISAF SICs.
- SMOS less sensitive to atmosphere and geophysical conditions.
- Need Data for validation (SAR/INSITU)

SMOS BARCELONA EXPERT CENTRE

SMOS

Investigate how to retrieve simultaneously SIC and Sea Ice Thickness (SIT) by using both AD and PD indices from SMOS measurements

SSS at high latitudes

- For the Arctic Ocean, sea water density depends more on salinity than on temperature, and hence the thermohaline circulation mainly determined by salinity.
- An increased level of river discharge to the Arctic Ocean. -> the dynamical impact of such increase remains an enigma

<u>http://cp34-bec.cmima.csic.es/</u> <- DATA HERE</p>

SSS at high latitudes

Remote sensing of the Arctic Ocean salinity by SMOS would provide an unprecedented source of information about the salinity and sea ice variability.

SSS ->Norwegian fjords

SSS Hudson Bay

Quality assessment: comparison with Argo

SMOS BARCELONA EXPERT CENTRE

und and

SMOS

	Mean	Std	RMS
2011	-0.05	0.32	0.35
2012	0.05	0.34	0.38
2013	0.04	0.25	0.29

43

WOA13-TSG

EN4-TSG

Comparison with transects

0.96

1.31

0.96

0.80

1.18

1.21

Monitoring the Arctic rivers

Machenzie

Monthly river discharge from http://rims.unh.edu

Sea Surface Salinity

- SMOS is capable to measure Sea Surface salinity from cold waters with an accuracy aprox 0.35 psu with respect ARGO measurements.
- SMOS is a good tool to **monitor river discharges** in the Arctic Ocean.
- SMOS gives better accuracy SSS data than WOA13 climatology and EN4 datasets.
- Better corrections can be performed using sophisticated processing tools (work going on at BEC).

Thank you for your attention

Data in http://cp34-bec.cmima.csic.es/

Distribution of measured PD and AD

Histograms of measurements inside ROIs:

SMOS BARCELONA EXPERT CENTRE

SMOS

PD & AD distributions are unimodal and symmetric -> can be approximated as Gaussian distributions

Stability of TiePoints with time esa

25-29 May 2015 | ESA-ESAL | Villatranca (Madrid), Spain

→ 2nd SMOS

- PROS:
 - SMOS less sensitive to atmosphere
 - SMOS less sensitive to temperature / snow / wind
- CONS:
 - Lower spatial resolution
 - Underestimation on thin ice

However, synergy with high freq radiometres, region of thin ice (less than 70cm) can be masked

Stability of TiePoints with timeesa

Mean_PD_FY~=mean_PD_MY Mean_AD_FY~=mean_AD_MY

Std_PD_FY~=2*std_PD_MY Std_AD_FY~=2*std_AD_MY

Could it be a proxy for FY/MY ice classification?

Theoretical models

Differences:

- polarization differences
- TBV

- Sea ice dielectric constant: Vant et al (1978) + Cox & Weeks (1983) + Leppäranta & Manninen (1988)
- Seawater dielectric constant: Klein & Swift
- Ice over seawater: Burke et al. (1979) 3-layer model (snow+ice+water)
- Snow is transparent but effect on the incidence angle (Fresnel)

Theoretical behaviour of selected indices

Polarization Difference Index: TBV - TBH

Angular Difference Index: TBV for $\Delta \theta$ =35°

Identify ROIs for FY ice and MY ice

